KR100815747B1 - A method for manufacturing a high strength TMCP steel plate for hot forming - Google Patents

A method for manufacturing a high strength TMCP steel plate for hot forming Download PDF

Info

Publication number
KR100815747B1
KR100815747B1 KR1020010083163A KR20010083163A KR100815747B1 KR 100815747 B1 KR100815747 B1 KR 100815747B1 KR 1020010083163 A KR1020010083163 A KR 1020010083163A KR 20010083163 A KR20010083163 A KR 20010083163A KR 100815747 B1 KR100815747 B1 KR 100815747B1
Authority
KR
South Korea
Prior art keywords
less
temperature
steel
rolling
temperature range
Prior art date
Application number
KR1020010083163A
Other languages
Korean (ko)
Other versions
KR20030053123A (en
Inventor
조원국
김성호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010083163A priority Critical patent/KR100815747B1/en
Publication of KR20030053123A publication Critical patent/KR20030053123A/en
Application granted granted Critical
Publication of KR100815747B1 publication Critical patent/KR100815747B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Abstract

열간성형용 60kg/㎟급 열가공제어(TMCP) 구조용 플래이트 제조방법이 제공된다.
Provided is a method for manufacturing a 60kg / mm2 thermal processing control (TMCP) structural plate for hot forming.

본 발명의 방법은, 중량%로, C:0.06~0.20%, Si:0.02~0.55%, Mn:0.60~1.70%, P:0.025% 이하, S:0.020%이하, Sol-Al:0.005~0.060%, Nb:0.015~0.050%, V:0.01~0.090, N:0.007~ 0.0130%, Cu:1.0%이하, Cr:1.0%이하,Mo:0.6%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 마련하는 단계; 상기 강 슬라브를 1130~1240℃의 온도범위로 가열한 다음, 재결정온도역인 990℃~900℃에서 1차 제어압연하는 단계; 상기 1차압연된 열연판을 다시 미재결정온도역인 800℃~700℃에서 최종마무리 제어압연하는 단계; 및 상기 압연된 강판의 최종온도가 560~450℃ 가 되도록 3~10℃ 냉각속도로 수냉하는 단계;를 포함하여 구성된다.
In the method of the present invention, by weight%, C: 0.06 to 0.20%, Si: 0.02 to 0.55%, Mn: 0.60 to 1.70%, P: 0.025% or less, S: 0.020% or less, Sol-Al: 0.005 to 0.060 %, Nb: 0.015 ~ 0.050%, V: 0.01 ~ 0.090, N: 0.007 ~ 0.030%, Cu: 1.0% or less, Cr: 1.0% or less, Mo: 0.6% or less, balance Fe and other inevitable impurities Preparing a slab; Heating the steel slab to a temperature range of 1130 ° C. to 1240 ° C., and then performing primary control rolling at a temperature of 990 ° C. to 900 ° C., which is a recrystallization temperature range; Final finishing control rolling of the first rolled hot rolled sheet at an unrecrystallized temperature range of 800 ° C. to 700 ° C .; And water-cooling at a cooling rate of 3 to 10 ° C. such that the final temperature of the rolled steel sheet becomes 560 to 450 ° C ..

열간성형, 제어압연, TMCP, 재결정영역Hot Forming, Control Rolling, TMCP, Recrystallization Area

Description

열간성형용 60㎏/㎟급 열가공제어(TMCP)구조용 플래이트 제조방법{A method for manufacturing a high strength TMCP steel plate for hot forming} Method for manufacturing a high strength TMCP steel plate for hot forming

본 발명은 적재중량 23톤이상의 대형트럭의 엑슬하우징(Axle Housing)용으로 사용되는 구조용 고장력강판의 제조방법에 관한 것으로, 보다 상세하게는 800℃의 고온에서 30분간가열후 열간Hot forming후에도 강도손실이 적어 항복강도(46kgf/㎣<), 인장강도(60kgf/㎣<) 및 -5℃ 에서 충격흡수에너지가 100J이상 확보되는 열간Forming용 60kg/㎟급 열가공제어(TMCP) 구조용 고장력 Plate의 제조방법에 관한 것이다.
The present invention relates to a method for manufacturing a structural high tensile strength steel sheet used for axle housing of a large truck with a loading weight of 23 tons or more, more specifically, strength loss after hot hot forming after heating for 30 minutes at a high temperature of 800 ℃. Manufacture of high tensile plate for 60kg / mm2 thermal processing control (TMCP) structure for hot forming, which yields more than 100J of impact absorption energy at yield strength (46kgf / ㎣ <), tensile strength (60kgf / ㎣ <) and -5 ℃ It is about a method.

상, 용접구조용 열가공제어 고장력강판은 성형성이 열위하므로 자동차의 엑슬하우징과 같은 심가공재는 냉간성형시 균열이 발생 될 수 있으므로, 800℃의 고온에서 30분간 가열후 열간에서 성형하게 되는데, 이 가열공정에서 제조당시의 강도를 상당량 소실하기 때문에 열간 성형후 항복강도(46kgf/㎣<), 인장강도(60kgf/㎣<)급의 대형트럭용 고장력 강판의 제조가술이 국내에서는 개발되지 않은 실정이었다. Since high-strength steel sheets for welded structures are inferior in formability, deep processing materials such as axle housings of automobiles may be cracked during cold forming, so they are hot formed after heating for 30 minutes at 800 ℃ high temperature. Since the strength at the time of manufacturing is lost in the heating process, the manufacturing technique of high strength steel sheet for large trucks of yield strength (46kgf / ㎣ <) and tensile strength (60kgf / ㎣ <) after hot forming has not been developed in Korea. It was.

이에, 본 발명의 발명자들은 상기와 같은 기술적과제를 달성하기 위하여 연구와 실험을 하고 그 결과에 근거하여 본 발명을 제안한 것으로서, 본 발명은 적절한 성분설계와 1차 및 2차로 행해지는 열간압연 공정과 냉각공정을 적절히 제어함으로써, 열간 Hot Forming후에도 높은 강도 및 충격인성을 제공할 수 있는 고장력 Plate의 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the inventors of the present invention have conducted research and experiments to achieve the technical problem as described above, and proposed the present invention based on the results. By controlling the cooling process properly, it is to provide a method of manufacturing a high tensile plate that can provide high strength and impact toughness even after hot hot forming.

상기한 목적을 달성하기 위한 본 발명은The present invention for achieving the above object

중량%로, C:0.06~0.20%, Si:0.02~0.55%, Mn:0.60~1.70%, P:0.025% 이하, S:0.020%이하, Sol-Al:0.005~0.060%, Nb:0.015~0.050%, V:0.01~0.090, N:0.007~ 0.0130%, Cu:1.0%이하, Cr:1.0%이하,Mo:0.6%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 마련하는 단계; 상기 강 슬라브를 1130~1240℃의 온도범위로 가열한 다음, 재결정온도역인 990℃~900℃에서 1차 제어압연하는 단계; 상기 1차압연된 열연판을 다시 미재결정온도역인 800℃~700℃에서 최종마무리 제어압연하는 단계; 및 상기 압연된 강판의 최종온도가 560~450℃ 가 되도록 3~10℃ 냉각속도로 수냉하는 단계;를 포함하여 구성되는 열간성형용 60kg/㎟급 열가공제어(TMCP) 구조용 플래이트 제조방법에 관한 것이다.
By weight%, C: 0.06-0.20%, Si: 0.02-0.55%, Mn: 0.60-1.70%, P: 0.025% or less, S: 0.020% or less, Sol-Al: 0.005-0.060%, Nb: 0.015- Preparing a steel slab composed of 0.050%, V: 0.01 to 0.090, N: 0.007 to 0.0130%, Cu: 1.0% or less, Cr: 1.0% or less, Mo: 0.6% or less, balance Fe and other unavoidable impurities; Heating the steel slab to a temperature range of 1130 ° C. to 1240 ° C., and then performing primary control rolling at a temperature of 990 ° C. to 900 ° C., which is a recrystallization temperature range; Final finishing control rolling of the first rolled hot rolled sheet at an unrecrystallized temperature range of 800 ° C. to 700 ° C .; And a step of water cooling at a cooling rate of 3 to 10 ° C. such that the final temperature of the rolled steel sheet becomes 560 to 450 ° C .; and a method for manufacturing a 60 kg / mm 2 grade hot work control (TMCP) structural plate for hot forming will be.

이하, 본 발명의 강 성분 및 그 제한사유를 설명한다. Hereinafter, the steel component of the present invention and the reason for limitation thereof will be described.

C는 강의 강도를 확보하기 위해 첨가되는 원소로서, 그 함량이 낮으면 강도 확보가 어렵고 너무 높으면 용접성 및 인성이 열화되므로, 그 첨가량을 0.06~0.20%로 제한한다.
C is an element added to secure the strength of the steel, if the content is low, it is difficult to secure the strength, and if it is too high, the weldability and toughness deteriorate, so the amount is limited to 0.06 to 0.20%.

Si는 고용강화에 의한 강도상승에 효과가 있고, 강중에 존재하는 산소성분을 제거하는 탈산제의 역할을 하는 원소이나, 그 함량이 너무 많으면 저온인성을 열화시키므로, 0.02~0.50%로 제한다.
Si is effective in increasing strength due to solid solution strengthening and is an element that serves as a deoxidizer for removing oxygen components present in steel, but if the content is too high, low temperature toughness deteriorates, so it is reduced to 0.02 to 0.50%.

Mn은 Ar3변태지연 효과에 의한 강도향상에 유익하고, 강중 유해성분인 황화물(FeS)의 형성을 억제하는 효과가 있는 원소이다. 그러나 그 함량이 너무 높으면 도상마르텐사이트를 과다 생성하여 충격인성을 열화시키므로, 그 함량을 0.60~1.70 %로 제한한다.
Mn is an element that is beneficial for strength improvement due to the Ar 3 transformation delay effect and has an effect of suppressing the formation of sulfide (FeS), which is a harmful component in steel. However, if the content is too high, excessive generation of phase martensite degrades impact toughness, so the content is limited to 0.60-1.70%.

Sol.Al은 강중 탈산원소로서, 그 함량이 0.005% 미만인 경우에는 탈산이 불충분하게 이루어져 연주작업시 기포를 발생할 우려가 있으며, 그 함량이 0.060%를 초과하면 강중 N과 결합해 AlN로 석출하여 연주 표면크랙을 유발한다.Sol.Al is a deoxidation element in steel, and if its content is less than 0.005%, deoxidation is insufficient, which may cause bubbles during performance.If the content exceeds 0.060%, it is combined with N in steel to precipitate and play with AlN. Causes surface cracks.

이를 고려하여, 본 발명에서는 Sol.Al의 첨가량을 0.005~0.060%로 제한한다.
In consideration of this, in the present invention, the amount of Sol.Al added is limited to 0.005 to 0.060%.

P는 편석을 일으겨 UT불량을 유발시키는 유해한 원소이므로, 그 함량 범위를 0.025%이하로 제한한다. P is a harmful element that causes segregation and causes UT defects, so the content range is limited to 0.025% or less.                     

S은 용강중에 저융점의 황화물(FeS)을 형성하여 연속주조중 내부크랙을 유발시키는 유해한 원소이며, 또한 MnS개재물을 형성하여 라미네이션을 유발시킨다. S is a harmful element that forms low melting sulfide (FeS) in molten steel to cause internal cracks during continuous casting, and also forms MnS inclusions to cause lamination.

따라서 본 발명에서는 그 함량을 0.020%이하로 제한한다.
Therefore, in the present invention, the content is limited to 0.020% or less.

Nb은 압연 및 냉각중 석출에 의한 조직 미세화와 강도상승에 유용한 원소로서, 이와 같은 작용 효과를 나타내기 위해서는 0.015%이상 첨가되어야 하지만, 그 함량이 높으면 상부베이나이트 조직을 과대발생시켜 충격인성을 열화시키므로, 그 상한은 0.050%로 제한한다.
Nb is an element that is useful for structure refinement and strength increase by precipitation during rolling and cooling. To show the effect, Nb should be added at 0.015% or more. However, if the content is high, Nb causes excessive upper bainite structure to deteriorate impact toughness. Therefore, the upper limit is limited to 0.050%.

V은 C,N과 결합하여 V(C,N)석출물을 형성시키는 원소로써 함유량의 증가에 따라 강도증가에 크게 기여한다. 그러나 과다첨가시에는 모재 및 용접부 인성이 저하되므로 그 첨가량을 0.01~0.090%로 제한한다.
V is an element that combines with C and N to form V (C, N) precipitates, and contributes greatly to the strength increase with increasing content. However, at the time of excessive addition, the toughness of the base metal and the weld part is reduced, so the amount of addition is limited to 0.01 to 0.090%.

N은 C,Al,Nb,V와 단독 혹은 복합화합물을 형성하는 원소로 특히 강판제조후 열간성형을 위해 800℃의 고온으로 강판을 재가열시에 이러한 질소화합물이 입계에 석출하여 조직의 과대한 성장을 억지하여 결과적으로 가열후에도 강도의 소실이 방지되는 역할을 하는 원소로서 이와 같은 작용효과를 나타내기 위해서는 0.007% 이상 첨가되어야 하지만, 그 함량이 높으면 충격인성을 열화시키므로 그 함량의 상한은 0.0130%로 제한한다.
N is an element that forms a single or complex compound with C, Al, Nb, V, and especially when the steel sheet is reheated to 800 ℃ high temperature for hot forming after steel sheet manufacturing, these nitrogen compounds precipitate at grain boundaries, resulting in excessive growth of the structure. As a result, it is an element that prevents loss of strength even after heating, and should be added at least 0.007% in order to exhibit such an effect, but if the content is high, the impact toughness deteriorates, so the upper limit of the content is 0.0130%. Restrict.

Cu는 고용강화 원소로서 강도상승에 유용한 원소이나, 과다 첨가시 용접성을 열화시키므로 그 첨가량을 1.0%이하로 제한한다.
Cu is a solid solution strengthening element, which is useful for strength increase, but deteriorates the weldability when excessively added, so the amount of Cu is limited to 1.0% or less.

Cr은 모재의 강도상승에 효과적인 원소이나 과다첨가시 용접열영향부에 경화조직을 생성시켜 용접부 인성을 저하시키므로 그 함량을 1.0%이하로 제한한다.
Cr is limited to 1.0% or less because it reduces the toughness of the weld by forming hardened structure on the weld heat affected zone when it is an element that is effective in increasing the strength of the base metal or when it is over-added.

Mo는 고온강도 및 상온강도를 상승시키는 유용한 원소이나 과다 첨가시 성형성을 해치고 용접부 인성을 열화 시키므로 그 첨가량을 0.6%이하로 제한한다.
Mo is a useful element that increases the high temperature strength and room temperature strength, but when excessively added, it deteriorates moldability and deteriorates weld toughness, so the amount of Mo is limited to 0.6% or less.

이하, 본 발명의 제조방법을 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated.

먼저, 본 발명에서는 상기와 같은 조성의 가진 강 슬라브(Slab)를 제조한 후 이를 가열한다. 이때, 그 가열온도를 1130~1240℃로 제한한다. 만일 상기 가열온도가 1130℃미만이면 Nb의 고용량이 불충분하여 압연중 NbC, NbC,N 등의 탄질화물 석First, in the present invention to produce a steel slab (Slab) having the composition as described above and then heating it. At this time, the heating temperature is limited to 1130 ~ 1240 ℃. If the heating temperature is less than 1130 ° C., the solid solution of Nb is insufficient and the carbonitride stones such as NbC, NbC, N, etc. during rolling

출에 의한입자미세화 효과가 감소되고, 또한 압연중 변형저항이 증대되어 압연작업성을 열화시킬 수 있기 때문이다. 그리고 가열온도가 1240℃를 초과하면 표면스케일이 과다 발생되기 때문이다.
This is because the effect of particle fineness due to the drawing is reduced, and the deformation resistance during rolling is increased, thereby deteriorating the rolling workability. If the heating temperature exceeds 1240 ℃ because the surface scale is excessively generated.

이와 같이 가열로에서 가열된 강 슬라브는 후속하여 제어압연한다. The steel slabs heated in the furnace are subsequently controlled rolled.

즉, 본 발명에서는 상기 갈 슬라브를 조압연한 다음, 강조직의 재결정영역에서 1차 제어압연을 실시하는데, 이때, 압연온도를 990~900℃로 제어함이 바람직하 다. 왜냐하면 이 온도영역에서 반복압연시 반복재결정에 의해 강조직 입자가 미세화 되기 때문이다. 본 발명에서 반복압연온도가 이보다 높게 되면 압연직후 결정립들이 급속히 성장되기 때문에 조직미세화에 바람직하지 못하다.That is, in the present invention, after roughly rolling the gal slabs, the first controlled rolling is performed in the recrystallization area of the reinforced fabric, wherein the rolling temperature is preferably controlled to 990 to 900 ° C. This is because the reinforcement particles are made fine by repeated recrystallization during repeated rolling in this temperature range. In the present invention, when the repetitive rolling temperature is higher than this, the grains grow rapidly immediately after rolling, which is not preferable for microstructure.

이러한 1차 제어압연은 잔압하율 70%에서 시작하여 잔압하율 40%에서 종료함이 반복압연 스캐쥴상 바람직하다.
It is preferable on the repetitive rolling schedule that this primary control rolling starts at 70% of the remaining reduction rate and ends at 40% of the residual reduction rate.

이렇게 1차 제어압연을 행한후, 이후 다시 강조직의 미재결정온도 영역인 800℃~700℃에서 2차 제어압연한다.After performing the primary control rolling in this way, the secondary control rolling is performed again at 800 ° C. to 700 ° C., which is the unrecrystallized temperature region of the hardened fabric.

800℃은 강조직의 재결정이 상당히 억제되는 온도로서, 이 온도 이하에서 압연하면 오스테나이트 강조직입자의 연신과 전위의 도입, 새로운 서브입계(Sub-grain)의 생성에 의한 페라이트 핵생성 사이트가 증가되어 강도 향상 유리하다. 그러나 너무 낮은 온도에서 압연하면 페라이트와 오스테나이트 이상역 압연이 과다하게 되어 이상조직의 발생에 의한 재질편차를 유발하게 되므로 700℃이상의 온도에서 압연을 종료하는 것이 바람직하다.
800 ° C is a temperature at which recrystallization of the reinforcement fibers is considerably suppressed. Rolling below this temperature increases the ferrite nucleation site due to the stretching and dislocation of the austenitic reinforcement particles and the formation of new sub-grains. It is advantageous to improve the strength. However, when the rolling is too low temperature ferrite and austenite abnormal reverse rolling is excessive, causing material deviation due to the generation of abnormal tissue, it is preferable to finish the rolling at a temperature of 700 ℃ or more.

상기와 같이 제어압연된 강판은, 이후 최종강판의 온도가 560~450℃가 되도록 수냉하는데, 이와 같이 냉각하면 압연판의 강조직이 페라이트로 변태후 입자성장이 억제되며, 잔류 오스테나이트로부터 빠른 냉각에 의한 저온변태조직인 베이나이트를 발생시켜 효과적으로 강도를 확보할 수 있다. 그리고 상기 수냉된 강판은 이후 상온으로 공냉된다. The control rolled steel sheet as described above is then water-cooled so that the temperature of the final steel sheet is 560 ~ 450 ℃, when cooled in this way, the stress growth of the rolled plate is transformed into ferrite, the grain growth is suppressed, and rapid cooling from residual austenite By generating the low-temperature transformation structure bainite can effectively secure the strength. The water-cooled steel sheet is then air cooled to room temperature.                     

본 발명에서 상기 최종 냉각종료온도가 560℃ 보다 높으면 탄소의 확산이 빨라져서 탄화물의 미세 분산효과가 떨어지고 강도하락 요인이 되므로 제한이 필요하고, 450℃ 보다 낮으면 평탄도를 확보하기가 곤란하므로 바람직하지 않다.In the present invention, when the final cooling end temperature is higher than 560 ℃, the diffusion of carbon is faster to decrease the fine dispersion effect of carbides and cause a drop in strength is necessary because the restriction, lower than 450 ℃ it is difficult to secure the flatness is not preferable not.

본 발명에서는 또한 상기 냉각종료온도까지 3~10℃/sec의 냉각속도로 수냉함이 바람직하다. 만일 냉각속도가 3℃/sec 미만이면 베이나이트 변태가 억제되어 강도 상승에 불리하고, 10℃/sec을 초과하면 강판의 평탄도가 불량하여 바람직하지 않기 때문이다.
In the present invention, it is also preferable to cool the water at a cooling rate of 3 ~ 10 ℃ / sec up to the cooling end temperature. If the cooling rate is less than 3 ° C / sec, bainite transformation is suppressed, which is disadvantageous in increasing the strength, and if it exceeds 10 ° C / sec, the flatness of the steel sheet is poor, which is not preferable.

이하, 실시예를 통하여 본 발명을 상세히 설명한다Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

표 1과 같은 조성을 갖는 강 슬라브를 각각 마련하였다. 이러한 강 슬라브들을 1150℃로 가열하고 조압연하였으며, 이후 표 2와 같이 구체적인 압연조건 및 냉각조건을 달리하면서 강판을 제조하였다. Steel slabs each having the composition shown in Table 1 were prepared. The steel slabs were heated to 1150 ° C. and roughly rolled, and then steel sheets were manufactured by varying specific rolling and cooling conditions as shown in Table 2.

본 실험에서는 먼저, 열간가공정의 소재의 강도를 측정하여 표 2에 나타내었으며, 아울러 제조된 강판을 800℃에서 30분동안 가열후 재질특성을 측정하여, 그 결과 또한 표 2에 나타내었다. In this experiment, first, the strength of the material of the hot pressing process was shown in Table 2, and the material properties were measured after heating the manufactured steel sheet at 800 ° C. for 30 minutes, and the results are also shown in Table 2.

조성성분(중량%)                Ingredients (% by weight) CC SiSi MnMn PP SS S.AlS.Al NbNb VV NN CuCu CrCr MoMo 발명강1Inventive Steel 1 0.160.16 0.450.45 1.461.46 0.0080.008 0.0190.019 0.0310.031 0.0300.030 0.0540.054 0.00980.0098 0.020.02 0.040.04 00 발명강2Inventive Steel 2 0.170.17 0.440.44 1.551.55 0.0120.012 0.0170.017 0.0320.032 0.0260.026 0.0630.063 0.01010.0101 0.010.01 0.030.03 0.010.01 발명강3Invention Steel 3 0.160.16 0.460.46 1.521.52 0.0100.010 0.0180.018 0.0350.035 0.0280.028 0.0620.062 0.00940.0094 0.020.02 0.030.03 0.010.01 종래강1Conventional Steel 1 0.160.16 0.450.45 1.251.25 0.0190.019 0.0050.005 0.0300.030 0.0010.001 0.0040.004 0.00450.0045 0.020.02 0.020.02 0.010.01 종래강2Conventional Steel 2 0.170.17 0.400.40 1.451.45 0.180.18 0.0030.003 0.0330.033 0.0190.019 0.0600.060 0.00410.0041 0.020.02 0.010.01 0.010.01

가열온도(℃)Heating temperature (℃) 1차제어압연시작온도(℃)Primary controlled rolling start temperature (℃) 마무리압연온도(℃)Finish rolling temperature (℃) 냉각종료온도(℃)Cooling end temperature (℃) 냉각속도(℃/sec)Cooling rate (℃ / sec) 열간가공전 인장강도Tensile Strength Before Hot Processing 800℃ 30분 가열후 재질시험결과Material test result after heating at 800 ℃ for 30 minutes YP(kgf/mm2)YP (kgf / mm 2 ) TS(kgf/mm2)TS (kgf / mm 2 ) YP(kgf/mm2)YP (kgf / mm 2 ) TS(kgf/mm2)TS (kgf / mm 2 ) EL(%)EL (%) 충격흡수에너지 (-5℃,J)Shock Absorption Energy (-5 ℃, J) 발명재1Invention 1 12201220 950950 785785 550550 5.55.5 59.759.7 68.568.5 48.948.9 63.963.9 3232 220220 발명재2Invention 2 12101210 980980 741741 540540 4.84.8 62.462.4 70.570.5 50.150.1 64.864.8 3333 191191 발명재3Invention 3 12001200 970970 739739 520520 5.35.3 64.464.4 71.571.5 49.149.1 65.165.1 3131 183183 비교재1Comparative Material 1 12001200 970970 825825 615615 2.62.6 65.565.5 65.565.5 44.444.4 58.158.1 3333 198198 비교재2Comparative Material 2 11201120 985985 830830 580580 3.23.2 64.164.1 64.164.1 42.942.9 57.857.8 3434 212212 종래재1Conventional Materials 1 11201120 10501050 815815 620620 2.32.3 64.264.2 64.264.2 40.940.9 53.253.2 3333 188188 종래재2Conventional material 2 11801180 970970 820820 570570 3.53.5 64.564.5 64.564.5 43.343.3 60.160.1 3232 242242

표 1과 표 2에 나타난 바와 같이, 그 강성분 뿐만 아니라 제조조건이 적절하게 제어된 본 발명재(1~3)은 모두 적재중량 23톤 이상의 대형트럭 엑슬하우징용 강재에서 요구되는 고객사의 요구재질을 충분히 만족시키는 결과를 나타냄을 알 수 있다. 참고로, 고객사의 재질 요구수준은 YP 46kgf/㎣<, TS 60kgf/㎣<. 충격흡수에너지 (-5℃) 48J<이다.As shown in Table 1 and Table 2, the present invention materials (1 to 3), in which not only the steel components but also the manufacturing conditions are properly controlled, are all required by the customer's required material for a large truck axle steel with a loading weight of 23 tons or more. It can be seen that the result satisfies. For reference, customer material requirements are YP 46kgf / ㎣ <, TS 60kgf / ㎣ <. Impact absorption energy (-5 ° C.) 48J <.

이에 대하여, 그 제조조건이 본 발명범위를 벗어난 비교재(1~2)와, 그 강조성 및 제조조건이 발발명범위밖인 종래재들은 800℃ X 30분 가열후 재질시험결과, 항복강도가 하락하여 고객사의 요구를 만족시키지 못함을 알 수 있다.On the other hand, the comparative materials (1 ~ 2) whose manufacturing conditions are outside the scope of the present invention, and the conventional materials whose stress and manufacturing conditions are outside the invention range are the material test results after the 800 ° C X 30 minutes heating, yield strength It can be seen that it does not meet the needs of customers.

상술한 바와 같이, 본 발명은 강 성분 및 열간가공조건을 제어함으로써 그 제조된 강판이 800℃에서 30분간 가열후에도 높은 강도와 충격인성을 가져, 23톤이 상 대형 트럭의 엑슬하우징용으로 사용되는 열간성형용 열가공제어 고장력 Plate에 유효하게 적용할 수 있는 것이다. As described above, the present invention is to control the steel components and hot processing conditions, the steel sheet produced there is a high strength and impact toughness even after heating for 30 minutes at 800 ℃, 23 tons are used for axle housing of heavy trucks It can be effectively applied to hot work control high tension plate for hot forming.

Claims (2)

중량%로, C:0.06~0.20%, Si:0.02~0.55%, Mn:0.60~1.70%, P:0.025% 이하, S:0.020%이하, Sol-Al:0.005~0.060%, Nb:0.015~0.050%, V:0.01~0.090, N:0.007~ 0.0130%, Cu:1.0%이하, Cr:1.0%이하,Mo:0.6%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 마련하는 단계; By weight%, C: 0.06-0.20%, Si: 0.02-0.55%, Mn: 0.60-1.70%, P: 0.025% or less, S: 0.020% or less, Sol-Al: 0.005-0.060%, Nb: 0.015- Preparing a steel slab composed of 0.050%, V: 0.01 to 0.090, N: 0.007 to 0.0130%, Cu: 1.0% or less, Cr: 1.0% or less, Mo: 0.6% or less, balance Fe and other unavoidable impurities; 상기 강 슬라브를 1130~1240℃의 온도범위로 가열한 다음, 재결정온도역인 990℃~900℃에서 1차 제어압연하는 단계; Heating the steel slab to a temperature range of 1130 ° C. to 1240 ° C., and then performing primary control rolling at a temperature of 990 ° C. to 900 ° C., which is a recrystallization temperature range; 상기 1차압연된 열연판을 다시 미재결정온도역인 800℃~700℃에서 최종마무리 제어압연하는 단계; 및 Final finishing control rolling of the first rolled hot rolled sheet at an unrecrystallized temperature range of 800 ° C. to 700 ° C .; And 상기 압연된 강판의 최종온도가 560~450℃ 가 되도록 3~10℃ 냉각속도로 수냉하는 단계;를 포함하여 구성되는 열간성형용 60kg/㎟급 열가공제어(TMCP) 구조용 플래이트 제조방법60 kg / mm2 grade hot working control (TMCP) structural plate manufacturing method for hot forming comprising; step of water cooling at a cooling rate of 3 ~ 10 ℃ so that the final temperature of the rolled steel sheet is 560 ~ 450 ℃ 제 1항에 있어서, 상기 1차 제어압연은 잔압하율 70%에서 시작하여 잔압하율 40%에서 종료함을 특징으로 하는 열간성형용 60kg/㎟급 열가공제어(TMCP) 구조용 플래이트 제조방법The method of claim 1, wherein the primary control rolling starts at 70% of residual pressure reduction rate and ends at 40% of residual pressure reduction ratio.
KR1020010083163A 2001-12-22 2001-12-22 A method for manufacturing a high strength TMCP steel plate for hot forming KR100815747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010083163A KR100815747B1 (en) 2001-12-22 2001-12-22 A method for manufacturing a high strength TMCP steel plate for hot forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010083163A KR100815747B1 (en) 2001-12-22 2001-12-22 A method for manufacturing a high strength TMCP steel plate for hot forming

Publications (2)

Publication Number Publication Date
KR20030053123A KR20030053123A (en) 2003-06-28
KR100815747B1 true KR100815747B1 (en) 2008-03-20

Family

ID=29577734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010083163A KR100815747B1 (en) 2001-12-22 2001-12-22 A method for manufacturing a high strength TMCP steel plate for hot forming

Country Status (1)

Country Link
KR (1) KR100815747B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106244919A (en) * 2016-08-03 2016-12-21 唐山钢铁集团有限责任公司 A kind of low-alloy high-strength punching press axle shell steel and production method thereof
CN113528779B (en) * 2021-06-22 2023-01-31 首钢集团有限公司 Method for controlling strength reduction of axle housing steel after hot forming and axle housing steel prepared by method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240355A (en) * 1993-02-22 1994-08-30 Sumitomo Metal Ind Ltd Production of high toughness thick tmcp steel plate
KR100240999B1 (en) * 1995-12-19 2000-03-02 이구택 The manufacturing method for high strength steel sheet with low temperature shocking toughness property
KR20010062884A (en) * 1999-12-20 2001-07-09 이구택 A METHOD FOR MANUFACTURING YS 63kgf/㎟ GRADE THICK STEEL SHEET WITH SUPERIOR LOW TEMPERATURE TOUGHNESS
KR20020046578A (en) * 2000-12-15 2002-06-21 이구택 A method for manufacturing thick sheet with superior inner quality

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240355A (en) * 1993-02-22 1994-08-30 Sumitomo Metal Ind Ltd Production of high toughness thick tmcp steel plate
KR100240999B1 (en) * 1995-12-19 2000-03-02 이구택 The manufacturing method for high strength steel sheet with low temperature shocking toughness property
KR20010062884A (en) * 1999-12-20 2001-07-09 이구택 A METHOD FOR MANUFACTURING YS 63kgf/㎟ GRADE THICK STEEL SHEET WITH SUPERIOR LOW TEMPERATURE TOUGHNESS
KR20020046578A (en) * 2000-12-15 2002-06-21 이구택 A method for manufacturing thick sheet with superior inner quality

Also Published As

Publication number Publication date
KR20030053123A (en) 2003-06-28

Similar Documents

Publication Publication Date Title
KR101563929B1 (en) 800 Steel plate with yield strength of 800MPa grade and low weld cracking sensitivity and manufacture method thereof
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4410836B2 (en) Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness
CN110100029B (en) High-strength high-toughness thick steel plate and method for producing same
CN112011725A (en) Steel plate with excellent low-temperature toughness and manufacturing method thereof
US6358335B1 (en) Continuous casting slab suitable for the production of non-tempered high tensile steel material
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
KR102164112B1 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
CN109943771B (en) High-toughness weldable steel plate with fine grain structure and production method thereof
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JP2001073069A (en) High productivity and high strength rolled wide flange shape and its production
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
KR100815747B1 (en) A method for manufacturing a high strength TMCP steel plate for hot forming
JPH01319629A (en) Production of cr-mo steel sheet having excellent toughness
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
KR100946051B1 (en) Method for manufacturing the good weldability and high strength thick plate steel
KR20090011619A (en) Method of manufacturing high-strength steel sheet
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
KR102498134B1 (en) Ultra-thick steel plate having excellent low-temperature impact toughness and method for manufacturing thereof
KR20060072196A (en) Manufacturing method of wide and thick plate having excellent strength and toughness for making linepipe
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
KR20100062693A (en) High strength steel plate having excellent low temperature toughness and method for manufacturing the same
KR100544638B1 (en) A method for manufacturing high strength plate having the superior fracture arrest
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140314

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150309

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170313

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180306

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee