JP5867285B2 - Bolt steel - Google Patents

Bolt steel Download PDF

Info

Publication number
JP5867285B2
JP5867285B2 JP2012112009A JP2012112009A JP5867285B2 JP 5867285 B2 JP5867285 B2 JP 5867285B2 JP 2012112009 A JP2012112009 A JP 2012112009A JP 2012112009 A JP2012112009 A JP 2012112009A JP 5867285 B2 JP5867285 B2 JP 5867285B2
Authority
JP
Japan
Prior art keywords
carbides
steel
tensile strength
quenching
bolts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012112009A
Other languages
Japanese (ja)
Other versions
JP2013237903A (en
Inventor
有祐 宮越
有祐 宮越
松本 斉
斉 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012112009A priority Critical patent/JP5867285B2/en
Publication of JP2013237903A publication Critical patent/JP2013237903A/en
Application granted granted Critical
Publication of JP5867285B2 publication Critical patent/JP5867285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ボルト用鋼材に係り、特に、焼入れ焼戻し後に1200MPa以上の引張強さを有するとともに引張強さのばらつきが極めて小さいボルト用鋼材に関する。   The present invention relates to a steel material for bolts, and more particularly, to a steel material for bolts having a tensile strength of 1200 MPa or more after quenching and tempering and a very small variation in tensile strength.

近年、自動車および各種産業機械の軽量化ならびに建築構造物の大型化に伴い、高い安全性を有する高強度ボルトが求められるようになってきた。そのため、締結に必要な所定の軸力をばらつきなくボルトに付与するために、引張強さのばらつきが小さいボルト用鋼材の開発が急務の課題となっている。   In recent years, with the reduction in weight of automobiles and various industrial machines and the increase in size of building structures, high-strength bolts having high safety have been demanded. Therefore, in order to impart a predetermined axial force necessary for fastening to the bolt without variation, it is an urgent task to develop a steel material for bolts with a small variation in tensile strength.

特に、高い軸力を得るために、塑性域締付けを行うボルトでは、ボルトの引張強さに応じた軸力が付与されるため、ボルトの引張強さのばらつきが軸力のばらつきの主要因となる。したがって、ボルトの安全性を向上させるためには、ボルトの引張強さのばらつきを厳密に抑制する必要がある。   In particular, in bolts that are tightened in the plastic zone in order to obtain a high axial force, an axial force corresponding to the tensile strength of the bolt is applied, so the variation in the tensile strength of the bolt is the main factor in the variation in axial force. Become. Therefore, in order to improve the safety of the bolt, it is necessary to strictly suppress the variation in the tensile strength of the bolt.

ボルト用鋼材、すなわちボルトの素材となる鋼としては、例えば、JIS G 4053(2008)に規定されたSCM435等のクロムモリブデン鋼が用いられる。熱間圧延後に、冷間加工性を向上させる目的で球状化焼鈍を施し、その後、伸線加工または引抜加工した後、冷間鍛造によってボルト形状に仕上げるのが一般的である。そして、最終的に所定の強度を確保するために焼入れ焼戻し処理を施してボルト製品となる。以下、伸線加工と引抜加工とを単に「伸線加工」という。   As a steel material for bolts, that is, steel used as a bolt material, for example, chromium molybdenum steel such as SCM435 defined in JIS G 4053 (2008) is used. In general, after hot rolling, spheroidizing annealing is performed for the purpose of improving cold workability, and then the wire is drawn or drawn and then finished into a bolt shape by cold forging. And finally, in order to ensure predetermined intensity | strength, a quenching and tempering process is performed and it becomes a bolt product. Hereinafter, wire drawing and drawing are simply referred to as “wire drawing”.

特許文献1および2には、連続冷却および恒温変態によって熱間圧延後の組織をベイナイト単一とすることで、球状化焼鈍に要する処理時間を短縮する方法が記載されている。また、特許文献3には、炭化物の球状化率を制限することによって、焼入れ前の熱処理用鋼材の加工性を良好なものとするとともに、焼入れに際しての加熱工程において炭化物の固溶を促進させることができ、低温かつ短時間の加熱でも十分に焼きが入り、高強度の成型品を製造できる性能を有する、熱処理の素材に好適な熱処理用鋼材が開示されている。   Patent Documents 1 and 2 describe a method of shortening the processing time required for spheroidizing annealing by making the structure after hot rolling single by bainite by continuous cooling and isothermal transformation. Patent Document 3 discloses that by restricting the spheroidization rate of carbide, the workability of the steel for heat treatment before quenching is improved and the solid solution of carbide is promoted in the heating process during quenching. A steel material for heat treatment suitable for a heat treatment material has been disclosed, which has the capability of producing a high-strength molded product that can be sufficiently baked by low temperature and short time heating.

特開昭48−26618号公報JP-A-48-26618 特開昭60−9832号公報JP 60-9832 A 特開2011−195957号公報JP 2011-195957 A

特許文献1および2に記載の発明は、焼入れ焼戻し後の鋼材の引張強さのばらつきを抑制するという観点での検討は一切行われておらず、引張強さを厳密に管理する必要がある高強度のボルト用鋼材として必ずしも適当とはいえない。また、特許文献3に記載の発明は、低温かつ短時間で加熱後に焼入れが施されたとしても高い強度を得ることが可能な熱処理用鋼材に関するものである。しかしながら、焼入れ焼戻し後の鋼材の引張強さのばらつきを抑制して、塑性域締付けを行うボルトの素材として用いるには、改良の余地も残されている。   The inventions described in Patent Documents 1 and 2 have not been studied at all in terms of suppressing variations in the tensile strength of steel materials after quenching and tempering, and it is necessary to strictly control the tensile strength. It is not necessarily suitable as a steel material for high-strength bolts. The invention described in Patent Document 3 relates to a heat-treating steel material capable of obtaining high strength even when quenched after being heated at a low temperature for a short time. However, there is still room for improvement in order to suppress the variation in the tensile strength of the steel material after quenching and tempering and to use it as a bolt material for tightening the plastic region.

ボルト用鋼材の中でも、圧延ままの強度が高いために、冷間加工性が低い鋼材を用いる場合、冷間鍛造用の金型の寿命が低下しないよう、熱間圧延後に球状化焼鈍(以下、「1次焼鈍」ともいう。)を施し、伸線加工した後、さらに球状化焼鈍(以下、「2次焼鈍」ともいう。)を施す工程を設けて強度を十分に低減させた後、最終伸線加工および冷間鍛造を行うことが多い。   Among steels for bolts, because of the high strength as rolled, when using a steel material with low cold workability, spheroidizing annealing after hot rolling (hereinafter referred to as the following) so as not to reduce the life of the die for cold forging After performing wire drawing and wire drawing, a step of further spheroidizing annealing (hereinafter also referred to as “secondary annealing”) is provided to sufficiently reduce the strength, and then the final Drawing and cold forging are often performed.

この際、二度の焼鈍を施すため、焼鈍によって球状化された炭化物が粗大化しやすくなり、粗大化した炭化物は、その後の焼き入れのための加熱時にマトリックス中に完全に溶かすことが困難になることがある。また、通常の焼き入れ炉では、炉内の温度が均一でなく、場所によって焼入れ温度に差が生じるため、炭化物の溶け残りの度合いにも差が生じ、結果的に焼戻し後のボルト製品の引張強さのばらつきが大きくなる。   At this time, since annealing is performed twice, the carbides spheroidized by annealing are easily coarsened, and the coarsened carbides are difficult to be completely dissolved in the matrix during heating for subsequent quenching. Sometimes. Also, in a normal quenching furnace, the temperature in the furnace is not uniform, and the quenching temperature varies depending on the location, so there is also a difference in the degree of undissolved carbide, resulting in the tension of the bolt product after tempering. Variation in strength increases.

さらに、一般に量産されているボルトの焼き入れ炉は、均熱温度が860〜900℃の連続炉であり、保持温度を900℃以上に上げて炭化物の固溶を促進させることは、設備制約上、困難な場合が多い。そのため、860〜900℃加熱の焼入れでも炭化物を十分に固溶させることが可能なボルト用鋼材に対する要望が強い。   Furthermore, generally used mass quenching furnaces for bolts are continuous furnaces with a soaking temperature of 860 to 900 ° C., and raising the holding temperature to 900 ° C. or more to promote solid solution of carbides due to equipment constraints. Often difficult. For this reason, there is a strong demand for a steel material for bolts that can sufficiently dissolve carbides even when quenched at 860 to 900 ° C.

本発明は、前述のような従来技術の問題点を解決し、860〜900℃加熱の焼入れにおいても、炭化物が均一に十分固溶し、焼き戻し後の引張強さのばらつきが極めて小さく、かつ、1200MPa以上の引張強さを有する高強度ボルト用鋼材を提供することを目的とする。   The present invention solves the problems of the prior art as described above, and even in quenching at 860 to 900 ° C., the carbides are uniformly and sufficiently dissolved, and the variation in tensile strength after tempering is extremely small, and An object of the present invention is to provide a steel material for high-strength bolts having a tensile strength of 1200 MPa or more.

本発明は、上記の課題を解決するためになされたものであり、その要旨は、下記の(1)および(2)に示すボルト用鋼材にある。   This invention is made | formed in order to solve said subject, The summary exists in the steel materials for bolts shown to following (1) and (2).

(1)鋼材の化学組成が、質量%で、C:0.30〜0.40%、Si:0.01〜0.40%、Mn:0.10〜1.0%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.10%、Cr:0.90〜1.8%、Mo:0.10〜2.0%およびN:0.003〜0.030%を含有し、残部がFeおよび不純物からなり、円相当径0.5μm以上の炭化物のうち円相当径1.0μm以上の炭化物の個数比率が10%以下となる組織を有し(但し、1次焼鈍および2次焼鈍後、ならびに、焼入れ焼戻し前において、組織中にパーライト組織を含む場合を除く。)、焼入れ焼戻し後に1200MPa以上の引張強度を有することを特徴とするボルト用鋼材。 (1) The chemical composition of the steel material is mass%, C: 0.30 to 0.40%, Si: 0.01 to 0.40%, Mn: 0.10 to 1.0%, P: 0.00. 030% or less, S: 0.030% or less, Al: 0.005 to 0.10%, Cr: 0.90 to 1.8%, Mo: 0.10 to 2.0%, and N: 0.003 It has a structure that contains ~ 0.030%, the balance is Fe and impurities, and the ratio of the number of carbides with an equivalent circle diameter of 1.0 μm or more among the carbides with an equivalent circle diameter of 0.5 μm or more is 10% or less. (However, after primary annealing and secondary annealing, and before quenching and tempering , excluding the case where the structure contains a pearlite structure.) Steel material for bolts having a tensile strength of 1200 MPa or more after quenching and tempering .

(2)鋼材の化学組成が、Feの一部に代えて、質量%で、さらにNb:0.10%以下を含有することを特徴とする上記(1)に記載のボルト用鋼材。   (2) The steel material for bolts according to (1) above, wherein the chemical composition of the steel material contains, in place of a part of Fe, mass% and further Nb: 0.10% or less.

本発明の高強度ボルト用鋼材は、焼入れ焼戻し後に1200MPa以上の引張強さを有するとともに引張強さのばらつきが極めて小さいので、例えば、自動車エンジン部等の重要な機械構造物の締結に用いられ、高強度かつ締結に必要な所定の軸力をばらつきなくボルトに付与することが求められるボルトの素材として好適である。   The steel material for high-strength bolts of the present invention has a tensile strength of 1200 MPa or more after quenching and tempering and has a very small variation in tensile strength.For example, it is used for fastening important mechanical structures such as automobile engine parts, It is suitable as a bolt material that is required to impart high strength and a predetermined axial force necessary for fastening to the bolt without variation.

1.鋼の化学組成
各元素の限定理由は下記のとおりである。なお、以下の説明において、各元素の含有量の「%」は、「質量%」を意味する。
1. Chemical composition of steel The reasons for limitation of each element are as follows. In the following description, “%” of the content of each element means “mass%”.

C:0.30〜0.40%
Cは、焼入れ性を高めて強度を向上させる作用を有する。十分な焼入れ性を得て1200MPa以上の引張強さを安定かつ確実に得るためには、0.30%以上のCを含有させる必要がある。しかしながら、0.40%を超える量のCを含有させても、炭化物が粗大化しやすくなり、焼入れ時の炭化物の固溶が困難となる。したがって、Cの含有量を0.30〜0.40%とした。なお、Cの強度向上作用を十分に発揮させるためには、C含有量の下限を0.32%とすることが望ましく、この場合には1300MPa以上の引張強さを安定かつ確実に確保することができる。一方、炭化物の粗大化を確実に防止するには、C含有量の上限を0.38%とすることが望ましい。
C: 0.30 to 0.40%
C has the effect | action which raises hardenability and improves intensity | strength. In order to obtain sufficient hardenability and stably and reliably obtain a tensile strength of 1200 MPa or more, it is necessary to contain 0.30% or more of C. However, even if C is contained in an amount exceeding 0.40%, the carbide tends to be coarsened, and it is difficult to dissolve the carbide during quenching. Therefore, the content of C is set to 0.30 to 0.40%. In addition, in order to sufficiently exhibit the effect of improving the strength of C, the lower limit of the C content is preferably set to 0.32%. In this case, a tensile strength of 1300 MPa or more should be secured stably and reliably. Can do. On the other hand, in order to reliably prevent the coarsening of the carbide, it is desirable that the upper limit of the C content is 0.38%.

Si:0.01〜0.40%
Siは脱酸に有効な元素であり、この効果を十分に発揮させるためには、0.01%以上を含有させる必要がある。一方、0.40%を超えて含有させると、冷間鍛造によるボルトへの成形性が著しく低下する。したがって、Siの含有量を0.01〜0.40%とした。Siの脱酸作用をより十分に発揮させるためには、0.05%以上含有させることが望ましい。冷間鍛造法でのボルト成形を容易にするためには、Si含有量の上限を0.28%とすることが望ましい。
Si: 0.01-0.40%
Si is an element effective for deoxidation, and in order to fully exhibit this effect, it is necessary to contain 0.01% or more. On the other hand, when it contains exceeding 0.40%, the moldability to the bolt by cold forging will fall remarkably. Therefore, the Si content is set to 0.01 to 0.40%. In order to fully exhibit the deoxidation action of Si, it is desirable to contain 0.05% or more. In order to facilitate bolt forming by the cold forging method, it is desirable that the upper limit of the Si content is 0.28%.

Mn:0.10〜1.0%
Mnは焼入れ性を高めて強度を向上させる作用を有する。この効果を十分に発揮させるためには0.10%以上含有させる必要がある。一方、1.0%を超えて含有させると、炭化物への濃化が著しく、焼入れ時の炭化物の固溶を延滞させる。したがって、Mnの含有量を0.10〜1.0%とした。安定した焼入れ性を得るためには0.25%以上含有させることが望ましい。焼入れ時に炭化物を十分に固溶させるには、Mn含有量の上限は0.59%とすることが望ましく、0.55%とすることがより望ましい。
Mn: 0.10 to 1.0%
Mn has the effect of increasing the hardenability and improving the strength. In order to fully exhibit this effect, it is necessary to contain 0.10% or more. On the other hand, when it contains exceeding 1.0%, the concentration to a carbide | carbonized_material will be remarkable and the solid solution of the carbide | carbonized_material at the time of hardening will be overdue. Therefore, the content of Mn is set to 0.10 to 1.0%. In order to obtain stable hardenability, it is desirable to contain 0.25% or more. In order to sufficiently dissolve the carbide during quenching, the upper limit of the Mn content is preferably 0.59%, and more preferably 0.55%.

P:0.030%以下
Pは鋼中に不純物として含有され、粒界に偏析して靱性および耐遅れ破壊性を低下させ、特に、その含有量が0.030%を超えると、靱性および耐遅れ破壊性の低下が顕著になる。したがって、Pの含有量を0.030%以下とした。Pの含有量は極力低い方が望ましい。
P: 0.030% or less P is contained as an impurity in the steel and segregates at grain boundaries to reduce toughness and delayed fracture resistance. In particular, when its content exceeds 0.030%, toughness and anti-resistance Decreased delayed fracture property becomes remarkable. Therefore, the content of P is set to 0.030% or less. The content of P is preferably as low as possible.

S:0.030%以下
Sは鋼中に不純物として含有され、粒界に偏析して靱性および耐遅れ破壊性を低下させ、特に、その含有量が0.030%を超えると、靱性および耐遅れ破壊性の低下が顕著になる。したがって、Sの含有量を0.030%以下とした。Sの含有量は極力低い方が望ましい。
S: 0.030% or less S is contained as an impurity in steel and segregates at the grain boundaries to lower toughness and delayed fracture resistance. In particular, when its content exceeds 0.030%, toughness and resistance to resistance are reduced. Decreased delayed fracture property becomes remarkable. Therefore, the content of S is set to 0.030% or less. The content of S is preferably as low as possible.

Al:0.005〜0.10%
AlはNと結びついて窒化物を形成し、ピンニング効果により細粒化に有効に働き、耐遅れ破壊性を改善する。その効果を十分に発揮させるためには、0.005%以上含有させる必要がある。しかしながら、Alを0.10%を超えて含有させても前記の効果は飽和し、靭性が劣化する。したがって、Alの含有量を0.005〜0.10%とした。また、より良好な靭性を確保するためには、Al含有量の上限を0.06%とすることが望ましい。なお、本発明のAl含有量とは酸可溶Al(いわゆる「sol.Al」)を指す。
Al: 0.005-0.10%
Al combines with N to form nitrides, which effectively work for fine graining by the pinning effect and improve delayed fracture resistance. In order to fully exhibit the effect, it is necessary to contain 0.005% or more. However, even if Al is contained in an amount exceeding 0.10%, the above effect is saturated and the toughness deteriorates. Therefore, the content of Al is set to 0.005 to 0.10%. Moreover, in order to ensure better toughness, it is desirable that the upper limit of the Al content be 0.06%. The Al content of the present invention refers to acid-soluble Al (so-called “sol.Al”).

Cr:0.90〜1.8%
Crは焼入れ性を高めて強度を向上させる作用を有する。1200MPa以上の引張強さを得るためには、Crを0.90%以上含有させる必要がある。しかしながら、Crを1.8%を超えて含有させても炭化物に濃化し、焼入れ時の炭化物の固溶を延滞させる。したがって、Crの含有量を0.90〜1.8%とした。さらに焼入れ時に炭化物を十分に固溶させるには、Cr含有量の上限を1.5%とすることが望ましい。
Cr: 0.90 to 1.8%
Cr has the effect of increasing the hardenability and improving the strength. In order to obtain a tensile strength of 1200 MPa or more, it is necessary to contain 0.90% or more of Cr. However, even if Cr is contained in excess of 1.8%, it is concentrated in carbides, and solid solution of carbides during quenching is delayed. Therefore, the Cr content is set to 0.90 to 1.8%. Further, in order to sufficiently dissolve the carbide during quenching, it is desirable that the upper limit of the Cr content is 1.5%.

Mo:0.10〜2.0%
Moは焼入れ性を高めて強度を向上させる作用を有する。また、Moには炭化物を形成することによって析出強化に寄与し、焼戻し温度を下げることなく強度を向上させる作用もある。1200MPa以上の引張強さを得るためには、Moを0.10%以上含有させる必要がある。しかしながら、Moを2.0%を超えて含有させてもその効果は飽和してコストが嵩み、また、炭化物に濃化し、焼入れ時の炭化物の固溶を延滞させる。したがって、Moの含有量を0.10〜2.0%とした。なお、Moの強度向上作用を十分に発揮させるためには、Mo含有量の下限を0.31%とすることが望ましく、0.33%とすることがより望ましい。この場合には1300MPa以上の引張強さを確実に確保することができる。さらに焼入れ時に炭化物を十分に固溶させるには、Mo含有量の上限を1.8%とすることが望ましく、1.5%とすることがより望ましい。
Mo: 0.10 to 2.0%
Mo has the effect | action which raises hardenability and improves intensity | strength. Mo also contributes to precipitation strengthening by forming carbides, and has the effect of improving strength without lowering the tempering temperature. In order to obtain a tensile strength of 1200 MPa or more, it is necessary to contain 0.10% or more of Mo. However, even if Mo is contained in an amount exceeding 2.0%, the effect is saturated and the cost is increased, and it is concentrated in carbides, and solid solution of carbides during quenching is delayed. Therefore, the Mo content is set to 0.10 to 2.0%. In order to fully exhibit the effect of improving the strength of Mo, the lower limit of the Mo content is desirably 0.31%, and more desirably 0.33%. In this case, a tensile strength of 1300 MPa or more can be reliably ensured. Further, in order to sufficiently dissolve the carbide during quenching, the upper limit of the Mo content is desirably 1.8%, and more desirably 1.5%.

N:0.003〜0.030%
NはNb、Alと結びついてNbの窒化物および炭窒化物ならびにAlの窒化物を形成し、ピンニング効果により細粒化に有効に働き、耐遅れ破壊特性を改善する。その効果を十分に発揮させるためには、0.003%以上含有させる必要がある。しかしながら、その含有量が過剰になり、0.030%を超えると溶製時に窒素ブローホールが生成して加工時の疵発生の原因となりやすい。したがって、Nの含有量を0.003〜0.030%とした。なお、より良好な耐遅れ破壊特性を確保するためにはN含有量の下限を0.005%とすることが望ましい。
N: 0.003-0.030%
N combines with Nb and Al to form Nb nitrides and carbonitrides and Al nitrides, and effectively works for fine graining by the pinning effect and improves delayed fracture resistance. In order to fully exhibit the effect, it is necessary to contain 0.003% or more. However, if its content becomes excessive and exceeds 0.030%, nitrogen blowholes are generated during melting, which tends to cause wrinkles during processing. Therefore, the N content is set to 0.003 to 0.030%. In order to secure better delayed fracture resistance, it is desirable that the lower limit of the N content be 0.005%.

本発明に係るボルト用鋼材は、上記の各元素を含有し、残部がFeおよび不純物からなる化学組成を有するものである。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。本発明に係るボルト用鋼材は、Feの一部に代えて、さらに以下に示す量のNbを含有させても良い。   The steel for bolts according to the present invention contains the above-described elements, and the balance has a chemical composition composed of Fe and impurities. Here, “impurities” are components that are mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when steel is industrially manufactured, and are allowed within a range that does not adversely affect the present invention. Means something. The steel for bolts according to the present invention may further contain the following amount of Nb instead of part of Fe.

Nb:0.10%以下
Nbは、C、Nと結びついて炭化物、窒化物および炭窒化物を形成し、ピンニング効果により細粒化に有効に働き、耐遅れ破壊特性を改善するので必要に応じて含有させても良い。しかしながら、0.10%を超えて含有させるとこれらの効果が飽和するので、Nbを含有させる場合の量の上限を0.10%とする。なお、この効果を安定して発現させるためには、Nbを0.005%以上含有させるのが望ましい。
Nb: 0.10% or less Nb combines with C and N to form carbides, nitrides and carbonitrides, effectively works for fine graining by the pinning effect, and improves delayed fracture resistance as needed May be included. However, since these effects are saturated when the content exceeds 0.10%, the upper limit of the amount when Nb is included is set to 0.10%. In addition, in order to express this effect stably, it is desirable to contain Nb 0.005% or more.

2.鋼材の組織
本発明のボルト用鋼材は、1次焼鈍、伸線加工および2次焼鈍を施した後において、円相当径0.5μm以上の炭化物のうち円相当径1.0μm以上の炭化物の個数比率が10%以下となる組織を有するものである。
2. Steel structure The steel material for bolts of the present invention is the number of carbides having an equivalent circle diameter of 1.0 μm or more out of carbides having an equivalent circle diameter of 0.5 μm or more after primary annealing, wire drawing and secondary annealing. It has a structure with a ratio of 10% or less.

炭化物の円相当径は、以下の方法によって測定することができる。ピクラールエッチングした鋼線の横断面のR/2の位置(「R」は鋼線の半径)を、走査型電子顕微鏡を用いて5000倍の倍率で観察し、無作為に選んだ6視野について撮像する。撮像された画像に対して2値化処理を施し、その画像データより炭化物の面積を求め、円相当の直径に換算した。2値化画像を用いるに際して、円相当径0.5μm以上の炭化物であれば、組織の微細な腐食むらがあっても、適正かつ正確に判別することが可能であるため、円相当径0.5μm以上の炭化物を測定対象とした。   The equivalent circle diameter of carbide can be measured by the following method. The R / 2 position (“R” is the radius of the steel wire) of the cross-section of the Picral-etched steel wire was observed at a magnification of 5000 times using a scanning electron microscope, and 6 fields randomly selected Take an image. A binarization process was performed on the captured image, and the area of carbide was obtained from the image data, and converted to a circle-equivalent diameter. When using a binarized image, a carbide having an equivalent circle diameter of 0.5 μm or more can be discriminated properly and accurately even if there is a fine unevenness in the structure. Carbides of 5 μm or more were measured.

円相当径が1.0μm以上の炭化物は、860〜900℃加熱の焼入れにおいて、特に固溶しにくく、引張強さのばらつきに与える影響が著しいため、本発明においては、円相当径が1.0μm以上の炭化物を粗大な炭化物とする。   Carbides having an equivalent circle diameter of 1.0 μm or more are particularly difficult to dissolve during quenching by heating at 860 to 900 ° C. and have a significant effect on variations in tensile strength. Carbides with a size of 0 μm or more are coarse carbides.

測定対象である円相当径0.5μm以上の炭化物のうち、1.0μm以上の粗大な炭化物の個数比率は、10%以下とする必要がある。焼入れ時に炭化物を十分固溶させるためには、粗大な炭化物は少ないほど良く、粗大な炭化物の個数比率は5%以下であることが好ましく、3%以下であることがより好ましい。   Of the carbides having a circle-equivalent diameter of 0.5 μm or more, which is a measurement target, the number ratio of coarse carbides of 1.0 μm or more needs to be 10% or less. In order to sufficiently dissolve the carbide during quenching, the smaller the amount of coarse carbide, the better. The number ratio of coarse carbide is preferably 5% or less, and more preferably 3% or less.

3.ボルトの製造方法
本発明に係るボルト用鋼材は、上記の化学組成および組織を満足すれば良く、その製造方法については特に制限はない。例えば、鋼材が鋼線の場合には、以下の方法で製造することによって粗大な炭化物の個数比率を低減させることができる。
3. Manufacturing Method of Bolt The steel material for bolts according to the present invention only needs to satisfy the above chemical composition and structure, and the manufacturing method is not particularly limited. For example, when the steel material is a steel wire, the number ratio of coarse carbides can be reduced by manufacturing by the following method.

上記の化学成分を有する鋼を熱間仕上げ圧延後、捲き取り、ステルモア冷却装置を用いて冷却する。その際の捲き取り温度は850℃、ステルモアコンベア終点温度は550℃とするのが望ましく、双方ともに±100℃の誤差を許容し得るものである。捲き取り温度からステルモア終点温度までの冷却速度は、2〜10℃/秒とすることが望ましい。   The steel having the above chemical components is subjected to hot finish rolling and then scraped off and cooled using a stealmore cooling device. In that case, it is desirable that the scraping temperature is 850 ° C. and the end point temperature of the steermore conveyor is 550 ° C., both of which can tolerate an error of ± 100 ° C. It is desirable that the cooling rate from the scraping temperature to the Stealmore end point temperature is 2 to 10 ° C./second.

上記の条件で冷却することによって、圧延後の鋼材を、ベイナイトの面積率が60%以上であり、残部がフェライトおよびパーライトからなる組織とすることができる。微細な炭化物が均一に析出したベイナイトの面積率を60%以上にすることによって、球状化焼鈍した際の炭化物の粗大化を抑制することが可能となる。   By cooling under the above conditions, the steel material after rolling can have a structure in which the area ratio of bainite is 60% or more and the balance is composed of ferrite and pearlite. By making the area ratio of bainite, in which fine carbides are uniformly precipitated, 60% or more, it becomes possible to suppress the coarsening of the carbides during spheroidizing annealing.

球状化焼鈍に伴う炭化物の粗大化を防止するためには、1次焼鈍を2次焼鈍より低い温度条件で行うのが良い。具体的には、650℃以上720℃未満で1〜10時間保持して1次焼鈍を行い、その後、減面率5〜40%で伸線加工し、さらに、720〜780℃で1〜10時間保持して2次焼鈍を行うことが望ましい。   In order to prevent the carbide from coarsening due to the spheroidizing annealing, the primary annealing is preferably performed under a temperature condition lower than that of the secondary annealing. Specifically, primary annealing is performed by holding at 650 ° C. or more and less than 720 ° C. for 1 to 10 hours, and then wire drawing is performed at a surface reduction rate of 5 to 40%, and further, 1 to 10 at 720 to 780 ° C. It is desirable to perform secondary annealing while maintaining the time.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

表1に示す化学成分を有する鋼A〜Gの7種の鋼をいずれも転炉で溶製し、連続鋳造機で鋳片を製造した。それらの鋳片を160mm角の鋼片に分塊圧延後、1120℃で加熱し、熱間圧延によって直径18mmの線材とした。その後、850℃で捲き取り、ステルモア冷却装置によってステルモアコンベア終点温度である550℃まで、表2に示す冷却速度で風冷し、その後常温まで放冷して各試験番号について1つずつ圧延コイルを作製した。   All seven types of steels A to G having chemical components shown in Table 1 were melted in a converter and slabs were produced with a continuous casting machine. These cast slabs were divided and rolled into 160 mm square steel pieces, heated at 1120 ° C., and hot-rolled to obtain 18 mm diameter wires. After that, it is scraped off at 850 ° C., air-cooled at a cooling rate shown in Table 2 to 550 ° C., which is the end point temperature of the Stealmore conveyor, by a Stealmore cooling device, and then allowed to cool to room temperature. Was made.

Figure 0005867285
Figure 0005867285

Figure 0005867285
Figure 0005867285

なお、表1に示す化学組成を有する鋼A〜Cは、化学組成が本発明で規定する範囲内にある鋼であり、鋼D〜Gは、化学組成が本発明の規定範囲外の比較例の鋼である。   Steels A to C having the chemical composition shown in Table 1 are steels whose chemical compositions are within the range specified in the present invention, and Steels D to G are comparative examples whose chemical compositions are outside the specified range of the present invention. Of steel.

上記の熱間圧延後の各コイル端部から鋼線を5本ずつ採取した後、ナイタールエッチングしたそれぞれの鋼線の横断面のR/2部を、光学顕微鏡を用いて500倍の倍率でそれぞれの鋼線ごとに無作為に6視野観察し、計30視野におけるベイナイト面積率の平均値を求め、各試験番号におけるベイナイト面積率とした。その結果を表2に合わせて示す。   After collecting five steel wires from each coil end after the above hot rolling, R / 2 part of the cross section of each steel wire subjected to nital etching was obtained at a magnification of 500 times using an optical microscope. Six visual fields were randomly observed for each steel wire, and the average value of the bainite area ratios in a total of 30 visual fields was determined and used as the bainite area ratio in each test number. The results are also shown in Table 2.

さらに、上記の圧延コイルを、それぞれ表2に示す温度で4.5時間保持して1次焼鈍を行い、直径15.8mmに伸線加工した後、755℃で4.5時間保持して2次焼鈍を行った。2次焼鈍後のコイル端部から鋼線を5本ずつ採取した後、ピクラールエッチングした鋼線の横断面のR/2部を、走査型電子顕微鏡を用いて5000倍の倍率でそれぞれの鋼線ごとに無作為に6視野について撮像し、得られた画像を2値化処理した後、計30視野における粗大な炭化物の個数比率の平均値を求め、各試験番号における粗大炭化物個数比率とした。測定結果を表2に合わせて示す。なお、測定対象は、円相当径0.5μm以上の炭化物であり、粗大炭化物とは、円相当径1.0μm以上の炭化物である。   Further, the above rolling coils were each annealed at the temperatures shown in Table 2 for 4.5 hours, subjected to primary annealing, drawn to a diameter of 15.8 mm, and then held at 755 ° C. for 4.5 hours. Next annealing was performed. After collecting five steel wires from the coil end after the secondary annealing, the R / 2 part of the cross-section of the steel wire subjected to Picral etching was used for each steel at a magnification of 5000 times using a scanning electron microscope. Six lines were picked up randomly for each line, and the obtained image was binarized. Then, the average value of the number ratio of coarse carbides in a total of 30 fields was obtained and used as the coarse carbide number ratio in each test number. . The measurement results are shown in Table 2. The measurement object is a carbide having an equivalent circle diameter of 0.5 μm or more, and the coarse carbide is a carbide having an equivalent circle diameter of 1.0 μm or more.

その後、さらにコイル端部から直径15.8mm、長さ150mmの鋼線を30本採取し、設定温度に対して炉内で±30℃の温度分布を持つ熱処理内に無作為に配置し、表2に示す設定温度で30分加熱した後に油中で急冷する焼入れ処理を施した。そして、表2に示す温度で30分加熱して焼戻しを行い、引張強さ1200MPa以上の鋼線を作製した。   Thereafter, 30 steel wires having a diameter of 15.8 mm and a length of 150 mm were further collected from the coil end, and randomly placed in a heat treatment having a temperature distribution of ± 30 ° C. in the furnace with respect to the set temperature. After heating at the set temperature shown in 2 for 30 minutes, quenching was performed to quench in oil. And it tempered by heating for 30 minutes at the temperature shown in Table 2, and produced the steel wire of tensile strength 1200MPa or more.

上記の焼入れ焼戻し処理後の鋼線から、JIS14A号引張試験片を採取し、室温での引張強さを測定した。引張試験は、30本の鋼線全てについて行い、引張強さの平均値、標準偏差および相対標準偏差(%:(標準偏差/平均値)×100)を求めた。   From the steel wire after the quenching and tempering treatment, a JIS No. 14A tensile test piece was sampled and measured for tensile strength at room temperature. The tensile test was performed on all 30 steel wires, and the average value, standard deviation, and relative standard deviation (%: (standard deviation / average value) × 100) of tensile strength were determined.

表2から、本発明例である試験番号1〜3は、化学組成が本発明で規定する範囲内であり、円相当径0.5μm以上の炭化物のうち円相当径1.0μm以上の粗大炭化物の個数比率が本発明で規定する条件を満たすため、引張強さの相対標準偏差が0.41〜0.54%と非常に低く、引張強さのばらつきが極めて小さいことが分かる。   From Table 2, test numbers 1 to 3, which are examples of the present invention, are within the range defined by the present invention in chemical composition, and are coarse carbides having an equivalent circle diameter of 1.0 μm or more among carbides having an equivalent circle diameter of 0.5 μm or more. It can be seen that the relative proportion of tensile strength is as low as 0.41 to 0.54% and the variation in tensile strength is extremely small.

一方、比較例である試験番号4〜7は、それぞれC、Mn、Cr、Moの含有量が本発明で規定する上限を超えており、その全てで粗大炭化物の個数比率が本発明の規定範囲外であるため、引張強さの相対標準偏差が0.93〜1.13%と高くなっており、十分な強度安定性が得られない結果となった。   On the other hand, the test numbers 4 to 7 which are comparative examples have contents of C, Mn, Cr and Mo exceeding the upper limits specified in the present invention, respectively, and the number ratio of coarse carbides is the specified range of the present invention in all of them. Therefore, the relative standard deviation of tensile strength was as high as 0.93 to 1.13%, and sufficient strength stability could not be obtained.

また、比較例である試験番号8は、化学組成は本発明で規定される範囲内であるものの、圧延後の冷却速度が遅く、ベイナイトの面積率が低いことに起因して、粗大炭化物の個数比率が本発明で規定する条件を満足していない。そのため、引張強さの相対標準偏差が1.27%と高い値となった。さらに、試験番号9も、化学組成は本発明で規定される範囲内であるものの、1次焼鈍温度が高いことに起因して、粗大炭化物の個数比率が本発明で規定する条件を満足していない。そのため、試験番号8と同様に、引張強さの相対標準偏差が1.16%と高い値となった。   Moreover, test number 8 which is a comparative example is the number of coarse carbides because the chemical composition is within the range specified by the present invention, but the cooling rate after rolling is slow and the area ratio of bainite is low. The ratio does not satisfy the conditions specified in the present invention. Therefore, the relative standard deviation of tensile strength was as high as 1.27%. Furthermore, test number 9 also has the chemical composition within the range defined by the present invention, but the number ratio of coarse carbides satisfies the conditions defined by the present invention due to the high primary annealing temperature. Absent. Therefore, as in Test No. 8, the relative standard deviation of tensile strength was as high as 1.16%.

以上の結果から、粗大炭化物の個数比率の低い本発明例は、比較例に比べて、焼入れ焼戻し後の引張強さのばらつきを厳密に抑制できていることが明らかとなった。   From the above results, it has been clarified that the inventive example having a low number ratio of coarse carbides can strictly suppress the variation in tensile strength after quenching and tempering as compared with the comparative example.

本発明の高強度ボルト用鋼材は、焼入れ焼戻し後に1200MPa以上の引張強さを有するとともに引張強さのばらつきが極めて小さいので、自動車、各種産業機械および建築構造物などに使用するのに好適である。特に、自動車エンジン部等の重要な機械構造物の締結に用いられ、高強度かつ締結に必要な所定の軸力をばらつきなくボルトに付与することが求められるボルトの素材として好適である。   The steel material for high-strength bolts of the present invention has a tensile strength of 1200 MPa or more after quenching and tempering, and has a very small variation in tensile strength. Therefore, it is suitable for use in automobiles, various industrial machines and building structures. . In particular, it is used as a material for bolts that are used for fastening important mechanical structures such as automobile engine parts, and that is required to apply a predetermined axial force required for fastening with high strength to the bolts without variation.

Claims (2)

鋼材の化学組成が、質量%で、C:0.30〜0.40%、Si:0.01〜0.40%、Mn:0.10〜1.0%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.10%、Cr:0.90〜1.8%、Mo:0.10〜2.0%およびN:0.003〜0.030%を含有し、残部がFeおよび不純物からなり、円相当径0.5μm以上の炭化物のうち円相当径1.0μm以上の炭化物の個数比率が10%以下となる組織を有し(但し、1次焼鈍および2次焼鈍後、ならびに、焼入れ焼戻し前において、組織中にパーライト組織を含む場合を除く。)、焼入れ焼戻し後に1200MPa以上の引張強度を有することを特徴とするボルト用鋼材。 The chemical composition of the steel material is% by mass, C: 0.30 to 0.40%, Si: 0.01 to 0.40%, Mn: 0.10 to 1.0%, P: 0.030% or less , S: 0.030% or less, Al: 0.005-0.10%, Cr: 0.90-1.8%, Mo: 0.10-2.0% and N: 0.003-0. Containing 030%, the balance being Fe and impurities, and having a structure in which the number ratio of carbides having an equivalent circle diameter of 1.0 μm or more out of carbides having an equivalent circle diameter of 0.5 μm or more is 10% or less (provided that A steel material for bolts having a tensile strength of 1200 MPa or more after quenching and tempering, after the primary annealing and secondary annealing, and before quenching and tempering , excluding the case where the structure contains a pearlite structure. 鋼材の化学組成が、Feの一部に代えて、質量%で、さらにNb:0.10%以下を含有することを特徴とする請求項1に記載のボルト用鋼材。   The steel composition for bolts according to claim 1, wherein the chemical composition of the steel material contains, in place of a part of Fe, mass% and further Nb: 0.10% or less.
JP2012112009A 2012-05-16 2012-05-16 Bolt steel Active JP5867285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112009A JP5867285B2 (en) 2012-05-16 2012-05-16 Bolt steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112009A JP5867285B2 (en) 2012-05-16 2012-05-16 Bolt steel

Publications (2)

Publication Number Publication Date
JP2013237903A JP2013237903A (en) 2013-11-28
JP5867285B2 true JP5867285B2 (en) 2016-02-24

Family

ID=49763174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112009A Active JP5867285B2 (en) 2012-05-16 2012-05-16 Bolt steel

Country Status (1)

Country Link
JP (1) JP5867285B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327928B1 (en) * 2019-12-19 2021-11-17 주식회사 포스코 Steel material having softening resistance at high temperature and method of manufacturing the same
CN112359264B (en) * 2020-10-15 2021-11-02 中天钢铁集团有限公司 Production method of high-strength and high-toughness steel for wind power bolts
CN112680653A (en) * 2020-11-18 2021-04-20 联峰钢铁(张家港)有限公司 High-strength steel for wagon bolt and manufacturing method thereof
WO2023022222A1 (en) * 2021-08-20 2023-02-23 日本製鉄株式会社 Steel material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255738A (en) * 1991-12-06 1993-10-05 Nippon Steel Corp Production of steel for machine structural use excellent in delayed fracture resistance
KR100517674B1 (en) * 2000-04-04 2005-09-29 신닛뽄세이테쯔 카부시키카이샤 Hot rolled wire or steel bar for machine structural use capable of dispensing with annealing, and method for producing the same
JP2002212665A (en) * 2001-01-11 2002-07-31 Kobe Steel Ltd High strength and high toughness steel
JP5449925B2 (en) * 2009-08-27 2014-03-19 株式会社神戸製鋼所 High strength bolt with improved delayed fracture resistance and method for manufacturing the same

Also Published As

Publication number Publication date
JP2013237903A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP6034632B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
US10837080B2 (en) Rolled steel bar or rolled wire rod for cold-forged component
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP6226085B2 (en) Rolled steel bar or wire rod for cold forging parts
JP5440203B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP5495648B2 (en) Machine structural steel with excellent grain coarsening resistance and method for producing the same
JP2020125538A (en) Steel for cold working machine structures, and method for producing same
JP5867285B2 (en) Bolt steel
JP6034605B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
US11098394B2 (en) Rolled wire rod
JP6100676B2 (en) Spheroidizing heat treatment method for alloy steel
JP5679440B2 (en) Induction hardening steel with excellent cold forgeability and excellent torsional strength after induction hardening, and method for producing the same
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
CN112969808B (en) Steel for bolt and method for producing same
JP6108924B2 (en) Manufacturing method of steel for cold forging
JP2016008350A (en) High-strength steel material and production method thereof
JP2014047356A (en) Bar steel or wire material
JP7149131B2 (en) Machine structural steel with excellent cold workability and resistance to grain coarsening
JP2016141821A (en) Softening heat treatment method of steel material excellent in cold forgeability and crystal grain coarsening resistance
JP2022132084A (en) Mechanical structural steel for cold working and its manufacturing method
JPH09279300A (en) Steel for machine structure excellent in cold workability and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5867285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350