JPH05255738A - Production of steel for machine structural use excellent in delayed fracture resistance - Google Patents

Production of steel for machine structural use excellent in delayed fracture resistance

Info

Publication number
JPH05255738A
JPH05255738A JP32314691A JP32314691A JPH05255738A JP H05255738 A JPH05255738 A JP H05255738A JP 32314691 A JP32314691 A JP 32314691A JP 32314691 A JP32314691 A JP 32314691A JP H05255738 A JPH05255738 A JP H05255738A
Authority
JP
Japan
Prior art keywords
less
steel
weight
tempering
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32314691A
Other languages
Japanese (ja)
Inventor
Fusao Ishikawa
房男 石川
Toshihiko Takahashi
稔彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32314691A priority Critical patent/JPH05255738A/en
Publication of JPH05255738A publication Critical patent/JPH05255738A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high strength steel for machine structural use excellent in delayed fracture resistance by subjecting a steel having a specific composition consisting of C, Si, Mn, P, S, Cr, Mo, Al, N, and Fe to hot rolling and then to specific cooling and tempering. CONSTITUTION:A steel which has a composition consisting of, by weight, 0.15-0.50% C, <=0.5% Si, <=0.6% Mn, <=0.015% P, <=0.02% S, 0.1-2.0% Cr, 0.2-1.2% Mo, 0.005-1.0% Al, <=0.03% N, and the balance Fe with inevitable impurities and further containing, if necessary, one or more kinds among 0.001-0.20% V, 0.001-0.050% Ti, and 0.001-0.050% Nb and further containing <=2.0% Ni is hot-rolled, finish-rolled, preferebly, at 650-900 deg.C, and then cooled under the condition that the value of K represented by equation is <=130. The resulting hot rolled stock is subjected to spheroidizing annealing, to forming, and then to quench-and-temper treatment at <=400 deg.C. By this method, the high strength steel for machine structural use having >=125kgf/mm<2> tensile strength and excellent in delayed fracture resistance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は125kgf/mm2 以上の引
張強度を有する耐遅れ破壊特性の優れた機械構造部品の
製造方法に適用するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a method for producing a mechanical structural component having a tensile strength of 125 kgf / mm 2 or more and an excellent delayed fracture resistance.

【0002】[0002]

【従来の技術】高強度機械構造用鋼は高強度ボルトとし
て機械、自動車、橋、建物に数多く使用されている他、
PC鋼棒、自動車部品においても数多く使用されてい
る。しかし、どの品種についても引張強度が125kgf/
mm2 を超えると遅れ破壊の危険性が高まることがよく知
られており、例えば現在使用されているボルトの強度は
110kgf/mm2 級が上限となっているのが現状である。
2. Description of the Related Art High-strength mechanical structural steel is widely used as high-strength bolts in machines, automobiles, bridges, and buildings.
It is also widely used in PC steel rods and automobile parts. However, the tensile strength of all varieties is 125 kgf /
It is well known that the risk of delayed fracture increases when it exceeds mm 2 , and for example, the strength of currently used bolts is currently 110 kgf / mm 2 class as the upper limit.

【0003】[0003]

【発明が解決しようとする課題】しかしながら近年構造
物の大型化に伴い、継ぎ手効率の向上・軽量化の目的か
らボルトの高強度化に対する要求は高い。また地球環境
問題から燃費の向上が必要となる自動車においても燃費
効率につながる軽量化を達成するために各種部品の高強
度化への要求は高い。そこで強度が125kgf/mm2 を超
える機械構造用鋼の遅れ破壊の問題を解決しなければな
らない。
However, with the recent increase in size of structures, there is a strong demand for higher strength bolts for the purpose of improving joint efficiency and reducing weight. In addition, in automobiles that need to improve fuel efficiency due to global environmental issues, there is a strong demand for higher strength of various parts in order to achieve weight reduction that leads to fuel efficiency. Therefore, it is necessary to solve the problem of delayed fracture of mechanical structural steel having a strength exceeding 125 kgf / mm 2 .

【0004】高強度部材の遅れ破壊においては鋼中の水
素が原因とされている。特に常温近傍で容易に移動しう
る拡散性水素が引張応力集中部の結晶粒界に集積し、粒
界割れを助長するために遅れ破壊が起こると考えられて
いる。従って高強度機械構造用鋼を使用する場合、水素
特に拡散性水素に対する抵抗力のある鋼でなければなら
ない。
Hydrogen in steel is considered to be the cause of delayed fracture of high strength members. In particular, it is considered that diffusible hydrogen, which can easily move near room temperature, accumulates at the grain boundaries of the tensile stress concentration portion and promotes intergranular cracking, resulting in delayed fracture. Therefore, if high strength mechanical structural steel is used, it must be resistant to hydrogen, especially diffusible hydrogen.

【0005】また、一方で素材(棒鋼・線材)の製造工
程においては通常の冷却速度で冷却した場合には表層に
ミクロ偏析によりPの濃化した箇所より遅れ破壊感受性
の高い低温変態組織が形成され、巻き取り後のコイルに
おいて遅れ破壊が発生し、製品歩留まりを下げるという
問題点があり、製造法の改良も必要となる。
On the other hand, in the manufacturing process of the material (bar steel / wire), when it is cooled at a normal cooling rate, a low temperature transformation structure having a delayed fracture susceptibility is formed on the surface layer due to microsegregation and having a higher delayed fracture susceptibility than the P concentrated portion. Therefore, there is a problem that delayed fracture occurs in the coil after winding and the product yield is reduced, and it is also necessary to improve the manufacturing method.

【0006】本発明は上記した問題点を解消し、高強度
機械構造用鋼に優れた耐遅れ破壊特性を付与するための
該鋼の製造方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a method for producing high strength mechanical structural steel for imparting excellent delayed fracture resistance.

【0007】[0007]

【課題を解決するための手段】本発明者らは、鋼の化学
成分の調整、特にSi,Mn,Pの低下、Mo,Niの
増加および熱処理の調整により遅れ破壊に至らない限界
の拡散性水素量(以下、限界拡散性水素と呼ぶ)が増加
できることが可能であること、また棒鋼圧延後の冷却速
度の制御によりコイルの遅れ破壊発生頻度を抑えること
が可能であるとの知見を得た。本発明は以上の知見にも
とづいてなされたものであり、熱処理を施すことによ
り、125kgf/mm2 以上の高強度において、従来鋼より
も高い限界拡散性水素を示すことを特徴とする耐遅れ破
壊特性の優れた高強度機械構造用鋼を製造するものであ
る。
DISCLOSURE OF THE INVENTION The inventors of the present invention have adjusted the chemical composition of steel, in particular, lowering Si, Mn, P, increasing Mo and Ni, and adjusting heat treatment so that the diffusivity is the limit that does not lead to delayed fracture. It was found that the amount of hydrogen (hereinafter referred to as critical diffusible hydrogen) can be increased, and that the frequency of delayed fracture occurrence in the coil can be suppressed by controlling the cooling rate after rolling the steel bar. .. The present invention has been made on the basis of the above findings, and by heat treatment, at a high strength of 125 kgf / mm 2 or more, shows a critical diffusible hydrogen that is higher than that of conventional steel, and delayed fracture resistance. It manufactures high-strength mechanical structural steel with excellent properties.

【0008】すなわち本発明は、耐遅れ破壊特性に及ぼ
す合金元素の影響を調査し、従来の機械構造用鋼に比べ
て、Si,Mn,Pの低下、Mo,Niの増加を図るこ
とが有効であること、また焼入れ性に応じて圧延後の冷
却速度を調節することによりコイルの割れ発生を抑制で
きることに基づき構成したものであって、重量%で、 C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以
下、 S :0.02%以下、 Cr:0.1〜2.0
%、 Mo:0.2〜1.2%、 Al:0.005〜
1.0%、 N :0.03%以下 を含有し、また必要により Ni:2.0%以下 を添加し、さらに必要により V :0.001〜0.20%、Ti:0.001〜
0.050%、 Nb:0.001〜0.050% の一種または二種以上を含み、残部がFeおよび不可避
的不純物よりなる鋼を熱間で圧延後、あるいは圧延仕上
温度を650〜900℃として圧延した後、K≦130
を満たす条件で冷却して得た棒鋼或いは線材に球状化焼
鈍を行い、所定の形状に成形後、焼入れ・焼戻しを行う
に際して焼戻しを400℃以上で行うことを特徴とする
125kgf/mm2 以上の引張強度を有する耐遅れ破壊特性
に優れた高強度機械構造用鋼の製造方法である。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec) 以下に本発明を詳細に説明する。まず本発明における機
械構造用鋼の合金成分範囲は次の理由で決定した。C
は、焼入れ、焼戻しにより高強度を得るためには0.1
5%以上必要であるが、多すぎると靭性を劣化させると
ともに耐遅れ破壊特性も劣化させる元素であるために
0.50%以下とした。
That is, in the present invention, it is effective to investigate the influence of alloying elements on the delayed fracture resistance and to reduce Si, Mn, P and increase Mo, Ni as compared with the conventional steel for machine structural use. And that the occurrence of coil cracks can be suppressed by adjusting the cooling rate after rolling according to the hardenability, and C: 0.15 to 0.50% by weight%. , Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less, Cr: 0.1 to 2.0
%, Mo: 0.2 to 1.2%, Al: 0.005
1.0%, N: 0.03% or less is contained, Ni: 2.0% or less is added if necessary, and V: 0.001 to 0.20%, Ti: 0.001 to 0.001 if necessary.
0.050%, Nb: 0.001 to 0.050% of one or more kinds of steel, with the balance being Fe and inevitable impurities, after hot rolling, or at a rolling finishing temperature of 650 to 900 ° C. After rolling, K ≦ 130
Steel bar or wire rod obtained by cooling under the condition satisfying the condition is subjected to spheroidizing annealing, and after being formed into a predetermined shape, tempering is performed at 400 ° C. or more when quenching / tempering is performed. 125 kgf / mm 2 or more It is a method for producing high-strength mechanical structural steel having tensile strength and excellent delayed fracture resistance. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec) The present invention is described in detail below. First, the alloy composition range of the steel for machine structural use in the present invention was determined for the following reason. C
Is 0.1 in order to obtain high strength by quenching and tempering.
It is necessary to be 5% or more, but if it is too much, it is an element that deteriorates the toughness and also the delayed fracture resistance, so the content was made 0.50% or less.

【0009】Siは、鋼の脱酸および強度を高めるのに
必要な元素であるが、冷間加工性を損なう元素であるた
めに、またオーステナイト加熱時に粒界に偏析し粒界を
脆化させるとともに耐遅れ破壊特性を劣化させる元素で
あるために0.5%以下とした。Mnは、鋼の脱酸およ
び焼入れ性の確保に必要な元素であるが、オーステナイ
ト加熱時に粒界に偏析し粒界を脆化させるとともに耐遅
れ破壊特性を劣化させる元素であるために0.6%以下
とした。
Si is an element necessary for deoxidizing the steel and increasing the strength, but since it is an element that impairs cold workability, it is segregated at the grain boundaries during austenite heating and embrittles the grain boundaries. Also, since it is an element that deteriorates the delayed fracture resistance, it is set to 0.5% or less. Mn is an element necessary for ensuring deoxidation and hardenability of steel, but it is an element that segregates at grain boundaries during austenite heating, embrittles the grain boundaries, and deteriorates delayed fracture resistance. % Or less.

【0010】Pは、焼入れ性元素としては有効である
が、凝固時にミクロ偏析し、さらにオーステナイト加熱
時に粒界に偏析し粒界を脆化させるとともに耐遅れ破壊
特性を劣化させる元素であるために0.015%以下と
した。Sは、不可避的不純物であるが、オーステナイト
加熱時に粒界に偏析し粒界を脆化させるとともに耐遅れ
破壊特性を劣化させる元素であるために0.02%以下
とした。
Although P is effective as a hardenability element, it is an element that causes microsegregation during solidification and segregates to grain boundaries during austenite heating to embrittle the grain boundaries and deteriorate delayed fracture resistance. It was set to 0.015% or less. Although S is an unavoidable impurity, it is an element that segregates at the grain boundaries during austenite heating to embrittle the grain boundaries and deteriorates the delayed fracture resistance.

【0011】Crは、鋼の焼入れ性を得るためには0.
1%以上必要であるが、多すぎると靭性の劣化、冷間加
工性の劣化を招く元素であるために2.0%以下とし
た。◎Moは、鋼の焼入れ性を得るために必要であると
ともに焼戻し軟化抵抗を有し400℃以上の焼戻し温度
で安定して125kgf/mm2 以上の引張荷重を得るのに有
効な元素であるが、多すぎるとその効果は飽和しコスト
の上昇を招くために1.2%以下とした。
In order to obtain the hardenability of steel, Cr is 0.
It is required to be 1% or more, but if it is too much, it is an element that causes deterioration of toughness and cold workability, so it was made 2.0% or less. ◎ Mo is an element that is necessary for obtaining the hardenability of steel and has tempering softening resistance and is effective for stably obtaining a tensile load of 125 kgf / mm 2 or more at a tempering temperature of 400 ° C or more. However, if it is too large, the effect is saturated and the cost is increased, so the content is made 1.2% or less.

【0012】Alは、鋼の脱酸に有効な元素であるため
に0.005%以上必要であるが、多すぎると靭性の劣
化を招くために1.0%以下とした。Nは、オーステナ
イト加熱時に粒界に偏析し粒界を脆化させるとともに耐
遅れ破壊特性も劣化させる元素であるため0.03%以
下とした。
[0012] Al is an element effective for deoxidizing steel, so 0.005% or more is necessary. However, if too much, it causes deterioration of toughness, so 1.0% or less. N is an element that segregates at the grain boundaries during austenite heating, embrittles the grain boundaries, and deteriorates the delayed fracture resistance as well, so N was made 0.03% or less.

【0013】Niは必要に応じて添加され、靭性を向上
させるとともに耐遅れ破壊特性を向上させる元素であ
る。しかし2.0%を超えるとその効果は飽和しむしろ
コスト上昇を招くために2.0%以下とした。V,T
i,Nbは必要に応じて添加され、結晶粒の微細化に寄
与し、耐遅れ破壊性を向上させる元素であるために、そ
れぞれ0.001%以上必要である。ただし多すぎると
その効果は低下しむしろ靭性を劣化させる元素であるた
めにV:0.20%以下、Ti:0.050%以下、N
b:0.050%以下とした。
Ni is an element that is added as needed to improve toughness and delayed fracture resistance. However, if it exceeds 2.0%, the effect is saturated and the cost is rather increased, so the content is made 2.0% or less. V, T
Since i and Nb are added as necessary and contribute to the refinement of crystal grains and improve delayed fracture resistance, 0.001% or more of each is necessary. However, when the amount is too large, the effect is reduced and rather the element deteriorates the toughness, so V: 0.20% or less, Ti: 0.050% or less, N
b: 0.050% or less.

【0014】一方、製品の耐遅れ破壊特性を向上させ、
歩留まりを上げるために圧延・熱処理条件を決定した。
すなわち圧延後の冷却速度に関しては、遅れ破壊感受性
の高い低温変態組織の生成を抑制し遅れ破壊起因の割れ
を減少させるために、徐冷することが必須であるが、鋼
材の焼入れ性・冷却速度・素材径を考慮して、冷却速度
をK≦130を満たす範囲に限定した。ただし、 K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec) また、圧延仕上げ温度に関しては、細粒化により製品の
耐遅れ破壊特性を一層向上させるために有効な手段であ
るが、その効果は900℃を超えた温度では無効とな
り、650℃未満の温度では効果は飽和し、むしろ生産
性を阻害するために圧延仕上げ温度を650〜900℃
とした。
On the other hand, the delayed fracture resistance of the product is improved,
The rolling and heat treatment conditions were determined in order to increase the yield.
That is, regarding the cooling rate after rolling, slow cooling is essential in order to suppress the formation of a low temperature transformation structure with high delayed fracture sensitivity and reduce cracks due to delayed fracture.・ Considering the material diameter, the cooling rate was limited to the range satisfying K ≦ 130. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2 .83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [ % Mo]) (Unit: mm, [% X]: wt% of element X) CR: Cooling rate (Unit: ° C / sec) Also, regarding rolling finishing temperature, the delayed fracture resistance of the product can be determined by grain refinement. Although it is an effective means for further improving, the effect becomes ineffective at a temperature higher than 900 ° C., and the effect is saturated at a temperature lower than 650 ° C., rather, the rolling finishing temperature is 650 to 650 in order to hinder the productivity. 900 ° C
And

【0015】[0015]

【実施例】供試鋼の化学成分を表1に示す。表中(A)
〜(J)は本発明のボルト用鋼に従ったものであり、
(K)〜(O)は比較鋼である。これらの20mmφの棒
鋼を用いて、引張強度が150kgf/mm2 〜160kgf/mm
2 を目標に熱処理(焼入れ−焼戻し)を行った。この時
の熱処理条件および引張強度を表2に示す。
[Examples] Table 1 shows the chemical composition of the test steel. In the table (A)
~ (J) is according to the steel for bolts of the present invention,
(K) to (O) are comparative steels. Using these 20 mmφ steel bars, the tensile strength is 150 kgf / mm 2 to 160 kgf / mm
Heat treatment (quenching-tempering) was performed with the goal of 2 . Table 2 shows the heat treatment conditions and the tensile strength at this time.

【0016】これらの鋼が遅れ破壊に対し、どの程度の
拡散性水素を許容しうるか、すなわち各鋼の限界水素量
を調べた。以下に限界水素量を求める方法について説明
する。図4に示したM10ボルトで軸部に2mmVの円周
ノッチを設けた試験片を作り、2本を組にして、水素を
富化するために、20〜36%HClに20〜60分間
浸漬することにより、試験片中の水素量を変化させる。
このうち1本はHCl浸漬後、大気中に30分放置した
後、熱的分析法により水素量を測定し、他の1本は、浸
漬後30分間大気中に放置した後、図2に示した試験機
で遅れ破壊試験を行う。図2において1は試験片、2は
バランスウェイト、3は支点を示す。また、遅れ破壊試
験における試験荷重は、HCl溶液に浸漬する前の各試
験片の破断荷重の70%と一定にした。
The extent of diffusible hydrogen that these steels can tolerate against delayed fracture, that is, the limiting hydrogen content of each steel was investigated. The method of obtaining the limit hydrogen amount will be described below. Using M10 bolt shown in Fig. 4, make a test piece with a circumferential notch of 2 mmV on the shaft and make a set of two pieces, and dip them in 20 to 36% HCl for 20 to 60 minutes to enrich hydrogen. By doing so, the amount of hydrogen in the test piece is changed.
One of them was immersed in HCl and left in the atmosphere for 30 minutes, and then the amount of hydrogen was measured by a thermal analysis method. The other one was left in the atmosphere for 30 minutes after the immersion and then shown in FIG. The delayed destructive test is performed with the testing machine. In FIG. 2, 1 is a test piece, 2 is a balance weight, and 3 is a fulcrum. Further, the test load in the delayed fracture test was constant at 70% of the breaking load of each test piece before being immersed in the HCl solution.

【0017】以上の手順に従い、HClの濃度・浸漬時
間を種々変えた場合に、得られた拡散性水素量と遅れ破
壊試験における破断時間との関係を表3に示す。同表か
ら、各鋼の遅れ破壊を起こさない上限の拡散性水素量、
すなわち限界拡散性水素量を推定すると表4のようにな
る。この表より、本発明の組成および焼戻し温度の範囲
にある(A)〜(J)は、比較材である(K)〜(O)
に比べて限界水素量が高く、遅れ破壊しにくいことが明
らかとなった。なお鋼(O)は、表2に示すように焼戻
し温度が低い比較鋼であり、限界水素量が低い。従って
遅れ破壊しにくい鋼を得るためには400℃以上の焼戻
し温度とすることが必要である。
Table 3 shows the relationship between the amount of diffusible hydrogen obtained and the breaking time in the delayed fracture test when the concentration of HCl and the immersion time were variously changed according to the above procedure. From the table, the upper limit of diffusible hydrogen content that does not cause delayed fracture of each steel,
That is, Table 4 shows the estimation of the critical diffusible hydrogen content. From this table, (A) to (J) in the composition and tempering temperature range of the present invention are comparative materials (K) to (O).
It was revealed that the limit hydrogen content was higher than that of No. 1, and delayed fracture was less likely to occur. Steel (O) is a comparative steel having a low tempering temperature as shown in Table 2 and a low limit hydrogen content. Therefore, it is necessary to set the tempering temperature to 400 ° C. or higher in order to obtain steel that is hard to undergo delayed fracture.

【0018】[0018]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 次に本発明鋼(A),(C),(F),(H)を用いて
1200℃に加熱後、圧延仕上げ温度および圧延後の冷
却速度を変えて断面25mmφ、直径1400mmのコイル
を100kgずつ製造した場合の、製造後100時間以内
のコイル割れ発生状況を表5に示す。本発明の冷却条件
の範囲外であるK>130を満たす冷却速度で冷却した
場合には、圧延仕上げ温度に関係なくコイルの割れ発生
率は0.19%以上であるのに対し、本発明のK≦13
0を満たす冷却速度で冷却した場合には、0.06%以
下の発生率に抑えられ、割れ発生率の低減にK≦130
を満たす徐冷を行うことが有効であることが明らかにな
った。さらに圧延仕上げ温度を1000℃から850℃
に下げることによりコイルの割れ発生率は0.04%以
下に抑えられ、圧延仕上げ温度を900℃以下に下げる
ことが、コイル割れ発生率低減に有効であることが明ら
かになった。
[Table 5] Next, using the steels (A), (C), (F), and (H) of the present invention, after heating to 1200 ° C., the rolling finish temperature and the cooling rate after rolling were changed, and a coil having a cross section of 25 mmφ and a diameter of 1400 mm was 100 kg. Table 5 shows the situation of occurrence of coil cracks within 100 hours after the manufacturing. In the case of cooling at a cooling rate satisfying K> 130, which is outside the range of the cooling conditions of the present invention, the crack occurrence rate of the coil is 0.19% or more regardless of the rolling finish temperature, whereas K ≦ 13
When cooled at a cooling rate that satisfies 0, the occurrence rate is suppressed to 0.06% or less, and K ≦ 130 to reduce the crack occurrence rate.
It was revealed that it is effective to carry out slow cooling that satisfies the above conditions. Furthermore, the rolling finishing temperature is 1000 ° C to 850 ° C.
It was clarified that the occurrence rate of coil cracking can be suppressed to 0.04% or less by lowering the value to, and lowering the rolling finishing temperature to 900 ° C. or less is effective in reducing the rate of coil cracking.

【0019】[0019]

【発明の効果】本発明により、125kgf/mm2 以上の引
張強度を有し、耐遅れ破壊特性の優れたボルトが期待で
きる。これによってボルトの継ぎ手効率の向上が図ら
れ、自動車等の軽量化に寄与する。またコイル製造後の
割れ発生も抑制でき歩留まり低下という操業上の問題点
も解決できる。従って工業的効果は大きい。
According to the present invention, a bolt having a tensile strength of 125 kgf / mm 2 or more and excellent delayed fracture resistance can be expected. This improves the efficiency of the bolt joints and contributes to the weight reduction of automobiles and the like. Further, it is possible to suppress the occurrence of cracks after the coil is manufactured, and it is possible to solve the problem in operation that the yield is reduced. Therefore, the industrial effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】試験片の形状の説明図である。FIG. 1 is an explanatory view of a shape of a test piece.

【図2】遅れ破壊試験装置の説明図である。FIG. 2 is an explanatory diagram of a delayed fracture test device.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜1.2%、 Al:0.005〜1.0%、 N :0.03%以下 を含有し、残部がFeおよび不可避的不純物よりなる鋼
を熱間で圧延後、K≦130を満たす条件で冷却して得
た棒鋼或いは線材に球状化焼鈍を行い、所定の形状に成
形後、焼入れ・焼戻しを行うに際して焼戻しを400℃
以上で行うことを特徴とする125kgf/mm2 以上の引張
強度を有する耐遅れ破壊特性に優れた高強度機械構造用
鋼の製造方法。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec)
1. C: 0.15 to 0.50% by weight, Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less , Cr: 0.1 to 2.0%, Mo: 0.2 to 1.2%, Al: 0.005 to 1.0%, N: 0.03% or less, with the balance being Fe and unavoidable. Steel made of mechanical impurities is hot-rolled and then cooled under conditions satisfying K ≦ 130, spheroidizing annealing is performed on the obtained steel bar or wire rod, and after tempering / tempering is performed, tempering is performed to 400 times. ℃
A method for producing a high-strength mechanical structural steel having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance, which is characterized by the above. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec)
【請求項2】 重量%で C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜1.2%、 Al:0.005〜1.0%、 N :0.03%以下 を含有し、さらに V :0.001〜0.20%、 Ti:0.001〜0.050%、 Nb:0.001〜0.050% の一種または二種以上を含み、残部がFeおよび不可避
的不純物よりなる鋼を熱間で圧延後、K≦130を満た
す条件で冷却して得た棒鋼或いは線材に球状化焼鈍を行
い、所定の形状に成形後、焼入れ・焼戻しを行うに際し
て焼戻しを400℃以上で行うことを特徴とする125
kgf/mm2 以上の引張強度を有する耐遅れ破壊特性に優れ
た高強度機械構造用鋼の製造方法。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec)
2. C: 0.15 to 0.50% by weight, Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less , Cr: 0.1 to 2.0%, Mo: 0.2 to 1.2%, Al: 0.005 to 1.0%, N: 0.03% or less, and V: 0.0. 001 to 0.20%, Ti: 0.001 to 0.050%, Nb: 0.001 to 0.050%, containing one or more kinds, and the balance being Fe and inevitable impurities. Characterized in that steel bar or wire rod obtained by cooling under the condition of satisfying K ≦ 130 after slab rolling is subjected to spheroidizing annealing, and after being formed into a predetermined shape, tempering is performed at 400 ° C. or higher when quenching / tempering. To 125
A method for producing a high-strength mechanical structural steel having a tensile strength of kgf / mm 2 or more and excellent in delayed fracture resistance. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec)
【請求項3】 重量%で C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜1.2%、 Al:0.005〜1.0%、 N :0.03%以下 を含有し、残部がFeおよび不可避的不純物よりなる鋼
を熱間で線材に圧延する際、圧延仕上げ温度650〜9
00℃で行い、かつK≦130を満たす条件で冷却して
得た棒鋼或いは線材に球状化焼鈍を行い所定の形状に成
形後、焼入れ・焼戻しを行うに際して焼戻しを400℃
以上で行うことを特徴とする125kgf/mm2 以上の引張
強度を有する耐遅れ破壊特性に優れた機械構造用鋼の製
造方法。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec)
3. C: 0.15 to 0.50% by weight, Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less , Cr: 0.1 to 2.0%, Mo: 0.2 to 1.2%, Al: 0.005 to 1.0%, N: 0.03% or less, with the balance being Fe and unavoidable. Rolling temperature of 650 to 9 when hot-rolling steel consisting of mechanical impurities
Steel bar or wire rod obtained by cooling at a temperature of 00 ° C. and satisfying K ≦ 130 is spheroidized and annealed to form a predetermined shape, and then tempered at 400 ° C. for quenching and tempering.
A method for producing a steel for machine structural use having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance, which is characterized by the above. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec)
【請求項4】 重量%で C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜1.2%、 Al:0.005〜1.0%、 N :0.03%以下 を含有し、さらに V :0.001〜0.20%、 Ti:0.001〜0.050%、 Nb:0.001〜0.050% の一種または二種以上を含み、残部がFeおよび不可避
的不純物よりなる鋼を熱間で線材に圧延する際、圧延仕
上げ温度650〜900℃で行い、かつK≦130を満
たす条件で冷却して得た棒鋼或いは線材に球状化焼鈍を
行い所定の形状に成形後、焼入れ・焼戻しを行うに際し
て焼戻しを400℃以上で行うことを特徴とする125
kgf/mm2 以上の引張強度を有する耐遅れ破壊特性に優れ
た機械構造用鋼の製造方法。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec)
4. C: 0.15 to 0.50% by weight%, Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less , Cr: 0.1 to 2.0%, Mo: 0.2 to 1.2%, Al: 0.005 to 1.0%, N: 0.03% or less, and V: 0.0. 001 to 0.20%, Ti: 0.001 to 0.050%, Nb: 0.001 to 0.050%, containing one or more kinds, and the balance being Fe and inevitable impurities. When rolled into a wire rod at a rolling finish temperature of 650 to 900 ° C. and cooled under conditions satisfying K ≦ 130, the steel bar or wire rod is spheroidized and annealed, and then quenched and tempered. When performing, tempering is performed at 400 ° C. or higher 125
A method for producing a mechanical structural steel having a tensile strength of kgf / mm 2 or more and excellent in delayed fracture resistance. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec)
【請求項5】 重量%で C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜1.2%、 Ni:2.0%以下、 Al:0.005〜1.0%、 N :0.03%以下 を含有し、残部がFeおよび不可避的不純物よりなる鋼
を熱間で圧延後、K≦130を満たす条件で冷却して得
た棒鋼或いは線材に球状化焼鈍を行い、所定の形状に成
形後、焼入れ・焼戻しを行うに際して焼戻しを400℃
以上で行うことを特徴とする125kgf/mm2 以上の引張
強度を有する耐遅れ破壊特性に優れた高強度機械構造用
鋼の製造方法。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec)
5. By weight%, C: 0.15 to 0.50%, Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less. Cr: 0.1 to 2.0%, Mo: 0.2 to 1.2%, Ni: 2.0% or less, Al: 0.005 to 1.0%, N: 0.03% or less A steel bar or wire rod, which is contained and whose balance is Fe and unavoidable impurities, is hot-rolled, cooled under conditions satisfying K ≦ 130, spheroidized and annealed, and then quenched into a predetermined shape.・ When tempering, temper at 400 ℃
A method for producing a high-strength mechanical structural steel having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance, which is characterized by the above. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec)
【請求項6】 重量%で C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜1.2%、 Ni:2.0%以下、 Al:0.005〜1.0%、 N :0.03%以下 を含有し、さらに V :0.001〜0.20%、 Ti:0.001〜0.050%、 Nb:0.001〜0.050% の一種または二種以上を含み、残部がFeおよび不可避
的不純物よりなる鋼を熱間で圧延後、K≦130を満た
す条件で冷却して得た棒鋼或いは線材に球状化焼鈍を行
い、所定の形状に成形後、焼入れ・焼戻しを行うに際し
て焼戻しを400℃以上で行うことを特徴とする125
kgf/mm2 以上の引張強度を有する耐遅れ破壊特性に優れ
た高強度機械構造用鋼の製造方法。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec)
6. C: 0.15 to 0.50% by weight, Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less Cr: 0.1 to 2.0%, Mo: 0.2 to 1.2%, Ni: 2.0% or less, Al: 0.005 to 1.0%, N: 0.03% or less In addition, one or more of V: 0.001 to 0.20%, Ti: 0.001 to 0.050%, Nb: 0.001 to 0.050% are contained, and the balance is Fe and unavoidable. Steel made of mechanical impurities is hot-rolled and then cooled under conditions satisfying K ≦ 130, spheroidizing annealing is performed on the obtained steel bar or wire rod, and after tempering / tempering is performed, tempering is performed to 400 times. 125 characterized by being performed above ℃
A method for producing a high-strength mechanical structural steel having a tensile strength of kgf / mm 2 or more and excellent in delayed fracture resistance. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec)
【請求項7】 重量%で C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜1.2%、 Ni:2.0%以下、 Al:0.005〜1.0%、 N :0.03%以下 を含有し、残部がFeおよび不可避的不純物よりなる鋼
を熱間で線材に圧延する際、圧延仕上げ温度650〜9
00℃で行い、かつK≦130を満たす条件で冷却して
得た棒鋼或いは線材に球状化焼鈍を行い所定の形状に成
形後、焼入れ・焼戻しを行うに際して焼戻しを400℃
以上で行うことを特徴とする125kgf/mm2 以上の引張
強度を有する耐遅れ破壊特性に優れた機械構造用鋼の製
造方法。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec)
7. By weight%, C: 0.15 to 0.50%, Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less. Cr: 0.1 to 2.0%, Mo: 0.2 to 1.2%, Ni: 2.0% or less, Al: 0.005 to 1.0%, N: 0.03% or less When the steel containing and the balance of Fe and unavoidable impurities is hot rolled into a wire rod, a rolling finishing temperature of 650 to 9
Steel bar or wire rod obtained by cooling at a temperature of 00 ° C. and satisfying K ≦ 130 is spheroidized and annealed to form a predetermined shape, and then tempered at 400 ° C. for quenching and tempering.
A method for producing a steel for machine structural use having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance, which is characterized by the above. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec)
【請求項8】 重量%で C :0.15〜0.50%、 Si:0.5%以下、 Mn:0.6%以下、 P :0.015%以下、 S :0.02%以下、 Cr:0.1〜2.0%、 Mo:0.2〜1.2%、 Ni:2.0%以下、 Al:0.005〜1.0%、 N :0.03%以下 を含有し、さらに V :0.001〜0.20%、 Ti:0.001〜0.050%、 Nb:0.001〜0.050% の一種または二種以上を含み、残部がFeおよび不可避
的不純物よりなる鋼を熱間で線材に圧延する際、圧延仕
上げ温度650〜900℃で行い、かつK≦130を満
たす条件で冷却して得た棒鋼或いは線材に球状化焼鈍を
行い所定の形状に成形後、焼入れ・焼戻しを行うに際し
て焼戻しを400℃以上で行うことを特徴とする125
kgf/mm2 以上の引張強度を有する耐遅れ破壊特性に優れ
た機械構造用鋼の製造方法。ただし K=D1 +260×log10(CR) D1 =(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1−0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec)
8. C: 0.15 to 0.50% by weight, Si: 0.5% or less, Mn: 0.6% or less, P: 0.015% or less, S: 0.02% or less Cr: 0.1 to 2.0%, Mo: 0.2 to 1.2%, Ni: 2.0% or less, Al: 0.005 to 1.0%, N: 0.03% or less In addition, one or more of V: 0.001 to 0.20%, Ti: 0.001 to 0.050%, Nb: 0.001 to 0.050% are contained, and the balance is Fe and unavoidable. Of steel made of static impurities into a wire rod during hot rolling is performed at a rolling finish temperature of 650 to 900 ° C. and cooled under conditions satisfying K ≦ 130, and then obtained by spheroidizing annealing to obtain a predetermined shape. 125, which is characterized by carrying out tempering at 400 ° C. or higher when quenching / tempering after forming into
A method for producing a mechanical structural steel having a tensile strength of kgf / mm 2 or more and excellent in delayed fracture resistance. However, K = D 1 + 260 × log 10 (CR) D 1 = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2. 83 × [% P]) × (1-0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo]) (unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec)
JP32314691A 1991-12-06 1991-12-06 Production of steel for machine structural use excellent in delayed fracture resistance Withdrawn JPH05255738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32314691A JPH05255738A (en) 1991-12-06 1991-12-06 Production of steel for machine structural use excellent in delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32314691A JPH05255738A (en) 1991-12-06 1991-12-06 Production of steel for machine structural use excellent in delayed fracture resistance

Publications (1)

Publication Number Publication Date
JPH05255738A true JPH05255738A (en) 1993-10-05

Family

ID=18151598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32314691A Withdrawn JPH05255738A (en) 1991-12-06 1991-12-06 Production of steel for machine structural use excellent in delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPH05255738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293095A (en) * 2008-06-06 2009-12-17 Sumitomo Metal Ind Ltd High-strength steel for bolt
JP2013237903A (en) * 2012-05-16 2013-11-28 Nippon Steel & Sumitomo Metal Corp Steel material for bolt
KR20190036866A (en) * 2017-09-28 2019-04-05 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING HIGH STRENGTHIMPACT RESISTANCE AT LOW TEMPERATURE AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
KR20190092750A (en) * 2018-01-31 2019-08-08 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING 1350 MPa-GRADE HIGH STRENGTH-ELONGATION AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
WO2023167319A1 (en) * 2022-03-04 2023-09-07 日本製鉄株式会社 Steel material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293095A (en) * 2008-06-06 2009-12-17 Sumitomo Metal Ind Ltd High-strength steel for bolt
JP2013237903A (en) * 2012-05-16 2013-11-28 Nippon Steel & Sumitomo Metal Corp Steel material for bolt
KR20190036866A (en) * 2017-09-28 2019-04-05 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING HIGH STRENGTHIMPACT RESISTANCE AT LOW TEMPERATURE AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
KR20190092750A (en) * 2018-01-31 2019-08-08 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING 1350 MPa-GRADE HIGH STRENGTH-ELONGATION AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
WO2023167319A1 (en) * 2022-03-04 2023-09-07 日本製鉄株式会社 Steel material

Similar Documents

Publication Publication Date Title
JP6497450B2 (en) Rolled bar wire for cold forging tempered products
JP2012041587A (en) Wire for machine part excellent in high strength and hydrogen embrittlement resistance characteristic, steel wire, and the machine part and method for manufacturing the same
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
JPWO2007023873A1 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
JPH07188834A (en) High strength steel sheet having high ductility and its production
JPH08337843A (en) High carbon hot rolled steel sheet excellent in punching workability and its production
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH05105957A (en) Production of heat resistant high strength bolt
JP3218442B2 (en) Manufacturing method of mechanical structural steel with excellent delayed fracture resistance
JPH05255738A (en) Production of steel for machine structural use excellent in delayed fracture resistance
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP4937499B2 (en) High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same
JPH06240355A (en) Production of high toughness thick tmcp steel plate
JP2000119749A (en) Production of chromium-molybdenum seamless steel pipe for machine structure
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JP4300049B2 (en) Manufacturing method of high-strength steel pipe for building structure with low yield ratio
JPS63203721A (en) Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JP3217589B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JPH0688129A (en) Production of high strength steel pipe as welded low in residual stress
JPH0565567B2 (en)
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
JP2954216B2 (en) Steel for high strength parts
JP2728084B2 (en) Manufacturing method of high strength parts

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311