WO2015033933A1 - Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working - Google Patents

Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working Download PDF

Info

Publication number
WO2015033933A1
WO2015033933A1 PCT/JP2014/073075 JP2014073075W WO2015033933A1 WO 2015033933 A1 WO2015033933 A1 WO 2015033933A1 JP 2014073075 W JP2014073075 W JP 2014073075W WO 2015033933 A1 WO2015033933 A1 WO 2015033933A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
steel
hot
hardness
Prior art date
Application number
PCT/JP2014/073075
Other languages
French (fr)
Japanese (ja)
Inventor
梶原 桂
▲琢▼哉 高知
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to DE112014004028.2T priority Critical patent/DE112014004028T5/en
Priority to US14/913,432 priority patent/US20160201172A1/en
Priority to MX2016002690A priority patent/MX2016002690A/en
Priority to CN201480048219.7A priority patent/CN105492645A/en
Publication of WO2015033933A1 publication Critical patent/WO2015033933A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a hot-rolled steel sheet that exhibits good cold workability during processing, and exhibits predetermined surface properties (also referred to as “surface quality”) and post-working hardness after processing.
  • cold working (cold forging) has advantages of higher productivity than hot working and warm working and good dimensional accuracy and yield of steel materials.
  • the problem in manufacturing parts by such cold working is that in order to ensure the strength of the cold-worked parts to be higher than the expected value, the strength, ie deformation, is inevitably required. It is necessary to use a steel material with high resistance. However, the higher the deformation resistance of the steel material used, the shorter the service life of the cold working mold.
  • SS marks stretcher strain marks
  • This steel material realizes both cold workability and high hardness (high strength) after processing, but is a hot forging material, like the wire rod and bar steel described in Patent Document 1 above.
  • the manufacturing cost is high. Therefore, in order to further reduce the manufacturing cost, it has been studied to produce automobile parts by cold working using hot-rolled steel sheets instead of the conventional hot forging materials.
  • Patent Document 3 For example, a hot-rolled steel sheet for nitriding that has a high surface hardness and a sufficient hardening depth after nitriding has been proposed (see Patent Document 3).
  • N is limited to a very low content as a harmful element, and the technical idea is completely different from the hot-rolled steel sheet according to the present invention that actively uses N. It is.
  • the present invention has been made by paying attention to the above circumstances, and its object is to provide a hot-rolled steel sheet that exhibits a good cold workability during processing and exhibits a predetermined surface property and hardness after processing. There is.
  • the invention described in claim 1 The plate thickness is 3-20mm, Ingredient composition % By mass (hereinafter the same for chemical components) C: 0.3% or less (excluding 0%), Si: 0.5% or less (excluding 0%), Mn: 0.2 to 1% P: 0.05% or less (excluding 0%), S: 0.05% or less (excluding 0%), Al: 0.01 to 0.1%, N: 0.008 to 0.025%, The balance consists of iron and inevitable impurities, Solid solution N: 0.007% or more, and The content of C and N satisfies the relationship of 10C + N ⁇ 3.0, Organization The area ratio for all tissues Bainitic ferrite: 5% or more Perlite: less than 20% The rest: polygonal ferrite, A hot rolled steel sheet excellent in cold workability, surface properties and hardness after processing, characterized in that the average crystal grain size of the bainitic ferrite is in the range of 3 to 50 ⁇ m.
  • the component composition further contains at least one of the following (a) to (e).
  • a solid solution N amount is ensured, and the C content and the N content have a predetermined relationship.
  • the hot-rolled steel sheet according to the present invention (hereinafter also referred to as “the steel sheet of the present invention” or simply “the steel sheet”) will be described in more detail.
  • the steel sheet of the present invention is common to the hot forging material described in Patent Document 2 above in that the N solid solution amount is ensured and the C content and the N content satisfy a predetermined relationship. The difference is that the C content is allowed to a higher range, the structure is a bainitic ferrite-polygonal ferrite-pearlite double phase structure, and the bainitic ferrite grains are refined.
  • the steel sheet of the present invention has a thickness of 3 to 20 mm. If the plate thickness is less than 3 mm, rigidity as a structure cannot be secured. On the other hand, if the plate thickness exceeds 20 mm, it is difficult to achieve the tissue form defined in the present invention, and the desired effect cannot be obtained.
  • a preferred plate thickness is 4 to 19 mm.
  • Component composition of the steel sheet of the present invention ⁇ C: 0.3% or less (excluding 0%)>
  • C is an element that has a great influence on the formation of the structure of a steel sheet, and the structure is bainitic ferrite-polygonal ferrite-pearlite multiphase structure, but bainitic ferrite-polygonal ferrite mainly containing as little pearlite as possible. It is an element whose content needs to be limited in order to form a structure.
  • C is contained excessively, the pearlite fraction in the steel sheet structure increases, and the deformation resistance may be excessive due to work hardening of the pearlite.
  • the C content in the steel sheet is limited to 0.3% or less, preferably 0.25% or less, more preferably 0.2% or less, and particularly preferably 0.15% or less.
  • the content of C is too small, deoxidation during the melting of steel becomes difficult, and it becomes difficult to satisfy the strength and hardness after cold working, so 0.0005% or more, more preferably Is 0.0008% or more, particularly preferably 0.001% or more.
  • Si 0.5% or less (excluding 0%)>
  • Si is an element that needs to be reduced as much as possible in order to increase the deformation resistance of the steel sheet by dissolving in steel. Therefore, the Si content in the steel sheet is 0.5% or less, preferably 0.45% or less, more preferably 0.4% or less, and particularly preferably 0.3% or less in order to suppress an increase in deformation resistance. Restrict to. However, if the Si content is extremely small, deoxidation during melting becomes difficult, and it becomes difficult to satisfy the strength and hardness after cold working, so 0.005% or more, more preferably 0.008% or more, particularly preferably 0.01% or more.
  • Mn is an element having a deoxidizing and desulfurizing action in the steel making process. Furthermore, when the content of N in the steel material is increased, cracks are likely to occur due to dynamic strain aging due to heat generation during processing. On the other hand, Mn improves the workability at that time and has the effect of suppressing cracks. . In order to effectively exhibit these actions, the Mn content in the steel material is 0.2% or more, preferably 0.22% or more, and more preferably 0.25% or more. However, if the Mn content is excessive, deformation resistance becomes excessive and nonuniformity of the structure due to segregation occurs. Therefore, it is 1% or less, preferably 0.98% or less, and more preferably 0.95% or less.
  • P 0.05% or less (excluding 0%)>
  • P is an impurity element inevitably contained in the steel, but if it is contained in ferrite, it segregates at the ferrite grain boundaries and degrades the cold workability. It is an element that causes an increase. Therefore, it is desirable to reduce the P content as much as possible from the viewpoint of cold workability. However, since extreme reduction leads to an increase in steelmaking costs, it is 0.05% or less, preferably in consideration of process capability. 0.03% or less.
  • S 0.05% or less (excluding 0%)>
  • S is an unavoidable impurity and is an element that precipitates in the form of a film at the grain boundary as FeS and degrades workability. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, in the present invention, the S content is set to 0.05% or less, preferably 0.03% or less. However, it is industrially difficult to reduce the S content to zero. In addition, since S has an effect of improving machinability, it is recommended to contain 0.002% or more, more preferably 0.006% or more from the viewpoint of improving machinability.
  • Al is an element effective for deoxidation in the steelmaking process.
  • the Al content in the steel material is set to 0.01% or more, preferably 0.015% or more, and more preferably 0.02% or more.
  • the Al content is 0.1% or less, preferably 0.09% or less, and more preferably 0.08% or less.
  • N is an important element for obtaining a predetermined strength by static strain aging after processing. Therefore, the N content in the steel material is 0.008% or more, preferably 0.0085% or more, and more preferably 0.009% or more. However, if the N content is excessive, in addition to static strain aging, the influence of dynamic strain aging during processing becomes significant, and deformation resistance increases, which is unsuitable. Therefore, 0.025% or less, preferably 0 0.02% or less, more preferably 0.02% or less.
  • Solid solution N amount a predetermined amount of solid solution N in the steel sheet
  • the amount of solute N needs to be 0.007% or more.
  • the amount of solute N is excessive, the cold workability is deteriorated and the amount of solute N fixed to the processing strain is also increased, so that SS marks are easily generated and the surface properties are also deteriorated. Is 0.03% or less.
  • content of N in steel materials is 0.025% or less, the amount of solute N does not become 0.025% or more substantially.
  • the solid solution N amount in the present invention is an amount obtained by subtracting the amount of all N compounds from the total N amount in the steel material in accordance with JIS G 1228.
  • a practical method for measuring the amount of dissolved N will be exemplified below.
  • the sample material is dissolved in this 10% AA-based electrolyte, and the resulting insoluble residue (N compound) is filtered through a polycarbonate filter having a hole size of 0.1 ⁇ m.
  • the obtained insoluble residue is decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and the decomposition product is combined with the filtrate.
  • steam distillation is performed, and the distilled ammonia is absorbed in dilute sulfuric acid.
  • phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and the absorbance is measured using an absorptiometer to determine the total N compound amount.
  • the amount of solid solution N can be calculated
  • the content of C and N satisfies the relationship of 10C + N ⁇ 3.0>
  • solid solution C greatly increases deformation resistance and does not contribute much to static strain aging
  • solid solution N promotes static strain aging without significantly increasing deformation resistance. Therefore, the hardness after processing can be increased. Therefore, in the steel material of the present invention, in order to increase the hardness after processing without significantly increasing the deformation resistance during processing, the content of C and the content of N are 10C + N ⁇ 3.0. It is essential to satisfy the relationship, preferably 0.009 ⁇ 10C + N ⁇ 2.8, more preferably 0.01 ⁇ 10C + N ⁇ 2.5, and particularly preferably 0.01 ⁇ 10C + N ⁇ 2.0.
  • a C content and a solute C content are required to some extent, but when 10C + N> 3.0, C and / or N The amount becomes excessive and the deformation resistance becomes excessive.
  • the coefficient of the C content is set to 10 times the coefficient of the N content because the solid solution C has the same content as the solid solution N but the strength in the hot-rolled steel sheet of the present invention. Further, it is considered that the degree of increasing the deformation resistance is about one digit (10 times) larger.
  • the steel of the present invention basically contains the above components, and the balance is iron and inevitable impurities, but the following permissible components can be added as long as the effects of the present invention are not impaired.
  • Cr is an element that has the effect of improving the deformability of steel by increasing the strength of the grain boundaries.
  • Cr is preferably contained in an amount of 0.2% or more. .
  • the content is recommended to be 2% or less, more preferably 1.5% or less, especially 1% or less. Is done.
  • Mo is an element having an action of increasing the hardness and deformability of the steel material after processing. In order to effectively exhibit such action, Mo is 0.04% or more, more preferably 0. It is preferable to contain 0.08% or more. However, if Mo is excessively contained, the cold workability may be deteriorated. Therefore, the content is recommended to be 2% or less, further 1.5% or less, particularly 1% or less.
  • ⁇ Ti 0.2% or less (excluding 0%), Nb: 0.2% or less (excluding 0%), V: at least one selected from the group consisting of 0.2% or less (excluding 0%)>
  • Nb 0.2% or less (excluding 0%)
  • V at least one selected from the group consisting of 0.2% or less (excluding 0%)>
  • These elements have a strong affinity for N, coexist with N to form N compounds, refine steel grains, improve the toughness of processed products obtained after cold working, and improve crack resistance. It is an element that has a role to improve. However, even if each element is contained exceeding the upper limit value, the effect of improving the characteristics cannot be obtained. It is recommended that the content of each element is 0.2% or less, further 0.001 to 0.15%, particularly 0.002 to 0.1%.
  • ⁇ B 0.005% or less (excluding 0%)>
  • B like Ti, Nb, and V, has a strong affinity with N, and coexists with N to form an N compound, refines the grain of steel, and improves the toughness of the workpiece obtained after cold working And an element having a role of improving crack resistance. Therefore, when the steel sheet of the present invention contains B, the required solid solution N amount can be secured and the strength after cold working can be improved, so the content is 0.005% or less, and further 0 0.0001 to 0.0035%, especially 0.0002 to 0.002% is recommended.
  • ⁇ Cu 5% or less (excluding 0%), Ni: 5% or less (excluding 0%), Co: at least one selected from the group consisting of 5% or less (excluding 0%)>
  • All of these elements have the effect of strain aging and hardening the steel material, and are effective in improving the strength after processing. In order to effectively exhibit such an action, these elements are preferably contained in an amount of 0.1% or more, and more preferably 0.3% or more. However, if the content of these elements is excessive, the effects of strain aging and hardening of the steel material, and the effect of improving the strength after processing are saturated, and there is a possibility of promoting cracking. In the following, 4% or less, particularly 3% or less is recommended.
  • Ca is an element that spheroidizes sulfide compound inclusions such as MnS, improves the deformability of steel, and contributes to improvement of machinability.
  • Ca is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
  • REM is an element that, like Ca, spheroidizes compound inclusions such as MnS to increase the deformability of steel and contribute to the improvement of machinability.
  • REM is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more.
  • REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium).
  • it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.
  • Mg is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability.
  • Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more.
  • 0.02% or less is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability.
  • Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more.
  • 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
  • Li can spheroidize sulfide compound inclusions such as MnS and increase the deformability of steel like Ca, and lower the melting point of Al-based oxides to make them harmless and improve machinability. It is a contributing element.
  • Li is preferably contained in an amount of 0.0002% or more, and more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
  • Pb is an effective element for improving machinability.
  • Pb is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, if it is contained excessively, production problems such as generation of rolling defects occur, so 0.5% or less, further 0.4% or less, particularly 0.3% or less is recommended.
  • Bi is an element effective for improving the machinability like Pb.
  • Bi is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more.
  • the effect of improving the machinability is saturated even if contained excessively, 0.5% or less, further 0.4% or less, and particularly 0.3% or less are recommended.
  • the steel sheet of the present invention is based on bainitic ferrite-polygonal ferrite pearlite double phase steel, and is particularly characterized by controlling the bainitic ferrite grain size within a specific range. To do.
  • the structure of the steel sheet of the present invention is composed of a multiphase structure of bainitic ferrite, polygonal ferrite and pearlite.
  • Bainitic ferrite has the effect of improving the workability during cold working and increasing the hardness after processing while suppressing the occurrence of stretcher strain marks.
  • the area ratio is 5% or more, preferably 10% or more, and more preferably 15% or more.
  • the pearlite is less than 20% in area ratio, more preferably 19% or less, still more preferably 18% or less, and particularly preferably 15% or less.
  • the balance is polygonal ferrite.
  • a cementite phase is also present in the structure of the steel sheet of the present invention, but the area ratio is at most 1% or less, so in this specification, The area ratios of tick ferrite, polygonal ferrite, and pearlite were defined as those normalized so that the total area ratio of these three phases was 100%.
  • ⁇ Average crystal grain size of the bainitic ferrite in the range of 3 to 50 ⁇ m>
  • the average grain size of bainitic ferrite constituting the bainitic ferrite structure needs to be in the range of 3 to 50 ⁇ m in order to improve the workability of the steel sheet and satisfy the surface properties after processing. . If the bainitic ferrite grains become too fine, the deformation resistance becomes too high, so the average crystal grain size is 3 ⁇ m or more, preferably 4 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the average crystal grain size is 50 ⁇ m or less, preferably 45 ⁇ m or less, more preferably 40 ⁇ m. The following.
  • Polygonal ferrite is defined as ferrite grains having equiaxed crystal grains and an aspect ratio (major axis / minor axis ratio) of less than 2.
  • the average crystal grain size of the bainitic ferrite can be measured as follows. That is, the crystal grain size of bainitic ferrite existing at three locations, the outermost layer portion, the plate thickness 1 ⁇ 4 portion, and the plate thickness center portion, is measured. As for the particle size of one bainitic ferrite particle, the side part in the rolling direction of each measurement point was subjected to nital corrosion, and the corresponding part was photographed with five fields of view with a scanning electron microscope (SEM; magnification 1000 times). The average crystal grain size of ferrite crystal grains was determined based on the center of gravity diameter by image analysis.
  • the steel plate of the present invention may be produced according to any method as long as the raw steel having the above composition can be formed into a desired plate thickness. For example, it can be carried out by preparing a molten steel having the above component composition in a converter under the conditions shown below, slab this by ingot casting or continuous casting, and then rolling it into a hot-rolled steel sheet having a desired thickness. .
  • the N content in the molten steel is adjusted by adding a raw material containing an N compound to the molten steel and / or controlling the converter atmosphere to an N 2 atmosphere during melting in the converter. can do.
  • Heating before hot rolling is performed at 1100 to 1300 ° C. This heating requires high-temperature heating conditions in order to dissolve as much N as possible without producing an N compound.
  • the minimum with a preferable heating temperature is 1100 degreeC, and a more preferable minimum is 1150 degreeC.
  • temperatures exceeding 1300 ° C. are difficult to operate.
  • Hot rolling is performed so that the finish rolling temperature is 880 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation will occur at a high temperature, and the precipitated carbides in ferrite (generically referred to as bainitic ferrite and polygonal ferrite) will become coarse and fatigue strength will deteriorate.
  • the above finish rolling temperature is required.
  • the finish rolling temperature is more preferably 900 ° C. or higher in order to coarsen the austenite grains and increase the grain size of the bainitic ferrite to some extent.
  • the upper limit of the finish rolling temperature is set to 1000 ° C. because it is difficult to secure the temperature.
  • the thickness of the hot-rolled steel sheet of the present invention is 3 to 20 mm.
  • the final reduction ratio of tandem rolling of finish rolling is set to 15% or more.
  • the finish rolling is performed by tandem rolling of 5 to 7 passes, but a pass schedule is set from the viewpoint of control of sheet penetration, and the final rolling reduction is about 12 to 13%.
  • the final rolling reduction is preferably 16% or more, more preferably 17% or more.
  • the higher the final reduction ratio is 20% or 30%, the more effective the crystal grains are refined, but the upper limit is defined to be about 30% from the viewpoint of rolling control.
  • the pearlite transformation is promoted, or when the quenching stop temperature is less than 550 ° C., the bainite transformation is suppressed, both of which are bainitic ferrite-polygonal having a predetermined phase fraction. It becomes difficult to obtain ferrite-pearlite steel, and cold workability and surface quality after processing deteriorate.
  • the quenching stop temperature is 650 ° C. or more, the precipitated carbide in the ferrite is coarsened, and the fatigue strength is deteriorated.
  • the quenching stop temperature is preferably 560 to 640 ° C, more preferably 580 to 620 ° C.
  • the hot-rolled steel sheet was evaluated for cold workability, surface quality after processing and hardness as follows.
  • the cold workability was evaluated by the work hardening amount defined by the difference in hardness of the sample center before and after processing. Therefore, first, with respect to the hot-rolled steel sheet, using a processing reproducibility test apparatus (Thermecaster Z, manufactured by Fuji Radio Engineering Co., Ltd.), conditions of processing temperature: room temperature, rolling reduction: 70%, strain rate: 10 / s A processing test was conducted. The shape of the processed test piece was adjusted so that the diameter / height ratio was substantially constant, such as ⁇ 8 mm ⁇ 12 mm, ⁇ 6 mm ⁇ 10 mm, ⁇ 4 mm ⁇ 6 mm, according to the plate thickness.
  • Hardness is measured using a Vickers hardness tester, and the measurement position is a center part in the compression direction of the processed test piece and is 1/4 part in the diameter direction of the circle (position between the center and the center of the outer circumference), load: 500 g, Number of measurements: Under the conditions of 5 times, the Vickers hardness (Hv) was measured for each of the work specimens before and after the work test, and the average of each was taken as the pre-work hardness and post-work hardness.
  • the cold workability was evaluated by the work hardening amount defined by “hardness after work ⁇ hardness before work”. It means that workability is so good that work hardening amount is large, and 80Hv or more was set as the pass.
  • JIS Z 2201 No. 5 test piece 25 mm x 50 mm x [plate surface to plate thickness center (plate thickness was adjusted in consideration of the capability of the tensile tester)]) in the direction perpendicular to the rolling direction
  • JIS Z 2241 (1980) metal material tensile test method
  • steel no. 1 to 3, 7 to 14, and 25 to 28 all satisfy the requirements of the structure provision of the present invention as a result of manufacturing with the recommended hot rolling conditions using the steel grade that satisfies the requirements of the composition composition of the present invention.
  • the surface properties after processing, the hardness after processing and the amount of work hardening all satisfy the acceptance criteria, exhibiting good cold workability during processing, but with a predetermined surface quality and hardness after processing. It was confirmed that a hot-rolled steel sheet exhibiting thickness (strength) was obtained.
  • Steel No. Reference numerals 4 to 6, 15 to 24, and 29 are comparative steels that do not satisfy at least one of the component composition and the structural requirement defined in the present invention, and are at least one of the surface properties after processing, the hardness after processing, and the work hardening amount. Either does not meet the acceptance criteria.
  • steel No. No. 4 Although the requirements for the component composition are satisfied, the heating temperature before hot rolling is too low outside the recommended range, the amount of solute N is insufficient, and the hardness after processing is inferior.
  • steel No. No. 16 steel type k
  • the hot rolling conditions are in the recommended range, the N content is too high and not only the cold workability but also the surface properties after processing are inferior.
  • Steel No. No. 18 (steel type m) has a hot rolling condition in the recommended range, but the Si content is too high and at least cold workability is poor.
  • steel No. Although 20 (steel type o) has a hot rolling condition in the recommended range, the Mn content is too high and at least cold workability is poor.
  • steel No. In 24 steel type s
  • the hot rolling conditions other than the final reduction ratio are in the recommended range
  • the Al content is too high and at least cold workability is poor.
  • steel No. 29 steel type x has a hot rolling condition in the recommended range, it does not satisfy the requirement of 10C + N ⁇ 3.0, and not only the cold workability but also the surface properties after processing are inferior.
  • the hot-rolled steel material of the present invention is useful, for example, for various parts for automobiles (transmission parts such as gears and cases), and can realize weight reduction and high strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A hot-rolled steel sheet which has a thickness of 3-20 mm and contains specific amounts of C, Si, Mn, P, S, Al and N, with the balance made up of iron and unavoidable impurities. This hot-rolled steel sheet contains a specific amount of solid-solved N, and the contents of C and N satisfy the relation 10C + N ≤ 3.0. This hot-rolled steel sheet contains bainitic ferrite and pearlite, respectively in an area ratio of 5% or more and in an area ratio of less than 20% relative to the whole structure, with the balance made up of polygonal ferrite. The average crystal grain size of the bainitic ferrite is 3-50 μm.

Description

冷間加工性と加工後の表面性状および硬さに優れる熱延鋼板Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
 本発明は、加工中は良好な冷間加工性を示しつつ、加工後は所定の表面性状(「表面品質」ともいう。)および加工後硬さを示す熱延鋼板に関する。 The present invention relates to a hot-rolled steel sheet that exhibits good cold workability during processing, and exhibits predetermined surface properties (also referred to as “surface quality”) and post-working hardness after processing.
 近年、環境保護の観点から、自動車の燃費向上を目的として、自動車用の各種部品、例えばギヤなどのトランスミッション部品やケース等に用いられる鋼材の軽量化、すなわち高強度化に対する要求が益々高まっている。このような軽量化・高強度化の要請に応えるために、一般に用いられる鋼材としては、棒鋼を熱間鍛造した鋼材(熱間鍛造材)が用いられてきた。また、部品製造工程におけるCOの排出量削減のため、これまで熱間鍛造によって加工されていたギヤなどの部品の冷間鍛造化に関する要求も高まっている。 In recent years, from the viewpoint of environmental protection, for the purpose of improving the fuel efficiency of automobiles, there is an increasing demand for reducing the weight of steel materials used for various parts for automobiles, for example, transmission parts such as gears and cases, that is, increasing the strength. . In order to meet such demands for weight reduction and high strength, steel materials obtained by hot forging steel bars (hot forging materials) have been used as steel materials that are generally used. In addition, in order to reduce CO 2 emissions in the component manufacturing process, there is an increasing demand for cold forging of components such as gears that have been processed by hot forging.
 ところで、冷間加工(冷間鍛造)は、熱間加工や温間加工に比較して生産性が高く、しかも寸法精度および鋼材の歩留まりがともに良好な利点がある。しかし、このような冷間加工によって部品を製造する場合に問題となるのは、冷間加工された部品の強度を期待される所定値以上に確保するためには、必然的に強度、すなわち変形抵抗の高い鋼材を用いる必要があることである。ところが、使用する鋼材の変形抵抗が高いものほど冷間加工用金型の寿命短縮を招く。 By the way, cold working (cold forging) has advantages of higher productivity than hot working and warm working and good dimensional accuracy and yield of steel materials. However, the problem in manufacturing parts by such cold working is that in order to ensure the strength of the cold-worked parts to be higher than the expected value, the strength, ie deformation, is inevitably required. It is necessary to use a steel material with high resistance. However, the higher the deformation resistance of the steel material used, the shorter the service life of the cold working mold.
 また、トランスミッション部品の分野では、棒鋼の鍛造品(熱間鍛造、冷間鍛造等)から、部品の軽量化、低コスト化を狙いとして鋼板による部品製造の検討も進んでいるが、鋼板の冷間加工後の部品では、表面にストレッチャーストレインマーク(以下、「SSマーク」と略称する。)と呼ばれる表面欠陥が発生しやすい難点がある。 In the field of transmission parts, we are also considering the manufacture of parts from steel forgings (hot forging, cold forging, etc.) using steel sheets with the aim of reducing the weight and cost of parts. In the parts after the inter-working, there is a difficulty that surface defects called stretcher strain marks (hereinafter abbreviated as “SS marks”) are likely to occur on the surface.
 このため、従来は、鋼材を所定形状に冷間鍛造した後、焼入れ焼戻し等の熱処理を行うことで、所定の強度(硬さ)が確保された高強度部品を製造する方法が実施されることもあった。しかしながら、冷間鍛造後の熱処理は、部品寸法が必然的に変化するため、二次的に切削などの機械加工により修正する必要があり、熱処理やその後の加工が省略できるような解決策が望まれていた。 For this reason, conventionally, after cold forging a steel material into a predetermined shape, a method of manufacturing a high-strength part with a predetermined strength (hardness) is performed by performing a heat treatment such as quenching and tempering. There was also. However, since heat treatment after cold forging inevitably changes the part dimensions, it is necessary to correct by secondary machining such as cutting, and a solution that can omit heat treatment and subsequent machining is desired. It was rare.
 上記課題を解決すべく、たとえば、低炭素鋼で固溶Cを利用して常温時効の進行を抑制し、歪時効による所定の時効硬化量を確保することで、歪時効特性に優れた冷間鍛造用線材・棒鋼が得られることが開示されている(特許文献1参照)。 In order to solve the above-mentioned problem, for example, by using solute C in low carbon steel, the progress of normal temperature aging is suppressed, and a predetermined age hardening amount due to strain aging is ensured, thereby providing a cold having excellent strain aging characteristics. It is disclosed that a wire rod and steel bar for forging can be obtained (see Patent Document 1).
 しかしながら、この技術は、固溶C量のみによって歪時効を制御するものであり、十分な冷間加工性と、加工後の所要の表面品質および硬さ・強度を兼備する鋼材を得ることは困難であった。 However, this technology controls strain aging only by the amount of solute C, and it is difficult to obtain a steel material having sufficient cold workability and required surface quality, hardness and strength after processing. Met.
 そこで、本出願人は、鋼材に含まれる固溶Cと固溶Nが変形抵抗と静的ひずみ時効に及ぼす影響の違いに着目し、種々検討した結果、これらの固溶元素の量を適正に制御することで、加工中は良好な冷間加工性を発揮しつつ、冷間加工(冷間鍛造)後は所定の硬さ(強度)を示す機械構造用鋼材が得られることを知見し、すでに特許出願を行った(特許文献2参照)。 Therefore, the present applicant paid attention to the difference in the effects of solute C and solute N contained in steel materials on deformation resistance and static strain aging, and as a result of various studies, the amount of these solute elements was appropriately determined. By controlling, it is found that a steel material for machine structure showing a predetermined hardness (strength) can be obtained after cold working (cold forging) while exhibiting good cold workability during working, A patent application has already been filed (see Patent Document 2).
 この鋼材は、冷間加工性と加工後の高硬度化(高強度化)の両立を実現したものであるが、上記特許文献1に記載された線材・棒鋼と同様、熱間鍛造材であり、製造コストが高いことが難点であった。そこで、製造コストのさらなる低コスト化のために、従来の熱間鍛造材に替えて、熱延鋼板で自動車用部品を冷間加工により作製することも検討されている。 This steel material realizes both cold workability and high hardness (high strength) after processing, but is a hot forging material, like the wire rod and bar steel described in Patent Document 1 above. The manufacturing cost is high. Therefore, in order to further reduce the manufacturing cost, it has been studied to produce automobile parts by cold working using hot-rolled steel sheets instead of the conventional hot forging materials.
 たとえば、窒化処理後に高い表面硬度および十分な硬化深さが得られる窒化処理用の熱延鋼板が提案されている(特許文献3参照)。 For example, a hot-rolled steel sheet for nitriding that has a high surface hardness and a sufficient hardening depth after nitriding has been proposed (see Patent Document 3).
 しかしながら、この技術は、冷間加工後にさらに窒化処理を必要とするものであり、十分な低コスト化が実現できない問題がある。 However, this technique requires further nitriding after cold working, and there is a problem that a sufficient cost reduction cannot be realized.
 また、C:0.10%以下、Si:0.01%未満、Mn:1.5%以下およびAl:0.20%以下を含有すると共に、(Ti+Nb)/2:0.05~0.50%の範囲で含有し、S:0.005%以下、N:0.005%以下、O:0.004%以下をS,NおよびOの合計が0.0100%以下で含む組成とし、かつミクロ組織を95%以上の実質的フェライト単相組織とする熱延鋼板が提案されており、この熱延鋼板は、精密打ち抜き加工面の寸法精度に優れ、かつ加工後の打ち抜き面の表面硬度が極めて高く、さらには耐赤スケール疵性にも優れるとしている(特許文献4参照)。 Further, it contains C: 0.10% or less, Si: less than 0.01%, Mn: 1.5% or less, and Al: 0.20% or less, and (Ti + Nb) / 2: 0.05-0. It is contained in the range of 50%, S: 0.005% or less, N: 0.005% or less, O: 0.004% or less, the total of S, N and O is 0.0100% or less, In addition, a hot-rolled steel sheet having a microstructure of 95% or more of a substantially ferritic single-phase structure has been proposed. Is extremely high, and is also excellent in red scale resistance (see Patent Document 4).
 しかしながら、この熱延鋼板は、Nは有害元素として、きわめて低い含有量に制限されており、Nを積極的に利用する本願発明に係る熱延鋼板とは、技術的思想をまったく異にするものである。 However, in this hot-rolled steel sheet, N is limited to a very low content as a harmful element, and the technical idea is completely different from the hot-rolled steel sheet according to the present invention that actively uses N. It is.
日本国特開平10-306345号公報Japanese Unexamined Patent Publication No. 10-306345 日本国特開2009-228125号公報Japanese Unexamined Patent Publication No. 2009-228125 日本国特開2007-162138号公報Japanese Unexamined Patent Publication No. 2007-162138 日本国特開2004-137607号公報Japanese Unexamined Patent Publication No. 2004-137607
 本発明は上記事情に着目してなされたものであり、その目的は、加工中は良好な冷間加工性を示しつつ、加工後は所定の表面性状および硬さを示す熱延鋼板を提供することにある。 The present invention has been made by paying attention to the above circumstances, and its object is to provide a hot-rolled steel sheet that exhibits a good cold workability during processing and exhibits a predetermined surface property and hardness after processing. There is.
 請求項1に記載の発明は、 
 板厚が3~20mmであり、 
 成分組成が、 
 質量%で(以下、化学成分について同じ。)、
 C :0.3%以下(0%を含まない)、 
 Si:0.5%以下(0%を含まない)、 
 Mn:0.2~1%、 
 P :0.05%以下(0%を含まない)、 
 S :0.05%以下(0%を含まない)、 
 Al:0.01~0.1%、 
 N :0.008~0.025%、 
 残部は鉄および不可避的不純物からなり、 
 固溶N:0.007%以上、かつ、 
 CとNの含有量が10C+N≦3.0の関係を満足し、 
 組織が、
 全組織に対する面積率で、
 ベイニティックフェライト:5%以上、
 パーライト:20%未満、
 残部:ポリゴナルフェライトであり、
 前記ベイニティックフェライトの平均結晶粒径が3~50μmの範囲である
ことを特徴とする冷間加工性と加工後の表面性状および硬さに優れる熱延鋼板である。
The invention described in claim 1
The plate thickness is 3-20mm,
Ingredient composition
% By mass (hereinafter the same for chemical components)
C: 0.3% or less (excluding 0%),
Si: 0.5% or less (excluding 0%),
Mn: 0.2 to 1%
P: 0.05% or less (excluding 0%),
S: 0.05% or less (excluding 0%),
Al: 0.01 to 0.1%,
N: 0.008 to 0.025%,
The balance consists of iron and inevitable impurities,
Solid solution N: 0.007% or more, and
The content of C and N satisfies the relationship of 10C + N ≦ 3.0,
Organization
The area ratio for all tissues
Bainitic ferrite: 5% or more
Perlite: less than 20%
The rest: polygonal ferrite,
A hot rolled steel sheet excellent in cold workability, surface properties and hardness after processing, characterized in that the average crystal grain size of the bainitic ferrite is in the range of 3 to 50 μm.
 請求項2に記載の発明は、 
 成分組成が、さらに、 下記(a)~(e)の少なくとも1種を含むものである請求項1記載の熱延鋼板である。 
   (a)Cr:2%以下(0%を含まない)及びMo:2%以下(0%を含まない)の少なくとも一方
   (b)Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)、V:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
(c)B:0.005%以下(0%を含まない) 
   (d)Cu:5%以下(0%を含まない)、Ni:5%以下(0%を含まない)、Co:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種 
   (e)Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
The invention described in claim 2
The hot rolled steel sheet according to claim 1, wherein the component composition further contains at least one of the following (a) to (e).
(A) At least one of Cr: 2% or less (not including 0%) and Mo: 2% or less (not including 0%) (b) Ti: 0.2% or less (not including 0%), Nb : 0.2% or less (excluding 0%), V: at least one selected from the group consisting of 0.2% or less (not including 0%) (c) B: 0.005% or less (0% Not included)
(D) At least one selected from the group consisting of Cu: 5% or less (not including 0%), Ni: 5% or less (not including 0%), Co: 5% or less (not including 0%)
(E) Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.02% or less (not including 0%), Pb: 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%) seed
 本発明によれば、所定の平均粒径を有するベイニティックフェライト+ポリゴナルフェライト主体の組織において、固溶N量を確保するとともに、Cの含有量とNの含有量とを所定の関係を満足させることで、冷間加工中における変形抵抗が低減されて、金型の寿命が延長されるとともに、鋼板に割れが発生しにくく、加工後に得られる部品は所定の表面性状および加工後硬さを確保できる熱延鋼板を提供できるようになった。 According to the present invention, in a structure mainly composed of bainitic ferrite and polygonal ferrite having a predetermined average particle diameter, a solid solution N amount is ensured, and the C content and the N content have a predetermined relationship. By satisfying, the deformation resistance during cold working is reduced, the life of the mold is extended, the steel plate is less likely to crack, and the parts obtained after processing have the prescribed surface properties and hardness after processing It is now possible to provide a hot-rolled steel sheet that can ensure the above.
 以下、本発明に係る熱延鋼板(以下、「本発明鋼板」、あるいは、単に「鋼板」ともいう。)について、さらに詳細に説明する。本発明鋼板は、上記特許文献2に記載された熱間鍛造材とは、N固溶量を確保するとともに、C含有量とN含有量とを所定の関係を満足させる点で共通するが、C含有量を高めの範囲まで許容し、組織をベイニティックフェライト-ポリゴナルフェライト-パーライト複相組織とするとともに、ベイニティックフェライト粒を微細化する点で異なっている。 Hereinafter, the hot-rolled steel sheet according to the present invention (hereinafter also referred to as “the steel sheet of the present invention” or simply “the steel sheet”) will be described in more detail. The steel sheet of the present invention is common to the hot forging material described in Patent Document 2 above in that the N solid solution amount is ensured and the C content and the N content satisfy a predetermined relationship. The difference is that the C content is allowed to a higher range, the structure is a bainitic ferrite-polygonal ferrite-pearlite double phase structure, and the bainitic ferrite grains are refined.
〔本発明鋼板の板厚:3~20mm〕
 まず、本発明鋼板は、板厚が3~20mmのものを対象とする。板厚が3mm未満では、構造体としての剛性が確保できなくなる。一方、板厚が20mmを超えると、本発明で規定する組織形態を達成することが難しく、所望の効果が得られなくなる。好ましい板厚は4~19mmである。
[Thickness of the steel sheet of the present invention: 3 to 20 mm]
First, the steel sheet of the present invention has a thickness of 3 to 20 mm. If the plate thickness is less than 3 mm, rigidity as a structure cannot be secured. On the other hand, if the plate thickness exceeds 20 mm, it is difficult to achieve the tissue form defined in the present invention, and the desired effect cannot be obtained. A preferred plate thickness is 4 to 19 mm.
 次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。 Next, the component composition constituting the steel sheet of the present invention will be described. Hereinafter, all the units of chemical components are mass%.
〔本発明鋼板の成分組成〕
<C:0.3%以下(0%を含まない)> 
 Cは、鋼板の組織の形成に大きな影響を及ぼす元素であり、組織は、ベイニティックフェライト-ポリゴナルフェライト-パーライト複相組織ではあるが、できるだけパーライトの少ないベイニティックフェライト-ポリゴナルフェライト主体組織とするために、含有量を制限する必要がある元素である。Cを過剰に含有させると、鋼板組織中のパーライト分率が上昇し、パーライトの加工硬化によって変形抵抗が過大となるおそれがある。そこで、鋼板中のC含有量は、0.3%以下、好ましくは0.25%以下、さらに好ましくは0.2%以下、特に好ましくは0.15%以下に制限する。ただし、Cの含有量が少なすぎると、鋼の溶製中における脱酸が困難になるとともに、冷間加工後の強度、硬さを満たし難くなるので、好ましくは0.0005%以上、さらに好ましくは0.0008%以上、特に好ましくは0.001%以上とする。
[Component composition of the steel sheet of the present invention]
<C: 0.3% or less (excluding 0%)>
C is an element that has a great influence on the formation of the structure of a steel sheet, and the structure is bainitic ferrite-polygonal ferrite-pearlite multiphase structure, but bainitic ferrite-polygonal ferrite mainly containing as little pearlite as possible. It is an element whose content needs to be limited in order to form a structure. When C is contained excessively, the pearlite fraction in the steel sheet structure increases, and the deformation resistance may be excessive due to work hardening of the pearlite. Therefore, the C content in the steel sheet is limited to 0.3% or less, preferably 0.25% or less, more preferably 0.2% or less, and particularly preferably 0.15% or less. However, if the content of C is too small, deoxidation during the melting of steel becomes difficult, and it becomes difficult to satisfy the strength and hardness after cold working, so 0.0005% or more, more preferably Is 0.0008% or more, particularly preferably 0.001% or more.
<Si:0.5%以下(0%を含まない)>
 Siは、鋼中に固溶することによって鋼板の変形抵抗を増加させるため、極力低減する必要がある元素である。そのため、鋼板中のSi含有量は、変形抵抗の増加を抑制するため、0.5%以下、好ましくは0.45%以下、さらに好ましくは0.4%以下、特に好ましくは0.3%以下に制限する。しかし、Siの含有量が極端に少ないと、溶製中の脱酸が困難になるとともに、冷間加工後の強度、硬さを満たし難くなるので、好ましくは0.005%以上、さらに好ましくは0.008%以上、特に好ましくは0.01%以上とする。
<Si: 0.5% or less (excluding 0%)>
Si is an element that needs to be reduced as much as possible in order to increase the deformation resistance of the steel sheet by dissolving in steel. Therefore, the Si content in the steel sheet is 0.5% or less, preferably 0.45% or less, more preferably 0.4% or less, and particularly preferably 0.3% or less in order to suppress an increase in deformation resistance. Restrict to. However, if the Si content is extremely small, deoxidation during melting becomes difficult, and it becomes difficult to satisfy the strength and hardness after cold working, so 0.005% or more, more preferably 0.008% or more, particularly preferably 0.01% or more.
<Mn:0.2~1%>
 Mnは、製鋼過程において脱酸および脱硫の作用を有する元素である。さらに鋼材中のNの含有量を高めた場合、加工中の発熱による動的ひずみ時効によって割れが発生しやすくなるが、いっぽうでMnはその時の加工性を向上させ、割れを抑制する効果がある。これらの作用を有効に発揮させるために、鋼材中のMn含有量は0.2%以上、好ましくは0.22%以上、さらに好ましくは0.25%以上とする。ただし、Mn含有量が過剰になると変形抵抗が過大となり、偏析による組織の不均一性が生じるので、1%以下、好まくは0.98%以下、さらに好ましくは0.95%以下とする。
<Mn: 0.2-1%>
Mn is an element having a deoxidizing and desulfurizing action in the steel making process. Furthermore, when the content of N in the steel material is increased, cracks are likely to occur due to dynamic strain aging due to heat generation during processing. On the other hand, Mn improves the workability at that time and has the effect of suppressing cracks. . In order to effectively exhibit these actions, the Mn content in the steel material is 0.2% or more, preferably 0.22% or more, and more preferably 0.25% or more. However, if the Mn content is excessive, deformation resistance becomes excessive and nonuniformity of the structure due to segregation occurs. Therefore, it is 1% or less, preferably 0.98% or less, and more preferably 0.95% or less.
<P:0.05%以下(0%を含まない)> 
 Pは鋼に不可避的に含有される不純物元素であるが、これがフェライトに含有されるとフェライト粒界に偏析して冷間加工性を劣化させ、また、フェライトを固溶強化して変形抵抗の増大の原因となる元素である。そこで、Pの含有量は冷間加工性の観点からは極力低減することが望ましいが、極端な低減は製鋼コストの増加を招くため、工程能力を考慮して、0.05%以下、好ましくは0.03%以下とする。
<P: 0.05% or less (excluding 0%)>
P is an impurity element inevitably contained in the steel, but if it is contained in ferrite, it segregates at the ferrite grain boundaries and degrades the cold workability. It is an element that causes an increase. Therefore, it is desirable to reduce the P content as much as possible from the viewpoint of cold workability. However, since extreme reduction leads to an increase in steelmaking costs, it is 0.05% or less, preferably in consideration of process capability. 0.03% or less.
<S:0.05%以下(0%を含まない)> 
 SもPと同様に不可避的不純物であり、FeSとして結晶粒界に膜状に析出し、加工性を劣化させる元素である。また、熱間脆性を引き起こす作用もある。そこで、変形能を向上させる観点から、本発明ではS含有量を0.05%以下、好ましくは0.03%以下とする。ただし、S含有量を0にすることは工業上困難である。なお、Sは被削性を向上させる効果を有するため、被削性向上の観点からは、好ましくは0.002%以上、より好ましくは0.006%以上含有させることが推奨される。
<S: 0.05% or less (excluding 0%)>
S, like P, is an unavoidable impurity and is an element that precipitates in the form of a film at the grain boundary as FeS and degrades workability. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, in the present invention, the S content is set to 0.05% or less, preferably 0.03% or less. However, it is industrially difficult to reduce the S content to zero. In addition, since S has an effect of improving machinability, it is recommended to contain 0.002% or more, more preferably 0.006% or more from the viewpoint of improving machinability.
<Al:0.01~0.1%>
 Alは、製鋼過程において脱酸に有効な元素である。この脱酸の効果を得るために、鋼材中のAl含有量は0.01%以上、好ましくは0.015%以上、さらに好ましくは0.02%以上とする。ただし、Alの含有量が過剰になると、靭性を低下させ、割れが発生しやすくなるので、0.1%以下、好ましくは0.09%以下、さらに好ましくは0.08%以下とする。
<Al: 0.01 to 0.1%>
Al is an element effective for deoxidation in the steelmaking process. In order to obtain this deoxidation effect, the Al content in the steel material is set to 0.01% or more, preferably 0.015% or more, and more preferably 0.02% or more. However, if the Al content is excessive, the toughness is lowered and cracking is likely to occur. Therefore, the Al content is 0.1% or less, preferably 0.09% or less, and more preferably 0.08% or less.
<N:0.008~0.025%> 
 Nは加工後の静的ひずみ時効によって所定の強度を得るために重要な元素である。そこで、鋼材中のN含有量は、0.008%以上、好ましくは0.0085%以上、さらに好ましくは0.009%以上とする。ただし、Nの含有量が過剰になると静的ひずみ時効のほか、加工中の動的ひずみ時効の影響が顕著となり、変形抵抗が増加して不適であるので、0.025%以下、好ましくは0.023%以下、さらに好ましくは0.02%以下とする。
<N: 0.008 to 0.025%>
N is an important element for obtaining a predetermined strength by static strain aging after processing. Therefore, the N content in the steel material is 0.008% or more, preferably 0.0085% or more, and more preferably 0.009% or more. However, if the N content is excessive, in addition to static strain aging, the influence of dynamic strain aging during processing becomes significant, and deformation resistance increases, which is unsuitable. Therefore, 0.025% or less, preferably 0 0.02% or less, more preferably 0.02% or less.
<固溶N:0.007%以上>
 そして、鋼板中に固溶Nを所定量(以下、「固溶N量」という。)確保することで、変形抵抗をあまり上げず、静的ひずみ時効を促進させることができる。冷間加工後に所要の強度を確保するためには、固溶N量が0.007%以上必要である。ただし、固溶N量が過剰になると、冷間加工性が劣化するとともに、加工ひずみへの固溶Nの固着量も多くなって、SSマークが発生しやすくなり表面性状も劣化するため、好ましくは0.03%以下とする。なお、鋼材中のNの含有量は0.025%以下であるので、実質的に固溶N量は0.025%以上になることはない。
<Solution N: 0.007% or more>
By securing a predetermined amount of solid solution N in the steel sheet (hereinafter referred to as “solid solution N amount”), the static strain aging can be promoted without significantly increasing the deformation resistance. In order to ensure the required strength after cold working, the amount of solute N needs to be 0.007% or more. However, if the amount of solute N is excessive, the cold workability is deteriorated and the amount of solute N fixed to the processing strain is also increased, so that SS marks are easily generated and the surface properties are also deteriorated. Is 0.03% or less. In addition, since content of N in steel materials is 0.025% or less, the amount of solute N does not become 0.025% or more substantially.
 ここで、本発明における固溶N量は、JIS G 1228に準拠して、鋼材中の全N量から全N化合物の量を差し引いて求められる量である。この固溶N量の実用的な測定法を以下に例示する。 Here, the solid solution N amount in the present invention is an amount obtained by subtracting the amount of all N compounds from the total N amount in the steel material in accordance with JIS G 1228. A practical method for measuring the amount of dissolved N will be exemplified below.
(a)不活性ガス融解法-熱伝導度法(全N量の測定) 
 供試材から切り出したサンプルをルツボに入れ、不活性ガス気流中で融解してNを抽出し、抽出物を熱伝導度セルに搬送して熱伝導度の変化を測定して全N量を求める。
(b)アンモニア蒸留分離インドフェノール青吸光光度法(全N化合物量の測定) 
 供試材から切り出したサンプルを、10%AA系電解液に溶解し、定電流電解を行って、鋼中の全N化合物量を測定する。用いる10%AA系電解液は、10%アセトン、10%塩化テトラメチルアンモニウム、残部メタノールからなる非水溶媒系の電解液であり、鋼表面に不働態皮膜を生成させない溶液である。
(A) Inert gas melting method-thermal conductivity method (measurement of total N content)
A sample cut from the test material is put in a crucible, extracted in an inert gas stream to extract N, the extract is transported to a thermal conductivity cell, and the change in thermal conductivity is measured to determine the total N amount. Ask.
(B) Ammonia distillation separation indophenol blue spectrophotometry (measurement of total N compound amount)
A sample cut out from the test material is dissolved in a 10% AA-based electrolytic solution, subjected to constant current electrolysis, and the total amount of N compounds in the steel is measured. The 10% AA electrolyte used is a non-aqueous solvent electrolyte consisting of 10% acetone, 10% tetramethylammonium chloride, and the remainder methanol, and does not generate a passive film on the steel surface.
 供試材のサンプル約0.5gを、この10%AA系電解液に溶解させ、生成する不溶解残渣(N化合物)を、穴サイズが0.1μmのポリカーボネート製のフィルタでろ過する。得られた不溶解残渣を、硫酸、硫酸カリウムおよび純銅製チップ中で加熱して分解し、分解物をろ液に合わせる。この溶液を、水酸化ナトリウムでアルカリ性にした後、水蒸気蒸留を行い、留出したアンモニアを希硫酸に吸収させる。さらに、フェノール、次亜塩素酸ナトリウムおよびペンタシアノニトロシル鉄(III)酸ナトリウムを加えて青色錯体を生成させ、吸光光度計を用いて吸光度を測定して全N化合物量を求める。
 そして、上記(a)の方法によって求められた全N量から、上記(b)の方法によって求められた全N化合物量を差し引いて固溶N量を求めることができる。
About 0.5 g of the sample material is dissolved in this 10% AA-based electrolyte, and the resulting insoluble residue (N compound) is filtered through a polycarbonate filter having a hole size of 0.1 μm. The obtained insoluble residue is decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and the decomposition product is combined with the filtrate. After making this solution alkaline with sodium hydroxide, steam distillation is performed, and the distilled ammonia is absorbed in dilute sulfuric acid. Further, phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and the absorbance is measured using an absorptiometer to determine the total N compound amount.
And the amount of solid solution N can be calculated | required by subtracting the total N compound amount calculated | required by the method of said (b) from the total N amount calculated | required by the method of said (a).
<CとNの含有量が10C+N≦3.0の関係を満足>
 本発明の鋼材において、固溶Cは変形抵抗を大きく増加させ、静的ひずみ時効にあまり寄与せず、一方、固溶Nは変形抵抗をあまり上昇させずに、静的ひずみ時効を促進させることができるため加工後の硬さを増加させることができる作用を有する。そのため、本発明の鋼材においては、加工中の変形抵抗をあまり上昇させずに、加工後の硬さを増加させるために、Cの含有量とNの含有量とは、10C+N≦3.0の関係を満足させることが必須であり、好ましくは0.009≦10C+N≦2.8、さらに好ましくは0.01≦10C+N≦2.5、特に好ましくは0.01≦10C+N≦2.0とする。熱延鋼板での結晶粒の微細化および該鋼板の成形性の確保の観点からはC含有量および固溶C量をある程度必要とするが、10C+N>3.0では、Cおよび/またはNの量が過剰となり、変形抵抗が過大となる。ここで、上記不等式において、C含有量の係数をN含有量の係数の10倍としたのは、固溶Cは固溶Nに比べて同じ含有量でも、本発明の熱延鋼板での強度および変形抵抗を上昇させる度合いが1桁(10倍)程度大きいことを考慮したものである。
<The content of C and N satisfies the relationship of 10C + N ≦ 3.0>
In the steel material of the present invention, solid solution C greatly increases deformation resistance and does not contribute much to static strain aging, while solid solution N promotes static strain aging without significantly increasing deformation resistance. Therefore, the hardness after processing can be increased. Therefore, in the steel material of the present invention, in order to increase the hardness after processing without significantly increasing the deformation resistance during processing, the content of C and the content of N are 10C + N ≦ 3.0. It is essential to satisfy the relationship, preferably 0.009 ≦ 10C + N ≦ 2.8, more preferably 0.01 ≦ 10C + N ≦ 2.5, and particularly preferably 0.01 ≦ 10C + N ≦ 2.0. From the viewpoint of refining crystal grains in a hot-rolled steel sheet and ensuring the formability of the steel sheet, a C content and a solute C content are required to some extent, but when 10C + N> 3.0, C and / or N The amount becomes excessive and the deformation resistance becomes excessive. Here, in the above inequality, the coefficient of the C content is set to 10 times the coefficient of the N content because the solid solution C has the same content as the solid solution N but the strength in the hot-rolled steel sheet of the present invention. Further, it is considered that the degree of increasing the deformation resistance is about one digit (10 times) larger.
 本発明の鋼は上記成分を基本的に含有し、残部が鉄および不可避的不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。 The steel of the present invention basically contains the above components, and the balance is iron and inevitable impurities, but the following permissible components can be added as long as the effects of the present invention are not impaired.
<Cr:2%以下(0%を含まない)および/または
 Mo:2%以下(0%を含まない)>
 Crは結晶粒界の強度を高めることで鋼の変形能を向上させる作用を有する元素であり、このような作用を有効に発揮させるためには、Crは0.2%以上含有させることが好ましい。しかし、Crを過剰に含有させると、変形抵抗が増大し、冷間加工性が低下するおそれがあるため、その含有量は2%以下、さらには1.5%以下、特に1%以下が推奨される。
<Cr: 2% or less (not including 0%) and / or Mo: 2% or less (not including 0%)>
Cr is an element that has the effect of improving the deformability of steel by increasing the strength of the grain boundaries. In order to effectively exhibit such an effect, Cr is preferably contained in an amount of 0.2% or more. . However, if Cr is excessively contained, deformation resistance increases and cold workability may be lowered. Therefore, the content is recommended to be 2% or less, more preferably 1.5% or less, especially 1% or less. Is done.
 また、Moは、加工後の鋼材の硬さおよび変形能を増加させる作用を有する元素であり、このような作用を有効に発揮させるためには、Moは0.04%以上、さらに好ましくは0.08%以上含有させることが好ましい。しかし、Moを過剰に含有させると、冷間加工性が劣化するおそれがあるため、その含有量は2%以下、さらには1.5%以下、特に1%以下が推奨される。 Mo is an element having an action of increasing the hardness and deformability of the steel material after processing. In order to effectively exhibit such action, Mo is 0.04% or more, more preferably 0. It is preferable to contain 0.08% or more. However, if Mo is excessively contained, the cold workability may be deteriorated. Therefore, the content is recommended to be 2% or less, further 1.5% or less, particularly 1% or less.
<Ti:0.2%以下(0%を含まない)、
 Nb:0.2%以下(0%を含まない)、
 V :0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種> 
 これらの元素はNとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靱性を向上させ、また、耐割れ性を向上させる役割を有する元素である。しかし、各元素とも上限値を超えて含有させても特性改善効果が得られない。各元素の含有量はそれぞれ、0.2%以下、さらには0.001~0.15%、特に0.002~0.1%が推奨される。
<Ti: 0.2% or less (excluding 0%),
Nb: 0.2% or less (excluding 0%),
V: at least one selected from the group consisting of 0.2% or less (excluding 0%)>
These elements have a strong affinity for N, coexist with N to form N compounds, refine steel grains, improve the toughness of processed products obtained after cold working, and improve crack resistance. It is an element that has a role to improve. However, even if each element is contained exceeding the upper limit value, the effect of improving the characteristics cannot be obtained. It is recommended that the content of each element is 0.2% or less, further 0.001 to 0.15%, particularly 0.002 to 0.1%.
<B:0.005%以下(0%を含まない)> 
 Bは、上記Ti、NbおよびVと同様、Nとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靱性を向上させ、また、耐割れ性を向上させる役割を有する元素である。そのため、本発明の鋼板がBを含有する場合、所要の固溶N量を確保して冷間加工後の強度を向上させることができることから、その含有量は0.005%以下、さらには0.0001~0.0035%、特に0.0002~0.002%が推奨される。
<B: 0.005% or less (excluding 0%)>
B, like Ti, Nb, and V, has a strong affinity with N, and coexists with N to form an N compound, refines the grain of steel, and improves the toughness of the workpiece obtained after cold working And an element having a role of improving crack resistance. Therefore, when the steel sheet of the present invention contains B, the required solid solution N amount can be secured and the strength after cold working can be improved, so the content is 0.005% or less, and further 0 0.0001 to 0.0035%, especially 0.0002 to 0.002% is recommended.
<Cu:5%以下(0%を含まない)、
 Ni:5%以下(0%を含まない)、
 Co:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種>
 これらの元素は、いずれも鋼材をひずみ時効させ、硬化させる作用があり、加工後強度を向上させるのに有効な元素である。このような作用を有効に発揮させるためには、これらの元素は、それぞれ0.1%以上、さらには0.3%以上含有させることが好ましい。しかし、これらの元素の含有量が過剰であると、鋼材をひずみ時効および硬化させる効果、さらに、加工後強度を向上させる効果が飽和し、また、割れを促進させるおそれがあるため、それぞれ5%以下、さらには4%以下、特に3%以下が推奨される。
<Cu: 5% or less (excluding 0%),
Ni: 5% or less (excluding 0%),
Co: at least one selected from the group consisting of 5% or less (excluding 0%)>
All of these elements have the effect of strain aging and hardening the steel material, and are effective in improving the strength after processing. In order to effectively exhibit such an action, these elements are preferably contained in an amount of 0.1% or more, and more preferably 0.3% or more. However, if the content of these elements is excessive, the effects of strain aging and hardening of the steel material, and the effect of improving the strength after processing are saturated, and there is a possibility of promoting cracking. In the following, 4% or less, particularly 3% or less is recommended.
<Ca:0.05%以下(0%を含まない)、
 REM:0.05%以下(0%を含まない)、
 Mg:0.02%以下(0%を含まない)、
 Li:0.02%以下(0%を含まない)、
 Pb:0.5%以下(0%を含まない)、
 Bi:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種>
 Caは、MnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Caは、0.0005%以上、さらには0.001%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.05%以下、さらには0.03%以下、特に0.01%以下が推奨される。
<Ca: 0.05% or less (excluding 0%),
REM: 0.05% or less (excluding 0%),
Mg: 0.02% or less (excluding 0%),
Li: 0.02% or less (excluding 0%),
Pb: 0.5% or less (excluding 0%),
Bi: at least one selected from the group consisting of 0.5% or less (excluding 0%)>
Ca is an element that spheroidizes sulfide compound inclusions such as MnS, improves the deformability of steel, and contributes to improvement of machinability. In order to effectively exhibit such an action, Ca is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
 REMは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、REMは、0.0005%以上、さらには0.001%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.05%以下、さらには0.03%以下、特に0.01%以下が推奨される。
 なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。
REM is an element that, like Ca, spheroidizes compound inclusions such as MnS to increase the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an action, REM is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
In the present invention, REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.
 Mgは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Mgは、0.0002%以上、さらには0.0005%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.02%以下、さらには0.015%以下、特に0.01%以下が推奨される。 Mg, like Ca, is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an action, Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
 Liは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めることができ、また、Al系酸化物を低融点化して無害化して被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Liは、0.0002%以上、さらには0.0005%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.02%以下、さらには0.015%以下、特に0.01%以下が推奨される。 Li can spheroidize sulfide compound inclusions such as MnS and increase the deformability of steel like Ca, and lower the melting point of Al-based oxides to make them harmless and improve machinability. It is a contributing element. In order to effectively exhibit such an action, Li is preferably contained in an amount of 0.0002% or more, and more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
 Pbは、被削性を向上させるために有効な元素である。このような作用を有効に発揮させるためには、Pbは0.005%以上、さらには0.01%以上含有させることが好ましい。しかし、過剰に含有させると、圧延疵の発生等の製造上の問題を生じるため、0.5%以下、さらには0.4%以下、特に0.3%以下が推奨される。 Pb is an effective element for improving machinability. In order to effectively exhibit such an action, Pb is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, if it is contained excessively, production problems such as generation of rolling defects occur, so 0.5% or less, further 0.4% or less, particularly 0.3% or less is recommended.
 Biは、Pbと同様に、被削性を向上させるために有効な元素である。このような作用を有効に発揮させるためには、Biは0.005%以上、さらには0.01%以上含有させることが好ましい。しかし、過剰に含有させても被削性向上の効果が飽和するため、0.5%以下、さらには0.4%以下、特に0.3%以下が推奨される。 Bi is an element effective for improving the machinability like Pb. In order to effectively exhibit such an action, Bi is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, since the effect of improving the machinability is saturated even if contained excessively, 0.5% or less, further 0.4% or less, and particularly 0.3% or less are recommended.
 次に、本発明鋼板を特徴づける組織について説明する。 Next, the structure characterizing the steel sheet of the present invention will be described.
〔本発明鋼板の組織〕
 上述したとおり、本発明鋼板は、ベイニティックフェライト-ポリゴナルフェライトパーライト複相組織鋼をベースとするものであるが、特に、ベイニティックフェライト粒のサイズを特定範囲に制御することを特徴とする。
[Structure of the steel sheet of the present invention]
As described above, the steel sheet of the present invention is based on bainitic ferrite-polygonal ferrite pearlite double phase steel, and is particularly characterized by controlling the bainitic ferrite grain size within a specific range. To do.
<ベイニティックフェライト:5%以上、パーライト:20%未満、残部:ポリゴナルフェライト>
 本発明鋼板の組織は、ベイニティックフェライトとポリゴナルフェライトとパーライトの複相組織で構成されるものとする。ベイニティックフェライトは、冷間加工中には加工性を高めるとともに、加工後には硬さを高める一方でストレッチャーストレインマークの発生を抑制する作用を有し、これらの作用を有効に発揮させるため、面積率で5%以上、好ましくは10%以上、さらに好ましくは15%以上とする。また、パーライトが過剰に存在すると鋼板の成形性を劣化させるので、パーライトは面積率で20%未満、より好ましくは19%以下、さらに好ましくは18%以下、特に好ましくは15%以下とする。残部はポリゴナルフェライトである。
 なお、本発明鋼板の組織中には、上記組織以外に、セメンタイト相も存在しているが、その面積率は高々1%程度以下と極微量であることから、本明細書中では、ベイニティックフェライト、ポリゴナルフェライト、パーライトの各面積率は、これら3相の合計面積率が100%となるように規格化したものと定義した。
<Bainitic ferrite: 5% or more, pearlite: less than 20%, balance: polygonal ferrite>
The structure of the steel sheet of the present invention is composed of a multiphase structure of bainitic ferrite, polygonal ferrite and pearlite. Bainitic ferrite has the effect of improving the workability during cold working and increasing the hardness after processing while suppressing the occurrence of stretcher strain marks. The area ratio is 5% or more, preferably 10% or more, and more preferably 15% or more. Moreover, since the formability of a steel plate is deteriorated when excessive pearlite is present, the pearlite is less than 20% in area ratio, more preferably 19% or less, still more preferably 18% or less, and particularly preferably 15% or less. The balance is polygonal ferrite.
In addition to the above structure, a cementite phase is also present in the structure of the steel sheet of the present invention, but the area ratio is at most 1% or less, so in this specification, The area ratios of tick ferrite, polygonal ferrite, and pearlite were defined as those normalized so that the total area ratio of these three phases was 100%.
<前記ベイニティックフェライトの平均結晶粒径:3~50μmの範囲>
 ベイニティックフェライト組織を構成するベイニティックフェライトの平均結晶粒径は、鋼板の加工性を向上させるとともに、加工後の表面性状を満足させるため、3~50μmの範囲であることが必要である。ベイニティックフェライト粒が細かくなりすぎると、変形抵抗が高くなりすぎるため、その平均結晶粒径は3μm以上、好ましくは4μm以上、さらに好ましくは5μm以上とする。一方、ベイニティックフェライトが粗大化しすぎると、加工後の表面性状が劣化し、また靱性、疲労特性などが劣化するため、その平均結晶粒径は50μm以下、好ましくは45μm以下、さらに好ましくは40μm以下とする。
<Average crystal grain size of the bainitic ferrite: in the range of 3 to 50 μm>
The average grain size of bainitic ferrite constituting the bainitic ferrite structure needs to be in the range of 3 to 50 μm in order to improve the workability of the steel sheet and satisfy the surface properties after processing. . If the bainitic ferrite grains become too fine, the deformation resistance becomes too high, so the average crystal grain size is 3 μm or more, preferably 4 μm or more, more preferably 5 μm or more. On the other hand, if the bainitic ferrite is too coarse, the surface properties after processing deteriorate, and the toughness and fatigue characteristics deteriorate, so the average crystal grain size is 50 μm or less, preferably 45 μm or less, more preferably 40 μm. The following.
〔各相の面積率の測定方法〕 
 上記各相の面積率については、各供試鋼板をナイタール腐食し、走査型電子顕微鏡(SEM;倍率1000倍)により5視野撮影し、ベイニティックフェライト、ポリゴナルフェライトおよびパーライトの各比率を点算法で求めることができる。
 ここで、ベイニティックフェライトは、ベイナイト(上部ベイナイトおよび下部ベイナイトを総称したもの)組織中に存在する、結晶粒の形状が長軸化したフェライト粒であって(古原 忠,「鉄鋼のベイナイト組織の定義」-現状の理解-,熱処理第50巻第1号,平成22年2月,p.22-27参照)、アスペクト比(長軸/短軸の比)が2以上のものと定義する。また、ポリゴナルフェライトは、結晶粒の形状が等軸状のフェライト粒であって、アスペクト比(長軸/短軸の比)が2未満のものと定義する。
[Measurement method of area ratio of each phase]
Regarding the area ratio of each of the above phases, each test steel sheet was subjected to Nital corrosion, taken with a scanning electron microscope (SEM; magnification 1000 times), five fields of view, and the ratios of bainitic ferrite, polygonal ferrite and pearlite were pointed out. It can be obtained by arithmetic.
Here, bainitic ferrite is a ferrite grain that exists in the structure of bainite (generically referred to as upper bainite and lower bainite). Definition ”-understanding the current situation-heat treatment volume 50 No. 1, February 2010, p. 22-27), defined as having an aspect ratio (major axis / minor axis ratio) of 2 or more . Polygonal ferrite is defined as ferrite grains having equiaxed crystal grains and an aspect ratio (major axis / minor axis ratio) of less than 2.
〔平均結晶粒径の測定方法〕
 上記ベイニティックフェライトの平均結晶粒径については、以下のようにして測定することができる。すなわち、最表層部、板厚1/4部、板厚中心部の3箇所にそれぞれ存在するベイニティックフェライトの結晶粒径を測定する。ベイニティックフェライト粒子1個の粒径については、各測定箇所の圧延方向の側面部をナイタール腐食し、走査型電子顕微鏡(SEM;倍率1000倍)により該当部位を5視野撮影し、ベイニティックフェライトの結晶粒を画像解析による重心直径により、平均結晶粒径とした。
[Measurement method of average crystal grain size]
The average crystal grain size of the bainitic ferrite can be measured as follows. That is, the crystal grain size of bainitic ferrite existing at three locations, the outermost layer portion, the plate thickness ¼ portion, and the plate thickness center portion, is measured. As for the particle size of one bainitic ferrite particle, the side part in the rolling direction of each measurement point was subjected to nital corrosion, and the corresponding part was photographed with five fields of view with a scanning electron microscope (SEM; magnification 1000 times). The average crystal grain size of ferrite crystal grains was determined based on the center of gravity diameter by image analysis.
 次に、上記本発明鋼板を得るための好ましい製造方法を以下に説明する。 Next, a preferred manufacturing method for obtaining the steel sheet of the present invention will be described below.
〔本発明鋼板の好ましい製造方法〕
 本発明鋼板の製造は、上記成分組成を有する原料鋼を所望の板厚に成形できる方法であれば、いずれの方法にしたがって行ってもよい。例えば、以下に示す条件にて、転炉で上記成分組成を有する溶鋼を調製し、これを造塊または連続鋳造によりスラブしてから所望板厚の熱延鋼板に圧延することによって行うことができる。
[Preferred production method of the steel sheet of the present invention]
The steel plate of the present invention may be produced according to any method as long as the raw steel having the above composition can be formed into a desired plate thickness. For example, it can be carried out by preparing a molten steel having the above component composition in a converter under the conditions shown below, slab this by ingot casting or continuous casting, and then rolling it into a hot-rolled steel sheet having a desired thickness. .
[溶鋼の調製]
 溶鋼中のNの含有量については、転炉での溶製の際に、溶鋼にN化合物を含む原料を添加すること、および/または、転炉の雰囲気をN雰囲気に制御することにより調整することができる。
[Preparation of molten steel]
The N content in the molten steel is adjusted by adding a raw material containing an N compound to the molten steel and / or controlling the converter atmosphere to an N 2 atmosphere during melting in the converter. can do.
[加熱]
 熱間圧延前の加熱は1100~1300℃で行う。この加熱では、N化合物を生成せずに、なるべく多くのNを固溶させるために、高温の加熱条件が必要である。加熱温度の好ましい下限は1100℃、さらに好ましい下限は1150℃である。一方、1300℃を超える温度は操業上困難である。
[heating]
Heating before hot rolling is performed at 1100 to 1300 ° C. This heating requires high-temperature heating conditions in order to dissolve as much N as possible without producing an N compound. The minimum with a preferable heating temperature is 1100 degreeC, and a more preferable minimum is 1150 degreeC. On the other hand, temperatures exceeding 1300 ° C. are difficult to operate.
[熱間圧延]
 熱間圧延は、仕上げ圧延温度が880℃以上になるように行う。仕上げ圧延温度を低温化しすぎるとフェライト変態が高温で起るようになり、フェライト(ベイニティックフェライトおよびポリゴナルフェライトを総称したもの)中の析出炭化物が粗大化し、疲労強度が劣化するため、一定以上の仕上げ圧延温度が必要である。仕上げ圧延温度は、オーステナイト粒を粗大化してベイニティックフェライトの粒径をある程度大きくするため、900℃以上とするのがより好ましい。なお、仕上げ圧延温度の上限は温度確保が難しいため、1000℃とする。
[Hot rolling]
Hot rolling is performed so that the finish rolling temperature is 880 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation will occur at a high temperature, and the precipitated carbides in ferrite (generically referred to as bainitic ferrite and polygonal ferrite) will become coarse and fatigue strength will deteriorate. The above finish rolling temperature is required. The finish rolling temperature is more preferably 900 ° C. or higher in order to coarsen the austenite grains and increase the grain size of the bainitic ferrite to some extent. The upper limit of the finish rolling temperature is set to 1000 ° C. because it is difficult to secure the temperature.
 本発明の熱延鋼板の板厚は3~20mmであるが、ベイニティックフェライト結晶粒を微細化して、その平均結晶粒径を所定の粒径範囲に制御するために、上記の圧延温度の制御だけでなく、仕上げ圧延のタンデム圧延の最終圧下率を15%以上とすることが必要である。通常、仕上げ圧延は、5~7パスのタンデム圧延を実施するが、板のカミ込み制御の観点でパススケジュールが設定され、最終圧下率は、12~13%程度までである。上記最終圧下率は、好ましくは16%以上、より好ましくは17%以上である。上記最終圧下率は、20%、30%と高いほど、結晶粒をより微細化する効果が得られるが、圧延制御の観点で上限は30%程度に規定される。 The thickness of the hot-rolled steel sheet of the present invention is 3 to 20 mm. In order to refine the bainitic ferrite crystal grains and control the average crystal grain size within a predetermined grain size range, In addition to control, it is necessary to set the final reduction ratio of tandem rolling of finish rolling to 15% or more. Normally, the finish rolling is performed by tandem rolling of 5 to 7 passes, but a pass schedule is set from the viewpoint of control of sheet penetration, and the final rolling reduction is about 12 to 13%. The final rolling reduction is preferably 16% or more, more preferably 17% or more. The higher the final reduction ratio is 20% or 30%, the more effective the crystal grains are refined, but the upper limit is defined to be about 30% from the viewpoint of rolling control.
[熱延後の急冷]
 上記仕上げ圧延終了後、5s以内に20℃/s以上の冷却速度(第1急冷速度)で急冷し、550℃以上650℃未満の温度(急冷停止温度)で急冷を停止する。所定の相分率のベイニティックフェライト-ポリゴナルフェライト-パーライト複相組織を得るためである。冷却速度(急冷速度)が20℃/s未満ではパーライト変態が促進され、または、急冷停止温度が550℃未満ではベイナイト変態が抑制され、いずれも所定の相分率のベイニティックフェライト-ポリゴナルフェライト-パーライト鋼を得るのが困難になり、冷間加工性や加工後の表面品質が劣化する。一方、急冷停止温度が650℃以上になるとフェライト中の析出炭化物が粗大化してしまい、疲労強度が劣化する。急冷停止温度は、好ましくは560~640℃、さらに好ましくは580~620℃である。
[Rapid cooling after hot rolling]
After finishing the finish rolling, quenching is performed at a cooling rate (first quenching rate) of 20 ° C./s or more within 5 s, and rapid cooling is stopped at a temperature of 550 ° C. or more and less than 650 ° C. (quenching stop temperature). This is for obtaining a bainitic ferrite-polygonal ferrite-pearlite double phase structure having a predetermined phase fraction. When the cooling rate (quenching rate) is less than 20 ° C./s, the pearlite transformation is promoted, or when the quenching stop temperature is less than 550 ° C., the bainite transformation is suppressed, both of which are bainitic ferrite-polygonal having a predetermined phase fraction. It becomes difficult to obtain ferrite-pearlite steel, and cold workability and surface quality after processing deteriorate. On the other hand, when the quenching stop temperature is 650 ° C. or more, the precipitated carbide in the ferrite is coarsened, and the fatigue strength is deteriorated. The quenching stop temperature is preferably 560 to 640 ° C, more preferably 580 to 620 ° C.
[急冷停止後の緩冷]
 上記急冷停止後、放冷または空冷により10℃/s以下の冷却速度(緩冷速度)で5~20s緩冷する。これによりポリゴナルフェライトの形成を十分に進行させつつ、フェライト中の析出炭化物を適度に微細化させる。冷却速度が10℃/sを超え、または、緩冷時間が5s未満では、ポリゴナルフェライトの形成量が不足する。一方、緩冷時間が20sを超えると析出炭化物が粗大化せず、疲労強度が劣化する。
[Slow cooling after rapid cooling stop]
After the rapid cooling is stopped, it is slowly cooled for 5 to 20 seconds at a cooling rate (slow cooling rate) of 10 ° C./s or less by cooling or air cooling. Thereby, the formation of polygonal ferrite is sufficiently advanced, and the precipitated carbide in the ferrite is appropriately refined. When the cooling rate exceeds 10 ° C./s or the slow cooling time is less than 5 s, the amount of polygonal ferrite formed is insufficient. On the other hand, if the slow cooling time exceeds 20 s, the precipitated carbide is not coarsened and the fatigue strength is deteriorated.
[緩冷後の急冷、巻取り]
 上記緩冷後、再度20℃/s以上の冷却速度(第2急冷速度)で急冷し、500~600℃で巻き取る。ベイニティックフェライト+フェライト主体の組織にすることで、冷間加工性を確保するためである。冷却速度(第2急冷速度)が20℃/s未満、または、巻取り温度が600℃超では、パーライトが多く形成されて冷間加工性が劣化し、一方500℃未満では、ベイニティックフェライトの形成量が不足して加工後の表面品質性が劣化する。
[Rapid cooling after slow cooling, winding]
After the slow cooling, it is rapidly cooled again at a cooling rate (second quenching rate) of 20 ° C./s or more, and wound at 500 to 600 ° C. This is to ensure cold workability by making the structure mainly bainitic ferrite + ferrite. When the cooling rate (second rapid cooling rate) is less than 20 ° C./s or the coiling temperature exceeds 600 ° C., a large amount of pearlite is formed and the cold workability is deteriorated. As a result, the surface quality after processing is deteriorated.
 以下、本発明を実施例によってさらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
 下記表1に示す成分組成の鋼を真空溶解法により溶製し、厚さ120mmのインゴットに鋳造し、これを下記表2に示す条件にて熱間圧延を施し熱延鋼板を作製した。なお、いずれの試験においても、仕上げ圧延終了後における急冷停止までの冷却速度は20℃/s以上であり、急冷停止後の冷却は10℃/s以下の冷却速度で5~20s緩冷する条件であった。 Steel having the component composition shown in the following Table 1 was melted by a vacuum melting method, cast into an ingot having a thickness of 120 mm, and hot rolled under the conditions shown in Table 2 to produce a hot rolled steel sheet. In any test, the cooling rate until the quenching stop after finishing rolling is 20 ° C./s or more, and the cooling after the quenching stop is a condition of slow cooling for 5 to 20 s at a cooling rate of 10 ° C./s or less. Met.
 このようにして得られた熱延鋼板について、固溶N量、鋼板中組織の各相の面積率、および、ベイニティックフェライトの平均結晶粒径を、上記[発明を実施するための形態]のところで説明した各測定方法により求めた。 About the hot-rolled steel sheet obtained in this way, the amount of solute N, the area ratio of each phase of the structure in the steel sheet, and the average crystal grain size of bainitic ferrite are as described above. It was determined by each measurement method described above.
 また、上記熱延鋼板について、以下のようにして、冷間加工性と、加工後の表面品質および硬さを評価した。 Also, the hot-rolled steel sheet was evaluated for cold workability, surface quality after processing and hardness as follows.
(冷間加工性の評価)
 冷間加工性は、加工前後の試料中心部の硬さの差で定義される加工硬化量で評価することとした。そこで、まず、上記熱延鋼板について、加工再現試験装置(富士電波工機(株)製、Thermecmaster Z)を用いて、加工温度:室温、圧下率:70%、ひずみ速度:10/sの条件で加工試験を行った。加工試験片の形状は、板厚に合わせて、φ8mm×12mm、φ6mm×10mm、φ4mm×6mmなど、直径/高さの比がほぼ一定になるようにした。硬さ測定は、ビッカース硬さ試験機を用いて、測定位置は、加工試験片の圧縮方向中心部で円直径方向の1/4部(中心と外周の真ん中の位置)とし、荷重:500g、測定回数:5回の条件で、上記加工試験前後の加工試験片についてそれぞれビッカース硬さ(Hv)を測定し、それぞれの平均を加工前硬さおよび加工後硬さとした。
(Evaluation of cold workability)
The cold workability was evaluated by the work hardening amount defined by the difference in hardness of the sample center before and after processing. Therefore, first, with respect to the hot-rolled steel sheet, using a processing reproducibility test apparatus (Thermecaster Z, manufactured by Fuji Radio Engineering Co., Ltd.), conditions of processing temperature: room temperature, rolling reduction: 70%, strain rate: 10 / s A processing test was conducted. The shape of the processed test piece was adjusted so that the diameter / height ratio was substantially constant, such as φ8 mm × 12 mm, φ6 mm × 10 mm, φ4 mm × 6 mm, according to the plate thickness. Hardness is measured using a Vickers hardness tester, and the measurement position is a center part in the compression direction of the processed test piece and is 1/4 part in the diameter direction of the circle (position between the center and the center of the outer circumference), load: 500 g, Number of measurements: Under the conditions of 5 times, the Vickers hardness (Hv) was measured for each of the work specimens before and after the work test, and the average of each was taken as the pre-work hardness and post-work hardness.
 そして、冷間加工性を、上述のとおり、「加工後硬さ-加工前硬さ」で定義される加工硬化量で評価した。加工硬化量が大きいほど加工性が良好なことを意味し、80Hv以上を合格とした。 Then, as described above, the cold workability was evaluated by the work hardening amount defined by “hardness after work−hardness before work”. It means that workability is so good that work hardening amount is large, and 80Hv or more was set as the pass.
(加工後の硬さの評価)
 また、加工後の硬さの評価として、上記加工試験後に測定された上記加工後硬さで評価し、250Hv以上のものを合格とした。
(Evaluation of hardness after processing)
Moreover, as evaluation of the hardness after a process, it evaluated by the said post-process hardness measured after the said process test, and made the thing of 250 Hv or more pass.
(加工後の表面品質の評価)
 また、加工後の表面品質は、引張試験後におけるSSマーク発生の有無で評価することとした。このため、圧延方向に対して直角方向のJIS Z 2201の5号試験片(25mm×50mm×[板表面~板厚中心(引張試験機の能力を考慮して板厚を調整した)])を採取し、JIS Z 2241(1980)(金属材料引張り試験方法)に基づき、室温20℃、初期クロスヘッド速度600mm/分の条件で、ひずみ量15%まで引張試験を行った。そして、引張試験後の試験片の表面におけるSSマークの発生の有無を、試験片の表面に砥石がけを施して鮮明にした上で、目視評価した。SSマークが発生していないものを合格、SSマークが発生しているものを不合格とした。
(Evaluation of surface quality after processing)
Further, the surface quality after processing was evaluated by the presence or absence of SS mark generation after the tensile test. Therefore, JIS Z 2201 No. 5 test piece (25 mm x 50 mm x [plate surface to plate thickness center (plate thickness was adjusted in consideration of the capability of the tensile tester)]) in the direction perpendicular to the rolling direction Based on JIS Z 2241 (1980) (metal material tensile test method), a tensile test was performed up to a strain amount of 15% at a room temperature of 20 ° C. and an initial crosshead speed of 600 mm / min. And the presence or absence of generation | occurrence | production of the SS mark in the surface of the test piece after a tensile test was visually evaluated, after grinding the surface of the test piece with a whetstone. Those in which the SS mark was not generated passed, and those in which the SS mark was generated were rejected.
 これらの測定結果を下記表3に示す。 These measurement results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、鋼No.1~3、7~14、25~28はいずれも、本発明の成分組成規定の要件を満足する鋼種を用い、推奨の熱間圧延条件で製造した結果、本発明の組織規定の要件を充足する発明鋼であり、加工後表面性状、加工後硬さおよび加工硬化量はすべて合格基準を満たしており、加工中は良好な冷間加工性を示しつつ、加工後は所定の表面品質および硬さ(強度)を示す熱延鋼板が得られることが確認できた。 As shown in Table 3, steel no. 1 to 3, 7 to 14, and 25 to 28 all satisfy the requirements of the structure provision of the present invention as a result of manufacturing with the recommended hot rolling conditions using the steel grade that satisfies the requirements of the composition composition of the present invention. Invented steel, the surface properties after processing, the hardness after processing and the amount of work hardening all satisfy the acceptance criteria, exhibiting good cold workability during processing, but with a predetermined surface quality and hardness after processing. It was confirmed that a hot-rolled steel sheet exhibiting thickness (strength) was obtained.
 これに対し、鋼No.4~6、15~24、29は本発明で規定する成分組成および組織の要件のうち少なくともいずれかを満足しない比較鋼であり、加工後表面性状、加工後硬さおよび加工硬化量のうち少なくともいずれかが合格基準を満たしていない。 In contrast, Steel No. Reference numerals 4 to 6, 15 to 24, and 29 are comparative steels that do not satisfy at least one of the component composition and the structural requirement defined in the present invention, and are at least one of the surface properties after processing, the hardness after processing, and the work hardening amount. Either does not meet the acceptance criteria.
 例えば、鋼No.4は、成分組成の要件は満たしているものの、熱延前の加熱温度が推奨範囲を外れて低すぎ、固溶N量が不足し、加工後硬さが劣っている。  For example, steel No. No. 4, although the requirements for the component composition are satisfied, the heating temperature before hot rolling is too low outside the recommended range, the amount of solute N is insufficient, and the hardness after processing is inferior.
 また、鋼No.5は、成分組成の要件は満たしているものの、熱延後の板厚が規定範囲を外れて大きすぎ、ベイニティックフェライトが不足する一方粗大化し、加工後硬さ、加工硬化量ともに劣っている。 Steel No. No. 5, although the requirements of the component composition are satisfied, the plate thickness after hot rolling is too large outside the specified range, the bainitic ferrite is insufficient while being coarsened, and the post-working hardness and work hardening amount are inferior. Yes.
 また、鋼No.6は、成分組成の要件は満たしているものの、熱延時の最終圧下率が推奨範囲を外れて小さすぎ、ベイニティックフェライトが不足する一方粗大化し、加工後硬さ、加工硬化量ともに劣っている。 Steel No. No. 6, although the requirements of the component composition are satisfied, the final rolling reduction ratio during hot rolling is too small outside the recommended range, and bainitic ferrite is insufficient while coarsening, post-processing hardness and work hardening amount are inferior Yes.
 また、鋼No.15(鋼種j)は、熱延条件は推奨範囲にあるものの、N含有量が低すぎ、加工後硬さ、加工硬化量ともに劣っている。 Steel No. No. 15 (steel type j), although the hot rolling conditions are in the recommended range, the N content is too low and the post-working hardness and work hardening amount are inferior.
 一方、鋼No.16(鋼種k)は、熱延条件は推奨範囲にあるものの、N含有量が高すぎ、冷間加工性だけでなく、加工後表面性状も劣っている。 On the other hand, steel No. No. 16 (steel type k), although the hot rolling conditions are in the recommended range, the N content is too high and not only the cold workability but also the surface properties after processing are inferior.
 また、鋼No.17(鋼種l)は、熱延条件は推奨範囲にあるものの、C含有量が高すぎるとともに10C+N≦3.0の要件を満たさず、パーライトが過剰に形成され、冷間加工性だけでなく、加工後表面性状も劣っている。 Steel No. 17 (steel grade l), although the hot rolling conditions are in the recommended range, the C content is too high and does not satisfy the requirement of 10C + N ≦ 3.0, pearlite is excessively formed, not only cold workability, The surface properties after processing are also poor.
 また、鋼No.18(鋼種m)は、熱延条件は推奨範囲にあるものの、Si含有量が高すぎ、少なくとも冷間加工性が劣っている。 Steel No. No. 18 (steel type m) has a hot rolling condition in the recommended range, but the Si content is too high and at least cold workability is poor.
 また、鋼No.19(鋼種n)は、熱延条件は推奨範囲にあるものの、Mn含有量が低すぎ、加加工後硬さ、加工硬化量ともに劣っている。 Steel No. Although 19 (steel type n) has a hot rolling condition in the recommended range, the Mn content is too low, and the post-working hardness and work hardening amount are inferior.
 一方、鋼No.20(鋼種o)は、熱延条件は推奨範囲にあるものの、Mn含有量が高すぎ、少なくとも冷間加工性が劣っている。 On the other hand, steel No. Although 20 (steel type o) has a hot rolling condition in the recommended range, the Mn content is too high and at least cold workability is poor.
 また、鋼No.21(鋼種p)は、熱延条件は推奨範囲にあるものの、P含有量が高すぎ、少なくとも冷間加工性が劣っている。 Steel No. Although 21 (steel type p) has a hot rolling condition in the recommended range, the P content is too high and at least cold workability is inferior.
 また、鋼No.22(鋼種q)は、熱延条件は推奨範囲にあるものの、S含有量が高すぎ、少なくとも冷間加工性が劣っている。 Steel No. Although 22 (steel type q) has a hot rolling condition in the recommended range, the S content is too high and at least cold workability is poor.
 また、鋼No.23(鋼種r)は、熱延条件は推奨範囲にあるものの、Al含有量が低すぎ、少なくとも冷間加工性が劣っている。 Steel No. Although 23 (steel type r) has a hot rolling condition in the recommended range, the Al content is too low and at least cold workability is inferior.
 一方、鋼No.24(鋼種s)は、最終圧下率以外の熱延条件は推奨範囲にあるものの、Al含有量が高すぎ、少なくとも冷間加工性が劣っている。 On the other hand, steel No. In 24 (steel type s), although the hot rolling conditions other than the final reduction ratio are in the recommended range, the Al content is too high and at least cold workability is poor.
 一方、鋼No.29(鋼種x)は、熱延条件は推奨範囲にあるものの、10C+N≦3.0の要件を満たさず、冷間加工性だけでなく、加工後表面性状も劣っている。 On the other hand, steel No. Although 29 (steel type x) has a hot rolling condition in the recommended range, it does not satisfy the requirement of 10C + N ≦ 3.0, and not only the cold workability but also the surface properties after processing are inferior.
 以上より、本発明の適用性が確認できた。 From the above, the applicability of the present invention was confirmed.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年9月4日出願の日本特許出願(特願2013-183091)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on September 4, 2013 (Japanese Patent Application No. 2013-183091), the contents of which are incorporated herein by reference.
 本発明の熱延鋼材は、例えば自動車用の各種部品(ギヤなどのトランスミッション部品やケース等)に有用であり、軽量化及び高強度化を実現できる。 The hot-rolled steel material of the present invention is useful, for example, for various parts for automobiles (transmission parts such as gears and cases), and can realize weight reduction and high strength.

Claims (2)

  1.  板厚が3~20mmであり、 
     成分組成が、 
     質量%で(以下、化学成分について同じ。)、
     C :0.3%以下(0%を含まない)、 
     Si:0.5%以下(0%を含まない)、 
     Mn:0.2~1%、 
     P :0.05%以下(0%を含まない)、 
     S :0.05%以下(0%を含まない)、 
     Al:0.01~0.1%、 
     N :0.008~0.025%、 
     残部は鉄および不可避的不純物からなり、 
     固溶N:0.007%以上、かつ、 
     CとNの含有量が10C+N≦3.0の関係を満足し、 
     組織が、 
     全組織に対する面積率で、
     ベイニティックフェライト:5%以上、
     パーライト:20%未満、
     残部:ポリゴナルフェライトであり、
     前記ベイニティックフェライトの平均結晶粒径が3~50μmの範囲である
    ことを特徴とする冷間加工性と加工後の表面性状および硬さに優れる熱延鋼板。
    The plate thickness is 3-20mm,
    Ingredient composition
    % By mass (hereinafter the same for chemical components)
    C: 0.3% or less (excluding 0%),
    Si: 0.5% or less (excluding 0%),
    Mn: 0.2 to 1%
    P: 0.05% or less (excluding 0%),
    S: 0.05% or less (excluding 0%),
    Al: 0.01 to 0.1%,
    N: 0.008 to 0.025%,
    The balance consists of iron and inevitable impurities,
    Solid solution N: 0.007% or more, and
    The content of C and N satisfies the relationship of 10C + N ≦ 3.0,
    Organization
    The area ratio for all tissues
    Bainitic ferrite: 5% or more
    Perlite: less than 20%
    The rest: polygonal ferrite,
    A hot-rolled steel sheet excellent in cold workability, surface properties and hardness after processing, wherein the average crystal grain size of the bainitic ferrite is in the range of 3 to 50 μm.
  2.  成分組成が、さらに、 下記(a)~(e)の少なくとも1種を含むものである請求項1記載の熱延鋼板。 
       (a)Cr:2%以下(0%を含まない)及びMo:2%以下(0%を含まない)の少なくとも一方
       (b)Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)、V:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
    (c)B:0.005%以下(0%を含まない) 
       (d)Cu:5%以下(0%を含まない)、Ni:5%以下(0%を含まない)、Co:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種 
       (e)Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
    The hot rolled steel sheet according to claim 1, wherein the component composition further comprises at least one of the following (a) to (e).
    (A) At least one of Cr: 2% or less (not including 0%) and Mo: 2% or less (not including 0%) (b) Ti: 0.2% or less (not including 0%), Nb : 0.2% or less (excluding 0%), V: at least one selected from the group consisting of 0.2% or less (not including 0%) (c) B: 0.005% or less (0% Not included)
    (D) At least one selected from the group consisting of Cu: 5% or less (not including 0%), Ni: 5% or less (not including 0%), Co: 5% or less (not including 0%)
    (E) Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.02% or less (not including 0%), Pb: 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%) seed
PCT/JP2014/073075 2013-09-04 2014-09-02 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working WO2015033933A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014004028.2T DE112014004028T5 (en) 2013-09-04 2014-09-02 Hot rolled steel sheet with excellent cold workability and excellent surface properties and hardness after forming
US14/913,432 US20160201172A1 (en) 2013-09-04 2014-09-02 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working
MX2016002690A MX2016002690A (en) 2013-09-04 2014-09-02 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working.
CN201480048219.7A CN105492645A (en) 2013-09-04 2014-09-02 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-183091 2013-09-04
JP2013183091A JP6058508B2 (en) 2013-09-04 2013-09-04 Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing

Publications (1)

Publication Number Publication Date
WO2015033933A1 true WO2015033933A1 (en) 2015-03-12

Family

ID=52628407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073075 WO2015033933A1 (en) 2013-09-04 2014-09-02 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working

Country Status (6)

Country Link
US (1) US20160201172A1 (en)
JP (1) JP6058508B2 (en)
CN (1) CN105492645A (en)
DE (1) DE112014004028T5 (en)
MX (1) MX2016002690A (en)
WO (1) WO2015033933A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284813B2 (en) * 2014-04-18 2018-02-28 株式会社神戸製鋼所 Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
RU2654093C2 (en) * 2016-05-23 2018-05-16 Открытое акционерное общество "Магнитогорский металлургический комбинат" High-strength, high-hardness steel and production of sheets therefrom
JP7151889B2 (en) * 2019-05-31 2022-10-12 日本製鉄株式会社 Steel plate for hot stamping
CN115181905B (en) * 2022-06-23 2023-09-15 首钢集团有限公司 Gear steel and production method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206138A (en) * 2000-10-27 2002-07-26 Kawasaki Steel Corp High tensile strength cold rolled steel sheet having excellent formability, strain age hardening characteristic and cold aging resistance and production method therefor
JP2003231946A (en) * 2002-02-12 2003-08-19 Jfe Steel Kk Hot-dip galvanized steel sheet superior in strain age hardening characteristics, and manufacturing method therefor
JP2003268491A (en) * 2002-03-13 2003-09-25 Jfe Steel Kk High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JP2004332099A (en) * 2003-04-14 2004-11-25 Nippon Steel Corp High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, hole-expandability, and ductility and manufacturing method therefor
JP2005154906A (en) * 2000-02-29 2005-06-16 Jfe Steel Kk High tensile strength cold-rolled steel sheet having excellent strain age hardening property, and its production method
JP2005298967A (en) * 2004-03-18 2005-10-27 Jfe Steel Kk Hot rolled steel sheet having excellent working hardenability and method for producing the same
JP2009019265A (en) * 2007-06-12 2009-01-29 Nippon Steel Corp High young's modulus steel sheet excellent in hole expansion property and its production method
JP2010202904A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Steel for machine structure, method for manufacturing the same, and component for machine structure
JP2010280967A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Steel for machine structure, method for producing the same, and method for producing worked component using the steel for machine structure
JP2014148739A (en) * 2013-01-10 2014-08-21 Kobe Steel Ltd Hot rolled steel sheet excellent in cold workability and surface hardness after processing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3821036B2 (en) * 2002-04-01 2006-09-13 住友金属工業株式会社 Hot rolled steel sheet, hot rolled steel sheet and cold rolled steel sheet
JP5397437B2 (en) * 2011-08-31 2014-01-22 Jfeスチール株式会社 Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dip galvanized steel sheet, and manufacturing method thereof excellent in workability and material stability

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154906A (en) * 2000-02-29 2005-06-16 Jfe Steel Kk High tensile strength cold-rolled steel sheet having excellent strain age hardening property, and its production method
JP2002206138A (en) * 2000-10-27 2002-07-26 Kawasaki Steel Corp High tensile strength cold rolled steel sheet having excellent formability, strain age hardening characteristic and cold aging resistance and production method therefor
JP2003231946A (en) * 2002-02-12 2003-08-19 Jfe Steel Kk Hot-dip galvanized steel sheet superior in strain age hardening characteristics, and manufacturing method therefor
JP2003268491A (en) * 2002-03-13 2003-09-25 Jfe Steel Kk High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JP2004332099A (en) * 2003-04-14 2004-11-25 Nippon Steel Corp High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, hole-expandability, and ductility and manufacturing method therefor
JP2005298967A (en) * 2004-03-18 2005-10-27 Jfe Steel Kk Hot rolled steel sheet having excellent working hardenability and method for producing the same
JP2009019265A (en) * 2007-06-12 2009-01-29 Nippon Steel Corp High young's modulus steel sheet excellent in hole expansion property and its production method
JP2010202904A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Steel for machine structure, method for manufacturing the same, and component for machine structure
JP2010280967A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Steel for machine structure, method for producing the same, and method for producing worked component using the steel for machine structure
JP2014148739A (en) * 2013-01-10 2014-08-21 Kobe Steel Ltd Hot rolled steel sheet excellent in cold workability and surface hardness after processing

Also Published As

Publication number Publication date
DE112014004028T5 (en) 2016-07-28
US20160201172A1 (en) 2016-07-14
JP2015048527A (en) 2015-03-16
JP6058508B2 (en) 2017-01-11
MX2016002690A (en) 2016-06-06
CN105492645A (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
JP6068314B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment
JP6468408B2 (en) H-section steel and its manufacturing method
JP6177551B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after processing
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
KR20130080038A (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
WO2015060311A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability
KR20140048348A (en) Thin steel sheet and process for producing same
KR101892526B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
WO2015159965A1 (en) Hot-rolled steel sheet having good cold workability and excellent hardness after working
KR20190028781A (en) High frequency quenching steel
KR20190028757A (en) High frequency quenching steel
WO2012144630A1 (en) High carbon steel wire rod and method for producing high carbon steel wire rod
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
JP2009215572A (en) High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability
WO2011152328A1 (en) Hot-rolled high-strength steel sheet and process for production thereof
KR102064147B1 (en) High-strength thin steel sheet and method for manufacturing same
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
WO2015020028A1 (en) Soft high-carbon steel sheet
JP2018062692A (en) Hot rolled steel sheet
JP2017197816A (en) Hot rolled steel sheet excellent in cold workability and hardness after being cold-worked
JP2015054974A (en) High strength hot rolled steel sheet excellent in toughness and production method thereof
JP2010280963A (en) Steel for cold working, method for producing steel for cold working, method for producing component for machine structure, and component for machine structure
JP5286217B2 (en) Machine structural steel with excellent hot workability, cold workability, and hardness after cold work

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048219.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14913432

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/002690

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1120140040282

Country of ref document: DE

Ref document number: 112014004028

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842178

Country of ref document: EP

Kind code of ref document: A1