JPH06240355A - Production of high toughness thick tmcp steel plate - Google Patents

Production of high toughness thick tmcp steel plate

Info

Publication number
JPH06240355A
JPH06240355A JP3221293A JP3221293A JPH06240355A JP H06240355 A JPH06240355 A JP H06240355A JP 3221293 A JP3221293 A JP 3221293A JP 3221293 A JP3221293 A JP 3221293A JP H06240355 A JPH06240355 A JP H06240355A
Authority
JP
Japan
Prior art keywords
less
rolling
steel
shape ratio
average shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3221293A
Other languages
Japanese (ja)
Inventor
Kyosuke Sueda
恭輔 末田
Hiroshi Iki
浩 壱岐
Kazuhiro Suzuki
和裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3221293A priority Critical patent/JPH06240355A/en
Publication of JPH06240355A publication Critical patent/JPH06240355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a thick steel plate in which the transition temp. in the central part in the direction of the plate thickness, vTrs, is regulated to <=-70 deg.C and excellent in toughness in the direction of the plate thickness, more specifically, suitable for steel for a massive structure such as a marine structure. CONSTITUTION:A bloom contg. <=0.10% C is heated to the temp. range of 950 to 1150 deg.C, is subjected to rough rolling at >=0.50 average shape ratio in the temp. range of 900 to 1100 deg.C, is moreover subjected to finish rolling at >=0.70 average shape ratio in the temp. range of <=780 deg.C and is immediately water-cooled to the temp. range of <=500 deg.C at <=10 deg.C/sec cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高靱性厚物TMCP鋼
板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high toughness thick TMCP steel sheet.

【0002】[0002]

【従来の技術】周知のように、靱性は材料のねばり強さ
を示す定性的概念であり、材料の強度および破壊に対す
る抵抗性の要因により評価される。鋼材における靱性の
大小は、引張試験での伸び、絞り、衝撃試験における吸
収エネルギーさらには破壊靱性等により評価されてき
た。
2. Description of the Related Art As is well known, toughness is a qualitative concept indicating the tenacity of a material, and is evaluated by factors such as the strength of the material and the resistance to fracture. The toughness of steel materials has been evaluated by elongation in a tensile test, drawing, absorbed energy in an impact test, and fracture toughness.

【0003】ところで、近年、海洋構造物といった厳し
い環境下で使用される構造物が建設されているが、この
ような構造物を構成する鋼材に対しては、その一部に切
欠けが存在した場合の鋼材の破壊抵抗性を示すき裂開口
変位試験(COD試験、JISG 0202:1604参照) も重要
視されるようになってきた。
By the way, in recent years, structures used in harsh environments such as offshore structures have been constructed, but some of the steel materials constituting such structures have notches. The crack opening displacement test (COD test, see JIS G 0202: 1604), which shows the fracture resistance of steel materials in some cases, has also become important.

【0004】き裂開口変位試験は、材料の破壊特性を調
べる試験であって、片側にき裂を付した平板試験片に面
内曲げ負荷を与え、クリップゲージでき裂開口変位と荷
重との関係を求め、通常の場合には、弾性線に比し5%
緩い傾きをもつ曲線と交わる荷重を求め、これに対応し
た応力拡大係数をCOD値として求める試験である。
The crack opening displacement test is a test for investigating the fracture characteristics of a material, in which an in-plane bending load is applied to a flat plate test piece with a crack on one side, and the clip gauge allows the relationship between the crack opening displacement and the load. In the normal case, 5% compared to the elastic line
This is a test in which a load intersecting a curve having a gentle slope is obtained and a stress intensity factor corresponding to the load is obtained as a COD value.

【0005】従来より、前述のような用途、例えば海洋
構造物の建設には、50キロ級ならびに60キロ級の高張力
鋼板が多用されており、これらの鋼板は熱間圧延まま、
または熱間圧延を行った後に焼ならしまたは焼入れ焼戻
しを行うことにより製造されていた。
Conventionally, high-strength steel sheets of 50 kg class and 60 kg class have been frequently used for the above-mentioned applications, for example, the construction of offshore structures.
Alternatively, it is manufactured by performing normalizing or quenching and tempering after performing hot rolling.

【0006】しかし、これらの鋼板のCOD値は、それ
まであまり問題にされていなかったこともあって特に検
討されていなかった。なお、それまでも鋼板の圧延方向
およびこれと同一平面内で直交する方向に関するCOD
値を高める方法については若干検討されていたが、特に
板厚方向に関するCOD値を高める方法については全く
検討されていなかった。
However, the COD value of these steel sheets has not been particularly studied because it has not been a problem so far. In addition, until then, the COD regarding the rolling direction of the steel sheet and the direction orthogonal to the rolling direction in the same plane
The method for increasing the COD value has been slightly studied, but the method for increasing the COD value in the plate thickness direction has not been studied at all.

【0007】そこで、特開昭58−58225 号公報には、板
厚方向に関するCOD値を高めるために、C:0.3 %以
下 (以下、本明細書においては特にことわりがない限り
「%」は「重量%」を意味するものとする) 、Si:1.0
%以下、Mn:2.5 %以下、T.Al:0.005 〜0.1 %、残部
Feおよび不可避的不純物からなる鋼片を、950 〜1150℃
の温度域に加熱し、850 〜1000℃の温度域で圧下率:40
%以上とし、しかも1パス当たりの圧下率を10%以上に
し、850 ℃以下の温度域で圧下率:60%以下にし、仕上
温度T (℃) =(918−369 ・C+24.6・Si−68.1・Mn−
36.1・Ni−20.7・Cu−24.5・Cr+29.6・Mo) 以上として
製品厚さまで圧下した後、直ちに400 〜600 ℃の温度範
囲まで5℃/sec以上の冷却速度で冷却することにより、
板厚方向に関するCOD値が優れた高降伏点鋼板を製造
する方法が提案されている。
Therefore, in JP-A-58-58225, in order to increase the COD value in the plate thickness direction, C: 0.3% or less (hereinafter, "%" means "in this specification unless otherwise specified". Weight%), Si: 1.0
% Or less, Mn: 2.5% or less, T.Al: 0.005 to 0.1%, balance
A steel slab consisting of Fe and inevitable impurities is heated at 950 to 1150 ℃
It is heated to the temperature range of 850 to 1000 ℃ and the rolling reduction is 40
% Or more, the rolling reduction per pass is 10% or more, and the rolling reduction is 60% or less in the temperature range of 850 ° C or less, and the finishing temperature T (° C) = (918-369 ・ C + 24.6 ・ Si- 68.1 ・ Mn−
(36.1 ・ Ni-20.7 ・ Cu-24.5 ・ Cr + 29.6 ・ Mo) After reducing to the product thickness as above, immediately by cooling to a temperature range of 400 to 600 ℃ at a cooling rate of 5 ℃ / sec or more,
A method for producing a high yield point steel plate having an excellent COD value in the plate thickness direction has been proposed.

【0008】[0008]

【発明が解決しようとする課題】一般的に、板厚方向の
靱性値を改善するには、板厚方向の中心部のザク疵 (鋼
片の凝固収縮に伴う空隙が圧延後も残存したもの) を低
減するとともに結晶粒を微細化することが有効であり、
これらを達成するために特開昭58−58225 号公報により
提案された方法では板厚方向の中心部まで充分に圧下を
行うこととしており、そのために、850 ℃以下の温度域
での圧下率:60%以下と規定している。
Generally, in order to improve the toughness value in the plate thickness direction, a Zaku flaw in the central portion in the plate thickness direction (a void caused by solidification shrinkage of a steel slab remains after rolling) It is effective to reduce the
In order to achieve these, the method proposed by Japanese Patent Laid-Open No. 58-58225 intends to carry out sufficient rolling down to the central portion in the sheet thickness direction. Therefore, the rolling reduction in the temperature range of 850 ° C or lower: It is specified as 60% or less.

【0009】なお、この提案における「圧下率」とは、
〔 (圧延前板厚−圧延後板厚)/圧延前板厚〕× 100
(%) を意味している。しかし、850 ℃以下の温度域で
の圧下率:60%以下と圧下率を限定することにより、板
厚方向の中心部まで充分に圧下を行ってザク疵の低減お
よび結晶粒の微細化を図ることは、板厚が50mm未満の鋼
板の場合はある程度可能であるが、板厚が50mm以上であ
る厚物鋼板の場合には板厚方向の中心部まで充分に圧下
を行うことは難しい。したがって、特開昭58−58225 号
公報により提案された方法によっても、厚物鋼板のザク
疵の低減および結晶粒の微細化を図ることは容易ではな
く、板厚方向の靱性が優れた厚物鋼板を安定的に製造す
ることはできない。
The "reduction rate" in this proposal is
((Plate thickness before rolling-plate thickness after rolling) / plate thickness before rolling) x 100
(%) Is meant. However, the rolling reduction in the temperature range of 850 ℃ or less: 60% or less, by limiting the rolling reduction, it is possible to sufficiently roll down to the central portion in the plate thickness direction to reduce the scratch marks and to reduce the grain size. This is possible to some extent in the case of a steel plate having a plate thickness of less than 50 mm, but in the case of a thick steel plate having a plate thickness of 50 mm or more, it is difficult to perform sufficient reduction to the central portion in the plate thickness direction. Therefore, it is not easy to reduce the scratches on the thick steel plate and to reduce the grain size even by the method proposed in Japanese Patent Laid-Open No. 58-82525, and it is a thick material with excellent toughness in the thickness direction. Steel sheets cannot be manufactured stably.

【0010】ここに、本発明の目的は、板厚方向の靱性
が優れた厚物鋼板の製造法を提供することにあり、より
特定的には、例えば海洋構造物等の低温域で使用される
鋼材として用いるのに好適な、板厚方向の中心部におけ
る遷移温度vTrs (T方向) が−70℃以下である高靱性厚
物TMCP鋼板の製造方法を提供することにある。
It is an object of the present invention to provide a method for producing a thick steel sheet having excellent toughness in the sheet thickness direction, and more specifically, for use in a low temperature region such as an offshore structure. Another object of the present invention is to provide a method for producing a high toughness thick TMCP steel sheet having a transition temperature vTrs (T direction) at the center in the sheet thickness direction of −70 ° C. or less, which is suitable for use as a steel material.

【0011】[0011]

【課題を解決するための手段】本発明者らは、厚物鋼板
の板厚方向の中心部の靱性、特に低温靱性を改善するに
は、板厚方向の中心部におけるザク疵の低減および結晶
粒の微細化を図ることが有効であるとの観点から、種々
検討を重ねた。
Means for Solving the Problems To improve the toughness of the center portion of the thick steel plate in the plate thickness direction, particularly, the low temperature toughness, the present inventors reduced the scratch marks and crystallized crystals in the center part of the plate thickness direction. Various studies have been repeated from the viewpoint that it is effective to reduce the grain size.

【0012】その結果、本発明者らは、板厚方向の中心
部のザク疵の低減および結晶粒の微細化を図って板厚方
向の靱性の向上を達成するには、特開昭58−58225 号公
報により提案された方法において、(i)900〜1100℃の高
温域で平均形状比:0.50以上確保して粗圧延を行うこ
と、および(ii)780 ℃以下の温度域、換言すればオ−ス
テナイト未再結晶温度域で平均形状比:0.70以上を確保
した高い平均形状比の仕上圧延を行うこととすればよい
ことを知見し、さらに種々検討を重ねて本発明を完成し
た。
As a result, the inventors of the present invention have found that, in order to reduce the scratches in the central portion in the sheet thickness direction and to reduce the grain size to improve the toughness in the sheet thickness direction, the method disclosed in JP-A-58- In the method proposed by Japanese Patent No. 58225, (i) rough rolling is performed in a high temperature range of 900 to 1100 ° C with an average shape ratio of 0.50 or more, and (ii) a temperature range of 780 ° C or less, in other words, The inventors have found that it suffices to perform finish rolling with a high average shape ratio that secures an average shape ratio of 0.70 or more in the austenite unrecrystallized temperature range, and further conducted various studies to complete the present invention.

【0013】なお、平均形状比は、図2に示すように半
径Rの圧延ロールにより鋼板を厚さt0からt1に圧下した
場合に、2 [R(t0 −t1)]1/2/(t0 +t1) により与えら
れる。
The average shape ratio is 2 [R (t 0 −t 1 )] 1 / when the steel sheet is rolled down from the thickness t 0 to t 1 by a rolling roll having a radius R as shown in FIG. It is given by 2 / (t 0 + t 1 ).

【0014】本発明者らの知見によれば、板厚方向の中
心部までの圧下力は圧下率のみならず圧延ロールの半径
の大小にも大きく影響される。したがって、厚物鋼板の
板厚方向の中心部まで充分に圧下を行ってザク疵の低減
および結晶粒の微細化を図るためには、圧下率とともに
圧延ロールの半径をも考慮する必要がある。前述の平均
形状比は、圧下率およびロール半径の双方を管理要因と
して取り入れた特性値である。
According to the knowledge of the present inventors, the rolling force to the central portion in the plate thickness direction is greatly affected not only by the rolling reduction but also by the radius of the rolling roll. Therefore, in order to sufficiently reduce the thickness of the thick steel sheet to the center in the sheet thickness direction to reduce the scratches and reduce the grain size, it is necessary to consider the radius of the rolling roll together with the reduction rate. The above-mentioned average shape ratio is a characteristic value that incorporates both the rolling reduction and the roll radius as control factors.

【0015】ここに、本発明の要旨とするところは、
C:0.10%以下、Si:0.40%以下、Mn:1.80%以下、so
l.Al:0.080 %以下、必要に応じてさらに、Cu:0.50%
以下、Ni:1.0 %以下、Nb:0.030 %以下およびTi:0.
030 %以下からなる群から選ばれた1種または2種以
上、残部Feおよび不可避的不純物からなる鋼組成を有す
る鋼片を、950 〜1150℃の温度域に加熱してから、900
〜1100℃の温度域で平均形状比:0.50以上で粗圧延を行
い、さらに780 ℃以下の温度域で平均形状比:0.70以上
で仕上圧延を行った後、直ちに500 ℃以下の温度域まで
10℃/sec以下の冷却速度で例えば水冷による冷却を行う
ことを特徴とする高靱性厚物TMCP鋼板の製造方法で
ある。
The gist of the present invention is as follows.
C: 0.10% or less, Si: 0.40% or less, Mn: 1.80% or less, so
l.Al: 0.080% or less, if necessary, Cu: 0.50%
Below, Ni: 1.0% or less, Nb: 0.030% or less, and Ti: 0.
A steel slab having a steel composition consisting of one or more selected from the group consisting of 030% or less and the balance Fe and unavoidable impurities is heated to a temperature range of 950 to 1150 ° C, and then 900
Coarse rolling is performed at an average shape ratio of 0.50 or more in the temperature range of up to 1100 ° C, and finish rolling is performed at an average shape ratio of 0.70 or more in the temperature range of 780 ° C or less, then immediately to a temperature range of 500 ° C or less.
A method of manufacturing a high toughness thick TMCP steel sheet, characterized in that cooling is performed by water cooling, for example, at a cooling rate of 10 ° C./sec or less.

【0016】本発明における厚物鋼板とは、板厚が50mm
以上の熱間圧延鋼板をいう。主な用途は海洋構造物用鋼
材である。また、粗圧延とは制御圧延開始までの圧延を
いい、仕上圧延とは制御圧延開始から終了までの圧延を
いう。
The thick steel plate in the present invention has a plate thickness of 50 mm.
The above hot rolled steel sheet. Its main application is steel for offshore structures. Further, rough rolling refers to rolling from the start of controlled rolling, and finish rolling refers to rolling from the start to end of controlled rolling.

【0017】本発明で規定する鋼片および鋼板の温度
は、全て表面温度による。本発明が対象とする厚物鋼板
では、通常、表面部と板厚方向の中心部との間の温度差
は50℃程度存在するため、測定部位を特定する必要があ
るからである。
The temperatures of the steel slab and the steel plate specified in the present invention are all based on the surface temperature. This is because, in the thick steel plate targeted by the present invention, the temperature difference between the surface portion and the central portion in the plate thickness direction is usually about 50 ° C., and therefore the measurement site needs to be specified.

【0018】図1は、本発明にかかる製造法を適用した
熱間圧延工程のヒートサイクルの一例であり、同図にお
いては、上記鋼組成を有し厚さtが300mm の鋼片は、95
0 〜1150℃の温度域に加熱され、900 〜1100℃の温度域
で平均形状比:0.50以上で粗圧延を行われて一旦厚さt
が180mm に圧下された後、780 ℃以下の温度域で平均形
状比:0.70以上で仕上圧延を行われて板厚が100mm の熱
延鋼板とされ、直ちに500 ℃以下の温度域まで10℃/sec
以下の冷却速度で水冷を行われて、成品とされる。
FIG. 1 shows an example of a heat cycle of a hot rolling process to which the manufacturing method according to the present invention is applied. In FIG. 1, a steel slab having the above steel composition and a thickness t of 300 mm is 95
After being heated to a temperature range of 0 to 1150 ° C, rough rolling is performed at an average shape ratio of 0.50 or more in a temperature range of 900 to 1100 ° C, and the thickness t is temporarily set.
Was rolled down to 180 mm, and finish rolling was performed at an average shape ratio of 0.70 or more in the temperature range of 780 ° C or less to obtain a hot rolled steel sheet with a thickness of 100 mm, and immediately to a temperature range of 500 ° C or less at 10 ° C / sec
Water cooling is performed at the following cooling rate to obtain a product.

【0019】本発明により製造される厚物鋼板の靱性、
特に板厚方向の中心部の低温靱性は優れており、遷移温
度vTrs (T方向) は−70℃以下である。
The toughness of the thick steel sheet produced according to the present invention,
Particularly, the low temperature toughness of the central portion in the plate thickness direction is excellent, and the transition temperature vTrs (T direction) is −70 ° C. or lower.

【0020】[0020]

【作用】以下、本発明を作用効果とともに詳述する。 (1) まず、本発明において用いる鋼片の組成を限定する
理由を説明する。
The operation of the present invention will be described in detail below. (1) First, the reason for limiting the composition of the steel slab used in the present invention will be described.

【0021】C:0.10%以下 Cは、成品の強度を確保するため含有されるが、0.10%
超含有させると靱性が劣化し、低温域で使用される海洋
構造物用鋼材として不適当になる。そこで、本発明で
は、C含有量は0.10%以下と限定する。望ましくは、0.
03%以上0.10%以下である。
C: 0.10% or less C is contained to secure the strength of the product, but 0.10%
If contained too much, the toughness deteriorates, making it unsuitable as a steel material for offshore structures used in low temperature regions. Therefore, in the present invention, the C content is limited to 0.10% or less. Desirably 0.
It is from 03% to 0.10%.

【0022】Si:0.40%以下 Siは、強度を確保するために含有されるが、0.40%超含
有されると靱性の向上が抑制され、海洋構造物用鋼材と
して不適当になる。そこで、本発明では、Si含有量は0.
40%以下と限定する。望ましくは、0.05%以上0.40%以
下である。
Si: 0.40% or less Si is contained in order to secure the strength, but if it is contained more than 0.40%, the improvement of toughness is suppressed and it becomes unsuitable as a steel material for offshore structures. Therefore, in the present invention, the Si content is 0.
Limited to 40% or less. Desirably, it is 0.05% or more and 0.40% or less.

【0023】Mn:1.80%以下 Mnは、成品の強度を確保するために含有されるが、Mn含
有量が1.80%超では、靱性の向上が抑制され、海洋構造
物用鋼材として不適当になる。そこで、本発明では、Mn
含有量は1.80%以下と限定する。望ましくは、1.00%以
上1.80%以下である。
Mn: 1.80% or less Mn is contained in order to secure the strength of the product, but if the Mn content exceeds 1.80%, the improvement of toughness is suppressed and it becomes unsuitable as a steel material for offshore structures. . Therefore, in the present invention, Mn
The content is limited to 1.80% or less. Desirably, it is 1.00% or more and 1.80% or less.

【0024】sol.Al:0.080 %以下 Alは、鋼を脱酸するとともに窒化物を形成して結晶粒微
細化作用を奏する元素であるが、sol.Al含有量が0.080
%超では介在物を形成して溶鋼の清浄性を損なう。そこ
で、本発明では、sol.Al含有量は0.080 %以下と限定す
る。望ましくは、0.010 %以上0.080 %以下である。
Sol.Al : 0.080% or less Al is an element that deoxidizes the steel and forms a nitride to have a grain refining effect, but the sol.Al content is 0.080%.
If it exceeds%, inclusions are formed to impair the cleanliness of molten steel. Therefore, in the present invention, the sol.Al content is limited to 0.080% or less. Desirably, it is 0.010% or more and 0.080% or less.

【0025】さらに、本発明において用いる鋼片は、必
要に応じてCu:0.50%以下、Ni:1.0 %以下、Nb:0.03
0 %以下およびTi:0.030 %以下からなる群から選ばれ
た1種または2種以上を強度向上のために添加してもよ
い。以下、これらの任意添加元素について説明する。
Further, the steel slab used in the present invention has Cu: 0.50% or less, Ni: 1.0% or less, Nb: 0.03, if necessary.
One or more selected from the group consisting of 0% or less and Ti: 0.030% or less may be added for improving strength. Hereinafter, these optional additional elements will be described.

【0026】Cu:0.50%以下 Cuは、鋼中に固溶して強度を高めるとともに耐候性を向
上させる元素であるが、0.50%超添加すると熱間脆性を
生じ溶接性を劣化させるため、海洋構造物用鋼材として
適当でない。そこで、Cuを添加する場合には、その含有
量は0.50%以下と限定することが望ましい。
Cu: 0.50% or less Cu is an element that forms a solid solution in steel to enhance strength and weather resistance, but if added in excess of 0.50%, hot brittleness occurs and weldability deteriorates. Not suitable as structural steel. Therefore, when Cu is added, its content is preferably limited to 0.50% or less.

【0027】Ni:1.0 %以下 Niは、低温靱性を改善するとともにCuを添加した場合に
生じる熱間脆性を防止して強度上昇に寄与する元素であ
るが、1.0 %超添加するとコスト増が著しい。そこで、
Niを添加する場合には、その含有量は1.0 %以下と限定
することが望ましい。さらに望ましくは、0.20%以上1.
0 %以下である。
Ni: 1.0% or less Ni is an element that improves the low temperature toughness and prevents hot embrittlement that occurs when Cu is added, and contributes to the strength increase. However, if added over 1.0%, the cost increases significantly. . Therefore,
When Ni is added, its content is preferably limited to 1.0% or less. More preferably, 0.20% or more 1.
It is 0% or less.

【0028】Nb:0.030 %以下 Nbは、結晶粒の微細化による高張力化および靱性向上に
有用な元素であるが、0.030 %超添加すると溶接継手靱
性の劣化が著しい。そこで、Nbを添加する場合には、そ
の含有量は0.030 %以下と限定することが望ましい。さ
らに望ましくは、0.005 %以上0.030 %以下である。
Nb: 0.030% or less Nb is an element useful for increasing the tensile strength and improving the toughness by refining the crystal grains, but if added in excess of 0.030%, the toughness of the welded joint is significantly deteriorated. Therefore, when Nb is added, its content is preferably limited to 0.030% or less. More preferably, it is 0.005% or more and 0.030% or less.

【0029】Ti:0.030 %以下 Tiは、析出強化により成品の強度を上昇せしめる元素で
あるが、0.030 %超添加すると靱性が劣化する。そこ
で、Tiを添加する場合には、その含有量は0.030%以下
と限定することが望ましい。さらに望ましくは、0.005
%以上0.030 %以下である。上記以外の組成は、Feおよ
び不可避的不純物である。不可避的不純物としては、例
えばNを例示でき、その含有量は0.009 %以下である。
Ti: 0.030% or less Ti is an element that increases the strength of the product by precipitation strengthening, but if added over 0.030%, toughness deteriorates. Therefore, when Ti is added, its content is preferably limited to 0.030% or less. More preferably 0.005
% To 0.030% or less. Compositions other than the above are Fe and inevitable impurities. As the inevitable impurities, for example, N can be exemplified, and the content thereof is 0.009% or less.

【0030】(2) 本発明では、上記の組成を有する鋼片
を、まず950 〜1150℃の温度域に加熱する。本発明にお
いて、圧延前の加熱温度を950 ℃以上1150℃以下と設定
したのは、初期オーステナイト結晶粒を微細化すること
により、オーステナイト/フェライト変態後のフェライ
ト結晶粒を微細化し、最終的に成品の靱性を向上させる
ためである。
(2) In the present invention, a steel slab having the above composition is first heated to a temperature range of 950 to 1150 ° C. In the present invention, the heating temperature before rolling is set to 950 ° C. or higher and 1150 ° C. or lower by refining the initial austenite crystal grains, thereby refining the ferrite crystal grains after the austenite / ferrite transformation, and finally making the finished product. This is to improve the toughness of.

【0031】図3は、鋼片加熱温度の高低と初期オース
テナイト結晶粒径の大小との一般的な関係を示すグラフ
である。同図から、鋼片加熱温度が低いほど初期オース
テナイト結晶粒径の微細化を図ることができることがわ
かる。
FIG. 3 is a graph showing a general relationship between the heating temperature of the billet and the size of the initial austenite grain size. From the figure, it can be seen that the lower the heating temperature of the billet, the finer the grain size of the initial austenite grains can be.

【0032】また、図4には、連続鋳造法(CC)により製
造した、C:0.06%、Si:0.22%、Mn:1.44%、P:0.
007 %、S:0.002 %、Cu:0.27%、Ni:0.74%、Nb:
0.012 %、Ti:0.012 %、sol.Al:0.021 %、残部Feお
よび不可避的不純物からなる鋼片を、1000〜1200℃の温
度域に加熱してから、900 〜1100℃の温度域で平均形状
比:0.51〜0.60で粗圧延を行い、さらに780 ℃以下の温
度域で平均形状比:0.83〜0.84で仕上圧延を行った後、
直ちに500 ℃以下の温度域まで4.5 ℃/secの冷却速度で
水冷を行って製造した厚鋼板について、板厚方向の中心
部(1/2t 部) における遷移温度vTrs (T方向) と加熱温
度との関係をグラフで示す。
Further, in FIG. 4, C: 0.06%, Si: 0.22%, Mn: 1.44%, P: 0.0, manufactured by the continuous casting method (CC).
007%, S: 0.002%, Cu: 0.27%, Ni: 0.74%, Nb:
A steel slab consisting of 0.012%, Ti: 0.012%, sol.Al: 0.021%, the balance Fe and unavoidable impurities is heated to a temperature range of 1000 to 1200 ° C, and then averaged in a temperature range of 900 to 1100 ° C. After rough rolling at a ratio of 0.51 to 0.60, and finish rolling at an average shape ratio of 0.83 to 0.84 in a temperature range of 780 ° C or lower,
Immediately after water cooling at a cooling rate of 4.5 ° C / sec to a temperature range of 500 ° C or less, the transition temperature vTrs (T direction) and heating temperature at the central part (1/2 t part) in the plate thickness direction were measured. The relationship is shown in the graph.

【0033】図3および図4に示す結果から、鋼片の加
熱温度を1150℃以下と限定することにより、初期オース
テナイト結晶粒の微細化およびオーステナイト/フェラ
イト変態後のフェライト結晶粒の微細化を図ることがで
き、また図4に示すように、加熱温度が1150℃以下であ
れば板厚方向の中心部における靱性も良好となることが
わかる。したがって、本発明では、鋼片の加熱温度の上
限は1150℃と限定する。
From the results shown in FIGS. 3 and 4, by limiting the heating temperature of the steel slab to 1150 ° C. or less, the initial austenite crystal grains are refined and the ferrite crystal grains after the austenite / ferrite transformation are refined. As shown in FIG. 4, it can be seen that if the heating temperature is 1150 ° C. or lower, the toughness in the central portion in the plate thickness direction becomes good. Therefore, in the present invention, the upper limit of the heating temperature of the billet is limited to 1150 ° C.

【0034】一方、加熱温度が950 ℃未満であると圧延
までに鋼片温度が低下して変形抵抗が増大し、熱間圧延
時に問題となる。そこで、本発明では、熱間圧延前の鋼
片の加熱温度は950 ℃以上1150℃以下と限定する。
On the other hand, if the heating temperature is lower than 950 ° C., the temperature of the billet decreases by rolling and the deformation resistance increases, which causes a problem during hot rolling. Therefore, in the present invention, the heating temperature of the steel slab before hot rolling is limited to 950 ° C or higher and 1150 ° C or lower.

【0035】(3) 本発明では、鋼片を950 ℃以上1150℃
以下に加熱した後に、900 〜1100℃の温度域で平均形状
比:0.50以上で粗圧延を行う。粗圧延の温度域を900 ℃
以上1100℃以下と限定したのは、900 ℃未満であると変
形抵抗が増大し圧延が不可能となり、一方1100℃超では
初期オーステナイト粒度が粗大化し板厚方向の中心部の
vTrsが−70℃を超えるからである。
(3) In the present invention, the steel piece is heated to 950 ° C. or higher and 1150 ° C.
After heating below, rough rolling is performed in the temperature range of 900 to 1100 ° C. with an average shape ratio of 0.50 or more. Rough rolling temperature range 900 ℃
The reason for limiting the temperature to 1100 ° C or less is that if it is less than 900 ° C, the deformation resistance increases and rolling becomes impossible, while if it exceeds 1100 ° C, the initial austenite grain size becomes coarse and the center portion in the plate thickness direction becomes
This is because vTrs exceeds -70 ° C.

【0036】粗圧延の平均形状比を0.50以上と限定した
のは、加熱後に、900 〜1100℃の温度域で平均形状比:
0.50以上の粗圧延を行うことにより、ザク疵が低減され
るとともに結晶粒が微細化されるからである。粗圧延の
平均形状比は大きければ大きいほど望ましい。
The average shape ratio of the rough rolling is limited to 0.50 or more in that the average shape ratio after heating is in the temperature range of 900 to 1100 ° C .:
This is because by performing rough rolling of 0.50 or more, the scratches are reduced and the crystal grains are refined. The larger the average shape ratio of rough rolling, the more desirable.

【0037】表1には、本発明で規定する範囲を満足す
る組成を有する鋼片 (厚さ:300mm)について、平均形状
比を0.63、0.32として180mm の板厚に粗圧延を行って得
た厚鋼板から試験片を切り出した場合のザク疵軽減率
(%) 、RAZ(%) およびフェライト結晶粒度番号の一例
を示す。なお、表2において、ザク疵軽減率 (%) と
は、
Table 1 shows a steel slab (thickness: 300 mm) having a composition satisfying the range specified in the present invention, which was obtained by rough rolling to a plate thickness of 180 mm with an average shape ratio of 0.63 and 0.32. Scratch defect reduction rate when a test piece is cut from thick steel plate
(%), RAZ (%) and ferrite grain size number are shown below. In Table 2, the scratch reduction rate (%) is

【0038】[0038]

【数1】 [Equation 1]

【0039】であって、RAZ(%) とは、図5(a) に示す
引張試験前の試験片のA−A部における断面積をAと
し、図5(b) に示す引張試験後の試験片のB−B部にお
ける断面積をBとした場合に、
RAZ (%) means that the cross-sectional area of the A-A portion of the test piece before the tensile test shown in FIG. 5 (a) is A, and that after the tensile test shown in FIG. 5 (b). When the cross-sectional area of the B-B portion of the test piece is B,

【0040】[0040]

【数2】 [Equation 2]

【0041】により算出される。It is calculated by

【0042】[0042]

【表1】 [Table 1]

【0043】表1から、粗圧延における平均形状比が0.
50以上であると、ザク疵が著しく低減され、フェライト
結晶粒が微細化されたことがわかる。 (4) 粗圧延後に、780 ℃以下の温度域、すなわち未再結
晶域で平均形状比:0.70以上で成品厚さに仕上圧延を行
う。
From Table 1, the average shape ratio in rough rolling is 0.
It can be seen that when it is 50 or more, the scratch defects are remarkably reduced and the ferrite crystal grains are refined. (4) After rough rolling, finish rolling is performed at a temperature of 780 ° C or lower, that is, in a non-recrystallized region at an average shape ratio of 0.70 or more to a product thickness.

【0044】仕上圧延における平均形状比を0.70以上と
高くすることにより、さらに板厚方向の中心部における
ザク疵が低減されて、板厚方向の中心部の低温靱性が著
しく改善されるからである。
By increasing the average shape ratio in the finish rolling to 0.70 or more, the scratch defects at the central portion in the sheet thickness direction are further reduced, and the low temperature toughness at the central portion in the sheet thickness direction is significantly improved. .

【0045】図6は、C:0.06%、Si:0.22%、Mn:1.
44%、sol.Al:0.021 %、Cu:0.27%、Ni:0.74%、N
b:0.012 %、Ti:0.012 %、残部Feおよび不可避的不
純物からなり、連続鋳造法(CC)により製造された鋼片
を、1120℃に加熱した後、900 〜1100℃の温度範囲で、
平均形状比:0.28〜0.36または0.51〜0.60として粗圧延
を行い、780 ℃以下の温度で平均形状比が0.50〜0.82と
なるようにして仕上圧延を行い、直ちに500 ℃以下まで
4.5 ℃/secの冷却速度で冷却して製造した場合に、板厚
方向の中心部における遷移温度vTrs (℃) を測定すると
ともに超音波探傷試験を行って内質欠陥の有無を調査し
た結果を示すグラフである。
FIG. 6 shows C: 0.06%, Si: 0.22%, Mn: 1.
44%, sol.Al: 0.021%, Cu: 0.27%, Ni: 0.74%, N
b: 0.012%, Ti: 0.012%, balance Fe and unavoidable impurities, and a steel slab produced by continuous casting method (CC) is heated to 1120 ° C, and then in a temperature range of 900 to 1100 ° C.
Rough rolling is performed with an average shape ratio of 0.28 to 0.36 or 0.51 to 0.60, and finish rolling is performed at a temperature of 780 ° C or less so that the average shape ratio is 0.50 to 0.82, and immediately up to 500 ° C or less.
In the case of manufacturing with cooling at a cooling rate of 4.5 ° C / sec, the transition temperature vTrs (° C) in the center part of the plate thickness direction was measured, and an ultrasonic flaw detection test was conducted to check the presence or absence of internal defects. It is a graph shown.

【0046】同図から、仕上圧延の平均形状比を0.70以
上とすることにより、内質欠陥は完全に解消されること
がわかる。なお、本発明で、仕上圧延温度を780 ℃以下
と限定したのは、仕上圧延の際に鋼板の表面温度を780
℃以下と限定することにより、厚物鋼板全体を未再結晶
域温度(820 ℃以下) に管理でき、再結晶による結晶粒
の粗大化が抑制されるために靱性が向上するからであ
る。
From the figure, it can be seen that the internal defects are completely eliminated by setting the average shape ratio of finish rolling to 0.70 or more. In the present invention, the finish rolling temperature is limited to 780 ° C. or lower because the surface temperature of the steel sheet during finish rolling is 780 ° C.
This is because by limiting the temperature to ℃ or less, the entire thick steel sheet can be controlled to a non-recrystallized region temperature (820 ℃ or less), and coarsening of crystal grains due to recrystallization is suppressed, so that the toughness is improved.

【0047】図7は、C:0.06%、Si:0.22%、Mn:1.
44%、sol.Al:0.021 %、Cu:0.27%、Ni:0.74%、N
b:0.012 %、Ti:0.012 %、残部Feおよび不可避的不
純物からなり、連続鋳造法により製造された鋼片を、11
20℃に加熱した後、高形状比 (900 〜1100℃での粗圧延
における平均形状比:0.6 、770 〜730 ℃での仕上圧延
における平均形状比:0.80) または低形状比 (900 〜11
00℃での粗圧延における平均形状比:0.4 、770 〜730
℃での仕上圧延における平均形状比:0.6 または900 〜
1100℃での粗圧延における平均形状比:0.4 、950 〜90
0 ℃での仕上圧延における平均形状比:0.6)で熱間圧延
を行い、直ちに500 ℃以下まで4.5 ℃/secの冷却速度で
冷却して厚物鋼板を製造した場合の、−30℃における板
厚方向の中心部のシャルピー吸収エネルギー1/2t部vE
-30(J)と仕上圧延における圧延条件との関係を示すグラ
フである。
FIG. 7 shows C: 0.06%, Si: 0.22%, Mn: 1.
44%, sol.Al: 0.021%, Cu: 0.27%, Ni: 0.74%, N
b: 0.012%, Ti: 0.012%, balance Fe and unavoidable impurities.
After heating to 20 ℃, high shape ratio (average shape ratio in rough rolling at 900 to 1100 ℃: 0.6, average shape ratio in finish rolling at 770 to 730 ℃: 0.80) or low shape ratio (900 to 11)
Average shape ratio in rough rolling at 00 ° C: 0.4, 770 to 730
Average shape ratio in finish rolling at ℃: 0.6 or 900 〜
Average shape ratio in rough rolling at 1100 ° C: 0.4, 950-90
A plate at −30 ° C. when a thick steel plate is manufactured by hot rolling at an average shape ratio of 0.6) in finish rolling at 0 ° C. and immediately cooling to a temperature of 500 ° C. or less at a cooling rate of 4.5 ° C./sec. Charpy absorbed energy in the central part in the thickness direction 1 / 2t part vE
3 is a graph showing the relationship between -30 (J) and rolling conditions in finish rolling.

【0048】同図に示すグラフから、本発明のように高
形状比であって未再結晶域での熱間圧延を行うことによ
り、板厚方向の靱性に優れた厚物鋼板を製造できること
がわかる。
From the graph shown in the figure, it is possible to manufacture a thick steel sheet having a high toughness in the thickness direction by performing hot rolling in a non-recrystallized region with a high shape ratio as in the present invention. Recognize.

【0049】(5) このように、本発明では、粗圧延の平
均形状比:0.50以上、仕上圧延の平均形状比:0.70以上
として圧延を行った後、直ちに500 ℃以下の温度域まで
10℃/sec以下の冷却速度で水冷を行う。これは、10℃/s
ec以下の冷却速度での例えば水冷による冷却を行うこと
により、再結晶による結晶粒の粗大化が抑制され、高形
状比の圧延による結晶粒の微細化を達成できるからであ
る。
(5) As described above, in the present invention, the rolling is performed with the average shape ratio of rough rolling: 0.50 or more and the average shape ratio of finish rolling: 0.70 or more, and immediately after that, the temperature range of 500 ° C. or less is reached.
Water cooling is performed at a cooling rate of 10 ° C / sec or less. This is 10 ℃ / s
By cooling with water cooling at a cooling rate of ec or less, for example, coarsening of crystal grains due to recrystallization can be suppressed, and miniaturization of crystal grains by rolling with a high shape ratio can be achieved.

【0050】このように、本発明によれば、(i) 鋼片の
加熱温度を950 〜1150℃と低温にすることにより、初期
オーステナイト結晶粒を微細化でき、オーステナイト/
フェライト変態後の結晶粒の微細化を図ることができ、
(ii)粗圧延および仕上圧延により高い平均形状比の圧延
を行うことにより、板厚方向の中心部におけるザク疵の
低減および結晶粒の微細化を図ることができ、(iii) 未
再結晶域で圧延を行うことにより、再結晶による結晶粒
の粗大化を抑制でき、したがって、板厚方向の靱性が優
れた厚物鋼板、例えば海洋構造物等の巨大な構造物用鋼
材として用いるのに好適な、板厚方向の中心部における
遷移温度vTrsが−70℃以下である厚物鋼板を製造でき
る。
As described above, according to the present invention, (i) the initial austenite crystal grains can be refined by controlling the heating temperature of the steel slab to a low temperature of 950 to 1150 ° C.
It is possible to refine the crystal grains after ferrite transformation,
(ii) By performing rolling with a high average shape ratio by rough rolling and finish rolling, it is possible to reduce zigzag defects in the central portion in the plate thickness direction and reduce the grain size, and (iii) unrecrystallized region By rolling with, it is possible to suppress the coarsening of crystal grains due to recrystallization, and therefore, it is suitable for use as a thick steel plate with excellent toughness in the plate thickness direction, for example, as a steel material for huge structures such as marine structures. In addition, it is possible to manufacture a thick steel plate having a transition temperature vTrs of −70 ° C. or less at the center in the plate thickness direction.

【0051】さらに、本発明を実施例を参照しながら説
明するが、これは本発明の例示でありこれにより本発明
が限定されるものではない。
Further, the present invention will be described with reference to examples, but this is an example of the present invention and the present invention is not limited thereby.

【0052】[0052]

【実施例】表2に示す組成を有する鋼片Aないし鋼片D
(スラブ厚:300mm または260mm)を、連続鋳造法(CC)ま
たは造塊法(I't) により製造した。
EXAMPLES Steel pieces A to D having the compositions shown in Table 2
(Slab thickness: 300 mm or 260 mm) was manufactured by continuous casting method (CC) or ingot making method (I't).

【0053】[0053]

【表2】 [Table 2]

【0054】これらの鋼片を、表3に示すように、1120
℃または1000℃に加熱してから、900 〜1100℃の温度域
で表3に示す粗厚形状比 (平均形状比) で粗圧延を行
い、表3に示す仕上圧延開始温度になった時に同じく表
3に示す仕上形状比 (平均形状比) で仕上圧延を開始
し、表3に示す仕上温度で熱間圧延を終了し、成品厚が
100mm の熱延鋼板とし、これらの熱延鋼板に表3に示す
水冷開始温度、水冷停止温度および水冷速度で水冷を行
って、製品とした。
As shown in Table 3, these steel pieces were treated with 1120
After heating to ℃ or 1000 ℃, rough rolling in the temperature range of 900 to 1100 ℃ with the rough shape ratio (average shape ratio) shown in Table 3, the same when the finish rolling start temperature shown in Table 3 is reached. Finishing rolling is started at the finishing shape ratio (average shape ratio) shown in Table 3, and hot rolling is finished at the finishing temperature shown in Table 3, and the product thickness is
Hot-rolled steel sheets of 100 mm were made, and these hot-rolled steel sheets were water-cooled at the water-cooling start temperature, water-cooling stop temperature and water-cooling rate shown in Table 3 to obtain products.

【0055】これらの製品から各種試験片を切り出し、
YP、TS、Elおよび板厚方向の中心における遷移温度およ
び板厚方向の中心におけるフェライト結晶粒度番号を測
定した。結果を表3に併せて示す。なお、表3において
は、特開昭58−58225 号公報に記載された方法との違い
を示すために圧下率も併記した。
Various test pieces were cut out from these products,
The transition temperature at YP, TS, El and the center in the plate thickness direction and the ferrite grain size number at the center in the plate thickness direction were measured. The results are also shown in Table 3. In Table 3, the rolling reduction is also shown in order to show the difference from the method described in JP-A-58-58225.

【0056】[0056]

【表3】 [Table 3]

【0057】本発明例 (試料No.3、試料No.5、試料No.8
ないし試料No.10 および試料No.16)は、YP:411 〜456k
gf/mm2、TS:510 〜571kgf/mm2、El:26.0〜33.6%、vT
rs (T方向) :−102 〜−72℃、vTrs (L方向) :−10
7 〜−86℃であって板厚方向の中心部におけるフェライ
ト結晶粒度番号:9.0 〜9.7 となり、板厚方向の中心部
における遷移温度vTrsが−70℃以下である厚物鋼板を製
造できたことがわかる。
Examples of the present invention (Sample No. 3, Sample No. 5, Sample No. 8
To Sample No. 10 and Sample No. 16) are YP: 411 to 456k
gf / mm 2 , TS: 510 ~ 571kgf / mm 2 , El: 26.0 ~ 33.6%, vT
rs (T direction): -102 to -72 ° C, vTrs (L direction): -10
We were able to manufacture a thick steel plate with a ferrite grain size number of 9.0 to 9.7 in the center of the plate thickness direction of 7 to -86 ° C and a transition temperature vTrs of -70 ° C or less in the center of the plate thickness direction. I understand.

【0058】試料No.1は、仕上形状比が本発明の範囲よ
り小さいためvTrs (T方向) が劣化した。試料No.2およ
び試料No.6は、粗厚形状比および仕上形状比がともに本
発明の範囲より小さいためvTrs (T方向) が劣化した。
In sample No. 1, the vTrs (T direction) was deteriorated because the finish shape ratio was smaller than the range of the present invention. In Sample No. 2 and Sample No. 6, both the rough thickness shape ratio and the finish shape ratio were smaller than the range of the present invention, so vTrs (T direction) was deteriorated.

【0059】試料No.4および試料No.7は、粗厚形状比が
本発明の範囲より小さいためvTrs (T方向) が劣化し
た。試料No.11 は、仕上圧延開始温度が本発明の範囲を
上回っているためvTrs (T方向) が劣化した。
In Sample No. 4 and Sample No. 7, the vTrs (T direction) was deteriorated because the rough shape ratio was smaller than the range of the present invention. In Sample No. 11, the finish rolling start temperature was above the range of the present invention, and therefore vTrs (T direction) was deteriorated.

【0060】試料No.12 は、C含有量が本発明の範囲を
上回っているためvTrs (T方向) が劣化した。試料No.1
3 は、C含有量が本発明の範囲を上回っているとともに
仕上圧延開始温度および仕上温度が本発明の上限を上回
っているためvTrs (T方向) が劣化した。
In Sample No. 12, the vTrs (T direction) was deteriorated because the C content exceeded the range of the present invention. Sample No.1
In No. 3, vTrs (T direction) deteriorated because the C content exceeded the range of the present invention and the finish rolling start temperature and the finish temperature exceeded the upper limits of the present invention.

【0061】試料No.14 は、Ti含有量が本発明の範囲を
上回っているためvTrs (T方向) が劣化した。さらに、
試料No.15 は、水冷速度が本発明の範囲を上回っている
ためvTrs (T方向) が劣化した。
In the sample No. 14, the Ti content exceeds the range of the present invention, so that vTrs (T direction) is deteriorated. further,
In Sample No. 15, the water cooling rate exceeded the range of the present invention, so that vTrs (T direction) was deteriorated.

【0062】[0062]

【発明の効果】以上詳述したように、本発明により、板
厚方向の靱性が優れた厚物鋼板、より特定的には、例え
ば海洋構造物等の低温域で使用される鋼材として用いる
のに好適な、板厚方向の中心部における遷移温度vTrsが
−70℃以下である高靱性厚物TMCP鋼板を製造でき
た。
As described in detail above, according to the present invention, a thick steel plate having excellent toughness in the plate thickness direction, more specifically, a steel plate used in a low temperature region such as an offshore structure, is used. A high toughness thick TMCP steel plate having a transition temperature vTrs in the center portion in the plate thickness direction of −70 ° C. or less, which is suitable for the above, could be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる製造法を適用した熱間圧延工程
のヒートサイクルの一例である。
FIG. 1 is an example of a heat cycle of a hot rolling process to which the manufacturing method according to the present invention is applied.

【図2】半径Rの圧延ロールにより鋼板を厚さt0からt1
に圧下した場合の説明図である。
[FIG. 2] A steel plate is rolled with a radius R to a thickness of t 0 to t 1
It is explanatory drawing at the time of rolling down.

【図3】鋼片加熱温度の高低と初期オーステナイト結晶
粒径の大小との一般的な関係を示すグラフである。
FIG. 3 is a graph showing a general relationship between the heating temperature of the billet and the size of the initial austenite crystal grain size.

【図4】板厚方向の中心部における遷移温度vTrs (℃)
と加熱温度 (℃) との関係を示すグラフである。
[Fig. 4] Transition temperature vTrs (℃) at the center in the plate thickness direction
2 is a graph showing the relationship between the heating temperature (° C.) and.

【図5】引張試験の実施状況を示す説明図であり、図5
(a) は実施前を、図5(b) は実施後をそれぞれ示す。
FIG. 5 is an explanatory diagram showing a state of implementation of a tensile test.
(a) shows before implementation, and FIG. 5 (b) shows after implementation.

【図6】板厚方向の中心部における遷移温度vTrs (℃)
と仕上圧延における平均形状比との関係における内質欠
陥の有無を調査した結果を示すグラフである。
[Fig. 6] Transition temperature vTrs (℃) at the center in the thickness direction
It is a graph which shows the result of having investigated the presence or absence of the internal defect in the relationship with the average shape ratio in finish rolling.

【図7】−30℃における板厚方向の中心部のシャルピー
吸収エネルギーvE-30(J)と圧延条件との関係を示すグラ
フである。
FIG. 7 is a graph showing the relationship between Charpy absorbed energy vE -30 (J) at the central portion in the plate thickness direction at −30 ° C. and rolling conditions.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.10%以下、 Si:0.40%以下、 Mn:1.80%以下、sol.Al:0.080 %以下、 残部Feおよび不可避的不純物からなる鋼組成を有する鋼
片を、950 〜1150℃の温度域に加熱してから、900 〜11
00℃の温度域で平均形状比:0.50以上で粗圧延を行い、
さらに780 ℃以下の温度域で平均形状比:0.70以上で仕
上圧延を行った後、直ちに500 ℃以下の温度域まで10℃
/sec以下の冷却速度で冷却を行うことを特徴とする高靱
性厚物TMCP鋼板の製造方法。
1. A steel slab having a steel composition consisting of C: 0.10% or less, Si: 0.40% or less, Mn: 1.80% or less, sol.Al: 0.080% or less, and the balance Fe and unavoidable impurities. , 950 to 1150 ℃, and then 900 to 11
Rough rolling is performed in the temperature range of 00 ℃ with an average shape ratio of 0.50 or more.
Furthermore, after finish rolling at an average shape ratio of 0.70 or more in the temperature range of 780 ° C or lower, immediately after 10 ° C until the temperature range of 500 ° C or lower
A method of manufacturing a high toughness thick TMCP steel sheet, which comprises cooling at a cooling rate of not more than / sec.
【請求項2】 前記鋼片は、さらに、重量%で、 Cu:0.50%以下、Ni:1.0 %以下、Nb:0.030 %以下お
よびTi:0.030 %以下からなる群から選ばれた1種また
は2種以上を含有することを特徴とする請求項1記載の
高靱性厚物TMCP鋼板の製造方法。
2. The steel billet further comprises, by weight, one or two selected from the group consisting of Cu: 0.50% or less, Ni: 1.0% or less, Nb: 0.030% or less and Ti: 0.030% or less. The method for producing a high toughness thick TMCP steel sheet according to claim 1, which contains at least one kind.
JP3221293A 1993-02-22 1993-02-22 Production of high toughness thick tmcp steel plate Pending JPH06240355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3221293A JPH06240355A (en) 1993-02-22 1993-02-22 Production of high toughness thick tmcp steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3221293A JPH06240355A (en) 1993-02-22 1993-02-22 Production of high toughness thick tmcp steel plate

Publications (1)

Publication Number Publication Date
JPH06240355A true JPH06240355A (en) 1994-08-30

Family

ID=12352619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3221293A Pending JPH06240355A (en) 1993-02-22 1993-02-22 Production of high toughness thick tmcp steel plate

Country Status (1)

Country Link
JP (1) JPH06240355A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765114B1 (en) * 2001-12-22 2007-10-08 주식회사 포스코 A method for manufacturing TMCP heavy plate using soft reduction
KR100815747B1 (en) * 2001-12-22 2008-03-20 주식회사 포스코 A method for manufacturing a high strength TMCP steel plate for hot forming
JP2009019265A (en) * 2007-06-12 2009-01-29 Nippon Steel Corp High young's modulus steel sheet excellent in hole expansion property and its production method
JP2009132988A (en) * 2007-04-19 2009-06-18 Nippon Steel Corp Steel sheet, hot dip galvanized steel sheet, hot dip galvannealed steel sheet and steel pipe having low yield ratio and high young's modulus, and method for producing them
WO2009125820A1 (en) 2008-04-09 2009-10-15 新日本製鐵株式会社 PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
WO2021182618A1 (en) * 2020-03-13 2021-09-16 日本製鉄株式会社 Steel sheet for wind power generation plants and method for producing same
CN115679203A (en) * 2022-09-15 2023-02-03 舞阳钢铁有限责任公司 Super-thick S355NLO steel plate for offshore oil storage ship and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159320A (en) * 1987-12-16 1989-06-22 Sumitomo Metal Ind Ltd Production of high-strength extra-thick steel
JPH0313524A (en) * 1989-06-10 1991-01-22 Kobe Steel Ltd Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness
JPH0347916A (en) * 1989-07-14 1991-02-28 Kawasaki Steel Corp Production of thick steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159320A (en) * 1987-12-16 1989-06-22 Sumitomo Metal Ind Ltd Production of high-strength extra-thick steel
JPH0313524A (en) * 1989-06-10 1991-01-22 Kobe Steel Ltd Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness
JPH0347916A (en) * 1989-07-14 1991-02-28 Kawasaki Steel Corp Production of thick steel plate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765114B1 (en) * 2001-12-22 2007-10-08 주식회사 포스코 A method for manufacturing TMCP heavy plate using soft reduction
KR100815747B1 (en) * 2001-12-22 2008-03-20 주식회사 포스코 A method for manufacturing a high strength TMCP steel plate for hot forming
JP2009132988A (en) * 2007-04-19 2009-06-18 Nippon Steel Corp Steel sheet, hot dip galvanized steel sheet, hot dip galvannealed steel sheet and steel pipe having low yield ratio and high young's modulus, and method for producing them
JP2009019265A (en) * 2007-06-12 2009-01-29 Nippon Steel Corp High young's modulus steel sheet excellent in hole expansion property and its production method
WO2009125820A1 (en) 2008-04-09 2009-10-15 新日本製鐵株式会社 PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
US7918948B2 (en) 2008-04-09 2011-04-05 Nippon Steel Corporation Method of production of 780 MPa class high strength steel plate excellent in low temperature toughness
KR101031945B1 (en) * 2008-04-09 2011-04-29 신닛뽄세이테쯔 카부시키카이샤 Manufacturing method of 780MPa class high tensile strength steel sheet excellent in low temperature toughness
WO2021182618A1 (en) * 2020-03-13 2021-09-16 日本製鉄株式会社 Steel sheet for wind power generation plants and method for producing same
JPWO2021182618A1 (en) * 2020-03-13 2021-09-16
CN115679203A (en) * 2022-09-15 2023-02-03 舞阳钢铁有限责任公司 Super-thick S355NLO steel plate for offshore oil storage ship and production method thereof
CN115679203B (en) * 2022-09-15 2023-12-29 舞阳钢铁有限责任公司 Super-thick S355NLO steel plate for offshore oil storage ship and production method thereof

Similar Documents

Publication Publication Date Title
CA2941202C (en) Method for producing a high-strength flat steel product
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
US11591667B2 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP3845113B2 (en) Thick steel plate with excellent brittle crack propagation stopping property and low temperature toughness and its manufacturing method
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP6984319B2 (en) Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method
JPH10298645A (en) Manufacture of hot rolled high tensile strength steel plate
JP2001123222A (en) Manufacturing method of high-toughness and high-tensile steel
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH06240355A (en) Production of high toughness thick tmcp steel plate
JPH07316650A (en) Production of high strength hot rolled steel plate with low yield ratio
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP5743382B2 (en) Steel material for earthquake-resistant structure and manufacturing method thereof
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP3823627B2 (en) Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP3650601B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JPH10147845A (en) Steel plate with high fatigue strength, and its production
JP3325148B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980113