JP2009019265A - High young's modulus steel sheet excellent in hole expansion property and its production method - Google Patents

High young's modulus steel sheet excellent in hole expansion property and its production method Download PDF

Info

Publication number
JP2009019265A
JP2009019265A JP2008108045A JP2008108045A JP2009019265A JP 2009019265 A JP2009019265 A JP 2009019265A JP 2008108045 A JP2008108045 A JP 2008108045A JP 2008108045 A JP2008108045 A JP 2008108045A JP 2009019265 A JP2009019265 A JP 2009019265A
Authority
JP
Japan
Prior art keywords
modulus
rolling
young
high young
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008108045A
Other languages
Japanese (ja)
Other versions
JP5037415B2 (en
Inventor
Kazuya Otsuka
和也 大塚
Natsuko Sugiura
夏子 杉浦
Naoki Maruyama
直紀 丸山
Manabu Takahashi
学 高橋
Yoji Nakamura
洋二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008108045A priority Critical patent/JP5037415B2/en
Publication of JP2009019265A publication Critical patent/JP2009019265A/en
Application granted granted Critical
Publication of JP5037415B2 publication Critical patent/JP5037415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high Young's modulus steel sheet which has a high Young's modulus in the rolling direction measured by a static tension method and which is excellent in workability, especially in hole expanding property; and its production method. <P>SOLUTION: The high Young's modulus steel sheet with the excellent hole expanding property contains, by mass, 0.0100% or less of N, 0.005-0.100% of Nb, and 0.002-0.150% of Ti, N and Ti satisfying Ti-48/14×N≥0.0005, and has a microstructure wherein the sum of area ratio of one or both of polygonal ferrite and bainite is 98% or higher. At the position of which the distance from the surface of the steel sheet in the sheet thickness direction is 1/6 of the sheet thickness, the sum of an X-ray random strength ratio in the direction of ä100}<001> and an X-ray random strength ratio in the direction of ä110}<001> is 5 or less, and the sum of the maximum value of an X-ray random strength ratio of ä110}<111> to ä110}<112> orientation group and the maximum value of an X-ray random strength ratio of ä211}<111> orientation is 5 or higher. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、穴広げ性に優れた高ヤング率鋼板、溶融亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板及び鋼管並びにそれらの製造方法に関するものである。   The present invention relates to a high Young's modulus steel plate, hot-dip galvanized steel plate, alloyed hot-dip galvanized steel plate and steel pipe excellent in hole expansibility, and methods for producing them.

鉄のヤング率と結晶方位との相関は非常に強く、例えば、<111>方向のヤング率は、理想的には280GPaを超え、<110>方向のヤング率は約220GPaである。一方、<100>方向のヤング率は、130GPa程度であり、結晶方位によってヤング率は変化する。また、鋼材の結晶方位が、特定の方位への配向を有さない場合、即ち集合組織がランダムである鋼板のヤング率は、約205GPaである。   The correlation between the Young's modulus and the crystal orientation of iron is very strong. For example, the Young's modulus in the <111> direction ideally exceeds 280 GPa and the Young's modulus in the <110> direction is about 220 GPa. On the other hand, the Young's modulus in the <100> direction is about 130 GPa, and the Young's modulus changes depending on the crystal orientation. In addition, when the crystal orientation of the steel material does not have an orientation in a specific orientation, that is, the Young's modulus of a steel plate with a random texture is about 205 GPa.

これまでに、鋼板の集合組織を制御し、圧延方向に対して直角な方向(幅方向という。)のヤング率を高めた鋼板に関して、多数の技術が提案されている。また、鋼板の圧延方向と幅方向のヤング率を同時に高める技術については、一定方向への圧延に加え、それと直角方向の圧延を施す厚鋼板の製造方法が提案されている(例えば、特許文献1)。このような、圧延の方向を途中で変化させる方法は、厚鋼板の圧延工程では比較的簡単に行うことができる。   So far, a number of techniques have been proposed for steel sheets that control the texture of the steel sheets and increase the Young's modulus in a direction perpendicular to the rolling direction (referred to as the width direction). As a technique for simultaneously increasing the Young's modulus in the rolling direction and the width direction of a steel sheet, a method of manufacturing a thick steel sheet that performs rolling in a direction perpendicular to the rolling direction in addition to rolling in a certain direction has been proposed (for example, Patent Document 1). ). Such a method of changing the rolling direction in the middle can be performed relatively easily in the rolling process of the thick steel plate.

しかし、厚鋼板を製造する場合でも、鋼板の幅及び長さによっては、圧延方向を一定にせざるを得ないこともある。また、特に薄鋼板の場合は、鋼片を連続的に圧延して鋼帯とする連続熱延プロセスによって製造されることが多いため、圧延の方向を途中で変化させる技術は現実的ではない。更に、連続熱延プロセスによって製造される薄鋼板の幅は最大でも2m程度である。高ヤング率鋼板を、自動車の衝突時の補強部材等へ適用することを考えた場合、その成形方法は、プレス加工のみならず、ロール成形により圧延方向に沿って部材が加工されることも考えられるから、圧延方向におけるヤング率を向上させることが必要となる。   However, even when a thick steel plate is manufactured, the rolling direction may have to be constant depending on the width and length of the steel plate. In particular, in the case of a thin steel plate, since it is often manufactured by a continuous hot rolling process in which a steel slab is continuously rolled into a steel strip, a technique for changing the rolling direction in the middle is not realistic. Furthermore, the width of the thin steel plate manufactured by the continuous hot rolling process is about 2 m at the maximum. When considering application of high Young's modulus steel sheet to a reinforcing member in the event of a car collision, the forming method is not limited to pressing, but the member may be processed along the rolling direction by roll forming. Therefore, it is necessary to improve the Young's modulus in the rolling direction.

このような要求に対して、本発明者らの一部は、鋼板の表層部に剪断歪みを与え、表層部の圧延方向のヤング率を高める方法を提案している(例えば、特許文献2〜5)。特許文献2〜5に提案されている方法によって得られる鋼板は、表層部に圧延方向のヤング率を高める集合組織を発達させたものである。そのため、これらの鋼板は表層部のヤング率が高く、振動法によって測定したヤング率が230GPa超という高い数値を示す。   In response to such demands, some of the present inventors have proposed a method of imparting shear strain to the surface layer portion of the steel sheet and increasing the Young's modulus in the rolling direction of the surface layer portion (for example, Patent Documents 2 to 2). 5). The steel sheet obtained by the methods proposed in Patent Documents 2 to 5 has a developed texture that increases the Young's modulus in the rolling direction in the surface layer portion. Therefore, these steel sheets have a high Young's modulus of the surface layer portion, and a high value of Young's modulus measured by the vibration method is over 230 GPa.

ヤング率の測定法の一つである振動法は、周波数を変化させながら鋼鈑に曲げ変形を与えて、共振が起こる周波数を求め、それをヤング率に換算する測定方法である。このような方法で測定されたヤング率は動的ヤング率とも呼ばれ、曲げ変形時に得られるヤング率であり、曲げモーメントの大きい表層部の寄与が大きい。   The vibration method, which is one of the Young's modulus measurement methods, is a measurement method in which bending deformation is applied to the steel sheet while changing the frequency to determine the frequency at which resonance occurs, and this is converted into Young's modulus. The Young's modulus measured by such a method is also called the dynamic Young's modulus, and is the Young's modulus obtained at the time of bending deformation. The contribution of the surface layer portion having a large bending moment is large.

しかし、例えば、長尺の梁や柱などの建材や、自動車の構造部材であるピラーやメンバーのような長尺のフレーム部材に荷重が負荷される場合、これらに作用する応力は引張応力及び圧縮応力であり、曲げ応力ではない。また、自動車の構造部材には衝突安全性の観点から、圧縮変形を受けた際の高い衝撃吸収エネルギー能が要求される。そのため、部材としての衝撃吸収エネルギーを向上させるには、引張応力及び圧縮応力に対する剛性を確保することが必要である。このような要求に対して、部材の長手方向の、引張応力及び圧縮応力に対するヤング率を高めることが有効である。   However, for example, when a load is applied to a building material such as a long beam or column, or a long frame member such as a pillar or member that is a structural member of an automobile, the stress acting on these is tensile stress and compression. It is stress, not bending stress. In addition, from the viewpoint of collision safety, automobile structural members are required to have high impact absorption energy capability when subjected to compressive deformation. Therefore, in order to improve the impact absorption energy as a member, it is necessary to ensure rigidity with respect to tensile stress and compressive stress. For such a requirement, it is effective to increase the Young's modulus for the tensile stress and the compressive stress in the longitudinal direction of the member.

したがって、このような引張応力及び圧縮応力が作用する部材のヤング率については、振動法ではなく、静的引張法で測定されたヤング率、即ち静的ヤング率を高めることが極めて重要となる。静的ヤング率は、引張試験を行った際に得られる応力―歪曲線の弾性変形領域での傾きから求められるヤング率であり、ヤング率の高い層と低い層の厚みの比のみで決まる材料全体としてのヤング率である。   Therefore, regarding the Young's modulus of a member on which such tensile stress and compressive stress act, it is extremely important to increase the Young's modulus measured by the static tension method, not the vibration method, that is, the static Young's modulus. Static Young's modulus is the Young's modulus obtained from the slope in the elastic deformation region of the stress-strain curve obtained when performing a tensile test, and is determined only by the ratio of the thickness of the high Young's layer to the low layer. The Young's modulus as a whole.

圧延方向の静的ヤング率を高めるには、表層から板厚方向の深い部位までの集合組織を制御する必要がある。なお、表層から板厚中心部位までの全板厚での集合組織を制御することが、より好ましい。しかし、特許文献2〜5に提案されている方法では、圧延時に板厚の中央部まで剪断歪みを導入することは困難であった。また、成分や製造条件によっては、板厚中心部の集合組織には圧延方向のヤング率を低下させる方位が発達する可能性もある。そのため、振動法で測定したヤング率については、230GPa以上にまで高めることができているものの、静的引張法で測定したヤング率は、必ずしも高いものではない。即ち、静的引張法で測定される圧延方向のヤング率が220GPa以上である鋼板は存在しなかった。   In order to increase the static Young's modulus in the rolling direction, it is necessary to control the texture from the surface layer to the deep part in the thickness direction. In addition, it is more preferable to control the texture at the entire plate thickness from the surface layer to the plate thickness center portion. However, in the methods proposed in Patent Documents 2 to 5, it was difficult to introduce shear strain to the center of the plate thickness during rolling. In addition, depending on the components and manufacturing conditions, an orientation that reduces the Young's modulus in the rolling direction may develop in the texture at the center of the plate thickness. Therefore, although the Young's modulus measured by the vibration method can be increased to 230 GPa or more, the Young's modulus measured by the static tension method is not necessarily high. That is, there was no steel sheet having a Young's modulus in the rolling direction of 220 GPa or more as measured by the static tension method.

さらに、自動車用鋼板への適用を念頭にした場合、加工性が重要となる。この場合、最大引張強度は高く、かつ高い均一伸びに加え、優れた伸びフランジ成形性を有することが望ましいが、前記特許文献2〜5には、優れた伸びフランジ成形性を得るための鋼板のミクロ組織及び製造時の冷却条件については開示していない。   Furthermore, workability becomes important when considering application to automotive steel sheets. In this case, the maximum tensile strength is high and, in addition to high uniform elongation, it is desirable to have excellent stretch flange formability. However, in Patent Documents 2 to 5, the steel sheet for obtaining excellent stretch flange formability is disclosed. The microstructure and manufacturing cooling conditions are not disclosed.

特開平4−147917号公報JP-A-4-147717 特開2005−273001号公報JP 2005-273001 A 国際公開第06/011503号International Publication No. 06/011503 特開2007−46146号公報JP 2007-46146 A 特開2007−146275号公報JP 2007-146275 A

自動車用鋼板は複雑な形状に加工され、穴広げ加工が施されることがある。本発明は、自動車部材など、長尺で、長手方向の静的引張法で測定されるヤング率が220GPa以上であり、かつ加工性、特に穴広げ性に優れた高ヤング率鋼板及びその製造方法を提供するものである。   Automotive steel sheets are sometimes processed into complex shapes and subjected to hole expansion. The present invention relates to a high Young's modulus steel plate having a long Young's modulus measured by a static tensile method in the longitudinal direction, such as an automobile member, of 220 GPa or more, and excellent in workability, particularly hole expansibility, and a method for producing the same. Is to provide.

結晶方位は通常{hkl}<uvw>という表示で示され、{hkl}が板面方位、<uvw>が圧延方向を示す。したがって、圧延方向で高いヤング率を得るためには圧延方向の方位である<uvw>が出来るだけヤング率の高い方向に揃うように制御する必要がある。本発明者らは、この原理に基づき、静的引張法で測定された圧延方向のヤング率が220GPa以上である高ヤング率鋼板を得るために検討を行った。その結果、圧延方向の静的ヤング率を向上させるには、Nbを添加し、TiとNを所定量含有させてオーステナイト相(以下、γ相という。)での再結晶を抑制することが重要であり、更にBを複合添加すると効果が顕著であること、また、熱間圧延においては、圧延温度と、圧延ロールの入側及び出側での板厚と圧延ロールの直径から求められる形状比が重要であり、これらを適正な範囲に制御することによって、鋼板の表面において剪断歪みを付与された層の厚みが増し、表面から板厚方向への距離が板厚の1/6である部位(1/6板厚部という。)の付近に形成される集合組織も最適化されることを新たに見出した。   The crystal orientation is usually indicated by the indication {hkl} <uvw>, {hkl} is the plate orientation, and <uvw> is the rolling direction. Therefore, in order to obtain a high Young's modulus in the rolling direction, it is necessary to control so that <uvw>, which is the orientation in the rolling direction, is aligned in the direction with the highest Young's modulus as much as possible. Based on this principle, the inventors have studied to obtain a high Young's modulus steel sheet having a Young's modulus in the rolling direction measured by a static tension method of 220 GPa or more. As a result, in order to improve the static Young's modulus in the rolling direction, it is important to suppress recrystallization in the austenite phase (hereinafter referred to as γ phase) by adding Nb and containing a predetermined amount of Ti and N. In addition, the effect is remarkable when B is added in combination, and in hot rolling, the shape ratio obtained from the rolling temperature, the sheet thickness on the entry side and the exit side of the rolling roll, and the diameter of the rolling roll. By controlling these within an appropriate range, the thickness of the layer to which shear strain is applied is increased on the surface of the steel sheet, and the distance from the surface to the sheet thickness direction is 1/6 of the sheet thickness. It was newly found that the texture formed in the vicinity of (1/6 plate thickness) is also optimized.

それと同時に、熱間圧延後、巻取りまでの冷却条件、冷延、焼鈍後の冷却条件を制御することにより、圧延方向のヤング率を低下させることなく、主相をベイナイト、焼戻しベイナイトとするミクロ組織とする、穴広げ性に優れた高ヤング率鋼板を得ることができることを見出した。   At the same time, by controlling the cooling conditions from hot rolling to winding, cold rolling, and cooling conditions after annealing, the main phase is bainite and tempered bainite without reducing the Young's modulus in the rolling direction. It has been found that a high Young's modulus steel sheet having an excellent hole expansibility can be obtained.

また、熱間加工を受けるγ相の変形挙動に影響を及ぼす積層欠陥エネルギーと変態後の集合組織の間には相関があり、表層から1/6板厚部、及び板厚方向の中央部(1/2板厚部という。)近傍の、集合組織に影響を及ぼす。したがって、表層と板厚中央部の両方において、圧延方向のヤング率が向上する方位を発達させた集合組織を得るには、γ相の積層欠陥エネルギーに影響を及ぼすMn、Mo、W、Ni、Cu、Crの関係を最適化することが重要であるという知見も得た。   In addition, there is a correlation between the stacking fault energy that affects the deformation behavior of the γ-phase subjected to hot working and the texture after transformation, from the surface layer to the 1/6 plate thickness part and the center part in the plate thickness direction ( It is called 1/2 plate thickness part.) It affects the texture in the vicinity. Therefore, in order to obtain a texture in which the orientation in which the Young's modulus in the rolling direction is improved is developed in both the surface layer and the central portion of the plate thickness, Mn, Mo, W, Ni, which affect the stacking fault energy of the γ phase, We have also found that it is important to optimize the relationship between Cu and Cr.

本発明は、このような知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1) 質量%で、C :0.005〜0.100%、Si:2.50%以下、Mn:0.10〜3.00%、P :0.150%以下、S :0.0150%以下、Al:0.150%以下、N :0.0100%以下、Nb:0.005〜0.100% 、Ti:0.002〜0.150%を含有し、下記(式1)を満足し、残部がFe及び不可避的不純物からなり、ポリゴナルフェライト、ベイナイトの一方又は双方の面積率の合計が98%以上であるミクロ組織を有し、鋼板の表面からの板厚方向の距離が板厚の1/6である位置の、{100}<001>方位のX線ランダム強度比と{110}<001>方位のX線ランダム強度比との和が5以下であり、{110}<111>〜{110}<112>方位群のX線ランダム強度比の最大値と{211}<111>方位のX線ランダム強度比の和が5以上であることを特徴とする穴広げ性に優れた高ヤング率鋼板。
Ti−48/14×N≧0.0005 ・・・ (式1)
ここで、Ti、Nは各元素の含有量[質量%]である。
This invention is made | formed based on such knowledge, The summary is as follows.
(1) By mass%, C: 0.005 to 0.100%, Si: 2.50% or less, Mn: 0.10 to 3.00%, P: 0.150% or less, S: 0.0150 %: Al: 0.150% or less, N: 0.0100% or less, Nb: 0.005 to 0.100%, Ti: 0.002 to 0.150%, and the following (formula 1): Satisfactory, the balance consists of Fe and inevitable impurities, has a microstructure in which the total area ratio of one or both of polygonal ferrite and bainite is 98% or more, and the distance in the thickness direction from the surface of the steel sheet is The sum of the {100} <001> orientation X-ray random intensity ratio and the {110} <001> orientation X-ray random intensity ratio at a position that is 1/6 of the plate thickness is 5 or less, and {110} <111> to {110} <112> Maximum X-ray random intensity ratio of orientation group And {211} <111> high Young's modulus steel sheet excellent in hole expandability characterized in that the sum of the azimuth X-ray random intensity ratio of 5 or more.
Ti-48 / 14 × N ≧ 0.0005 (Formula 1)
Here, Ti and N are content [mass%] of each element.

(2) 下記(式2)を満足することを特徴とする(1)に記載の穴広げ性に優れた高ヤング率鋼板。
4≦3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr≦10・・・(式2)
ここで、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]である。
(2) The high Young's modulus steel sheet excellent in hole expansibility according to (1), wherein the following (Formula 2) is satisfied.
4 ≦ 3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr ≦ 10 (Formula 2)
Here, Mn, Mo, W, Ni, Cu, and Cr are the content [% by mass] of each element.

(3) 質量%で、Mo:0.01〜1.00%、Cr:0.01〜3.00%、W :0.01〜3.00%、Cu:0.01〜3.00%、Ni:0.01〜3.00%の1種又は2種以上を含有し、これらの含有量の合計が5.00%以下であることを特徴とする(1)又は(2)に記載の穴広げ性に優れた高ヤング率鋼板。
(4) 質量%で、B :0.0005〜0.0100%を含有することを特徴とする(1)〜(3)の何れかに記載の穴広げ性に優れた高ヤング率鋼板。
(5) 質量%で、Ca:0.0005〜0.1000%、Rem:0.0005〜0.1000%、V :0.001〜0.100%の1種又は2種以上を含有することを特徴とする(1)〜(4)の何れかに記載の穴広げ性に優れた高ヤング率鋼板。
(3) By mass%, Mo: 0.01 to 1.00%, Cr: 0.01 to 3.00%, W: 0.01 to 3.00%, Cu: 0.01 to 3.00% Ni: 0.01 to 3.00% of 1 type or 2 types or more, and the total of these contents is 5.00% or less, described in (1) or (2) High Young's modulus steel plate with excellent hole expandability.
(4) The high Young's modulus steel plate excellent in hole expansibility according to any one of (1) to (3), wherein B: 0.0005 to 0.0100% in mass%.
(5) Containing one or more of Ca: 0.0005 to 0.1000%, Rem: 0.0005 to 0.1000%, and V: 0.001 to 0.100% in mass%. A high Young's modulus steel sheet excellent in hole expansibility according to any one of (1) to (4).

(6) 鋼鈑の板厚方向の中央部の、{332}<113>方位のX線ランダム強度比(A)が15以下、{225}<110>方位のX線ランダム強度比(B)が5以上、かつ(A)/(B)≦1.00を満足することを特徴とする(1)〜(5)の何れかに記載の穴広げ性に優れた高ヤング率鋼板。
(7) 鋼鈑の板厚方向の中央部の、{332}<113>方位のX線ランダム強度比(A)が15以下、{001}<110>方位のX線ランダム強度比と{112}<110>方位のX線ランダム強度比との単純平均値(C)が5以上、かつ(A)/(C)≦1.10を満足することを特徴とする(1)〜(6)の何れかに記載の穴広げ性に優れた高ヤング率鋼板。
(8) 静的引張法で測定された圧延方向のヤング率が220GPa以上であることを特徴とする(1)〜(7)の何れかに記載の穴広げ性に優れた高ヤング率鋼板。
(6) X-ray random intensity ratio (A) of {332} <113> orientation at the center in the thickness direction of the steel sheet is 15 or less, X-ray random intensity ratio (B) of {225} <110> orientation 5 or more and satisfies (A) / (B) ≦ 1.00. The high Young's modulus steel plate excellent in hole expansibility according to any one of (1) to (5).
(7) The X-ray random intensity ratio (A) of {332} <113> orientation at the center in the thickness direction of the steel sheet is 15 or less, and the X-ray random intensity ratio of {001} <110> orientation and {112 } The simple average value (C) with the X-ray random intensity ratio in the <110> orientation is 5 or more and (A) / (C) ≦ 1.10 is satisfied (1) to (6) A high Young's modulus steel plate excellent in hole expansibility described in any of the above.
(8) The Young's modulus in the rolling direction measured by a static tension method is 220 GPa or more, and the high Young's modulus steel plate having excellent hole expansibility according to any one of (1) to (7).

(9) (1)〜(8)の何れかに記載の高ヤング率鋼板に、溶融亜鉛めっきが施されていることを特徴とする穴広げ性に優れた高ヤング率溶融亜鉛メッキ鋼板。
(10) (1)〜(8)の何れかに記載の高ヤング率鋼板に、合金化溶融亜鉛めっきが施されていることを特徴とする穴広げ性に優れた高ヤング率合金化溶融亜鉛メッキ鋼板。
(11) (1)〜(10)の何れかに記載の高ヤング率鋼板、高ヤング率溶融亜鉛メッキ鋼板又は高ヤング率合金化溶融亜鉛メッキ鋼板が任意の方向に巻かれていることを特徴とする穴広げ性に優れた高ヤング率鋼管。
(9) A high Young's modulus hot-dip galvanized steel sheet excellent in hole expansibility, wherein the high Young's modulus steel sheet according to any one of (1) to (8) is hot-dip galvanized.
(10) High Young's modulus alloyed hot dip zinc excellent in hole expansibility, characterized in that alloyed hot dip galvanizing is applied to the high Young's modulus steel plate according to any one of (1) to (8) Plated steel sheet.
(11) The high Young's modulus steel sheet, the high Young's modulus hot-dip galvanized steel sheet or the high Young's modulus alloyed hot-dip galvanized steel sheet according to any one of (1) to (10) is wound in any direction. High Young's modulus steel pipe with excellent hole expandability.

(12) (1)〜(5)の何れかに記載の化学成分を有する鋼片に、1100℃以下、最終パスまでの圧下率を40%以上とし、下記(式3)によって求められる形状比Xが2.3以上である圧延を2パス以上とし、最終パスの温度をAr3変態点[℃]以上900℃以下とする熱間圧延を施し、熱間圧延を終了後、5〜150℃/sの冷却速度で300℃超〜650℃まで冷却して巻き取ることを特徴とする穴広げ性に優れた高ヤング率鋼板の製造方法。
形状比X=ld/hm ・・・(式3)
ここで、ld(圧延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)
m :(hin+hout)/2
L :圧延ロールの直径
in:圧延ロール入側の板厚
out:圧延ロール出側の板厚
(12) The shape ratio obtained by the following (formula 3), with the steel slab having the chemical component according to any one of (1) to (5) being 1100 ° C. or less and a rolling reduction rate to the final pass of 40% or more. Rolling with X being 2.3 or more is set to 2 passes or more, hot rolling is performed so that the temperature of the final pass is Ar 3 transformation point [° C.] or more and 900 ° C. or less, and after the hot rolling is finished, 5 to 150 ° C. The manufacturing method of the high Young's modulus steel plate excellent in the hole expansibility characterized by cooling to above 300 degreeC-650 degreeC with the cooling rate of / s, and winding up.
Shape ratio X = l d / h m (Equation 3)
Here, l d (contact arc length of rolling roll and steel plate): √ (L × (h in −h out ) / 2)
h m : (h in + h out ) / 2
L: Diameter of the rolling roll
h in : Thickness on the entry side of the rolling roll
h out : Plate thickness on the exit side of the rolling roll

(13) 下記(式5)によって計算される有効ひずみ量ε*が0.4以上となるように前記熱間圧延を行うことを特徴とする請求項12に記載の穴広げ性に優れた高ヤング率鋼板の製造方法。

Figure 2009019265
ここで、nは仕上げ熱延の圧延スタンド数、εjはj番目のスタンドで加えられたひずみ、εnはn番目のスタンドで加えられたひずみ、tiはi〜i+1番目のスタンド間の走行時間[s]、τiは気体常数R(=1.987)とi番目のスタンドの圧延温度Ti[K]によって下記(式6)で計算できる。
Figure 2009019265
(13) The hot rolling is performed according to claim 12, wherein the hot rolling is performed so that an effective strain amount ε * calculated by the following (formula 5) is 0.4 or more. Manufacturing method of Young's modulus steel plate.
Figure 2009019265
Here, n is the number of finishing hot rolling rolling stands, ε j is the strain applied at the j-th stand, ε n is the strain applied at the n-th stand, and ti is between i to i + 1th stands. The traveling time [s] and τ i can be calculated by the following (formula 6) from the gas constant R (= 1.987) and the rolling temperature Ti [K] of the i-th stand.
Figure 2009019265

(14) 前記熱間圧延を実施する際にロール径が700mm以下の圧延ロールを少なくとも1つ以上使用することを特徴とする(12)又は(13)に記載の穴広げ性に優れた高ヤング率鋼板の製造方法。
(15) 前記熱間圧延の、少なくとも1パス以上の異周速率を1%以上とすることを特徴とする(12)〜(14)の何れかに記載の穴広げ性に優れた高ヤング率鋼板の製造方法。
(16) 巻き取り後、さらに、最高加熱温度がAc1[℃]以下の温度範囲で焼鈍することを特徴とする(12)〜(15)の何れかに記載の穴広げ性に優れた高ヤング率鋼板の製造方法。
(14) When carrying out the hot rolling, at least one rolling roll having a roll diameter of 700 mm or less is used. The high Young excellent in hole expanding property according to (12) or (13) Of steel sheet.
(15) The high Young's modulus excellent in hole expansibility according to any one of (12) to (14), wherein a different peripheral speed ratio of at least one pass or more in the hot rolling is 1% or more. A method of manufacturing a steel sheet.
(16) After winding up, the highest heating temperature is further annealed in a temperature range of Ac 1 [° C.] or less, and the high hole expansibility according to any one of (12) to (15) Manufacturing method of Young's modulus steel plate.

(17) (12)〜(16)の何れかに記載の製造方法で製造した穴広げ性に優れた高ヤング率鋼板に、溶融亜鉛メッキを施すことを特徴とする穴広げ性に優れた高ヤング率溶融亜鉛メッキ鋼板の製造方法。
(18) 前記溶融亜鉛メッキを、熱間圧延に続く連続ラインにて施すことを特徴とする(17)に記載の穴広げ性に優れた高ヤング率溶融亜鉛メッキ鋼板の製造方法。
(19) (17)又は(18)記載の溶融亜鉛メッキを施した後、450〜600℃までの温度範囲で5s以上の熱処理を行うことを特徴とする穴広げ性に優れた高ヤング率合金化溶融亜鉛メッキ鋼板の製造方法。
(20) (12)〜(19)のいずれかに記載の製造方法により得られた高ヤング率鋼板、高ヤング率溶融亜鉛メッキ鋼板又は高ヤング率合金化溶融亜鉛メッキ鋼板を任意の方向に巻いて鋼管にすることを特徴とする穴広げ性に優れた高ヤング率鋼管の製造方法。
(17) Highly excellent hole-expanding property, characterized by subjecting a high Young's modulus steel plate having excellent hole-expandability manufactured by the manufacturing method according to any one of (12) to (16) to hot-dip galvanization. A method for producing a Young's modulus hot-dip galvanized steel sheet.
(18) The method for producing a high Young's modulus hot-dip galvanized steel sheet having excellent hole expansibility according to (17), wherein the hot-dip galvanizing is performed in a continuous line following hot rolling.
(19) A high Young's modulus alloy excellent in hole expansibility, characterized by performing a heat treatment for 5 seconds or more in a temperature range from 450 to 600 ° C. after performing the hot dip galvanizing described in (17) or (18) A method for producing a hot-dip galvanized steel sheet.
(20) A high Young's modulus steel sheet, a high Young's modulus hot-dip galvanized steel sheet, or a high Young's modulus alloyed hot-dip galvanized steel sheet obtained by the production method according to any one of (12) to (19) is wound in any direction. A method for producing a high Young's modulus steel pipe excellent in hole expansibility, characterized by being made into a steel pipe.

本発明により、静的引張法で測定された圧延方向の静的ヤング率が向上し、かつ加工性、特に穴広げ性の良好な高ヤング率鋼板を得ることができる。   According to the present invention, it is possible to obtain a high Young's modulus steel sheet having an improved static Young's modulus in the rolling direction measured by a static tension method and good workability, particularly good hole expansibility.

初めに、ヤング率の向上に重要な熱間圧延中の集合組織の形成について説明する。
鋼板の板厚方向で集合組織が変化し、表層と板厚方向の中央部での集合組織が異なる場合、引張変形と曲げ変形では剛性、即ちヤング率が必ずしも一致しない。これは、引張変形の剛性が鋼板の板厚全面の集合組織に影響される特性であり、曲げ変形の剛性が鋼板の表層部の集合組織に影響される特性であることに起因する。
First, formation of a texture during hot rolling, which is important for improving Young's modulus, will be described.
When the texture changes in the plate thickness direction of the steel sheet and the texture in the central portion in the surface layer and the plate thickness direction is different, the stiffness, that is, Young's modulus, does not necessarily match between the tensile deformation and the bending deformation. This is due to the fact that the rigidity of tensile deformation is affected by the texture of the entire surface of the steel sheet, and the rigidity of bending deformation is affected by the texture of the surface layer of the steel sheet.

本発明は、表面から板厚方向への距離が板厚の1/6である部位までの集合組織を最適化し、圧延方向のヤング率を高めた鋼板である。したがって、圧延方向のヤング率に寄与する集合組織が、少なくとも、1/8板厚部よりも深い位置である1/6板厚部まで発達している。圧延方向のヤング率を高めた領域の厚みを増すことにより、曲げ変形だけでなく、引張変形及び圧縮変形に対するヤング率も高めることができる。また、表層だけでなく、1/6板厚部まで剪断歪みを導入するため、1パスの熱間圧延の前後の鋼板の板厚と圧延ロールの直径によって決まる形状比を高めることによって製造されるものである。   The present invention is a steel sheet in which the texture from the surface to the part where the distance in the sheet thickness direction is 1/6 of the sheet thickness is optimized to increase the Young's modulus in the rolling direction. Therefore, the texture that contributes to the Young's modulus in the rolling direction has developed to at least a 1/6 plate thickness portion that is deeper than the 1/8 plate thickness portion. By increasing the thickness of the region where the Young's modulus in the rolling direction is increased, not only bending deformation but also Young's modulus against tensile deformation and compression deformation can be increased. Further, in order to introduce shear strain not only to the surface layer but also to 1/6 plate thickness part, it is manufactured by increasing the shape ratio determined by the plate thickness of the steel plate before and after the hot rolling of one pass and the diameter of the rolling roll. Is.

本発明の鋼板は、少なくとも表層から1/6板厚部までの部位に、圧延方向のヤング率を高める方位を集積させ、ヤング率を低下させる方位の集積を抑制するものであり、表層だけでなく、1/6板厚部までの圧延方向の静的ヤング率が高く、引張変形での剛性が高い。また、表層から1/6板厚部までの部位に、圧延方向のヤング率を高める方位を集積させることで、ヤング率を低下させる方位の集積も抑制されている。   The steel sheet of the present invention accumulates orientations that increase the Young's modulus in the rolling direction at least from the surface layer to the 1 / 6th plate thickness portion, and suppresses the accumulation of orientations that reduce the Young's modulus. In addition, the static Young's modulus in the rolling direction up to 1/6 thickness portion is high, and the rigidity in tensile deformation is high. Moreover, the accumulation | aggregation of the direction which reduces a Young's modulus is also suppressed by accumulating the direction which raises the Young's modulus of a rolling direction in the site | part from a surface layer to 1/6 board thickness part.

本発明の鋼板は、具体的には、1/6板厚部の、{100}<001>方位のX線ランダム強度比と{110}<001>方位のX線ランダム強度比との和が5以下であり、{110}<111>〜{110}<112>方位群のX線ランダム強度比の最大値と{211}<111>方位のX線ランダム強度比の和が5以上である。本発明の鋼板は、熱間圧延において、鋼板の表層から少なくとも1/6板厚部までに剪断力を作用させることによって得られる。   Specifically, in the steel sheet of the present invention, the sum of the {100} <001> orientation X-ray random intensity ratio and the {110} <001> orientation X-ray random intensity ratio of the 1/6 thickness portion The sum of the maximum value of the X-ray random intensity ratio of the {110} <111> to {110} <112> orientation group and the X-ray random intensity ratio of the {211} <111> orientation is 5 or more. . The steel plate of the present invention is obtained by applying a shearing force from the surface layer of the steel plate to at least 1/6 thickness portion in the hot rolling.

熱間圧延の剪断力を鋼板の1/6板厚部まで作用させるためには、熱間圧延の全パス数のうち、少なくとも2パスで、次式で規定する形状比Xが2.3以上を満足する必要があることを本発明者らは見出した。形状比Xは、下記(式3)に示すように、ロールと鋼鈑の接触弧張と平均板厚の比である。この形状比Xの値が大きいほど、鋼板の板厚方向のより深い部分にまで、剪断力が作用することは、本発明者らが新たに得た知見である。   In order to apply the hot rolling shearing force to the 1/6 thickness portion of the steel sheet, the shape ratio X defined by the following formula is 2.3 or more in at least two passes out of the total number of hot rolling passes. The present inventors have found that it is necessary to satisfy the above. As shown in the following (formula 3), the shape ratio X is a ratio between the contact arc tension of the roll and the steel plate and the average plate thickness. It is a knowledge newly obtained by the present inventors that the shear force acts on a deeper portion in the plate thickness direction of the steel sheet as the value of the shape ratio X is larger.

形状比X=ld/hm ・・・(式3)
ここで、ld(圧延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)
m:(hin+hout)/2
L:圧延ロールの直径
in:圧延ロール入側の板厚
out:圧延ロール出側の板厚
Shape ratio X = l d / h m (Equation 3)
Here, l d (contact arc length of rolling roll and steel plate): √ (L × (h in −h out ) / 2)
h m : (h in + h out ) / 2
L: Diameter of the rolling roll
h in : Thickness on the entry side of the rolling roll
h out : Plate thickness on the exit side of the rolling roll

上記(式3)によって求められる形状比Xが2.3以上であるパス数が1パスでは、剪断歪みが1/6板厚部まで導入されない。そのため、剪断歪みが導入された層(剪断層という。)の厚みが不十分であり、1/6板厚部の近傍での集合組織も劣化し、静的引張法で測定されるヤング率が低下する。したがって、形状比Xが2.3以上であるパス数を2パス以上とすることが必要である。このパス数は多い方がより好ましく、全パスの形状比Xを2.3以上としても良い。剪断層の厚みを増加させるためには、形状比Xの値も大きい方が好ましく、2.5以上、より好ましくは3.0以上とする。   When the number of passes in which the shape ratio X calculated by the above (Equation 3) is 2.3 or more is one pass, the shear strain is not introduced to the 1/6 plate thickness part. Therefore, the thickness of the layer in which shear strain is introduced (referred to as a shear layer) is insufficient, the texture in the vicinity of the 1/6 plate thickness portion is deteriorated, and the Young's modulus measured by the static tension method is low. descend. Therefore, it is necessary to set the number of passes having a shape ratio X of 2.3 or more to 2 or more. A larger number of passes is more preferable, and the shape ratio X of all passes may be 2.3 or more. In order to increase the thickness of the shear layer, it is preferable that the value of the shape ratio X is also large, 2.5 or more, more preferably 3.0 or more.

また、形状比Xが2.3以上である圧延は、高温で行うと、その後の再結晶によって、ヤング率を高める集合組織が破壊されることがある。そのため、形状比Xを2.3以上とするパス数を限定する圧延は、1100℃以下で行うことが必要である。また、圧延温度が低いほど、形状比の効果が顕著であるため、形状比Xが2.3以上である圧延を最終に近い圧延スタンドで行うことが好ましい。   In addition, when rolling with a shape ratio X of 2.3 or more is performed at a high temperature, the texture that increases the Young's modulus may be destroyed by subsequent recrystallization. Therefore, rolling that limits the number of passes for which the shape ratio X is 2.3 or more needs to be performed at 1100 ° C. or less. In addition, since the effect of the shape ratio becomes more significant as the rolling temperature is lower, it is preferable to perform rolling with the shape ratio X of 2.3 or more in a rolling stand close to the end.

更に、表面から板厚中心までの全厚の集合組織を最適化するために、成分を限定して熱間圧延の加熱によって生成するオーステナイト相の積層欠陥エネルギーを最適な範囲とし、剪断変形が深く入る条件で圧延を行うことが好ましい。これにより、板厚中心部で発達するヤング率を低下させる方位を抑制することもでき、板厚全体としての静的ヤング率を向上させることができる。積層欠陥エネルギーの違いが面心立方構造を有するγ相の加工集合組織に大きな影響を及ぼすことはこれまでにも知られている。また、熱延中にγ相の加工を受けた後、冷却されてフェライト相(α相という。)に変態する際には、α相は変態前のγ相の結晶方位と一定の方位関係を有する方位にフェライト変態する。これは、バリアント選択といわれる現象である。   Furthermore, in order to optimize the texture of the entire thickness from the surface to the center of the plate thickness, the stacking fault energy of the austenite phase generated by hot rolling heating is limited to an optimum range, and the shear deformation is deep. It is preferable to perform rolling under the conditions to enter. Thereby, the azimuth | direction which reduces the Young's modulus developed in plate | board thickness center part can also be suppressed, and the static Young's modulus as the whole plate | board thickness can be improved. It has been known so far that the difference in stacking fault energy greatly affects the working texture of the γ phase having a face-centered cubic structure. In addition, after undergoing γ phase processing during hot rolling, when it is cooled and transformed into a ferrite phase (referred to as α phase), the α phase has a certain orientation relationship with the crystal orientation of the γ phase before transformation. The ferrite transforms in the orientation it has. This is a phenomenon called variant selection.

本発明者らは、熱間圧延によって導入される歪の種類による集合組織の変化が、γ相の積層欠陥エネルギーの影響を受けることを見出した。即ち、剪断歪が導入される表層と、圧縮歪が導入される中心層とでは、γ相の積層欠陥エネルギーによって集合組織が変化する。例えば、積層欠陥エネルギーが高くなると、鋼板の表層部では圧延方向のヤング率を最も高める方位である{110}<111>方位の集積度が高くなり、板厚中心部では圧延方向のヤング率を低下させる{332}<113>方位が発達する。一方、積層欠陥エネルギーが下がると、表層から1/6板厚部では{110}<111>方位の集積度が高まらず、特に1/6板厚部近傍ではヤング率を下げる方位である{100}<001>と<110><001>が発達し易くなる。これに対して、積層欠陥エネルギーが下がると、板厚中心部では圧延方向のヤング率に対して比較的有利な方位である{225}<110>方位や、{001}<011>方位と{112}<110>方位が発達する。   The present inventors have found that the change in texture due to the type of strain introduced by hot rolling is affected by the stacking fault energy of the γ phase. That is, in the surface layer into which shear strain is introduced and the central layer into which compressive strain is introduced, the texture changes depending on the stacking fault energy of the γ phase. For example, when the stacking fault energy increases, the degree of accumulation in the {110} <111> orientation, which is the orientation that maximizes the Young's modulus in the rolling direction, increases in the surface layer portion of the steel sheet, and the Young's modulus in the rolling direction increases in the center of the plate thickness. The {332} <113> orientation that develops develops. On the other hand, when the stacking fault energy decreases, the {110} <111> orientation accumulation degree does not increase in the 1/6 plate thickness portion from the surface layer, and in particular, the orientation decreases the Young's modulus in the vicinity of the 1/6 plate thickness portion. } <001> and <110> <001> are easily developed. On the other hand, when the stacking fault energy decreases, the {225} <110> orientation, the {001} <011> orientation, and the {001} <011> orientation, which are relatively advantageous to the Young's modulus in the rolling direction, 112} <110> orientation develops.

したがって、静的ヤング率を向上させるためには、板厚表層と中心部の双方のヤング率が高くなる適度な積層欠陥エネルギー範囲に制御すること、具体的には、下記(式2)を満足することが好ましい。
4≦3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr≦10
・・・(式2)
ここで、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]である。
Therefore, in order to improve the static Young's modulus, control to an appropriate stacking fault energy range in which the Young's modulus of both the plate thickness surface layer and the central portion becomes high, specifically, the following (Equation 2) is satisfied. It is preferable to do.
4 ≦ 3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr ≦ 10
... (Formula 2)
Here, Mn, Mo, W, Ni, Cu, and Cr are the content [% by mass] of each element.

上記(式2)は、γ相を有するオーステナイト系ステンレスの積層欠陥エネルギーに及ぼす各元素の影響を数値化した式を基に、本発明者らが試験を行って更に検討を加え、修正したものである。具体的には、0.03%C−0.1%Si−0.5%Mn−0.01%P−0.0012%S−0.036%Al−0.010%Nb−0.015%Ti−0.0012%B−0.0015%Nを基本の成分組成とし、Mn量、Cr、W、Cu、Ni添加量を種々変化させた場合の、圧延方向の静的ヤング率を調査した。   The above (Formula 2) is the one that the present inventors have conducted a test and corrected it based on a formula that quantifies the influence of each element on the stacking fault energy of the austenitic stainless steel having a γ phase. It is. Specifically, 0.03% C-0.1% Si-0.5% Mn-0.01% P-0.0012% S-0.036% Al-0.010% Nb-0.015 Investigation of the static Young's modulus in the rolling direction when the basic component composition is% Ti-0.0012% B-0.0015% N and the amount of Mn, Cr, W, Cu, and Ni are varied. did.

熱間圧延は、最終パスの温度をAr3変態点以上、900℃以下とし、1100℃から最終パスまでの圧下率を40%以上とし、形状比を2.3以上とする圧延を2パス以上行った。なお、Ar3変態温度は、下記(式4)よって計算した。
Ar3=901−325×C+33×Si+287×P+40×Al
−92×(Mn+Mo+Cu)−46×(Cr+Ni) ・・・(式4)
ここで、C、Si、P、Al、Mn、Mo、Cu、Cr、Niは、各元素の含有量[質量%]であり、含有量が不純物程度である場合は0とする。また、圧延後、700℃以下での巻き取りを模擬するため、650℃で2時間保持する熱処理を行った。
In hot rolling, rolling at a final pass temperature of not less than Ar 3 transformation point and not more than 900 ° C., a reduction rate from 1100 ° C. to the final pass of not less than 40%, and a shape ratio of not less than 2.3 is not less than 2 passes. went. The Ar 3 transformation temperature was calculated by the following (formula 4).
Ar 3 = 901-325 × C + 33 × Si + 287 × P + 40 × Al
−92 × (Mn + Mo + Cu) −46 × (Cr + Ni) (Formula 4)
Here, C, Si, P, Al, Mn, Mo, Cu, Cr, and Ni are the contents [% by mass] of each element, and are 0 when the contents are about impurities. Moreover, in order to simulate winding at 700 degrees C or less after rolling, the heat processing hold | maintained at 650 degreeC for 2 hours was performed.

鋼板から、圧延方向を長手方向として、JIS Z 2201の13号試験片を採取し、各鋼板の降伏強度の1/2に相当する引張応力を付与して静的ヤング率の測定を行った。測定は5回行い、応力−歪み線図の傾きに基づいて算出したヤング率のうち、最大値及び最小値を除いた3つの計測値の平均値を静的引張法によるヤング率とした。
結果を図1に示す。図1より本発明者らが見出したこの関係式の値が4以上10以下の場合には220GPaを超える高い圧延方向率静的ヤング率が得られるのに対し、4又は10超となると値が著しく低下することがわかる。
JIS Z 2201 No. 13 test piece was taken from the steel sheet with the rolling direction as the longitudinal direction, and the static Young's modulus was measured by applying a tensile stress corresponding to 1/2 of the yield strength of each steel sheet. The measurement was performed 5 times, and among the Young's modulus calculated based on the slope of the stress-strain diagram, the average value of three measured values excluding the maximum value and the minimum value was defined as the Young's modulus by the static tension method.
The results are shown in FIG. In the case where the value of this relational expression found by the present inventors from FIG. 1 is 4 or more and 10 or less, a high rolling direction rate static Young's modulus exceeding 220 GPa is obtained, whereas when it exceeds 4 or 10, the value is It turns out that it falls remarkably.

以下、本発明の鋼板のX線ランダム強度比とヤング率について説明する。
1/6板厚部における{100}<001>方位のX線ランダム強度比と{110}<001>方位のX線ランダム強度比との和:
{100}<001>方位及び{110}<001>方位は、圧延方向のヤング率を著しく低下させる方位である。振動法で鋼板のヤング率を測定する場合には、最表層の集合組織の影響が大きく、板厚方向内部の集合組織の影響は小さい。しかし、静的引張法で鋼板のヤング率を測定する場合には、表層だけでなく、板厚方向の内部の集合組織も影響を及ぼす。
Hereinafter, the X-ray random strength ratio and Young's modulus of the steel sheet of the present invention will be described.
Sum of X-ray random intensity ratio of {100} <001> orientation and X-ray random intensity ratio of {110} <001> orientation at 1/6 plate thickness portion:
The {100} <001> orientation and the {110} <001> orientation are orientations that significantly reduce the Young's modulus in the rolling direction. When the Young's modulus of a steel sheet is measured by the vibration method, the influence of the texture of the outermost layer is large, and the influence of the texture inside the thickness direction is small. However, when the Young's modulus of a steel sheet is measured by the static tension method, not only the surface layer but also the internal texture in the sheet thickness direction has an effect.

引張法で測定されたヤング率を高めるためには、少なくとも表層から1/6板厚部までのヤング率を高めることが必要である。したがって、引張法で測定された圧延方向のヤング率を高めるためには、1/6板厚部での、{100}<001>方位のX線ランダム強度比と{110}<001>方位のX線ランダム強度比との和を5以下にしなければならない。この観点では3以下であることがより好ましい。   In order to increase the Young's modulus measured by the tensile method, it is necessary to increase the Young's modulus at least from the surface layer to the 1/6 plate thickness portion. Therefore, in order to increase the Young's modulus in the rolling direction measured by the tensile method, the {100} <001> orientation X-ray random intensity ratio and the {110} <001> orientation in the 1/6 plate thickness part The sum with the X-ray random intensity ratio must be 5 or less. In this respect, it is more preferably 3 or less.

なお、{100}<001>方位及び{110}<001>方位は、鋼板の表層のみに剪断歪みが付与された際に、1/6板厚部の近傍で発達しやすい。一方、剪断歪みを1/6板厚部の近傍にまで導入させると、この部位での{100}<001>方位及び{110}<001>方位の発達が抑制され、以下に説明する{110}<111>〜{110}<112>方位群と{211}<111>方位が発達する。   Note that the {100} <001> orientation and the {110} <001> orientation are likely to develop in the vicinity of the 1/6 thick portion when shear strain is applied only to the surface layer of the steel plate. On the other hand, when shear strain is introduced to the vicinity of the 1/6 plate thickness portion, the development of {100} <001> orientation and {110} <001> orientation at this portion is suppressed, and {110} described below } <111> to {110} <112> orientation group and {211} <111> orientation develop.

1/6板厚部における{110}<111>〜{110}<112>方位群のX線ランダム強度比の最大値と{211}<111>方位のX線ランダム強度比の和:
これらは圧延方向のヤング率を高めるために有効な結晶方位であり、熱延時に導入される剪断歪みによって発達する。1/6板厚部における{110}<111>〜{110}<112>方位群のX線ランダム強度比の最大値と{211}<111>方位のX線ランダム強度比の和が5以上であることは、鋼板の表面から1/6板厚部まで、圧延方向のヤング率を高める集合組織が発達していることを意味する。これにより、引張法で測定された、圧延方向の静的ヤング率が220GPa以上となる。好ましくは10以上、さらに好ましくは12以上である。
Sum of maximum X-ray random intensity ratio of {110} <111> to {110} <112> orientation group and {211} <111> orientation X-ray random intensity ratio at 1/6 plate thickness portion:
These are crystal orientations effective for increasing the Young's modulus in the rolling direction, and develop due to shear strain introduced during hot rolling. The sum of the maximum value of the X-ray random intensity ratio of the {110} <111> to {110} <112> orientation group and the X-ray random intensity ratio of the {211} <111> orientation in the 1/6 plate thickness portion is 5 or more. This means that a texture that increases the Young's modulus in the rolling direction is developed from the surface of the steel plate to the 1/6 thick portion. Thereby, the static Young's modulus of the rolling direction measured by the tension method becomes 220 GPa or more. Preferably it is 10 or more, more preferably 12 or more.

{100}<001>方位、{110}<001>方位、{110}<111>〜{110}<112>方位群及び{211}<111>方位のX線ランダム強度比は、X線回折によって測定される{110}、{100}、{211}、{310}極点図のうち複数の極点図を基に級数展開法で計算した、3次元集合組織を表す結晶方位分布関数(rientation istribution unction、ODFという。)から求めればよい。なお、X線ランダム強度比とは、特定の方位への集積を持たない標準試料と供試材のX線強度を同条件でX線回折法等により測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値である。 X-ray diffraction intensity ratio of {100} <001> orientation, {110} <001> orientation, {110} <111> to {110} <112> orientation group and {211} <111> orientation measured by {110}, {100}, {211}, {310} was calculated by a series expansion method based on a plurality of pole figures out of the pole figures, crystal orientation distribution function representing a three-dimensional texture (O rientation D istribution F unction, may be obtained from that.) ODF. Note that the X-ray random intensity ratio means that the X-ray intensity of a standard sample that does not accumulate in a specific orientation and the test material is measured under the same conditions by the X-ray diffraction method or the like. It is a numerical value obtained by dividing the line intensity by the X-ray intensity of the standard sample.

図2に、本発明の結晶方位が表示されるφ2=45°断面のODFを示す。図2は、3次元集合組織を結晶方位分布関数によって示すBungeの表示であり、オイラー角φ2を45°とし、特定の結晶方位である(hkl)[uvw]を、結晶方位分布関数のオイラー角φ1、Φで示している。図2のΦ=90°の軸上の点で示したように、{110}<111>〜{110}<112>方位群は、厳密にはΦ=90°、φ1=35.26〜54.74°の範囲を指すものである。しかし、試験片加工や試料のセッティングに起因する測定誤差を生じることがあるため、{110}<111>〜{110}<112>方位群のX線ランダム強度比の最大値は、図中の斜線部で示した、Φ=85〜90°、φ1=35〜55°の範囲内での最大のX線ランダム強度比とする。 FIG. 2 shows an ODF of a φ 2 = 45 ° cross section where the crystal orientation of the present invention is displayed. FIG. 2 is a Bunge display showing a three-dimensional texture by a crystal orientation distribution function. Euler angle φ 2 is 45 °, and a specific crystal orientation (hkl) [uvw] is expressed as Euler of the crystal orientation distribution function. Angles φ1 and φ are shown. As shown by the point on the axis of Φ = 90 ° in FIG. 2, the {110} <111> to {110} <112> orientation groups are strictly Φ = 90 ° and φ 1 = 35.26 It refers to a range of 54.74 °. However, since a measurement error due to specimen processing or sample setting may occur, the maximum value of the X-ray random intensity ratio of {110} <111> to {110} <112> orientation groups is The maximum X-ray random intensity ratio in the range of Φ = 85 to 90 ° and φ 1 = 35 to 55 ° indicated by the hatched portion.

同様の理由から3次元集合組織のφ2=45°の断面において、図2の点で示した位置を中心として、{211}<111>方位はφ1=85〜90°、Φ=30〜40°の範囲、{100}<001>方位はφ1=40〜50°、Φ=0〜5°の範囲、{110}<001>方位はφ1=85〜90°、Φ=85〜90°の範囲での最大値をそれぞれその方位の強度比として代表させる。 For the same reason, in the cross section of φ 2 = 45 ° of the three-dimensional texture, the {211} <111> orientation is φ 1 = 85 to 90 °, φ = 30 to about the position indicated by the point in FIG. 40 ° range, {100} <001> orientation is φ 1 = 40-50 °, Φ = 0˜5 ° range, {110} <001> orientation is φ 1 = 85-90 °, Φ = 85 The maximum value in the range of 90 ° is represented as the intensity ratio in each direction.

ここで、結晶の方位は通常、板面に垂直な方位を[hkl]又は{hkl}、圧延方向に平行な方位を(uvw)又は<uvw>で表示する。{hkl}、<uvw>は等価な面の総称であり、[hkl]、(uvw)は個々の結晶面を指す。即ち、本発明においては体心立方構造(body−centered cubic、b.c.c.構造という。)を対象としているため、例えば(111)、(−111)、(1−11)、(11−1)、(−1−11)、(−11−1)、(1−1−1)、(−1−1−1)面は等価であり区別がつかない。このような場合、これらの方位を総称して{111}と称する。   Here, the orientation of the crystal is usually expressed as [hkl] or {hkl} in the direction perpendicular to the plate surface, and (uvw) or <uvw> in the direction parallel to the rolling direction. {Hkl} and <uvw> are generic terms for equivalent planes, and [hkl] and (uvw) indicate individual crystal planes. That is, in the present invention, a body-centered cubic structure (referred to as a body-centered cubic, bcc structure) is targeted, and for example, (111), (−111), (1-11), (11 -1), (-1-11), (-11-1), (1-1-1), and (-1-1-1) planes are equivalent and indistinguishable. In such a case, these orientations are collectively referred to as {111}.

なお、ODFは、対称性の低い結晶構造の方位表示にも用いられるため、一般的にはφ1=0〜360°、Φ=0〜180°、φ2=0〜360°で表現され、個々の方位が[hkl](uvw)で表示される。しかし、本発明では、対称性の高いb.c.c.構造を対象としているため、Φとφ2については0〜90°の範囲で表現される。また、φ1は計算を行う際に変形による対称性を考慮するか否かによって、その範囲が変化するが、本発明においては、対称性を考慮しφ1=0〜90°で表記する、即ちφ1=0〜360°での同一方位の平均値を0〜90°のODF上に表記する方式を選択する。この場合は、[hkl](uvw)と{hkl}<uvw>は同義である。したがって、例えば、図1に示した、φ2=45°断面におけるODFの(110)[1−11]のX線ランダム強度比は{110}<111>方位のX線ランダム強度比である。 The ODF is also used to display the orientation of a crystal structure with low symmetry, and is generally expressed as φ 1 = 0 to 360 °, Φ = 0 to 180 °, φ 2 = 0 to 360 °, Individual orientations are displayed in [hkl] (uvw). However, in the present invention, b. c. c. Since the structure is targeted, Φ and φ 2 are expressed in the range of 0 to 90 °. Further, the range of φ 1 changes depending on whether or not symmetry due to deformation is taken into account when performing calculation, but in the present invention, φ 1 = 0 to 90 ° in consideration of symmetry. That is, a method of selecting an average value in the same direction at φ 1 = 0 to 360 ° on an ODF of 0 to 90 ° is selected. In this case, [hkl] (uvw) and {hkl} <uvw> are synonymous. Therefore, for example, the X-ray random intensity ratio of (110) [1-11] of ODF in the φ 2 = 45 ° cross section shown in FIG. 1 is the X-ray random intensity ratio of {110} <111> orientation.

X線回折用試料の作製は次のようにして行う。鋼板を機械研磨や化学研磨などによって板厚方向に所定の位置まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によって歪みを除去すると同時に、1/6板厚部が測定面となるように調整する。なお、測定面を正確に1/6板厚部とすることは困難であるので、目標とする位置を中心として板厚に対して3%の範囲内が測定面となるように試料を作製すればよい。また、X線回折による測定が困難な場合には、EBSP(lectron ack cattering attern)法やECP(lectron hanneling attern)法により統計的に十分な数の測定を行っても良い。 The sample for X-ray diffraction is manufactured as follows. The steel plate is polished to a specified position in the plate thickness direction by mechanical polishing or chemical polishing, and finished to a mirror surface by buffing, and then the distortion is removed by electrolytic polishing or chemical polishing. Adjust so that Since it is difficult to accurately set the measurement surface to 1/6 plate thickness portion, the sample should be prepared so that the measurement surface is within a range of 3% of the plate thickness with the target position as the center. That's fine. Further, when it is difficult to measure due to X-ray diffraction, even if the statistical measure sufficient number of the EBSP (E lectron B ack S cattering P attern) method or ECP (E lectron C hanneling P attern ) Method good.

板厚方向の、より深い位置まで、{100}<001>方位及び{110}<001>方位の発達を抑制し、{110}<111>〜{110}<112>方位群及び{211}<111>方位を発達させると更にヤング率が向上する。そのため、1/6板厚部よりも深い位置まで、好ましくは1/4板厚部、更に望ましくは1/3板厚部まで表層と同様な集合組織とすることにより、圧延方向の静的ヤング率は著しく向上する。しかし、本発明のように、表層から、通常より深い位置まで剪断歪を導入しても、板厚中心部に剪断歪を導入することは不可能である。そのため、1/2板厚部に、表層と同じ集合組織を発達させることはできず、板厚中心層には表層とは異なる集合組織が発達する。したがって、さらに、静的ヤング率を向上させるためには、表層から1/6板厚部までの集合組織に加えて、1/2板厚部の集合組織も圧延方向のヤング率に対して有利な方位に改善することが好ましい。   {100} <001> orientation and {110} <001> orientation development is suppressed to a deeper position in the plate thickness direction, and {110} <111> to {110} <112> orientation group and {211} If the <111> orientation is developed, the Young's modulus is further improved. Therefore, by forming a texture similar to that of the surface layer up to a position deeper than the 板 plate thickness portion, preferably ¼ plate thickness portion, more preferably 1 / plate thickness portion, The rate is significantly improved. However, as in the present invention, even if shear strain is introduced from the surface layer to a position deeper than usual, it is impossible to introduce shear strain into the center portion of the plate thickness. For this reason, the same texture as the surface layer cannot be developed in the 1/2 plate thickness portion, and a texture different from the surface layer develops in the plate thickness center layer. Therefore, in order to further improve the static Young's modulus, in addition to the texture from the surface layer to the 1/6 sheet thickness part, the texture of the 1/2 sheet thickness part is also advantageous for the Young's modulus in the rolling direction. It is preferable to improve the orientation.

板厚中心部における{332}<113>方位のX線ランダム強度比(A)及び{225}<110>方位のX線ランダム強度比(B)並びに(A)/(B):
{332}<113>方位は、板厚中心部に発達する代表的な結晶方位であり、圧延方向ヤング率を下げる方位であるのに対し、{225}<110>方位は圧延方向のヤング率に対して比較的有利な方位である。したがって、板厚中心部の圧延方向の静的ヤング率を向上させるためには、板厚中心部での{332}<113>方位のX線ランダム強度比(A)が15以下、かつ{225}<110>方位のX線ランダム強度比(B)が5以上を満足することが好ましい。加えて、圧延方向ヤング率を低下させる方位(A)が、圧延方向のヤング率を向上させる方位(B)と同等以下にすること、具体的には、(A)/(B)を1.00以下にすることが好ましい。この観点からは(A)/(B)を0.75以下にすることがより好ましく、更に好ましくは0.60以下である。上記の条件を満足することで動的ヤング率と静的ヤング率の差を10GPa以内にすることもできる。
{332} <113> orientation X-ray random intensity ratio (A) and {225} <110> orientation X-ray random intensity ratio (B) and (A) / (B) at the center of the plate thickness:
The {332} <113> orientation is a typical crystal orientation that develops in the center of the plate thickness, and is an orientation that lowers the Young's modulus in the rolling direction, whereas the {225} <110> orientation is the Young's modulus in the rolling direction. Is a relatively advantageous orientation. Therefore, in order to improve the static Young's modulus in the rolling direction at the thickness center portion, the X-ray random intensity ratio (A) of {332} <113> orientation at the thickness center portion is 15 or less, and {225 } It is preferable that the X-ray random intensity ratio (B) in the <110> orientation satisfies 5 or more. In addition, the orientation (A) for reducing the Young's modulus in the rolling direction should be equal to or less than the orientation (B) for improving the Young's modulus in the rolling direction, specifically, (A) / (B) is set to 1. It is preferable to make it 00 or less. From this viewpoint, (A) / (B) is more preferably 0.75 or less, and further preferably 0.60 or less. By satisfying the above conditions, the difference between the dynamic Young's modulus and the static Young's modulus can be made within 10 GPa.

板厚中心部における{001}<011>方位と{112}<110>方位のX線ランダム強度比の単純平均値(C)並びに(A)/(C):
圧延方向の静的ヤング率を220GPa以上にするためには、板厚中心部で発達する圧延集合組織も制御し、この部分の圧延方向のヤング率として215GPaを超える値にすることが望ましい。{001}<011>方位と{112}<110>方位は、αファイバーと呼ばれる圧延方向に<110>方向が揃った代表的な方位である。この方位は、圧延方向のヤング率に対して比較的有利な方位であり、板厚中心部の圧延方向の静的ヤング率を向上させるためには、板厚中心部での{001}<011>方位と{112}<110>方位のX線ランダム強度比の平均値(C)が5以上を満足することが好ましい。加えて、圧延方向ヤング率を低下させる方位(A)を、圧延方向のヤング率を向上させる方位(C)と同等以下にすること、具体的には、(A)/(C)を1.10以下にすることが好ましい。
Simple average value (C) and (A) / (C) of the X-ray random intensity ratio of {001} <011> orientation and {112} <110> orientation at the center of the plate thickness:
In order to set the static Young's modulus in the rolling direction to 220 GPa or more, it is desirable to control the rolling texture developed at the center portion of the plate thickness, and to set the Young's modulus in this rolling direction to a value exceeding 215 GPa. The {001} <011> orientation and the {112} <110> orientation are representative orientations in which the <110> direction is aligned with the rolling direction called α fiber. This orientation is a relatively advantageous orientation with respect to the Young's modulus in the rolling direction. In order to improve the static Young's modulus in the rolling direction at the center of the plate thickness, {001} <011 at the center of the plate thickness. It is preferable that the average value (C) of the X-ray random intensity ratio between the> orientation and the {112} <110> orientation satisfies 5 or more. In addition, the orientation (A) for reducing the Young's modulus in the rolling direction is made equal to or less than the orientation (C) for improving the Young's modulus in the rolling direction, specifically, (A) / (C) is set to 1. It is preferable to make it 10 or less.

1/2板厚部におけるX線回折用試料も、1/6板厚部の試料と同様に、研磨して歪みを除去し、1/2板厚部の3%の範囲内が測定面となるように調整して作製すれば良い。なお、板厚中心部で偏析等の異常が認められる場合には板厚の7/16〜9/16の範囲内で、偏析部分を避けて試料を作製すれば良い。   The sample for X-ray diffraction in the 1/2 plate thickness part is also polished to remove the distortion in the same manner as the sample for the 1/6 plate thickness part, and the measurement surface is within 3% of the 1/2 plate thickness part. What is necessary is just to adjust and produce so that it may become. If an abnormality such as segregation is observed at the center of the plate thickness, the sample may be prepared within the range of 7/16 to 9/16 of the plate thickness while avoiding the segregated portion.

しかし、1/6板厚部と同様、試験片加工や試料のセッティング等に起因する測定誤差を生じることがある。そのため、図2に示した3次元集合組織のφ2=45°の断面において、{001}<110>方位と{225}<110>方位は、それぞれ、φ1=0〜5°、Φ=0〜5°の範囲と、φ1=0〜5°、Φ=25〜35°の範囲、{332}<113>方位はφ1=85〜90°、Φ=60〜70°の範囲での最大値をそれぞれその方位の強度比として代表させることとする。また、{112}<110>方位は、φ1=0〜5°、Φ=30〜40°の範囲とする。そのため、例えば、φ1=0〜5°において、Φ=30〜35°の範囲での最大値が、Φ=25〜30°及びΦ=35〜40°よりも大きくなる場合は、{225}<110>方位のX線ランダム強度比と{112}<110>方位のX線ランダム強度比とを、同じ数値として評価する。 However, as with the 1/6 plate thickness portion, measurement errors may occur due to test piece processing, sample setting, and the like. Therefore, in the cross section of φ 2 = 45 ° of the three-dimensional texture shown in FIG. 2, the {001} <110> orientation and the {225} <110> orientation are φ 1 = 0 to 5 ° and Φ = 0-5 ° range, φ 1 = 0-5 °, Φ = 25-35 ° range, {332} <113> orientation is φ 1 = 85-90 °, Φ = 60-70 ° The maximum value of each will be represented as the intensity ratio of that direction. The {112} <110> orientation is in the range of φ1 = 0 to 5 ° and Φ = 30 to 40 °. Therefore, for example, when φ1 = 0 to 5 ° and the maximum value in the range of Φ = 30 to 35 ° is larger than Φ = 25 to 30 ° and Φ = 35 to 40 °, {225} <110> azimuth X-ray random intensity ratio and {112} <110> azimuth X-ray random intensity ratio are evaluated as the same numerical value.

静的引張法によるヤング率の測定は、JIS Z 2201に準拠した引張試験片を用いて、鋼板の降伏強度の1/2に相当する引張応力を付与して行う。即ち、降伏強度の1/2に相当する引張応力を加えて、得られた応力−歪み線図の傾きに基づいて、ヤング率を算出する。測定のバラツキを排除するため、同じ試験片を用いて5回の計測を実施し、得られた結果のうち最大値及び最小値を除いた3つの計測値の平均値として算出した値をヤング率とする。   The Young's modulus is measured by the static tension method by applying a tensile stress corresponding to ½ of the yield strength of the steel sheet using a tensile test piece according to JIS Z 2201. That is, the Young's modulus is calculated based on the slope of the obtained stress-strain diagram by applying a tensile stress corresponding to ½ of the yield strength. In order to eliminate variation in measurement, the same test piece was used for five measurements, and the value calculated as the average of the three measured values excluding the maximum and minimum values was obtained. And

次に、穴広げ性を優れたものとするための鋼板のミクロ組織について説明する。
本発明の鋼板のミクロ組織において、ポリゴナルフェライトとベイナイトの一方又は双方の面積率の合計は98%以上である。これにより、優れた穴広げ性を発現する。ポリゴナルフェライトとベイナイトは混在していても構わない。ここで定義するベイナイトとは、形態はベイナイトと類似しているがセメンタイトを含まないか殆ど含まない針状のフェライト組織(アシキュラーフェライト、又はベイニティックフェライトと呼ばれる場合もある)も含める。これに対して、比較的多角形に近い形態をしている粒によって構成されている組織をポリゴナルフェライト組織と呼ぶ(日本鉄鋼協会基礎研究会ベイナイト調査研究部会編、「鋼のベイナイト写真集1」、日本鉄鋼協会、1992年6月出版、参照)。
Next, the microstructure of the steel sheet for making the hole expandability excellent will be described.
In the microstructure of the steel sheet of the present invention, the total area ratio of one or both of polygonal ferrite and bainite is 98% or more. Thereby, the outstanding hole expansibility is expressed. Polygonal ferrite and bainite may be mixed. The bainite as defined herein includes a needle-like ferrite structure (which may be called acicular ferrite or bainitic ferrite) that is similar in form to bainite but contains little or no cementite. On the other hand, a structure composed of grains having a shape close to a polygon is called a polygonal ferrite structure (edited by the Japan Iron and Steel Institute Basic Research Group, Bainite Research Group, “Steel Bainite Photobook 1 ", Japan Steel Association, published in June 1992).

ポリゴナルフェライトとベイナイトの一方又は双方の残部は、パーライト、マルテンサイト、セメンタイトの何れか1以上であり、全てを含むこともある。穴広げ性の低下は、硬質のパーライト、マルテンサイト、セメンタイトと、これらよりも軟質のポリゴナルフェライトとベイナイトとの界面でボイドが発生し易いことに起因する。したがって、ポリゴナルフェライトとベイナイトの一方又は双方の体積率の合計を98%以上とした。また、硬質相が少ないほど、穴広げ性が向上するため、ポリゴナルフェライトとベイナイトの一方又は双方の体積率の合計を、99.8%以上にすることが更に好ましい。   The balance of one or both of polygonal ferrite and bainite is one or more of pearlite, martensite, and cementite, and may include all of them. The decrease in hole expansibility is caused by the fact that voids are likely to occur at the interface between hard pearlite, martensite, and cementite, and softer polygonal ferrite and bainite. Therefore, the total volume ratio of one or both of polygonal ferrite and bainite is set to 98% or more. Moreover, since the hole expansion property is improved as the hard phase is smaller, it is more preferable that the total volume ratio of one or both of polygonal ferrite and bainite is 99.8% or more.

また、ポリゴナルフェライトとベイナイトの一方又は双方の面積率の合計が98%以上であっても、残部のうち、特に、セメンタイトの面積率が高くなると、他の硬質組織よりもポリゴナルフェライトとベイナイトとの界面でボイドが発生し易くなる。したがって、セメンタイトの面積率は0%であることが好ましい。   Further, even if the total area ratio of one or both of polygonal ferrite and bainite is 98% or more, if the area ratio of cementite is high among the remainder, polygonal ferrite and bainite than other hard structures. Voids are likely to occur at the interface. Therefore, the area ratio of cementite is preferably 0%.

このような組織を得るには、熱延後の冷却中に変態組織制御を行うことが必要である。熱延後の巻取り温度は極めて重要であり、300℃超〜650℃とすることが必要である。巻取り温度の上限を650℃とするのは、650℃超で巻取ると、ベイナイト組織が生成せずにパーライト組織が生成し、穴広げ性を劣化させてしまうためである。また、下限値を300℃超としたのは、300℃以下ではマルテンサイトが生成してしまい穴広げ性を劣化させるためである。マルテンサイトの生成を抑制するには、下限を350℃以上にすることが好ましい。   In order to obtain such a structure, it is necessary to perform transformation structure control during cooling after hot rolling. The coiling temperature after hot rolling is extremely important, and it is necessary to set it to more than 300 ° C. to 650 ° C. The upper limit of the coiling temperature is set to 650 ° C., because if the coil is wound at a temperature exceeding 650 ° C., a pearlite structure is generated without generating a bainite structure, and the hole expandability is deteriorated. Moreover, the reason why the lower limit value is set to be higher than 300 ° C. is that martensite is generated at 300 ° C. or lower and the hole expanding property is deteriorated. In order to suppress the formation of martensite, the lower limit is preferably set to 350 ° C. or higher.

また、熱延後の冷却速度は、パーライトの生成を抑制するために、5℃/s以上にすることが必要である。更に、巻取りまでの冷却時間を短縮し、生産性を向上させるためには、熱延仕上げ後の冷却速度を10℃/s以上にすることが好ましい。冷却速度の上限は、特に制限に意味は無いが製造上150℃/s以上にすることは困難である。なお、冷却速度を5〜150℃/sとする制御冷却は、水冷、ミスト冷却によって行うことができる。   Further, the cooling rate after hot rolling needs to be 5 ° C./s or more in order to suppress the formation of pearlite. Furthermore, in order to shorten the cooling time until winding and improve productivity, it is preferable to set the cooling rate after hot rolling finish to 10 ° C./s or more. The upper limit of the cooling rate is not particularly limited, but it is difficult to make it 150 ° C./s or more in production. Note that controlled cooling with a cooling rate of 5 to 150 ° C./s can be performed by water cooling or mist cooling.

更に、本発明において鋼組成を限定する理由について説明する。なお、元素の含有量の%は質量%を意味する。   Further, the reason for limiting the steel composition in the present invention will be described. In addition,% of element content means the mass%.

Nbは本発明において重要な元素であり、熱間圧延において、γ相を加工した際の再結晶を著しく抑制し、γ相での加工集合組織の形成を著しく促す。この観点からNbは0.005%以上添加することが必要である。また、0.010%以上の添加が好ましく、0.015%以上添加することが更に好ましい。しかしながらNbの添加量が0.100%を超えると圧延方向のヤング率が低下するため、上限は0.100%とする。Nbの添加によって圧延方向のヤング率が低下する理由は定かではないが、Nbがγ相の積層欠陥エネルギーに影響を及ぼしているものと推測される。この観点からは、Nbの添加量を0.080%以下とすることが好ましく、0.060%以下とすることが更に好ましい。   Nb is an important element in the present invention, and remarkably suppresses recrystallization when the γ phase is processed in hot rolling, and remarkably promotes the formation of a processed texture in the γ phase. From this viewpoint, Nb needs to be added in an amount of 0.005% or more. Moreover, addition of 0.010% or more is preferable, and addition of 0.015% or more is more preferable. However, if the amount of Nb added exceeds 0.100%, the Young's modulus in the rolling direction decreases, so the upper limit is made 0.100%. Although the reason why the Young's modulus in the rolling direction decreases due to the addition of Nb is not clear, it is presumed that Nb affects the stacking fault energy of the γ phase. From this viewpoint, the amount of Nb added is preferably 0.080% or less, and more preferably 0.060% or less.

Tiも本発明において重要な元素である。Tiはγ相高温域で窒化物を形成し、熱間圧延において、γ相を加工した際の再結晶を抑制する。更に、Bを添加した場合にはTiの窒化物の形成によって、BNの析出が抑制されるため、固溶Bを確保することができる。これにより、ヤング率の向上に好ましい集合組織の発達が促進される。この効果を得るためには、Tiを0.002%以上添加することが必要である。一方、Tiを0.150%を超えて添加すると加工性が著しく劣化することからこの値を上限とする。この観点からは0.100%以下にすることが好ましい。更に好ましくは0.060%以下である。   Ti is also an important element in the present invention. Ti forms nitrides in the high temperature region of the γ phase and suppresses recrystallization when the γ phase is processed in hot rolling. Further, when B is added, the formation of Ti nitride suppresses the precipitation of BN, so that solid solution B can be secured. This promotes the development of a texture preferable for improving the Young's modulus. In order to obtain this effect, 0.002% or more of Ti needs to be added. On the other hand, if Ti is added in an amount exceeding 0.150%, the workability deteriorates remarkably, so this value is made the upper limit. From this viewpoint, the content is preferably 0.100% or less. More preferably, it is 0.060% or less.

Nは不純物であり、下限は特に設定しないが0.0005%未満とするにはコストが高くなり、それほどの効果が得られないため、0.0005%以上とすることが好ましい。また、Nは、Tiと窒化物を形成し、γ相の再結晶を抑制するため、積極的に添加しても良いが、Bの再結晶抑制効果を低減させることから0.0100%以下に抑える。この観点から好ましくは0.0050%以下、更に好ましくは0.0020%以下とする。   N is an impurity, and the lower limit is not particularly set. However, if it is less than 0.0005%, the cost becomes high, and so much effect cannot be obtained, so 0.0005% or more is preferable. Further, N may form Ti and nitride to suppress recrystallization of the γ phase, so it may be positively added. However, N reduces the recrystallization suppressing effect of B to 0.0100% or less. suppress. From this viewpoint, it is preferably 0.0050% or less, and more preferably 0.0020% or less.

更に、TiとNは、下記(式1)を満足することが必要である。
Ti−48/14×N≧0.0005 ・・・ (式1)
ここで、Ti,Nは、これらの元素の含有量〔質量%〕である。
これにより、TiN析出によるγ相の再結晶抑制効果が発揮され、かつB添加の場合にはBNの形成を抑制することができ、ヤング率の向上に好ましい集合組織の発達が促進される。
Furthermore, Ti and N must satisfy the following (formula 1).
Ti-48 / 14 × N ≧ 0.0005 (Formula 1)
Here, Ti and N are content [mass%] of these elements.
As a result, the effect of suppressing the recrystallization of the γ phase due to TiN precipitation is exhibited, and in the case of adding B, the formation of BN can be suppressed, and the development of a texture preferable for improving the Young's modulus is promoted.

Cは、強度を増加させる元素であり、0.005%以上の添加が必要である。また、ヤング率の観点からは、C量の下限を0.010%以上とすることが好ましい。これは、C量が0.010%未満に低下するとAr3変態温度が上昇し、低温での熱延が困難となり、ヤング率が低下することがあるためである。更に、溶接部の疲労特性の劣化を抑制するためには、0.020%以上とすることが好ましい。 C is an element that increases the strength, and needs to be added in an amount of 0.005% or more. Further, from the viewpoint of Young's modulus, the lower limit of the C content is preferably set to 0.010% or more. This is because when the C content is reduced to less than 0.010%, the Ar 3 transformation temperature rises, it becomes difficult to perform hot rolling at a low temperature, and the Young's modulus may be reduced. Furthermore, in order to suppress the deterioration of the fatigue characteristics of the welded portion, it is preferably 0.020% or more.

一方、C量が0.100%を超えると溶接性を損なうことがあったり、硬質組織の増加により加工性が極端に劣化することあったりするため、上限を0.100%とする。また、C量が0.080%を超えると成形性が劣化するため、C量を0.080%以下とすることが好ましい。また、C量が0.060%を超えると圧延方向のヤング率が低下することがあるため、0.060%以下とすることが更に好ましい。   On the other hand, if the C content exceeds 0.100%, the weldability may be impaired, or the workability may be extremely deteriorated due to an increase in the hard structure, so the upper limit is made 0.100%. Further, if the C content exceeds 0.080%, the moldability deteriorates, so the C content is preferably 0.080% or less. Further, if the C content exceeds 0.060%, the Young's modulus in the rolling direction may be decreased, so that it is more preferably 0.060% or less.

Siは脱酸元素であり、下限は規定しないが、0.001%未満とするには製造コストが高くなる。また、Siは、固溶強化により強度を増加させる元素である。そのため、狙いとする強度レベルに応じて積極的に添加しても良いが、添加量が2.50%超となるとプレス成形性が劣化するため、2.50%を上限とする。また、Si量が多いと化成処理性が低下するので、1.20%以下とすることが好ましい。更に、溶融亜鉛めっきを施す場合には、めっき密着性の低下、合金化反応の遅延による生産性の低下などの問題が生ずることがあるため、Si量を1.00%以下とすることが好ましい。ヤング率の観点からはSi量を0.60%以下とすることがより好ましく、更に好ましくは0.30%以下である。   Si is a deoxidizing element, and the lower limit is not specified, but if it is less than 0.001%, the production cost becomes high. Si is an element that increases the strength by solid solution strengthening. Therefore, it may be positively added according to the target strength level, but if the added amount exceeds 2.50%, the press formability deteriorates, so 2.50% is made the upper limit. Moreover, since chemical conversion processability will fall when there is much Si amount, it is preferable to set it as 1.20% or less. Furthermore, when hot dip galvanizing is performed, problems such as a decrease in plating adhesion and a decrease in productivity due to a delay in the alloying reaction may occur. Therefore, the Si content is preferably 1.00% or less. . From the viewpoint of Young's modulus, the Si content is more preferably 0.60% or less, and still more preferably 0.30% or less.

Mnは、本発明において重要な元素である。Mnは、熱間圧延時に高温に加熱された際、γ相からフェライト相に変態する温度であるAr3変態点を低下させる元素であり、Mnの添加によって、γ相が低温まで安定になり、仕上圧延の温度を低下させることができる。この効果を得るには、Mnを0.10%以上添加することが必要である。また、Mnは、後述するように、γ相での積層欠陥エネルギーとの相関があり、γ相での加工集合組織形成及び変態時のバリアント選択に影響を与え、変態後に圧延方向のヤング率を高める結晶方位を発達させ、逆にヤング率を低くする方位の形成は抑制する効果がある。この観点からMnを1.00%以上添加することが好ましい。更に好ましくは1.5%以上添加する。一方、Mnの添加量が3.00%を超えても、著しいヤング率向上効果が得られないだけでなく、強度が高くなりすぎて延性が低下するため、上限を3.00%とする。また、Mn量が2.00%を超えると、亜鉛めっきの密着性が阻害されることがあるので2.00%以下とすることが好ましい。 Mn is an important element in the present invention. Mn is an element that lowers the Ar 3 transformation point, which is a temperature at which the γ phase is transformed into the ferrite phase when heated to a high temperature during hot rolling, and by adding Mn, the γ phase becomes stable to a low temperature, The temperature of finish rolling can be lowered. In order to obtain this effect, it is necessary to add 0.10% or more of Mn. As will be described later, Mn has a correlation with the stacking fault energy in the γ phase, affects the formation of the work texture in the γ phase and the variant selection at the time of transformation, and the Young's modulus in the rolling direction after the transformation. There is an effect of suppressing the formation of an orientation that develops a higher crystal orientation and conversely lowers the Young's modulus. From this viewpoint, it is preferable to add 1.00% or more of Mn. More preferably, 1.5% or more is added. On the other hand, even if the amount of Mn added exceeds 3.00%, not only a significant Young's modulus improvement effect is not obtained, but also the strength becomes too high and the ductility decreases, so the upper limit is made 3.00%. Moreover, since the adhesiveness of galvanization may be inhibited when the amount of Mn exceeds 2.00%, it is preferable to set it as 2.00% or less.

Pは不純物であるが、強度を増加する必要がある場合には積極的に添加しても良い。また、Pは熱延組織を微細にし、加工性を向上する効果も有する。ただし、添加量が0.150%を超えると、スポット溶接後の疲労強度が劣化し、降伏強度が増加してプレス時に面形状不良を引き起こす。さらに、連続溶融亜鉛めっき時に合金化反応が極めて遅くなり、生産性が低下する。また、2次加工性も劣化する。したがって、その上限を0.150%とする。   P is an impurity, but may be positively added when the strength needs to be increased. P also has the effect of making the hot-rolled structure fine and improving workability. However, if the addition amount exceeds 0.150%, the fatigue strength after spot welding deteriorates, the yield strength increases, and a surface shape defect is caused during pressing. Furthermore, the alloying reaction becomes extremely slow during continuous hot dip galvanizing, and productivity is lowered. Also, the secondary workability is deteriorated. Therefore, the upper limit is made 0.150%.

Sは、不純物であり、0.0150%超では熱間割れの原因となったり、加工性を劣化させるので、0.0150%を上限とする。   S is an impurity, and if it exceeds 0.0150%, it causes hot cracking or deteriorates workability, so 0.0150% is made the upper limit.

Alは脱酸元素であり、下限は特に限定しないが、脱酸の観点からは0.010%以上とすることが好ましい。一方、Alは変態点を著しく高める元素であり、0.150%超を添加すると、低温でのγ域圧延が困難となるので、上限を0.150%とする。なお、γ域圧延とは、金属組織がオーステナイト単相である温度で行う熱間圧延である。   Al is a deoxidizing element, and the lower limit is not particularly limited, but is preferably 0.010% or more from the viewpoint of deoxidation. On the other hand, Al is an element that remarkably raises the transformation point. If over 0.150% is added, γ-region rolling at low temperatures becomes difficult, so the upper limit is made 0.150%. In addition, γ-region rolling is hot rolling performed at a temperature at which the metal structure is an austenite single phase.

更に、Mo、Cr、W、Cu、Ni、B、Ca、Rem、Vを選択的に添加しても良い。なお、以下に説明する好ましい範囲よりも少量の含有は、特に悪影響を及ぼすことはないので、不純物として許容できる。   Furthermore, Mo, Cr, W, Cu, Ni, B, Ca, Rem, and V may be selectively added. In addition, inclusion in a smaller amount than the preferable range described below does not have an adverse effect, and is acceptable as an impurity.

板厚表層と中心部の双方の静的ヤング率を高めるためには、下記(式2)を満足するのが好ましい。
4≦3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr≦10
・・・(式2)
ここで、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]である。なお、Mo、W、Ni、Cu、Crの添加量が、好ましい下限値未満である場合は、0として上記(式2)の関係式の計算を行う。上記(式2)を満足すると、鋼板の表層の剪断層や板厚の中心部近傍で圧延方向のヤング率を高める方位が集積し、圧延方向のヤング率を低下させる方位の集積が抑制される。
In order to increase the static Young's modulus of both the plate thickness surface layer and the central portion, it is preferable to satisfy the following (Formula 2).
4 ≦ 3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr ≦ 10
... (Formula 2)
Here, Mn, Mo, W, Ni, Cu, and Cr are the content [% by mass] of each element. In addition, when the addition amount of Mo, W, Ni, Cu, and Cr is less than a preferable lower limit value, the relational expression of the above (Formula 2) is calculated as 0. When the above (Formula 2) is satisfied, orientations that increase the Young's modulus in the rolling direction are accumulated near the shear layer of the surface layer of the steel sheet and the center of the plate thickness, and accumulation of orientations that reduce the Young's modulus in the rolling direction is suppressed. .

また、上記(式2)の関係式の数値とともに、圧延方向のヤング率が高くなることから、好ましくは4.5以上更に好ましくは5.5以上になるように、Mn及び、必要に応じてMo、W、Ni、Cu、Crの1種又は2種を添加する。ただし、(式2)を満足せず、関係式の値が10を超えると機械的性質が劣化すると共に、板厚中心部の集合組織が劣化し、圧延方向の静的ヤング率が低下することがあるため、関係式の値を10以下にすることが好ましい。この観点からは8以下にすることがより好ましい。   In addition, since the Young's modulus in the rolling direction is increased together with the numerical value of the relational expression (Formula 2), Mn and, if necessary, preferably 4.5 or more, more preferably 5.5 or more. One or two of Mo, W, Ni, Cu and Cr are added. However, (Formula 2) is not satisfied, and if the value of the relational expression exceeds 10, the mechanical properties deteriorate, the texture at the center of the plate thickness deteriorates, and the static Young's modulus in the rolling direction decreases. Therefore, the value of the relational expression is preferably 10 or less. From this viewpoint, it is more preferably 8 or less.

Mo、Cr、W、Cu、Niは、熱間圧延時のγ相の積層欠陥エネルギーに影響を及ぼす元素であり、1種又は2種以上を、それぞれ、0.01%以上添加することが好ましい。なお、Mo、Cr、W、Cu、Niの1種又は2種以上とMnとを複合添加すると、加工集合組織形成に影響を与え、表層から1/6板厚部において、圧延方向のヤング率を高める結晶方位である{110}<111>、{211}<111>を発達させ、ヤング率を低くする方位である{100}<001>や{110}<001>の形成を抑制する効果を発現する。   Mo, Cr, W, Cu, and Ni are elements that affect the stacking fault energy of the γ phase during hot rolling, and it is preferable to add one or two or more of each 0.01% or more. . In addition, when one or more of Mo, Cr, W, Cu, and Ni and Mn are added in combination, the formation of the processed texture is affected, and the Young's modulus in the rolling direction from the surface layer to the 1/6 thickness portion. Is the effect of suppressing the formation of {100} <001> and {110} <001> which are orientations that lower the Young's modulus by developing {110} <111> and {211} <111> Is expressed.

また、Mo、Cr、W、Cu、Niの1種又は2種以上を、上記(式2)を満足するように、Mnと複合添加することが好ましい。これは、板厚中心部において、圧延方向のヤング率を低下させる{332}<113>方位の集積を抑制し、圧延方向のヤング率を高める{225}<110>方位や、{001}<011>方位及び{112}<110>方位の集積を高めることができる。特にMo及びCuは、上記(式2)の係数が高く、微量添加でもヤング率を高める効果を発揮することから、Mo及びCuの一方又は双方を添加することが更に好ましい。   Further, it is preferable to add one or more of Mo, Cr, W, Cu, and Ni together with Mn so as to satisfy the above (Formula 2). This suppresses the accumulation of {332} <113> orientation, which lowers the Young's modulus in the rolling direction, and increases the Young's modulus in the rolling direction at the center portion of the plate thickness, and {001} < The accumulation of the 011> orientation and the {112} <110> orientation can be enhanced. In particular, Mo and Cu have a high coefficient of the above (Formula 2), and exhibit the effect of increasing the Young's modulus even when added in a small amount. Therefore, it is more preferable to add one or both of Mo and Cu.

一方、Moの添加により、強度が上昇し、加工性を損なうことがあるため、Moの添加量の上限を1.00%とすることが好ましい。また、コストの観点からは0.50%以下のMoの添加が好ましい。また、Cr、W、Cu、Niの1種又は2種以上の上限は、加工性の観点から、3.00%とすることが好ましい。なお、W、Cu、Niの更に好ましい上限は、それぞれ質量%で、1.40%、0.35%、1.00%である。   On the other hand, the addition of Mo increases strength and may impair workability, so the upper limit of the amount of Mo added is preferably 1.00%. From the viewpoint of cost, addition of 0.50% or less of Mo is preferable. Further, the upper limit of one or more of Cr, W, Cu, and Ni is preferably set to 3.00% from the viewpoint of workability. In addition, the more preferable upper limit of W, Cu, and Ni is 1.40%, 0.35%, and 1.00% in mass%, respectively.

BはNbと複合添加することによって再結晶を著しく抑制すると共に、固溶状態で焼き入れ性を高める元素であり、オーステナイトからフェライトへの変態時の結晶方位のバリアント選択性に影響を及ぼすと考えられる。したがって、ヤング率を上げる方位である{110}<111>〜{110}<112>方位群の発達を促すと同時に、ヤング率を下げる方位である{100}<001>方位や{110}<001>方位の発達を抑制すると考えられる。この観点から0.0005%以上添加することが好ましい。一方、Bを0.0100%超添加しても更なる効果は得られないため、上限を0.0100%とする。また、Bを0.005%超添加すると、加工性が劣化することがあるため、0.0050%以下が好ましい。更に好ましくは0.0030%以下である。   B is an element that significantly suppresses recrystallization by adding Nb together and enhances hardenability in the solid solution state, and is thought to affect the variant selectivity of crystal orientation during the transformation from austenite to ferrite. It is done. Therefore, the {110} <111> to {110} <112> orientation groups that increase the Young's modulus are promoted and the {100} <001> orientation and {110} < It is considered that the development of 001> orientation is suppressed. From this viewpoint, it is preferable to add 0.0005% or more. On the other hand, even if B is added in excess of 0.0100%, no further effect is obtained, so the upper limit is made 0.0100%. Further, if B is added in excess of 0.005%, the workability may deteriorate, so 0.0050% or less is preferable. More preferably, it is 0.0030% or less.

Ca、Rem及びVは機械的強度を高めたり材質を改善したりする効果があるので、必要に応じて、1種又は2種以上を含有することが好ましい。Ca及びRemの添加量が0.0005%未満、Vの添加量が0.001%未満では十分な効果が得られないことがある。一方、Ca及びRemの添加量が0.1000%超、Vの添加量が0.100%超になるように添加すると、延性を損なうことがある。したがって、Ca、Rem及びVはそれぞれ、0.0005〜0.1000%、0.0005〜0.1000%及び0.001〜0.100%の範囲で添加することが好ましい。   Since Ca, Rem, and V have the effect of increasing mechanical strength or improving the material, it is preferable to contain one or more as required. If the addition amount of Ca and Rem is less than 0.0005% and the addition amount of V is less than 0.001%, sufficient effects may not be obtained. On the other hand, when Ca and Rem are added so that the addition amount exceeds 0.1000% and the addition amount of V exceeds 0.100%, ductility may be impaired. Therefore, Ca, Rem and V are preferably added in the range of 0.0005 to 0.1000%, 0.0005 to 0.1000% and 0.001 to 0.100%, respectively.

次に、上述の熱間圧延の形状比、熱延後の冷却速度及び巻取り温度以外の製造条件の限定理由について述べる。   Next, the reasons for limiting the manufacturing conditions other than the above-described hot rolling shape ratio, the cooling rate after hot rolling, and the coiling temperature will be described.

鋼を常法により溶製、鋳造し、熱間圧延に供する鋼片を得る。この鋼片は、鋼塊を鍛造又は圧延したものでも良いが、生産性の観点から、連続鋳造により鋼片を製造することが好ましい。また、薄スラブキャスターなどで製造してもよい。   Steel is melted and cast by a conventional method to obtain a steel piece to be subjected to hot rolling. Although this steel slab may be a forged or rolled steel ingot, it is preferable to manufacture the steel slab by continuous casting from the viewpoint of productivity. Moreover, you may manufacture with a thin slab caster.

また、通常、鋼片は鋳造後、冷却し、熱間圧延を行うために、再度、加熱する。この場合、熱間圧延を行う際の鋼片の加熱温度は1100℃以上とすることが好ましい。これは、鋼片の加熱温度が1100℃未満であると、熱間圧延の仕上温度をAr3変態点以上とすることが難しくなるためである。鋼片を効率良く均一に加熱するためには、加熱温度を1150℃以上とすることが好ましい。加熱温度の上限は規定しないが、1300℃超に加熱すると、鋼板の結晶粒径が粗大になり、加工性を損なうことがある。また、溶製した鋼を鋳造後、直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスを採用しても良い。 Usually, the steel slab is cooled again after casting, and then heated again for hot rolling. In this case, it is preferable that the heating temperature of the steel slab when hot rolling is 1100 ° C. or higher. This is because when the heating temperature of the steel slab is less than 1100 ° C., it is difficult to set the finishing temperature of hot rolling to the Ar 3 transformation point or higher. In order to heat the steel slab efficiently and uniformly, the heating temperature is preferably 1150 ° C. or higher. The upper limit of the heating temperature is not specified, but when heated to over 1300 ° C., the crystal grain size of the steel sheet becomes coarse and the workability may be impaired. Also, a process such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting the molten steel may be employed.

本発明の鋼板の製造においては、1100℃以下での熱間圧延の条件は重要であり、形状比の規定については、上述したとおりである、なお、圧延ロールの直径は、室温で測定したものであり、熱延中の扁平を考慮する必要はない。各圧延ロールの入側及び出側板厚は放射線等を用いてその場で測定してもよいし、圧延荷重より、変形抵抗等を考慮して計算で求めても良い。また、1100℃を超える温度における熱間圧延は、特に規定せず、適宜行っても構わない。即ち、鋼片の粗圧延については特に限定せず、常法によって行えば良い。   In the production of the steel sheet of the present invention, the conditions for hot rolling at 1100 ° C. or lower are important, and the definition of the shape ratio is as described above. The diameter of the rolling roll was measured at room temperature. Therefore, it is not necessary to consider the flatness during hot rolling. The entry side and exit side plate thicknesses of each rolling roll may be measured on the spot using radiation or the like, or may be calculated from the rolling load in consideration of deformation resistance and the like. Further, the hot rolling at a temperature exceeding 1100 ° C. is not particularly defined and may be appropriately performed. That is, the rough rolling of the steel slab is not particularly limited and may be performed by a conventional method.

熱間圧延において、1100℃以下、最終パスまでの圧下率は40%以上とする。これは、1100℃超で熱間圧延しても加工後の組織が再結晶し、1/6板厚部における{110}<111>〜{110}<112>方位群のX線ランダム強度比を高める効果が得られないためである。   In hot rolling, the rolling reduction to 1100 ° C. or lower and the final pass is 40% or higher. This is because even after hot rolling above 1100 ° C., the processed structure recrystallizes, and the {110} <111> to {110} <112> orientation group X-ray random intensity ratio in the 1/6 plate thickness part This is because the effect of increasing the thickness cannot be obtained.

1100℃以下、最終パスまでの圧下率は、1100℃における鋼板の板厚と最終パス後の鋼板の板厚との差を、1100℃における鋼板の板厚で除した値を百分率で表した数値である。この圧下率を40%以上とするのは、40%未満では圧延方向のヤング率を高める集合組織が十分発達しないためである。この観点からは50%以上が好ましい。上限は特に設けないが、1100℃以下、最終パスまでの圧下率を95%超にすることは圧延機の負荷を高めるばかりか、集合組織にも変化を及ぼしヤング率が低下し始めることから95%以下にすることが好ましい。この観点からは90%以下が更に好ましい。   1100 ° C. or less, the reduction ratio until the final pass is a numerical value expressed as a percentage obtained by dividing the difference between the plate thickness of the steel plate at 1100 ° C. and the plate thickness of the steel plate after the final pass by the plate thickness of the steel plate at 1100 ° C. It is. The reason why the rolling reduction is 40% or more is that if it is less than 40%, the texture that increases the Young's modulus in the rolling direction is not sufficiently developed. From this viewpoint, 50% or more is preferable. Although there is no particular upper limit, increasing the rolling reduction to 1100 ° C. or less and the final pass to more than 95% not only increases the load on the rolling mill, but also changes the texture and starts to lower the Young's modulus. % Or less is preferable. From this viewpoint, 90% or less is more preferable.

熱間圧延の最終パスの温度は、Ar3変態点以上とする。これは、Ar3変態点未満で圧延すると、1/6板厚部において、圧延方向及び幅方向のヤング率にとって好ましくない{110}<001>集合組織が発達するためである。また熱間圧延の最終パスの温度が900℃超では、圧延方向のヤング率の向上に好ましい集合組織を発達させることが困難であり、1/6板厚部における{110}<111>〜{110}<112>方位群のX線ランダム強度比が低下する。圧延方向のヤング率を向上させるには、最終パスの圧延温度を低下させることが好ましく、Ar3変態点以上であることを条件として、好ましくは850℃以下、更に好ましくは800℃以下とする。 The temperature of the final pass of hot rolling is not less than the Ar 3 transformation point. This is because {110} <001> texture unfavorable for the Young's modulus in the rolling direction and the width direction develops in the 1/6 thickness portion when rolling is performed below the Ar 3 transformation point. Further, if the temperature of the final pass of hot rolling exceeds 900 ° C., it is difficult to develop a texture preferable for improving the Young's modulus in the rolling direction, and {110} <111> to {{ 110} <112> The X-ray random intensity ratio of the orientation group decreases. In order to improve the Young's modulus in the rolling direction, it is preferable to lower the rolling temperature in the final pass, preferably 850 ° C. or lower, more preferably 800 ° C. or lower, provided that the rolling temperature is not lower than the Ar 3 transformation point.

なお、Ar3変態温度は、冷却時の熱膨張変化を測定して求めても良く、下記(式4)よって計算しても良い。
Ar3=901−325×C+33×Si+287×P+40×Al
−92×(Mn+Mo+Cu)−46×(Cr+Ni) ・・・(式4)
ここで、C、Si、P、Al、Mn、Mo、Cu、Cr、Niは、各元素の含有量[質量%]であり、含有量が不純物程度である場合は0とする。
The Ar 3 transformation temperature may be obtained by measuring a change in thermal expansion during cooling, or may be calculated by the following (formula 4).
Ar 3 = 901-325 × C + 33 × Si + 287 × P + 40 × Al
−92 × (Mn + Mo + Cu) −46 × (Cr + Ni) (Formula 4)
Here, C, Si, P, Al, Mn, Mo, Cu, Cr, and Ni are the content [% by mass] of each element, and 0 when the content is about an impurity.

鋼板の表層から少なくとも1/6板厚部までに、剪断歪を効果的に導入するには、下記(式5)で計算される有効ひずみ量ε*が0.4以上となるようにすることが更に好ましい。

Figure 2009019265
In order to effectively introduce shear strain from the surface layer of the steel plate to at least 1/6 thickness portion, the effective strain amount ε * calculated by the following (Equation 5) should be 0.4 or more. Is more preferable.
Figure 2009019265

ここで、nは仕上げ熱延の圧延スタンド数、εjはj番目のスタンドで加えられたひずみ、εnはn番目のスタンドで加えられたひずみ、tiはi〜i+1番目のスタンド間の走行時間[s]、τiは気体常数R(=1.987)とi番目のスタンドの圧延温度Ti[K]によって下記(式6)で計算できる。

Figure 2009019265
Here, n is the number of finishing hot rolling rolling stands, ε j is the strain applied at the j-th stand, ε n is the strain applied at the n-th stand, and ti is between i to i + 1th stands. The traveling time [s] and τ i can be calculated by the following (formula 6) by the gas constant R (= 1.987) and the rolling temperature T i [K] of the i-th stand.
Figure 2009019265

有効ひずみε*は、熱間圧延の際の転位の回復を考慮した、累積の歪みの指標であり、これを0.4以上とすれば、より効果的に剪断層に導入される歪みを確保できる。有効歪みε*が高いほど剪断層の厚みが増し、ヤング率の向上に好ましい集合組織が発達するので、0.5以上が好ましく、0.6以上であればより好ましい。   Effective strain ε * is a cumulative strain index that takes into account the recovery of dislocations during hot rolling. If this is 0.4 or more, the strain introduced into the shear layer is more effectively secured. it can. As the effective strain ε * is higher, the thickness of the shear layer is increased, and a texture preferable for improving the Young's modulus is developed. Therefore, 0.5 or more is preferable, and 0.6 or more is more preferable.

有効ひずみε*を0.4以上とする場合には、効果的に剪断層に歪みを導入するため、圧延ロールと鋼板との摩擦係数を0.2超とすることが好ましい。摩擦係数は、圧延荷重、圧延速度、潤滑剤の種類、量を制御して、調整することができる。   When the effective strain ε * is 0.4 or more, the friction coefficient between the rolling roll and the steel plate is preferably more than 0.2 in order to effectively introduce strain into the shear layer. The friction coefficient can be adjusted by controlling the rolling load, rolling speed, type and amount of lubricant.

熱間圧延を実施する際には圧延ロールの異周速率が1%以上の異周速圧延を少なくとも1パス以上施すと表層近傍での集合組織形成が促進されるため、異周速圧延を実施しない場合の本発明以上にヤング率が向上する。この観点から異周速率は1%以上とし、望ましくは異周速率5%以上、更に望ましくは異周速率10%以上の異周速圧延を施すことが望ましい。異周速率及び異周速圧延パス数の上限は特に規定しないが、上記の理由からいずれも大きい方が大きなヤング率向上効果が得られることは言うまでもない。しかし、50%以上の異周速率は現状困難であり、仕上熱延パスは通常8パス程度までである。   When carrying out hot rolling, forming the texture in the vicinity of the surface layer is promoted if at least one pass of different circumferential speed rolling with a different circumferential speed ratio of the rolling roll of 1% or more is performed. If not, the Young's modulus is improved more than the present invention. From this point of view, it is desirable that the different peripheral speed rate is 1% or more, preferably the different peripheral speed ratio is 5% or more, and more preferably, the different peripheral speed ratio is 10% or more. Although the upper limit of the different peripheral speed ratio and the number of different peripheral speed rolling passes is not particularly defined, it goes without saying that a larger Young's modulus can be obtained with a larger value for the above reasons. However, a different peripheral speed ratio of 50% or more is currently difficult, and the finishing hot rolling pass is usually up to about 8 passes.

ここで本発明における異周速率とは、上下圧延ロールの周速差を低周速側ロールの周速で除した値を百分率で表示したものである。また、本発明の異周速圧延は、上下ロール周速のいずれが大きくてもヤング率向上効果に差はない。   Here, the different peripheral speed ratio in the present invention is a value obtained by dividing the peripheral speed difference between the upper and lower rolling rolls by the peripheral speed of the low peripheral speed roll in percentage. Further, the different peripheral speed rolling of the present invention has no difference in Young's modulus improvement effect regardless of the upper and lower roll peripheral speeds.

また、仕上熱延に使用する圧延機にロール径が700mm以下のワークロールを一つ以上使用すると表層近傍での集合組織形成が促進されるため、使用しない場合の本発明以上にヤング率が向上することからロール径700mm以下のワークロールを使用することが望ましい。この観点から、ワークロール径は700mm以下とし、600mm以下であることが望ましく、500mm以下とすることが更に望ましい。ワークロール径の下限は特に規定しないが、300mm以下になると通板制御が困難になる。小径ロールを使用するパス数の上限は特に規定しないが、前述のように仕上熱延パスは通常8パス程度までである。   In addition, when one or more work rolls having a roll diameter of 700 mm or less are used in a rolling mill used for finishing hot rolling, texture formation near the surface layer is promoted, and thus the Young's modulus is improved over the present invention when not used. Therefore, it is desirable to use a work roll having a roll diameter of 700 mm or less. From this viewpoint, the work roll diameter is 700 mm or less, desirably 600 mm or less, and more desirably 500 mm or less. The lower limit of the work roll diameter is not particularly defined, but if it is 300 mm or less, the sheet passing control becomes difficult. Although the upper limit of the number of passes using the small-diameter roll is not particularly defined, as described above, the finish hot rolling pass is usually up to about 8 passes.

熱延鋼板には、材質を制御するために焼鈍を施しても良いが、焼鈍の最高加熱温度はAc1[℃]以下とすることが好ましい。これは、熱延鋼板をAc1[℃]超に加熱すると、組織の一部又は全部がオーステナイト化して熱延で得られた集合組織が破壊され、圧延方向のヤング率が低下することがあるためである。最高加熱温度に到達後、直ちに冷却しても良いが、鋼板の温度を均一にするには、30秒以上保持することが好ましい。鋼板の材質の均質性と生産性を両立するには、保持時間を300s以上600s以下とすることが更に好ましいが、加熱温度で600秒以上保持しても構わない。焼鈍の際の昇温速度及び冷却速度に制約はない。 The hot-rolled steel sheet may be annealed in order to control the material, but the maximum heating temperature for annealing is preferably set to Ac 1 [° C.] or less. This is because when a hot-rolled steel sheet is heated to a temperature higher than Ac 1 [° C.], a part or all of the structure is austenitized and the texture obtained by hot rolling is destroyed, and the Young's modulus in the rolling direction may be reduced. Because. Although it may be cooled immediately after reaching the maximum heating temperature, it is preferable to hold it for 30 seconds or more in order to make the temperature of the steel plate uniform. In order to achieve both the homogeneity and the productivity of the steel plate material, the holding time is more preferably 300 s or more and 600 s or less, but the heating temperature may be held for 600 seconds or more. There are no restrictions on the heating rate and cooling rate during annealing.

また、熱延鋼板には、必要に応じて酸洗、インライン又はオフラインによる圧下率10%以下のスキンパスを施しても良い。   The hot-rolled steel sheet may be subjected to a skin pass having a reduction rate of 10% or less by pickling, in-line or off-line as necessary.

熱延鋼板には溶融亜鉛メッキ又は合金化溶融亜鉛メッキを施してもよい。鋼板を焼鈍する場合は、冷却後、連続する溶融亜鉛メッキラインにて、そのまま溶融亜鉛メッキを施してもよい。亜鉛メッキの組成は特に限定するものではなく、亜鉛のほか、Fe、Al、Mn、Cr、Mg、Pb、Sn、Niなどを必要に応じて添加しても構わない。   The hot-rolled steel sheet may be hot dip galvanized or alloyed hot dip galvanized. When the steel sheet is annealed, it may be subjected to hot dip galvanization as it is in a continuous hot dip galvanizing line after cooling. The composition of the galvanizing is not particularly limited, and besides zinc, Fe, Al, Mn, Cr, Mg, Pb, Sn, Ni, etc. may be added as necessary.

合金化熱処理は、溶融亜鉛メッキを施した後に、450〜600℃の範囲内で行う。450℃未満では合金化が十分に進行せず、また、600℃超では過度に合金化が進行し、メッキ層が脆化するため、プレス等の加工によってメッキが剥離するなどの問題を誘発する。合金化処理の時間は、5s以上とする。5s未満では合金化が十分に進行しない。上限は特に定めないが、メッキ密着性を考慮すると10s程度とすることが好ましい。   The alloying heat treatment is performed within a range of 450 to 600 ° C. after hot dip galvanization. If it is less than 450 ° C, alloying does not proceed sufficiently, and if it exceeds 600 ° C, alloying proceeds excessively and the plated layer becomes brittle, which causes problems such as peeling of the plating due to processing such as pressing. . The alloying time is 5 s or longer. If it is less than 5 s, alloying does not proceed sufficiently. Although the upper limit is not particularly defined, it is preferably about 10 s in consideration of plating adhesion.

また、上記の熱延鋼板にはAl系メッキや各種電気メッキを施しても構わない。さらに熱延鋼板及び各種メッキ鋼板には有機皮膜、無機皮膜、各種塗料などの表面処理を目的に応じて行うことができる。   The hot-rolled steel sheet may be subjected to Al-based plating or various electroplating. Further, the hot-rolled steel sheet and various plated steel sheets can be subjected to surface treatment such as organic coating, inorganic coating, and various paints according to the purpose.

本発明の高ヤング率鋼板、溶融亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板を圧延方向が鋼管の長手方向との間の角度が0〜30°以内になるように巻いて鋼管にすると、鋼管の長手方向のヤング率が高い高ヤング率鋼管を製造することができる。圧延方向と平行に巻くのが最もヤング率が高くなることからこの角度は出来るだけ小さいことが好ましい。この観点から、15°以下の角度で巻くことが更に好ましい。圧延方向と鋼管の長手方向の関係が満足されていれば、造管方法はUO管、電縫溶接、スパイラル等、任意の方法をとることができる。もちろん、ヤング率の高い方向を鋼管の長手方向に平行に限定する必要はなく、用途に応じて任意の方向にヤング率の高い鋼管を製造しても何ら問題はない。   When the high Young's modulus steel sheet, hot dip galvanized steel sheet, and galvannealed steel sheet of the present invention are rolled into a steel pipe so that the angle between the rolling direction and the longitudinal direction of the steel pipe is within 0 to 30 °, A high Young's modulus steel pipe having a high Young's modulus in the longitudinal direction can be produced. It is preferable that this angle be as small as possible since the Young's modulus is the highest when it is wound parallel to the rolling direction. From this viewpoint, it is more preferable to wind at an angle of 15 ° or less. As long as the relationship between the rolling direction and the longitudinal direction of the steel pipe is satisfied, the pipe forming method may be any method such as UO pipe, electric resistance welding, spiral, or the like. Of course, it is not necessary to limit the direction with a high Young's modulus parallel to the longitudinal direction of the steel pipe, and there is no problem even if a steel pipe with a high Young's modulus is produced in any direction depending on the application.

次に本発明を実施例にて説明する。   Next, the present invention will be described with reference to examples.

表1に示す組成を有する鋼を溶製して鋼片を製造した。表1の式1は、Ti及びNの含有量[質量%]によって計算した、下記(式1)の左辺の値であり、式2は、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]によって計算した、下記(式2)の左辺の値である。
Ti−48/14×N≧0.0005 ・・・ (式1)
3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr≧4
・・・ (式2)
Mn、Mo、W、Ni、Cu、Crの含有量が不純物程度である場合、例えば、表1のMo、W、Ni、Cu、Crが空欄である場合は0として上記(式2)の左辺を計算した。

Figure 2009019265
Steel pieces having the composition shown in Table 1 were melted to produce steel pieces. Formula 1 of Table 1 is the value of the left side of the following (Formula 1) calculated by the content [mass%] of Ti and N, and Formula 2 is Mn, Mo, W, Ni, Cu, Cr for each. It is the value of the left side of the following (Formula 2) calculated by the element content [% by mass].
Ti-48 / 14 × N ≧ 0.0005 (Formula 1)
3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr ≧ 4
... (Formula 2)
When the content of Mn, Mo, W, Ni, Cu, Cr is about an impurity, for example, when Mo, W, Ni, Cu, Cr in Table 1 are blank, the left side of the above (Formula 2) is set to 0 Was calculated.
Figure 2009019265

鋼片を加熱して、熱間で粗圧延に続いて、表2,3に示す条件で仕上圧延を行った。仕上圧延のスタンドは全6段からなり、ロール径は650〜830mmである。また最終パス後の仕上板厚は1.6mm〜10mmとした。更に、表2,3において、SRT[℃]は鋼片の加熱温度、FT[℃]は圧延の最終パス後、即ち仕上出側の温度、CR[℃/s]は冷却中の平均冷却速度であり、CT[℃]は巻取り温度である。   The steel slab was heated, followed by hot rough rolling and finish rolling under the conditions shown in Tables 2 and 3. The stand for finish rolling consists of all six stages, and the roll diameter is 650 to 830 mm. The finished plate thickness after the final pass was set to 1.6 mm to 10 mm. Furthermore, in Tables 2 and 3, SRT [° C.] is the heating temperature of the steel slab, FT [° C.] is the temperature after the final pass of rolling, that is, the temperature on the finishing side, and CR [° C./s] is the average cooling rate during cooling. And CT [° C.] is the coiling temperature.

圧下率は、1100℃における板厚と仕上板厚との差を1100℃における板厚で除した値であり、百分率として示した。また、形状比の合否欄には、各パスの形状比の少なくとも2つ以上が2.3を超えている場合は○、超えていない場合は×を示した。   The rolling reduction is a value obtained by dividing the difference between the plate thickness at 1100 ° C. and the finished plate thickness by the plate thickness at 1100 ° C., and is expressed as a percentage. Further, in the pass / fail column for the shape ratio, “◯” is shown when at least two or more of the shape ratios of each pass are over 2.3, and “x” is shown when they are not over.

また、これらの鋼板のうち、熱間圧延終了後に溶融亜鉛めっきを施した場合は、「溶融」、520℃で15秒の合金化溶融亜鉛めっきを施した場合は、「合金」と表記した。なお、Ar3、Ac1は、鋼板より試料を採取し、熱膨張計を用い、昇温速度及び冷却速度を10[℃/s]として加熱及び冷却した際の試験片の熱膨張変化を測定することで求めた。 Moreover, among these steel plates, when hot dip galvanizing was performed after the hot rolling was completed, “melting” and when alloying hot dip galvanizing at 520 ° C. for 15 seconds was performed, “alloy” was indicated. For Ar 3 and Ac 1 , a sample was taken from a steel plate, and a thermal dilatometer was used to measure the change in thermal expansion of the test piece when heated and cooled at a heating rate and cooling rate of 10 ° C./s. I asked for it.

得られた鋼板の組織観察を光学顕微鏡によって行い画像解析によってフェライト面積率、ベイナイト面積率を求めた。更に、残部組織の確認は、光学顕微鏡によって行った。Vα[%]はポリゴナルフェライトの面積率、VB[%]はベイナイトの面積率である。Vα[%]とVB[%]の合計を100から除した値が残部の面積率であり、残部の欄には、マルテンサイトをM、パーライトをP、セメンタイトをCとして示した。 The structure of the obtained steel sheet was observed with an optical microscope, and the ferrite area ratio and bainite area ratio were determined by image analysis. Further, the remaining structure was confirmed by an optical microscope. V α [%] is the area ratio of polygonal ferrite, and V B [%] is the area ratio of bainite. The value obtained by dividing the sum of V α [%] and V B [%] from 100 is the area ratio of the balance. In the balance column, M is martensite, P is pearlite, and C is cementite.

また、鋼板の1/6板厚部の{100}<001>及び{110}<001>方位並びに{110}<111>〜{110}<112>方位群及び{211}<111>方位のX線ランダム強度比を、以下のようにして測定した。まず、鋼板を機械研磨及びバフ研磨後、更に電解研磨して歪みを除去し、1/6板厚部が測定面となるように調整した試料を用いて、X線回折を行った。なお、特定の方位への集積を持たない標準試料のX線回折も同条件で行った。次に、X線回折によって得られた{110}、{100}、{211}、{310}極点図を基に級数展開法でODFを得た。このODFから、{100}<001>及び{110}<001>方位並びに{110}<111>〜{110}<112>方位群のX線ランダム強度比を求めた。   Further, the {100} <001> and {110} <001> orientations, {110} <111> to {110} <112> orientation groups, and {211} <111> orientations of the 1/6 thickness portion of the steel plate The X-ray random intensity ratio was measured as follows. First, after mechanically polishing and buffing the steel plate, X-ray diffraction was performed using a sample that was further electropolished to remove strain and adjusted so that the 1/6 thickness portion became the measurement surface. Note that X-ray diffraction of a standard sample having no accumulation in a specific orientation was performed under the same conditions. Next, ODF was obtained by the series expansion method based on {110}, {100}, {211}, {310} pole figures obtained by X-ray diffraction. From this ODF, the X-ray random intensity ratios of {100} <001> and {110} <001> orientations and {110} <111> to {110} <112> orientation groups were obtained.

鋼板の1/2板厚部の、{332}<113>方位及び{112}<110>方位のX線ランダム強度比は、1/6板厚部の試料と同様にして、1/2板厚部が測定面となるように調整した試料を用いて、X線回折を行い、ODFから求めた。   The X-ray random intensity ratio of {332} <113> orientation and {112} <110> orientation of the 1/2 plate thickness part of the steel plate is the same as that of the 1/6 plate thickness part sample. X-ray diffraction was performed using the sample adjusted so that the thick part became the measurement surface, and obtained from ODF.

得られた鋼板からJIS Z 2201に準拠した引張試験片を採取し、引張試験をJIS Z 2241に準拠して行い、引張強度を測定した。穴広げ試験は日本鉄鋼連盟規格JFS T 1001−1996記載の試験方法に従って評価した。ヤング率の測定は静的引張法と振動法の両法により測定した。   A tensile test piece based on JIS Z 2201 was collected from the obtained steel plate, a tensile test was performed based on JIS Z 2241, and the tensile strength was measured. The hole expansion test was evaluated according to the test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996. Young's modulus was measured by both static tension method and vibration method.

静的引張法によるヤング率の測定は、JIS Z 2201に準拠した引張試験片を用いて、鋼板の降伏強度の1/2に相当する引張応力を付与して行った。測定は5回行い、応力−歪み線図の傾きに基づいて算出したヤング率のうち、最大値及び最小値を除いた3つの計測値の平均値を静的引張法によるヤング率とし、引張ヤング率として表4,5に示した。   Measurement of Young's modulus by the static tension method was performed by applying a tensile stress corresponding to ½ of the yield strength of the steel sheet using a tensile test piece according to JIS Z 2201. The measurement was performed 5 times, and among the Young's modulus calculated based on the slope of the stress-strain diagram, the average value of the three measured values excluding the maximum and minimum values was taken as the Young's modulus by the static tension method. The rates are shown in Tables 4 and 5.

振動法はJIS Z 2280に準拠した常温での横共振法にて行った。即ち試料を固定せずに振動を加え、発振機の振動数を徐々に変化させて一次共振振動数を測定し、その振動数より動的ヤング率を計算によって求めた。   The vibration method was performed by a transverse resonance method at room temperature in accordance with JIS Z 2280. That is, a vibration was applied without fixing the sample, and the primary resonant frequency was measured by gradually changing the frequency of the oscillator, and the dynamic Young's modulus was calculated from the frequency.

Figure 2009019265
Figure 2009019265

Figure 2009019265
Figure 2009019265

結果を表4,5に示す。なお、ヤング率の欄のRDは圧延方向(ollinng irection)、TDは圧延方向と直角の方向である幅方向(ransverse irection)をそれぞれ意味する。また、表1〜11において、下線は本発明範囲外又は好ましい範囲外であることを意味する。 The results are shown in Tables 4 and 5. Incidentally, the Young's modulus of the column of RD is the rolling direction (R ollinng D irection), TD means transverse direction is the direction of the rolling direction and at right angles to (T ransverse D irection) respectively. Moreover, in Tables 1-11, an underline means that it is outside this invention range or a preferable range.

表4,5から明らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱間圧延した場合には、圧延方向、圧延直角方向のいずれも静的引張法によるヤング率が220GPa超とすることができ、かつ高い強度‐穴広げ値バランスを満足することができた。特に、板厚中心層の集合組織の条件を同時に満足する場合には静的引張法によるヤング率が高く、かつ振動法との差が小さくなることが分かる。   As is apparent from Tables 4 and 5, when the steel having the chemical composition of the present invention is hot-rolled under appropriate conditions, the Young's modulus by static tension method exceeds 220 GPa in both the rolling direction and the direction perpendicular to the rolling direction. And a high strength-hole expansion value balance could be satisfied. In particular, it can be seen that the Young's modulus by the static tension method is high and the difference from the vibration method is small when the texture condition of the thickness center layer is simultaneously satisfied.

一方、熱延No.34〜41は、化学成分が本発明の範囲外である鋼No.Y〜AEを用いた比較例である。熱延No.34及び35は、C量が多い鋼No.Yを用いた例であり、それぞれ、パーライト、セメンタイトの面積率が増加したため、加工性が劣化している。熱延No.36は、Siが過剰に添加した鋼No.Zを用いた例であり、加工性が劣化している。熱延No.37は、Mn量が過剰である鋼No.AAを用いた例であり、偏析によって穴広げ性が劣化している。   On the other hand, hot rolling No. Nos. 34 to 41 are steel Nos. Whose chemical components are outside the scope of the present invention. This is a comparative example using Y to AE. Hot rolling No. 34 and 35 are steel Nos. With a large amount of C. In this example, Y is used, and the area ratios of pearlite and cementite are increased, so that the workability is deteriorated. Hot rolling No. No. 36 is a steel no. This is an example using Z, and the workability is deteriorated. Hot rolling No. No. 37 is a steel no. This is an example using AA, and the hole expandability is deteriorated due to segregation.

熱延No.38は、(式1)を満足しない鋼No.ABを用いた例であり、TiNの析出が不十分になり、ヤング率の向上に有利な集合組織が発達せず、圧延方向のヤング率が低下している。また、熱延No.39は、Nbを含有しない鋼No.ACを用いた例であり、熱延No.40は、Tiを含有しない鋼No.ADを用いた例であり、熱延No.41は、Nb及びTiを含有しない鋼No.AEを用いた例である。これらは、十分な再結晶抑制効果が得られず、ヤング率向上に好ましい集合組織が発達しなかったため、圧延方向のヤング率が低下した例である。   Hot rolling No. No. 38 is a steel No. that does not satisfy (Equation 1). In this example, AB is used, the precipitation of TiN becomes insufficient, the texture advantageous for improving the Young's modulus does not develop, and the Young's modulus in the rolling direction is lowered. In addition, hot rolling No. No. 39 is a steel No. containing no Nb. This is an example using AC, and hot rolling No. No. 40 is a steel no. This is an example using AD, and hot rolling No. No. 41 is a steel No. containing no Nb and Ti. This is an example using AE. These are examples in which the Young's modulus in the rolling direction was lowered because a sufficient recrystallization inhibitory effect was not obtained and a texture preferable for improving the Young's modulus was not developed.

また、熱延No.3、9、13、16、18、20、28は、成分が本発明の範囲内である鋼B、F、I、J、K、L、Sを用い、製造条件を本発明の範囲外とした比較例である。熱延No.3は巻取り温度が高いため、熱延No.28は冷却速度が低いため、パーライトが増加して、強度と穴広げ率のバランスの指標であるTS×λの値が低下した例である。熱延No.13は、巻取り温度が低いためマルテンサイトが増加し、TS×λが低下した例である。   In addition, hot rolling No. 3, 9, 13, 16, 18, 20, and 28 are steel B, F, I, J, K, L, and S whose components are within the scope of the present invention, and the production conditions are outside the scope of the present invention. This is a comparative example. Hot rolling No. No. 3 has a high coiling temperature, so No. 28 is an example in which pearlite increased due to the low cooling rate, and the value of TS × λ, which is an index of the balance between strength and hole expansion rate, decreased. Hot rolling No. No. 13 is an example in which martensite increases and TS × λ decreases because the winding temperature is low.

更に、熱延No.9は、FT[℃]をAr3より低くした例であり、{110}<001>方位の集積度が上がったため、圧延方向のヤング率が低下している。熱延No.20はFT[℃]が高く、1/6板厚部において、圧延方向のヤング率の向上に好ましい{110}<111>〜{110}<112>方位群のX線ランダム強度比と{211}<111>方位の和が低下し、板厚方向の全てにおいて集合組織が発達しないことから、幅方向のヤング率も低下している。熱延No.16は、熱間圧延の圧下率が小さく、圧延中に十分なせん断歪が導入されず、集合組織が発達しなかったためヤング率が低下した例である。また、熱延No.18のように、形状比が2.3以上であるパスが少ないと振動法では高いヤング率が得られても、静的引張法で測定したヤング率は低下している。 Furthermore, hot rolling No. 9 is an example in which FT [° C.] is set lower than Ar 3 , and the Young's modulus in the rolling direction is lowered because the degree of integration in the {110} <001> orientation is increased. Hot rolling No. 20 has a high FT [° C.], and in the 1/6 plate thickness part, the X-ray random intensity ratio of {110} <111> to {110} <112> orientation group, which is preferable for improving the Young's modulus in the rolling direction, and {211 } Since the sum of the <111> orientations is reduced and the texture does not develop in all of the thickness direction, the Young's modulus in the width direction is also reduced. Hot rolling No. No. 16 is an example in which the Young's modulus decreased because the rolling reduction of hot rolling was small, sufficient shear strain was not introduced during rolling, and the texture did not develop. In addition, hot rolling No. As shown in FIG. 18, when the number of paths having a shape ratio of 2.3 or more is small, the Young's modulus measured by the static tension method is lowered even if a high Young's modulus is obtained by the vibration method.

Figure 2009019265
Figure 2009019265

Figure 2009019265
Figure 2009019265

表1に示した鋼AとEを用いて、表6に示す条件で熱間圧延を行った。表6に示した熱延No.43及び46〜48は、全6段からなる仕上げ圧延スタンドの最終の3段、即ち、4パス、5パス及び6パスでの異周速率を変化させた異周速圧延を行った例である。なお、表6で表示されていない熱延条件は全て実施例1と同様である。また、熱延No.45、46及び48は、有効ひずみε*を0.4以上とした例である。   Using the steels A and E shown in Table 1, hot rolling was performed under the conditions shown in Table 6. Hot rolling No. shown in Table 6 43 and 46 to 48 are examples in which different peripheral speed rolling was performed by changing the different peripheral speed ratios in the final three stages of the finishing rolling stand including all six stages, that is, four passes, five passes, and six passes. . All the hot rolling conditions not displayed in Table 6 are the same as in Example 1. In addition, hot rolling No. 45, 46 and 48 are examples in which the effective strain ε * is 0.4 or more.

実施例1と同様に、引張特性、穴広げ試験、1/6板厚部及び1/2板厚部の集合組織の測定、ヤング率の測定を行った。結果を表7に示す。これから明らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱延する際に1%以上の異周速圧延を1パス以上加えると、表層近傍での集合組織形成が促進され、更にヤング率が向上する。   In the same manner as in Example 1, tensile properties, hole expansion test, measurement of the texture of 1/6 plate thickness part and 1/2 plate thickness part, and measurement of Young's modulus were performed. The results are shown in Table 7. As is clear from this, when hot rolling the steel having the chemical component of the present invention under appropriate conditions, adding 1% or more of different peripheral speed rolling promotes the formation of a texture in the vicinity of the surface layer, Young's modulus is improved.

また、熱延No.45は普通圧延であるが、有効ひずみを0.4以上とすることでヤング率が向上している。熱延No.48は異周速圧延を行い、更に有効ひずみを0.4以上とすることで240GPa程度の非常に高いヤング率に達する。   In addition, hot rolling No. 45 is ordinary rolling, but the Young's modulus is improved by setting the effective strain to 0.4 or more. Hot rolling No. No. 48 performs different peripheral speed rolling, and further reaches an extremely high Young's modulus of about 240 GPa by setting the effective strain to 0.4 or more.

Figure 2009019265
Figure 2009019265

Figure 2009019265
Figure 2009019265

表1に示した鋼Jを用いて、表8に示す条件で熱間圧延を行った。表9に示した熱延No.51〜53は、全6段からなる仕上げ圧延スタンドの最終の3段、即ち、4パス、5パス及び6パスで、直径700mm以下のロールを使用して圧延を行った例である。なお、表8で表示されていない熱延条件は全て実施例1と同様である。また、熱延No.48、51は、有効ひずみε*を0.4以上とした例である。   Using steel J shown in Table 1, hot rolling was performed under the conditions shown in Table 8. Hot rolling No. shown in Table 9 Reference numerals 51 to 53 are examples in which rolling is performed using a roll having a diameter of 700 mm or less in the final three stages of the finish rolling stand including all six stages, that is, four passes, five passes, and six passes. The hot rolling conditions not displayed in Table 8 are all the same as in Example 1. In addition, hot rolling No. 48 and 51 are examples in which the effective strain ε * is 0.4 or more.

実施例1と同様に、引張特性、穴広げ試験、1/6板厚部及び1/2板厚部の集合組織の測定、ヤング率の測定を行った。結果を表9に示す。これから明らかなとおり、本発明の化学成分を有する鋼を熱間圧延する際に小径ロールを使用することで、表層のせん断ひずみ量が増加し、よりヤング率を高めることが可能となる。   In the same manner as in Example 1, tensile properties, hole expansion test, measurement of the texture of 1/6 plate thickness part and 1/2 plate thickness part, and measurement of Young's modulus were performed. The results are shown in Table 9. As is apparent from this, when a steel having the chemical component of the present invention is hot-rolled, a small-diameter roll is used, so that the shear strain amount of the surface layer increases and the Young's modulus can be further increased.

また、熱延No.50は中径ロールを用いた圧延であるが、有効ひずみを0.4以上とすることでヤング率が向上している。熱延No.53は小径ロールによる圧延を行い、更に有効ひずみを0.4以上とすることで圧延方向のヤング率が240GPa程度の非常に高い値に達する。   In addition, hot rolling No. Although 50 is rolling using a medium diameter roll, the Young's modulus is improved by setting the effective strain to 0.4 or more. Hot rolling No. No. 53 performs rolling with a small-diameter roll, and further increases the effective strain to 0.4 or more, so that the Young's modulus in the rolling direction reaches a very high value of about 240 GPa.

Figure 2009019265
Figure 2009019265

Figure 2009019265
Figure 2009019265

鋼No.Kの発明例である熱延No.17の熱延鋼板、有効ひずみを0.4以上とした熱延No.43の熱延鋼板、異周速圧延を行った熱延No.45の熱延鋼板、及び小径ロールにより圧延を行った熱延No.50を用いて、表10に示す条件で連続式焼鈍炉又はバッチ式焼鈍炉を用いて熱延板焼鈍を行った。実施例1と同様に、ミクロ組織、引張特性、穴広げ試験、1/6板厚部及び1/2板厚部の集合組織の測定、ヤング率の測定及び穴広げ試験を行った。結果を表11に示す。   Steel No. Hot rolling No. which is an invention example of K. No. 17 hot-rolled steel sheet, hot-rolled No. 17 having an effective strain of 0.4 or more. No. 43 hot rolled steel sheet, hot rolled No. No. 45 hot rolled steel sheet and hot rolled No. 1 rolled with a small diameter roll. 50, hot-rolled sheet annealing was performed using a continuous annealing furnace or a batch annealing furnace under the conditions shown in Table 10. In the same manner as in Example 1, the microstructure, tensile properties, hole expansion test, measurement of the texture of 1/6 plate thickness part and 1/2 plate thickness part, measurement of Young's modulus, and hole expansion test were performed. The results are shown in Table 11.

焼鈍No.1〜7に示したように、本発明の熱間圧延条件によって製造された熱延鋼板に、更に焼鈍を行うことにより、高いヤング率を保ったまま、更に加工性、特に穴広げ性を高めることが可能となる。一方、焼鈍No.8は、鋼No.Kの比較例である熱延No.18の熱延鋼板を用いた例である。焼鈍No.8は、熱延板の熱延条件が適切でないため、適正な条件で焼鈍しても圧延方向のヤング率は220GPa未満である。   Annealing No. As shown in 1 to 7, by further annealing the hot-rolled steel sheet produced by the hot rolling conditions of the present invention, the workability, particularly the hole expanding property is further increased while maintaining a high Young's modulus. It becomes possible. On the other hand, annealing No. No. 8 is a steel no. Hot rolling No. which is a comparative example of K. This is an example using 18 hot-rolled steel sheets. Annealing No. In No. 8, since the hot rolling conditions of the hot rolled sheet are not appropriate, the Young's modulus in the rolling direction is less than 220 GPa even if annealing is performed under appropriate conditions.

また、焼鈍No.9〜11に示したように、異周速圧延や小径ロールを用いた圧延、有効ひずみの高い熱延鋼板でも、適切な条件で焼鈍することにより、高いヤング率を保ったまま、穴広げ性を高めることができる。   In addition, annealing No. As shown in 9 to 11, even with different peripheral speed rolling, rolling with a small diameter roll, and hot-rolled steel sheet with high effective strain, annealing is performed under appropriate conditions, so that the hole expansion property is maintained while maintaining a high Young's modulus. Can be increased.

Figure 2009019265
Figure 2009019265

Figure 2009019265
Figure 2009019265

表12に示す組成(残部はFe及び不可避的不純物)を有する鋼を溶製して鋼片を製造し、鋼片を加熱して、熱間で粗圧延に続いて、表13に示す条件で仕上圧延を行った。仕上圧延のスタンドは全6段からなり、ロール径は700〜830mmである。また最終パス後の仕上板厚は1.6mm〜10mmとした。式1の欄の「−」は、Tiを添加していない比較例であることを意味する。表13の「溶融」は、熱間圧延終了後に溶融亜鉛めっきを施した鋼板であり、「合金」は、溶融亜鉛めっき後、更に、520℃で15秒の合金化処理を施した鋼板である。Ar3、Ac1は、実施例1と同様にして、熱膨張計を用いて測定した。 Steel having a composition shown in Table 12 (the balance is Fe and inevitable impurities) is manufactured to produce a steel slab, the steel slab is heated, followed by hot rough rolling, under the conditions shown in Table 13 Finish rolling was performed. The finish rolling stand consists of 6 stages, and the roll diameter is 700 to 830 mm. The finished plate thickness after the final pass was set to 1.6 mm to 10 mm. “-” In the column of Formula 1 means that the comparative example does not contain Ti. “Melting” in Table 13 is a steel sheet that has been hot-dip galvanized after hot rolling is completed, and “alloy” is a steel sheet that has been subjected to alloying treatment at 520 ° C. for 15 seconds after hot-dip galvanizing. . Ar 3 and Ac 1 were measured using a thermal dilatometer in the same manner as in Example 1.

Figure 2009019265
Figure 2009019265

Figure 2009019265
Figure 2009019265

実施例1と同様にして、得られた鋼板の引張強度、穴広げ試験及びヤング率の測定を行い、鋼板の1/6板厚部及び鋼板の1/2板厚部の集合組織を測定した。なお、1/2板厚部では、{001}<011>方位と{112}<110>方位のX線ランダム強度比も測定し、平均値を求めた。   In the same manner as in Example 1, the tensile strength, the hole expansion test, and the Young's modulus of the obtained steel plate were measured, and the texture of the 1/6 plate thickness part of the steel plate and the 1/2 plate thickness part of the steel plate was measured. . At the 1/2 plate thickness part, the X-ray random intensity ratio between the {001} <011> orientation and the {112} <110> orientation was also measured, and an average value was obtained.

結果を表14に示す。表14から明らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱間圧延した場合には、圧延方向、圧延直角方向のいずれも静的引張法によるヤング率が220GPa超とすることができた。特に、板厚中心層の集合組織の条件を同時に満足する場合には静的引張法によるヤング率が高く、かつ振動法との差が小さくなることが分かる。   The results are shown in Table 14. As is apparent from Table 14, when the steel having the chemical composition of the present invention is hot-rolled under appropriate conditions, the Young's modulus by the static tension method should be more than 220 GPa in both the rolling direction and the direction perpendicular to the rolling direction. I was able to. In particular, it can be seen that the Young's modulus by the static tension method is high and the difference from the vibration method is small when the texture condition of the thickness center layer is simultaneously satisfied.

一方、熱延No.75〜78は、化学成分が本発明の範囲外である鋼No.AT〜AVを用いた比較例である。熱延No.75は、Ti量が少ない鋼ATを用いた例であり、熱延No.76は、Nb量が少ない鋼AUを用いた例であり、ヤング率が低い。熱延No.77は、C量が多い鋼AVを用いた例であり、パーライト分率が高いため、穴広げ性が低下している。   On the other hand, hot rolling No. Nos. 75 to 78 are steel Nos. Whose chemical components are outside the scope of the present invention. It is a comparative example using AT-AV. Hot rolling No. No. 75 is an example using steel AT with a small amount of Ti. 76 is an example using steel AU with a small amount of Nb and has a low Young's modulus. Hot rolling No. No. 77 is an example using steel AV with a large amount of C. Since the pearlite fraction is high, the hole expandability is lowered.

一方、熱延No.55、57は、熱間圧延の条件が本発明の範囲外である比較例である。熱延No.55は形状比Xが2.3以上を満足するパスが一パスであるため、せん断歪みが十分に鋼板に導入されず、ヤング率が低い。熱延No.57は1100℃以下、最終パスまでの圧下率が40%未満であるため、集合組織が発達せず、ヤング率が低い。   On the other hand, hot rolling No. 55 and 57 are comparative examples in which the hot rolling conditions are outside the scope of the present invention. Hot rolling No. In No. 55, since one pass satisfies the shape ratio X of 2.3 or more, shear strain is not sufficiently introduced into the steel sheet, and the Young's modulus is low. Hot rolling No. No. 57 is 1100 ° C. or lower, and the rolling reduction to the final pass is less than 40%.

一方、熱延No.59、68、74は、熱間圧延仕上げ温度(FT)、又は巻取り温度(CT)が本発明の範囲外である比較例である。熱延No.59は、FTが高く、ヤング率を高める結晶方位の集積が不十分になり、ヤング率が低い。熱延No.68は、CTが高く、パーライト組織分率が高いため、熱延No.74は、CTが低く、マルテンサイト組織分率が高いため、何れも、穴広げ性が低下している。   On the other hand, hot rolling No. 59, 68 and 74 are comparative examples in which the hot rolling finishing temperature (FT) or the winding temperature (CT) is outside the scope of the present invention. Hot rolling No. No. 59 has a high FT, insufficient crystal orientation to increase the Young's modulus, and has a low Young's modulus. Hot rolling No. No. 68 has a high CT and a high pearlite structure fraction. Since No. 74 has low CT and a high martensite structure fraction, the hole expandability is lowered in all cases.

Figure 2009019265
Figure 2009019265

表12に示した鋼AIとALを用いて、表15に示す条件で熱間圧延を行った。表15に示した熱延No.79及び82〜84は、全6段からなる仕上げ圧延スタンドの最終の3段、即ち、4パス、5パス及び6パスでの異周速率を変化させた異周速圧延を行った例である。なお、表15で表示されていない熱延条件は全て実施例5と同様である。また、熱延No.81、82及び84は、有効ひずみε*を0.4以上とした例である。   Using the steel AI and AL shown in Table 12, hot rolling was performed under the conditions shown in Table 15. Hot rolling No. shown in Table 15 79 and 82 to 84 are examples in which different peripheral speed rolling was performed by changing the different peripheral speed ratios in the final three stages of the finish rolling stand including all six stages, that is, four passes, five passes, and six passes. . All the hot rolling conditions not displayed in Table 15 are the same as in Example 5. In addition, hot rolling No. 81, 82 and 84 are examples in which the effective strain ε * is 0.4 or more.

実施例1と同様に、引張特性、穴広げ試験、1/6板厚部及び1/2板厚部の集合組織の測定、ヤング率の測定を行った。結果を表16に示す。これから明らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱延する際に1%以上の異周速圧延を1パス以上加えると、表層近傍での集合組織形成が促進され、更にヤング率が向上する。   In the same manner as in Example 1, tensile properties, hole expansion test, measurement of the texture of 1/6 plate thickness part and 1/2 plate thickness part, and measurement of Young's modulus were performed. The results are shown in Table 16. As is clear from this, when hot rolling the steel having the chemical component of the present invention under appropriate conditions, adding 1% or more of different peripheral speed rolling promotes the formation of a texture in the vicinity of the surface layer, Young's modulus is improved.

また、熱延No.81は、有効ひずみを0.4以上とした例であり、ヤング率が向上している。熱延No.84は異周速圧延を行い、更に有効ひずみを0.4以上とした例であり、240GPa程度の非常に高いヤング率に達する。   In addition, hot rolling No. 81 is an example in which the effective strain is 0.4 or more, and the Young's modulus is improved. Hot rolling No. No. 84 is an example in which different peripheral speed rolling is performed and the effective strain is set to 0.4 or more, which reaches a very high Young's modulus of about 240 GPa.

Figure 2009019265
Figure 2009019265

Figure 2009019265
Figure 2009019265

表12に示した鋼AFを用いて、表17に示す条件で熱間圧延を行った。表17に示した熱延No.87〜89は、全6段からなる仕上げ圧延スタンドの最終の3段、即ち、4パス、5パス及び6パスで、直径700mm以下のロールを使用して圧延を行った例である。なお、表17で表示されていない熱延条件は全て実施例5と同様である。また、熱延No.86、89は、有効ひずみε*を0.4以上とした例である。   Using steel AF shown in Table 12, hot rolling was performed under the conditions shown in Table 17. Hot rolling No. shown in Table 17 Nos. 87 to 89 are examples in which rolling is performed using a roll having a diameter of 700 mm or less in the final three stages of the finish rolling stand including all six stages, that is, four passes, five passes, and six passes. All the hot rolling conditions not displayed in Table 17 are the same as in Example 5. In addition, hot rolling No. 86 and 89 are examples in which the effective strain ε * is 0.4 or more.

実施例1と同様に、引張特性、穴広げ試験、1/6板厚部及び1/2板厚部の集合組織の測定、ヤング率の測定を行った。結果を表18に示す。これから明らかなとおり、本発明の化学成分を有する鋼を熱間圧延する際に小径ロールを使用することで、表層のせん断ひずみ量が増加し、よりヤング率を高めることが可能となる。   In the same manner as in Example 1, tensile properties, hole expansion test, measurement of the texture of 1/6 plate thickness part and 1/2 plate thickness part, and measurement of Young's modulus were performed. The results are shown in Table 18. As is apparent from this, when a steel having the chemical component of the present invention is hot-rolled, a small-diameter roll is used, so that the shear strain amount of the surface layer increases and the Young's modulus can be further increased.

また、熱延No.86は、有効ひずみを0.4以上とすることでヤング率が向上した例である。熱延No.89は小径ロールによる圧延を行い、更に有効ひずみを0.4以上とした例であり、圧延方向のヤング率が240GPa程度の非常に高い値に達する。   In addition, hot rolling No. 86 is an example in which the Young's modulus is improved by setting the effective strain to 0.4 or more. Hot rolling No. 89 is an example in which rolling is performed with a small-diameter roll and the effective strain is 0.4 or more, and the Young's modulus in the rolling direction reaches a very high value of about 240 GPa.

Figure 2009019265
Figure 2009019265

Figure 2009019265
Figure 2009019265

(式2)とヤング率との関係を示す図である。It is a figure which shows the relationship between (Formula 2) and Young's modulus. φ2=45°断面でのODFと主な方位を示す図である。It is a figure which shows ODF and main orientation in (phi) 2 = 45 degree cross section.

Claims (20)

質量%で、
C :0.005〜0.100%、
Si:2.50%以下、
Mn:0.10〜3.00%、
P :0.150%以下、
S :0.0150%以下、
Al:0.150%以下、
N :0.0100%以下、
Nb:0.005〜0.100% 、
Ti:0.002〜0.150%
を含有し、下記(式1)を満足し、残部がFe及び不可避的不純物からなり、ポリゴナルフェライト、ベイナイトの一方又は双方の面積率の合計が98%以上であるミクロ組織を有し、鋼板の表面からの板厚方向の距離が板厚の1/6である位置の、{100}<001>方位のX線ランダム強度比と{110}<001>方位のX線ランダム強度比との和が5以下であり、{110}<111>〜{110}<112>方位群のX線ランダム強度比の最大値と{211}<111>方位のX線ランダム強度比の和が5以上であることを特徴とする穴広げ性に優れた高ヤング率鋼板。
Ti−48/14×N≧0.0005 ・・・ (式1)
ここで、Ti、Nは各元素の含有量[質量%]である。
% By mass
C: 0.005 to 0.100%,
Si: 2.50% or less,
Mn: 0.10 to 3.00%,
P: 0.150% or less,
S: 0.0150% or less,
Al: 0.150% or less,
N: 0.0100% or less,
Nb: 0.005 to 0.100%,
Ti: 0.002 to 0.150%
And the following (formula 1) is satisfied, the balance is Fe and inevitable impurities, and the total area ratio of one or both of polygonal ferrite and bainite is 98% or more, and a steel plate Between the X-ray random intensity ratio in the {100} <001> orientation and the X-ray random intensity ratio in the {110} <001> orientation at a position where the distance in the thickness direction from the surface is 1/6 of the plate thickness The sum is 5 or less, and the sum of the maximum X-ray random intensity ratio of the {110} <111> to {110} <112> orientation group and the X-ray random intensity ratio of the {211} <111> orientation is 5 or more A high Young's modulus steel plate with excellent hole-expandability, characterized by
Ti-48 / 14 × N ≧ 0.0005 (Formula 1)
Here, Ti and N are content [mass%] of each element.
下記(式2)を満足することを特徴とする請求項1に記載の穴広げ性に優れた高ヤング率鋼板。
4≦3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr≦10・・・(式2)
ここで、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]である。
The high Young's modulus steel plate excellent in hole expansibility according to claim 1, wherein the following (Formula 2) is satisfied.
4 ≦ 3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr ≦ 10 (Formula 2)
Here, Mn, Mo, W, Ni, Cu, and Cr are the content [% by mass] of each element.
質量%で、
Mo:0.01〜1.00%
Cr:0.01〜3.00%、
W :0.01〜3.00%、
Cu:0.01〜3.00%、
Ni:0.01〜3.00%
の1種又は2種以上を含有し、これらの含有量の合計が5.00%以下であることを特徴とする請求項1又は2に記載の穴広げ性に優れた高ヤング率鋼板。
% By mass
Mo: 0.01 to 1.00%
Cr: 0.01 to 3.00%,
W: 0.01 to 3.00%
Cu: 0.01 to 3.00%,
Ni: 0.01 to 3.00%
The high Young's modulus steel plate excellent in hole expansibility according to claim 1 or 2, wherein the total content thereof is 5.00% or less.
質量%で、
B :0.0005〜0.0100%
を含有することを特徴とする請求項1〜3の何れか1項に記載の穴広げ性に優れた高ヤング率鋼板。
% By mass
B: 0.0005 to 0.0100%
The high Young's modulus steel plate excellent in hole expansibility according to any one of claims 1 to 3.
質量%で、
Ca:0.0005〜0.1000%、
Rem:0.0005〜0.1000%、
V :0.001〜0.100%
の1種又は2種以上を含有することを特徴とする請求項1〜4の何れか1項に記載の穴広げ性に優れた高ヤング率鋼板。
% By mass
Ca: 0.0005 to 0.1000%,
Rem: 0.0005 to 0.1000%,
V: 0.001 to 0.100%
The high Young's modulus steel plate excellent in hole expansibility according to any one of claims 1 to 4, characterized by containing one or more of the following.
鋼鈑の板厚方向の中央部の、{332}<113>方位のX線ランダム強度比(A)が15以下、{225}<110>方位のX線ランダム強度比(B)が5以上、かつ(A)/(B)≦1.00を満足することを特徴とする請求項1〜5の何れか1項に記載の穴広げ性に優れた高ヤング率鋼板。   The X-ray random intensity ratio (A) in the {332} <113> orientation at the center of the steel sheet thickness direction is 15 or less, and the X-ray random intensity ratio (B) in the {225} <110> orientation is 5 or more. And the high Young's modulus steel plate excellent in hole expansibility according to any one of claims 1 to 5, wherein (A) / (B) ≤1.00 is satisfied. 鋼鈑の板厚方向の中央部の、{332}<113>方位のX線ランダム強度比(A)が15以下、{001}<110>方位のX線ランダム強度比と{112}<110>方位のX線ランダム強度比との単純平均値(C)が5以上、かつ(A)/(C)≦1.10を満足することを特徴とする請求項1〜6の何れか1項に記載の穴広げ性に優れた高ヤング率鋼板。   The X-ray random intensity ratio (A) in the {332} <113> orientation at the center in the thickness direction of the steel sheet is 15 or less, the {001} <110> orientation X-ray random intensity ratio and the {112} <110 The simple average value (C) with respect to the X-ray random intensity ratio in the azimuth satisfies 5 or more and (A) / (C) ≦ 1.10 is satisfied. A high Young's modulus steel plate with excellent hole-expandability described in 1. 静的引張法で測定された圧延方向のヤング率が220GPa以上であることを特徴とする請求項1〜7の何れか1項に記載の穴広げ性に優れた高ヤング率鋼板。   The Young's modulus in the rolling direction measured by a static tensile method is 220 GPa or more, and the high Young's modulus steel plate excellent in hole expansibility according to any one of claims 1 to 7. 請求項1〜8の何れか1項に記載の高ヤング率鋼板に、溶融亜鉛めっきが施されていることを特徴とする穴広げ性に優れた高ヤング率溶融亜鉛メッキ鋼板。   A high Young's modulus hot-dip galvanized steel sheet excellent in hole expansibility, wherein the high Young's modulus steel sheet according to any one of claims 1 to 8 is hot-dip galvanized. 請求項1〜8の何れか1項に記載の高ヤング率鋼板に、合金化溶融亜鉛めっきが施されていることを特徴とする穴広げ性に優れた高ヤング率合金化溶融亜鉛メッキ鋼板。   A high Young's modulus galvannealed steel sheet excellent in hole expansibility, wherein the high Young's modulus steel sheet according to any one of claims 1 to 8 is alloyed galvanized. 請求項1〜10の何れか1項に記載の高ヤング率鋼板、高ヤング率溶融亜鉛メッキ鋼板又は高ヤング率合金化溶融亜鉛メッキ鋼板が任意の方向に巻かれていることを特徴とする穴広げ性に優れた高ヤング率鋼管。   A hole characterized in that the high Young's modulus steel sheet, the high Young's modulus hot-dip galvanized steel sheet or the high Young's modulus alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 10 is wound in an arbitrary direction. High Young's modulus steel pipe with excellent spreadability. 請求項1〜5の何れか1項に記載の化学成分を有する鋼片に、1100℃以下、最終パスまでの圧下率を40%以上とし、下記(式3)によって求められる形状比Xが2.3以上である圧延を2パス以上とし、最終パスの温度をAr3変態点[℃]以上900℃以下とする熱間圧延を施し、熱間圧延を終了後、5〜150℃/sの冷却速度で300℃超〜650℃まで冷却して巻き取ることを特徴とする穴広げ性に優れた高ヤング率鋼板の製造方法。
形状比X=ld/hm ・・・(式3)
ここで、ld(圧延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)
m :(hin+hout)/2
L :圧延ロールの直径
in:圧延ロール入側の板厚
out:圧延ロール出側の板厚
The shape ratio X calculated | required by the following (Formula 3) is made into the steel slab which has a chemical component of any one of Claims 1-5 to 1100 degrees C or less, and the rolling reduction rate to the last pass is 40% or more. .3 or more rolling is performed at 2 passes or more, and the final pass temperature is set to Ar 3 transformation point [° C.] or more and 900 ° C. or less, and after the hot rolling is finished, 5 to 150 ° C./s. A method for producing a high Young's modulus steel sheet having excellent hole expansibility, wherein the steel sheet is cooled to a temperature exceeding 300 ° C. to 650 ° C. at a cooling rate.
Shape ratio X = l d / h m (Equation 3)
Here, l d (contact arc length of rolling roll and steel plate): √ (L × (h in −h out ) / 2)
h m : (h in + h out ) / 2
L: Diameter of the rolling roll
h in : Thickness on the entry side of the rolling roll
h out : Plate thickness on the exit side of the rolling roll
下記(式5)によって計算される有効ひずみ量ε*が0.4以上となるように前記熱間圧延を行うことを特徴とする請求項12に記載の穴広げ性に優れた高ヤング率鋼板の製造方法。
Figure 2009019265
ここで、nは仕上げ熱延の圧延スタンド数、εjはj番目のスタンドで加えられたひずみ、εnはn番目のスタンドで加えられたひずみ、tiはi〜i+1番目のスタンド間の走行時間[s]、τiは気体常数R(=1.987)とi番目のスタンドの圧延温度Ti[K]によって下記(式6)で計算できる。
Figure 2009019265
The high Young's modulus steel plate with excellent hole expansibility according to claim 12, wherein the hot rolling is performed so that an effective strain amount ε * calculated by the following (formula 5) is 0.4 or more. Manufacturing method.
Figure 2009019265
Here, n is the number of finishing hot rolling rolling stands, ε j is the strain applied at the j-th stand, ε n is the strain applied at the n-th stand, and ti is between i to i + 1th stands. The traveling time [s] and τ i can be calculated by the following (formula 6) from the gas constant R (= 1.987) and the rolling temperature Ti [K] of the i-th stand.
Figure 2009019265
前記熱間圧延を実施する際にロール径が700mm以下の圧延ロールを少なくとも1つ以上使用することを特徴とする請求項12又は13に記載の穴広げ性に優れた高ヤング率鋼板の製造方法。   The method for producing a high Young's modulus steel plate with excellent hole expanding property according to claim 12 or 13, wherein at least one rolling roll having a roll diameter of 700 mm or less is used when performing the hot rolling. . 前記熱間圧延の、少なくとも1パス以上の異周速率を1%以上とすることを特徴とする請求項12〜14の何れか1項に記載の穴広げ性に優れた高ヤング率鋼板の製造方法。   The production of a high Young's modulus steel plate excellent in hole expansibility according to any one of claims 12 to 14, wherein a different peripheral speed ratio of at least one pass or more in the hot rolling is 1% or more. Method. 巻き取り後、さらに、最高加熱温度がAc1[℃]以下の温度範囲で焼鈍することを特徴とする請求項12〜15の何れか1項に記載の穴広げ性に優れた高ヤング率鋼板の製造
方法。
The steel sheet with high Young's modulus excellent in hole expansibility according to any one of claims 12 to 15, wherein the steel sheet is further annealed at a maximum heating temperature of Ac 1 [° C] or less after winding. Manufacturing method.
請求項12〜16の何れか1項に記載の製造方法で製造した穴広げ性に優れた高ヤング率鋼板に、溶融亜鉛メッキを施すことを特徴とする穴広げ性に優れた高ヤング率溶融亜鉛メッキ鋼板の製造方法。   A high Young's modulus fusion excellent in hole expansibility, characterized by subjecting the high Young's modulus steel plate excellent in hole expansibility manufactured by the manufacturing method according to any one of claims 12 to 16 to hot dip galvanization. Manufacturing method of galvanized steel sheet. 前記溶融亜鉛メッキを、熱間圧延に続く連続ラインにて施すことを特徴とする請求項17に記載の穴広げ性に優れた高ヤング率溶融亜鉛メッキ鋼板の製造方法。   The method for producing a high Young's modulus hot-dip galvanized steel sheet having excellent hole expanding property according to claim 17, wherein the hot-dip galvanizing is performed in a continuous line following hot rolling. 請求項17又は18記載の溶融亜鉛メッキを施した後、450〜600℃までの温度範囲で5s以上の熱処理を行うことを特徴とする穴広げ性に優れた高ヤング率合金化溶融亜鉛メッキ鋼板の製造方法。   19. A high Young's modulus galvannealed steel sheet excellent in hole expansibility, which is subjected to a heat treatment for 5 seconds or more in a temperature range of 450 to 600 ° C. after the hot dip galvanizing according to claim 17 or 18. Manufacturing method. 請求項12〜19のいずれか1項に記載の製造方法により得られた高ヤング率鋼板、高ヤング率溶融亜鉛メッキ鋼板又は高ヤング率合金化溶融亜鉛メッキ鋼板を任意の方向に巻いて鋼管にすることを特徴とする穴広げ性に優れた高ヤング率鋼管の製造方法。   A high Young's modulus steel plate, a high Young's modulus hot-dip galvanized steel plate or a high Young's modulus alloyed hot-dip galvanized steel plate obtained by the production method according to any one of claims 12 to 19 is wound in an arbitrary direction into a steel pipe. A method for producing a high Young's modulus steel pipe excellent in hole expansibility.
JP2008108045A 2007-06-12 2008-04-17 High Young's modulus steel plate excellent in hole expansibility and method for producing the same Active JP5037415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108045A JP5037415B2 (en) 2007-06-12 2008-04-17 High Young's modulus steel plate excellent in hole expansibility and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007155075 2007-06-12
JP2007155075 2007-06-12
JP2008108045A JP5037415B2 (en) 2007-06-12 2008-04-17 High Young's modulus steel plate excellent in hole expansibility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009019265A true JP2009019265A (en) 2009-01-29
JP5037415B2 JP5037415B2 (en) 2012-09-26

Family

ID=40359161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108045A Active JP5037415B2 (en) 2007-06-12 2008-04-17 High Young's modulus steel plate excellent in hole expansibility and method for producing the same

Country Status (1)

Country Link
JP (1) JP5037415B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001775A (en) * 2010-06-17 2012-01-05 Nippon Steel Corp High-strength hot-rolled steel sheet excelling in burring property, and method for manufacturing the same
WO2012133636A1 (en) * 2011-03-31 2012-10-04 新日本製鐵株式会社 Bainite-containing high-strength hot-rolled steel plate with excellent isotropic workability and process for producing same
CN102839323A (en) * 2012-09-25 2012-12-26 鞍钢股份有限公司 Steel for building structure and production method thereof
WO2013102988A1 (en) * 2012-01-06 2013-07-11 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
JP2013209723A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet having excellent formability and low temperature toughness, and manufacturing method thereof
WO2014021382A1 (en) 2012-07-31 2014-02-06 新日鐵住金株式会社 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets
CN104264052A (en) * 2014-10-30 2015-01-07 湖南华菱涟源钢铁有限公司 Steel plate for engineering machinery and production method of steel plate
JP2015028207A (en) * 2013-06-25 2015-02-12 新日鐵住金株式会社 High-strength hot rolling steel sheet and production method thereof
WO2015033933A1 (en) * 2013-09-04 2015-03-12 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working
JP2015057514A (en) * 2013-08-12 2015-03-26 Jfeスチール株式会社 Hot rolled steel sheet excellent in heat treatment hardenability and production method thereof, and high strength member
EP2762582A4 (en) * 2011-09-30 2015-12-02 Nippon Steel & Sumitomo Metal Corp High-strength galvannealed steel sheet of high bake hardenability, high-strength alloyed galvannealed steel sheet, and method for manufacturing same
WO2016132545A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
WO2016132549A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
WO2016132542A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
WO2016135896A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
WO2016135898A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
CN106282828A (en) * 2016-08-31 2017-01-04 宁波瑞国精机工业有限公司 Hollow pillar
WO2017012958A1 (en) 2015-07-17 2017-01-26 Salzgitter Flachstahl Gmbh Method for producing a hot-rolled strip composed of a bainitic multi-phase steel and having a zn-mg-al coating, and corresponding hot-rolled strip
JP2017101299A (en) * 2015-12-03 2017-06-08 新日鐵住金株式会社 Hot rolled steel sheet and production method therefor
JP2017206764A (en) * 2016-05-20 2017-11-24 新日鐵住金株式会社 High strength hot rolled steel sheet excellent in hole expandability and weld zone fatigue property and manufacturing method therefor
EP3153598A4 (en) * 2014-07-14 2017-11-29 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
EP3162908A4 (en) * 2014-07-14 2017-11-29 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
TWI613298B (en) * 2017-03-31 2018-02-01 Nippon Steel & Sumitomo Metal Corp Hot rolled steel sheet
WO2018026014A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
WO2018026013A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
WO2018026016A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
WO2018026015A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
WO2018066249A1 (en) * 2016-10-03 2018-04-12 新日鐵住金株式会社 Electric resistance-welded steel pipe for torsion beam
WO2018150955A1 (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
WO2018179387A1 (en) 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet
WO2018179388A1 (en) 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet
CN109280859A (en) * 2018-10-19 2019-01-29 北京科技大学 A kind of preparation method of the easy expansion sleeve tubing of petroleum drilling and mining
JP2020525652A (en) * 2017-07-06 2020-08-27 ポスコPosco Ultra-high-strength hot-rolled steel sheet with excellent surface quality with little material variation and method for producing the same
WO2022180956A1 (en) * 2021-02-26 2022-09-01 日本製鉄株式会社 Steel sheet and method for producing same
WO2023007876A1 (en) 2021-07-27 2023-02-02 日本製鉄株式会社 Hot-rolled steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017015325A (en) 2015-05-29 2018-03-16 Jfe Steel Corp High strength steel sheet and method for producing same.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146640A (en) * 1989-10-28 1991-06-21 Kobe Steel Ltd High strength hot rolled steel sheet excellent in workability and its manufacture
JPH06240355A (en) * 1993-02-22 1994-08-30 Sumitomo Metal Ind Ltd Production of high toughness thick tmcp steel plate
JP2003055739A (en) * 2001-06-05 2003-02-26 Nippon Steel Corp Ferritic steel plate with excellent shape freezing property
JP2003253339A (en) * 2002-02-28 2003-09-10 Nisshin Steel Co Ltd Process for manufacturing high-strength hot-rolled steel plate showing excellent material uniformity and bore expandability and steel plate
WO2006011503A1 (en) * 2004-07-27 2006-02-02 Nippon Steel Corporation High young’s modulus steel plate, zinc hot dip galvanized steel sheet using the same, alloyed zinc hot dip galvanized steel sheet, high young’s modulus steel pipe, and method for production thereof
JP2007046146A (en) * 2004-11-15 2007-02-22 Nippon Steel Corp High young's modulus steel plate, hot dip galvanized steel sheet using the same, hot dip galvannealed steel sheet, high young's modulus steel pipe, high young's modulus hot dip galvanized steel pipe, high young's modulus hot dip galvannealed steel pipe, and method for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146640A (en) * 1989-10-28 1991-06-21 Kobe Steel Ltd High strength hot rolled steel sheet excellent in workability and its manufacture
JPH06240355A (en) * 1993-02-22 1994-08-30 Sumitomo Metal Ind Ltd Production of high toughness thick tmcp steel plate
JP2003055739A (en) * 2001-06-05 2003-02-26 Nippon Steel Corp Ferritic steel plate with excellent shape freezing property
JP2003253339A (en) * 2002-02-28 2003-09-10 Nisshin Steel Co Ltd Process for manufacturing high-strength hot-rolled steel plate showing excellent material uniformity and bore expandability and steel plate
WO2006011503A1 (en) * 2004-07-27 2006-02-02 Nippon Steel Corporation High young’s modulus steel plate, zinc hot dip galvanized steel sheet using the same, alloyed zinc hot dip galvanized steel sheet, high young’s modulus steel pipe, and method for production thereof
JP2007046146A (en) * 2004-11-15 2007-02-22 Nippon Steel Corp High young's modulus steel plate, hot dip galvanized steel sheet using the same, hot dip galvannealed steel sheet, high young's modulus steel pipe, high young's modulus hot dip galvanized steel pipe, high young's modulus hot dip galvannealed steel pipe, and method for production thereof

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001775A (en) * 2010-06-17 2012-01-05 Nippon Steel Corp High-strength hot-rolled steel sheet excelling in burring property, and method for manufacturing the same
WO2012133636A1 (en) * 2011-03-31 2012-10-04 新日本製鐵株式会社 Bainite-containing high-strength hot-rolled steel plate with excellent isotropic workability and process for producing same
US9587287B2 (en) 2011-03-31 2017-03-07 Nippon Steel and Sumitomo Metal Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
US10364478B2 (en) 2011-03-31 2019-07-30 Nippon Steel Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
JP5376089B2 (en) * 2011-03-31 2013-12-25 新日鐵住金株式会社 Bainite-containing high-strength hot-rolled steel sheet excellent in isotropic workability and manufacturing method thereof
EP2762582A4 (en) * 2011-09-30 2015-12-02 Nippon Steel & Sumitomo Metal Corp High-strength galvannealed steel sheet of high bake hardenability, high-strength alloyed galvannealed steel sheet, and method for manufacturing same
CN104040002A (en) * 2012-01-06 2014-09-10 杰富意钢铁株式会社 High strength hot-rolled steel sheet and method for producing same
US10138536B2 (en) 2012-01-06 2018-11-27 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for producing same
JP5505572B2 (en) * 2012-01-06 2014-05-28 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
WO2013102988A1 (en) * 2012-01-06 2013-07-11 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
JP2013209723A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet having excellent formability and low temperature toughness, and manufacturing method thereof
US9879336B2 (en) 2012-07-31 2018-01-30 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold rolled steel sheet, and manufacturing methods of the same
KR20150029741A (en) 2012-07-31 2015-03-18 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets
WO2014021382A1 (en) 2012-07-31 2014-02-06 新日鐵住金株式会社 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets
CN102839323A (en) * 2012-09-25 2012-12-26 鞍钢股份有限公司 Steel for building structure and production method thereof
JP2015028207A (en) * 2013-06-25 2015-02-12 新日鐵住金株式会社 High-strength hot rolling steel sheet and production method thereof
JP2015057514A (en) * 2013-08-12 2015-03-26 Jfeスチール株式会社 Hot rolled steel sheet excellent in heat treatment hardenability and production method thereof, and high strength member
WO2015033933A1 (en) * 2013-09-04 2015-03-12 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working
US10226800B2 (en) 2014-07-14 2019-03-12 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
EP3162908A4 (en) * 2014-07-14 2017-11-29 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
EP3153598A4 (en) * 2014-07-14 2017-11-29 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
US9896737B2 (en) 2014-07-14 2018-02-20 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
CN104264052A (en) * 2014-10-30 2015-01-07 湖南华菱涟源钢铁有限公司 Steel plate for engineering machinery and production method of steel plate
WO2016132549A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
WO2016132545A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
WO2016133222A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
JPWO2016133222A1 (en) * 2015-02-20 2017-12-28 新日鐵住金株式会社 Hot rolled steel sheet
TWI600774B (en) * 2015-02-20 2017-10-01 新日鐵住金股份有限公司 Hot rolled steel sheet
JPWO2016132542A1 (en) * 2015-02-20 2017-10-05 新日鐵住金株式会社 Hot rolled steel sheet
JPWO2016132545A1 (en) * 2015-02-20 2017-11-30 新日鐵住金株式会社 Hot rolled steel sheet
WO2016132542A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
KR101980471B1 (en) 2015-02-25 2019-05-21 닛폰세이테츠 가부시키가이샤 Hot-rolled steel sheet
KR20170106459A (en) * 2015-02-25 2017-09-20 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
CN107406933A (en) * 2015-02-25 2017-11-28 新日铁住金株式会社 Hot rolled steel plate
JPWO2016136672A1 (en) * 2015-02-25 2017-11-24 新日鐵住金株式会社 Hot rolled steel sheet
WO2016135898A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
JPWO2016135896A1 (en) * 2015-02-25 2017-10-12 新日鐵住金株式会社 Hot rolled steel sheet
TWI600775B (en) * 2015-02-25 2017-10-01 新日鐵住金股份有限公司 Hot rolled steel sheet
KR20170107556A (en) * 2015-02-25 2017-09-25 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
EP3263731A4 (en) * 2015-02-25 2019-01-16 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet or plate
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
WO2016136672A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
KR101988149B1 (en) * 2015-02-25 2019-06-12 닛폰세이테츠 가부시키가이샤 Hot-rolled steel sheet
WO2016135896A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
CN107406929A (en) * 2015-02-25 2017-11-28 新日铁住金株式会社 Hot rolled steel plate
US11512364B2 (en) 2015-07-17 2022-11-29 Salzgitter Flachstahl Gmbh Method for producing a hot strip of a bainitic multi-phase steel having a Zn—Mg—Al coating, and a corresponding hot strip
WO2017012958A1 (en) 2015-07-17 2017-01-26 Salzgitter Flachstahl Gmbh Method for producing a hot-rolled strip composed of a bainitic multi-phase steel and having a zn-mg-al coating, and corresponding hot-rolled strip
EP3325684B1 (en) 2015-07-17 2020-03-04 Salzgitter Flachstahl GmbH Method for manufacturing a hot-rolled bainitic multiphase steel sheet having a zn-mg-al-coating and a corresponding hot-rolled steel sheet
JP2017101299A (en) * 2015-12-03 2017-06-08 新日鐵住金株式会社 Hot rolled steel sheet and production method therefor
JP2017206764A (en) * 2016-05-20 2017-11-24 新日鐵住金株式会社 High strength hot rolled steel sheet excellent in hole expandability and weld zone fatigue property and manufacturing method therefor
WO2018026014A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
US11230755B2 (en) 2016-08-05 2022-01-25 Nippon Steel Corporation Steel sheet and plated steel sheet
JP6358406B2 (en) * 2016-08-05 2018-07-18 新日鐵住金株式会社 Steel plate and plated steel plate
JP6358407B2 (en) * 2016-08-05 2018-07-18 新日鐵住金株式会社 Steel plate and plated steel plate
JP6354916B2 (en) * 2016-08-05 2018-07-11 新日鐵住金株式会社 Steel plate and plated steel plate
JPWO2018026013A1 (en) * 2016-08-05 2018-08-02 新日鐵住金株式会社 Steel plate and plated steel plate
JP6354917B2 (en) * 2016-08-05 2018-07-11 新日鐵住金株式会社 Steel plate and plated steel plate
US11649531B2 (en) 2016-08-05 2023-05-16 Nippon Steel Corporation Steel sheet and plated steel sheet
WO2018026015A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
WO2018026016A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
WO2018026013A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
CN106282828A (en) * 2016-08-31 2017-01-04 宁波瑞国精机工业有限公司 Hollow pillar
WO2018066249A1 (en) * 2016-10-03 2018-04-12 新日鐵住金株式会社 Electric resistance-welded steel pipe for torsion beam
US11028456B2 (en) 2016-10-03 2021-06-08 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe for torsion beam
JP6315157B1 (en) * 2016-10-03 2018-04-25 新日鐵住金株式会社 ERW steel pipe for torsion beam
US11603571B2 (en) 2017-02-17 2023-03-14 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for producing the same
WO2018150955A1 (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
JP6394841B1 (en) * 2017-02-17 2018-09-26 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
WO2018179387A1 (en) 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet
WO2018179388A1 (en) 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet
US10900100B2 (en) 2017-03-31 2021-01-26 Nippon Steel Corporation Hot rolled steel sheet
KR20190135505A (en) 2017-03-31 2019-12-06 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet
US10894996B2 (en) 2017-03-31 2021-01-19 Nippon Steel Corporation Hot rolled steel sheet
KR20190135509A (en) 2017-03-31 2019-12-06 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet
TWI613298B (en) * 2017-03-31 2018-02-01 Nippon Steel & Sumitomo Metal Corp Hot rolled steel sheet
US11421295B2 (en) 2017-07-06 2022-08-23 Posco Ultra high strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality, and method for manufacturing same
JP2020525652A (en) * 2017-07-06 2020-08-27 ポスコPosco Ultra-high-strength hot-rolled steel sheet with excellent surface quality with little material variation and method for producing the same
CN109280859A (en) * 2018-10-19 2019-01-29 北京科技大学 A kind of preparation method of the easy expansion sleeve tubing of petroleum drilling and mining
WO2022180956A1 (en) * 2021-02-26 2022-09-01 日本製鉄株式会社 Steel sheet and method for producing same
WO2023007876A1 (en) 2021-07-27 2023-02-02 日本製鉄株式会社 Hot-rolled steel sheet
KR20230158061A (en) 2021-07-27 2023-11-17 닛폰세이테츠 가부시키가이샤 hot rolled steel plate

Also Published As

Publication number Publication date
JP5037415B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5037415B2 (en) High Young&#39;s modulus steel plate excellent in hole expansibility and method for producing the same
JP5228447B2 (en) High Young&#39;s modulus steel plate and method for producing the same
US11313009B2 (en) Hot-rolled steel sheet and method for manufacturing same
JP5053157B2 (en) High strength high Young&#39;s modulus steel plate with good press formability, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof
JP6179675B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
US9988700B2 (en) High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof
US9028626B2 (en) Method for manufacturing high strength galvanized steel sheet with excellent formability
EP2757169B1 (en) High-strength steel sheet having excellent workability and method for producing same
JP6179674B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
JP5058508B2 (en) Low yield ratio type high Young&#39;s modulus steel plate, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof
JP4555693B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5464302B2 (en) Cold-rolled steel sheet and manufacturing method thereof
JP5217395B2 (en) High strength cold-rolled steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP5037413B2 (en) Low yield ratio high Young&#39;s modulus steel sheet, hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, steel pipe, and production method thereof
JP5088021B2 (en) High-rigidity, high-strength cold-rolled steel sheet and manufacturing method thereof
JP6264861B2 (en) High Young&#39;s modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
JP2018003114A (en) High strength steel sheet and manufacturing method therefor
JP5708320B2 (en) Cold rolled steel sheet
JP6589710B2 (en) High Young&#39;s modulus ultrathin steel plate excellent in deep drawability and method for producing the same
JP5644703B2 (en) Cold rolled steel sheet manufacturing method
WO2022054221A1 (en) Steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5037415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350