WO2015159965A1 - Hot-rolled steel sheet having good cold workability and excellent hardness after working - Google Patents

Hot-rolled steel sheet having good cold workability and excellent hardness after working Download PDF

Info

Publication number
WO2015159965A1
WO2015159965A1 PCT/JP2015/061767 JP2015061767W WO2015159965A1 WO 2015159965 A1 WO2015159965 A1 WO 2015159965A1 JP 2015061767 W JP2015061767 W JP 2015061767W WO 2015159965 A1 WO2015159965 A1 WO 2015159965A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
hot
steel sheet
hardness
Prior art date
Application number
PCT/JP2015/061767
Other languages
French (fr)
Japanese (ja)
Inventor
梶原 桂
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to DE112015001872.7T priority Critical patent/DE112015001872T5/en
Priority to KR1020167028769A priority patent/KR101736019B1/en
Priority to CN201580019843.9A priority patent/CN106232847B/en
Priority to US15/303,658 priority patent/US20170037496A1/en
Priority to MX2016013517A priority patent/MX2016013517A/en
Publication of WO2015159965A1 publication Critical patent/WO2015159965A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/22Hardness
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention shows a good cold workability (strong cold workability) during processing that causes extremely high deformation strain locally in cold working, and a heat that shows a predetermined hardness after working. It relates to rolled steel sheets.
  • cold working (cold forging) has advantages of higher productivity than hot working and warm working and good dimensional accuracy and yield of steel materials.
  • the problem in manufacturing parts by such cold working is that in order to ensure the strength of the cold-worked parts to be higher than the expected value, the strength, ie deformation, is inevitably required. It is necessary to use a steel material with high resistance. However, the higher the deformation resistance of the steel material used, the shorter the service life of the cold working mold.
  • This steel material realizes both cold workability and high hardness (high strength) after processing, but is a hot forging material, like the wire rod and bar steel described in Patent Document 1 above.
  • the manufacturing cost is high. Therefore, in order to further reduce the manufacturing cost, it has been studied to produce automobile parts by cold working using hot-rolled steel sheets instead of the conventional hot forging materials.
  • Patent Document 3 For example, a hot-rolled steel sheet for nitriding that has a high surface hardness and a sufficient hardening depth after nitriding has been proposed (see Patent Document 3).
  • a hot-rolled steel sheet having a composition and having a microstructure of 95% or more of a substantially ferritic single-phase structure has been proposed.
  • This hot-rolled steel sheet has excellent dimensional accuracy of a precision punched surface and a stamped surface after processing. Is extremely high in surface hardness and is also excellent in red scale resistance (see Patent Document 4).
  • N is limited to a very low content as a harmful element, and the technical idea is completely different from the hot-rolled steel sheet according to the present invention that actively uses N. It is.
  • the present invention has been made by paying attention to the above circumstances, and its purpose is to show good cold workability (strong cold workability) during working that causes extremely high strain in cold working. It is to provide a hot-rolled steel sheet having a predetermined hardness after processing.
  • a hot-rolled steel sheet excellent in strong cold workability and hardness after processing according to the first invention of the present invention The plate thickness is 3-20mm
  • Ingredient composition is mass%, C: more than 0% and 0.3% or less, Si: more than 0% and 0.5% or less, Mn: 0.2 to 1% P: more than 0% and 0.05% or less, S: more than 0% and 0.05% or less, Al: 0.01 to 0.1%, N: 0.008 to 0.025%,
  • the balance consists of iron and inevitable impurities, Solid solution N: 0.007% or more, and The content of C and N satisfies the relationship of 10C + N ⁇ 3.0
  • the structure is an area ratio with respect to the entire structure, bainitic ferrite: 5% or more, pearlite: less than 20%, the balance: polygonal ferrite, The average grain size of the bainitic ferrite is in the range of 3 to 50 ⁇ m;
  • t is the thickness of the thickness direction
  • Ingredient composition is further mass%, Cr: more than 0% and 2% or less, and Mo: At least one selected from the group consisting of more than 0% and 2% or less Is included.
  • Ingredient composition further Ti: more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: At least one selected from the group consisting of more than 0% and 0.2% or less Is included.
  • Ingredient composition is further mass%, B: Over 0% to 0.005% or less Is included.
  • Ingredient composition is further mass%, Cu: more than 0% and 5% or less, Ni: more than 0% and 5% or less, and Co: at least one selected from the group consisting of more than 0% and not more than 5% Is included.
  • Ingredient composition is further mass%, Ca: more than 0% and 0.05% or less, REM: more than 0% and 0.05% or less, Mg: more than 0% and 0.02% or less, Li: more than 0% and 0.02% or less, Pb: more than 0% and 0.5% or less, and Bi: At least one selected from the group consisting of more than 0% and 0.5% or less Is included.
  • a solid solution N amount is ensured, and the C content and the N content have a predetermined relationship.
  • the hot-rolled steel sheet according to the present invention (hereinafter also referred to as “the steel sheet of the present invention” or simply “the steel sheet”) will be described in more detail.
  • the steel sheet of the present invention is common to the hot forging material described in Patent Document 2 above in that the N solid solution amount is ensured and the C content and the N content satisfy a predetermined relationship.
  • the C content is allowed to a higher range
  • the structure is a bainitic ferrite-polygonal ferrite-pearlite double phase structure
  • the bainitic ferrite grains are refined
  • the hardness in the thickness direction The difference is that the distribution is limited within a predetermined range.
  • the steel sheet of the present invention has a thickness of 3 to 20 mm. If the plate thickness is less than 3 mm, rigidity as a structure cannot be secured. On the other hand, if the plate thickness exceeds 20 mm, it is difficult to achieve the tissue form defined in the present invention, and the desired effect cannot be obtained.
  • a preferred plate thickness is 4 to 19 mm.
  • Component composition of the steel sheet of the present invention ⁇ C: more than 0% and 0.3% or less>
  • C is an element that has a great influence on the formation of the structure of a steel sheet, and the structure is bainitic ferrite-polygonal ferrite-pearlite multiphase structure, but bainitic ferrite-polygonal ferrite mainly containing as little pearlite as possible. It is an element whose content needs to be limited in order to form a structure.
  • C is contained excessively, the pearlite fraction in the steel sheet structure increases, and the deformation resistance may be excessive due to work hardening of the pearlite.
  • the C content in the steel sheet is limited to 0.3% or less, preferably 0.25% or less, more preferably 0.2% or less, and particularly preferably 0.15% or less.
  • the content of C is too small, deoxidation during the melting of steel becomes difficult, and it becomes difficult to satisfy the strength and hardness after cold working, so 0.0005% or more, more preferably Is 0.0008% or more, particularly preferably 0.001% or more.
  • Si is an element that needs to be reduced as much as possible in order to increase the deformation resistance of the steel sheet by dissolving in steel. Therefore, the Si content in the steel sheet is 0.5% or less, preferably 0.45% or less, more preferably 0.4% or less, and particularly preferably 0.3% or less in order to suppress an increase in deformation resistance. Restrict to. However, if the Si content is extremely small, deoxidation during melting becomes difficult, and it becomes difficult to satisfy the strength and hardness after cold working, so 0.005% or more, more preferably 0.008% or more, particularly preferably 0.01% or more.
  • Mn is an element having a deoxidizing and desulfurizing action in the steel making process. Furthermore, when the content of N in the steel material is increased, cracks are likely to occur due to dynamic strain aging due to heat generation during processing. On the other hand, Mn improves the workability at that time and has the effect of suppressing cracks. . In order to effectively exhibit these actions, the Mn content in the steel material is 0.2% or more, preferably 0.22% or more, and more preferably 0.25% or more. However, when the Mn content is excessive, the deformation resistance becomes excessive and the structure is not uniform due to segregation. Therefore, the content is set to 1% or less, preferably 0.98% or less, and more preferably 0.95% or less.
  • P is an impurity element inevitably contained in the steel, but if it is contained in ferrite, it segregates at the ferrite grain boundaries and degrades the cold workability. It is an element that causes an increase. Therefore, it is desirable to reduce the P content as much as possible from the viewpoint of cold workability. However, since extreme reduction leads to an increase in steelmaking costs, it is 0.05% or less, preferably in consideration of process capability. 0.03% or less.
  • S is an unavoidable impurity and is an element that precipitates in the form of a film at the grain boundary as FeS and degrades workability. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, in the present invention, the S content is set to 0.05% or less, preferably 0.03% or less. However, it is industrially difficult to reduce the S content to zero. In addition, since S has an effect of improving machinability, it is recommended to contain 0.002% or more, more preferably 0.006% or more from the viewpoint of improving machinability.
  • Al is an element effective for deoxidation in the steelmaking process.
  • the Al content in the steel material is set to 0.01% or more, preferably 0.015% or more, and more preferably 0.02% or more.
  • the content is 0.1% or less, preferably 0.09% or less, and more preferably 0.08% by mass or less.
  • N is an important element for obtaining a predetermined strength by static strain aging after processing. Therefore, the N content in the steel material is 0.008% or more, preferably 0.0085% or more, and more preferably 0.009% or more. However, if the N content is excessive, in addition to static strain aging, the influence of dynamic strain aging during processing becomes significant, and deformation resistance increases, which is unsuitable. Therefore, 0.025% or less, preferably 0 0.02% or less, more preferably 0.02% or less.
  • Solid solution N amount a predetermined amount of solid solution N in the steel sheet
  • the amount of solute N needs to be 0.007% or more.
  • the amount of solute N becomes excessive, cold workability deteriorates and the amount of solute N fixed to the processing strain increases, and hardness distribution tends to occur in the thickness direction of the hot-rolled sheet.
  • it is preferably 0.03% or less.
  • content of N in steel materials is 0.025% or less, the amount of solute N does not become 0.025% or more substantially.
  • the solid solution N amount in the present invention is an amount obtained by subtracting the amount of all N compounds from the total N amount in the steel material in accordance with JIS G 1228.
  • a practical method for measuring the amount of dissolved N will be exemplified below.
  • the sample material is dissolved in this 10% AA-based electrolyte, and the resulting insoluble residue (N compound) is filtered through a polycarbonate filter having a hole size of 0.1 ⁇ m.
  • the obtained insoluble residue is decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and the decomposition product is combined with the filtrate.
  • steam distillation is performed, and the distilled ammonia is absorbed in dilute sulfuric acid.
  • phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and the absorbance is measured using an absorptiometer to determine the total N compound amount.
  • the amount of solid solution N can be calculated
  • the content of C and N satisfies the relationship of 10C + N ⁇ 3.0>
  • solid solution C greatly increases deformation resistance and does not contribute much to static strain aging
  • solid solution N promotes static strain aging without significantly increasing deformation resistance. Therefore, the hardness after processing can be increased. Therefore, in the steel material of the present invention, in order to increase the hardness after processing without significantly increasing the deformation resistance during processing, the content of C and the content of N are 10C + N ⁇ 3.0. It is essential to satisfy the relationship, preferably 0.009 ⁇ 10C + N ⁇ 2.8, more preferably 0.01 ⁇ 10C + N ⁇ 2.5, and particularly preferably 0.01 ⁇ 10C + N ⁇ 2.0.
  • a C content and a solute C content are required to some extent, but when 10C + N> 3.0, C and / or N The amount becomes excessive and the deformation resistance becomes excessive.
  • the coefficient of the C content is set to 10 times the coefficient of the N content because the solid solution C has the same content as the solid solution N but the strength in the hot-rolled steel sheet of the present invention. Further, it is considered that the degree of increasing the deformation resistance is about one digit (10 times) larger.
  • the steel of the present invention basically contains the above components, and the balance is iron and inevitable impurities, but the following permissible components can be added as long as the effects of the present invention are not impaired.
  • Cr is an element that has the effect of improving the deformability of steel by increasing the strength of the grain boundaries.
  • Cr is preferably contained in an amount of 0.2% or more. .
  • the content is recommended to be 2% or less, more preferably 1.5% or less, especially 1% or less. Is done.
  • Mo is an element having an action of increasing the hardness and deformability of the steel material after processing. In order to effectively exhibit such action, Mo is 0.04% or more, more preferably 0. It is preferable to contain 0.08% or more. However, if Mo is excessively contained, the cold workability may be deteriorated. Therefore, the content is recommended to be 2% or less, further 1.5% or less, particularly 1% or less.
  • ⁇ Ti more than 0% and 0.2% or less
  • Nb more than 0% and 0.2% or less
  • V at least one selected from the group consisting of more than 0% and 0.2% or less>
  • These elements have a strong affinity for N, coexist with N to form N compounds, refine steel grains, improve the toughness of processed products obtained after cold working, and improve crack resistance. It is an element that has a role to improve. However, even if each element is contained exceeding the upper limit value, the effect of improving the characteristics cannot be obtained. It is recommended that the content of each element is 0.2% or less, further 0.001 to 0.15%, particularly 0.002 to 0.1%.
  • B like Ti, Nb, and V, has a strong affinity with N, and coexists with N to form an N compound, refines the grain of steel, and improves the toughness of the workpiece obtained after cold working And an element having a role of improving crack resistance. Therefore, when the steel sheet of the present invention contains B, the required solid solution N amount can be secured and the strength after cold working can be improved, so the content is 0.005% or less, and further 0 0.0001 to 0.0035%, especially 0.0002 to 0.002% is recommended.
  • ⁇ Cu more than 0% and 5% or less
  • Ni more than 0% and 5% or less
  • Co at least one selected from the group consisting of more than 0% and 5% or less>
  • All of these elements have the effect of strain aging and hardening the steel material, and are effective in improving the strength after processing. In order to effectively exhibit such an action, these elements are preferably contained in an amount of 0.1% or more, and more preferably 0.3% or more. However, if the content of these elements is excessive, the effects of strain aging and hardening of the steel material, and the effect of improving the strength after processing are saturated, and there is a possibility of promoting cracking. In the following, 4% or less, particularly 3% or less is recommended.
  • Ca is an element that spheroidizes sulfide compound inclusions such as MnS, improves the deformability of steel, and contributes to improvement of machinability.
  • Ca is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
  • REM is an element that, like Ca, spheroidizes compound inclusions such as MnS to increase the deformability of steel and contribute to the improvement of machinability.
  • REM is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more.
  • REM means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium).
  • it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.
  • Mg is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability.
  • Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more.
  • 0.02% or less is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability.
  • Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more.
  • 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
  • Li can spheroidize sulfide compound inclusions such as MnS and increase the deformability of steel like Ca, and lower the melting point of Al-based oxides to make them harmless and improve machinability. It is a contributing element.
  • Li is preferably contained in an amount of 0.0002% or more, and more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
  • Pb is an effective element for improving machinability.
  • Pb is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, if it is contained excessively, production problems such as generation of rolling defects occur, so 0.5% or less, further 0.4% or less, particularly 0.3% or less is recommended.
  • Bi is an element effective for improving the machinability like Pb.
  • Bi is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more.
  • the effect of improving the machinability is saturated even if contained excessively, 0.5% by mass or less, further 0.4% or less, particularly 0.3% or less is recommended.
  • the steel sheet according to the present invention is based on bainitic ferrite-polygonal ferrite pearlite double phase steel, and in particular, controls the bainitic ferrite grain size within a specific range, The hardness distribution in the thickness direction is controlled.
  • the structure of the steel sheet of the present invention is composed of a multiphase structure of bainitic ferrite, polygonal ferrite and pearlite.
  • Bainitic ferrite has the effect of improving the workability during cold working and increasing the hardness after processing while suppressing the occurrence of stretcher strain marks.
  • the area ratio is 5% or more, preferably 10% or more, and more preferably 15% or more.
  • the upper limit of the area ratio of bainitic ferrite in the steel sheet of the present invention is substantially about 90%, preferably 85%, more preferably 80%.
  • the pearlite is 20% or less in area ratio, more preferably 19% or less, still more preferably 18% or less, and particularly preferably 15% or less.
  • the lower limit of the area ratio of pearlite in the steel sheet of the present invention is substantially about 0.5%, preferably 1%.
  • the balance is polygonal ferrite, but the area ratio of polygonal ferrite is preferably 5% or more.
  • a cementite phase is also present in the structure of the steel sheet of the present invention, but the area ratio is at most 1% or less, so in this specification, The area ratios of tick ferrite, polygonal ferrite, and pearlite were defined as those normalized so that the total area ratio of these three phases was 100%.
  • ⁇ Average crystal grain size of the bainitic ferrite in the range of 3 to 50 ⁇ m>
  • the average grain size of bainitic ferrite constituting the bainitic ferrite structure needs to be in the range of 3 to 50 ⁇ m in order to improve the workability of the steel sheet and satisfy the surface properties after processing. . If the bainitic ferrite grains become too fine, the deformation resistance becomes too high, so the average crystal grain size is 3 ⁇ m or more, preferably 4 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the average crystal grain size is 50 ⁇ m or less, preferably 45 ⁇ m or less, more preferably 40 ⁇ m. The following.
  • the hardness distribution in the thickness direction is the surface portion, the thickness t / 4 portion, and the central portion at three locations.
  • HV max the maximum value
  • HV min the minimum value
  • the alloy component of the present invention contains a large amount of solute N, it also affects that the hardness of such a region with a large processing strain increases due to the fixing action of N to the region with a large processing strain. .
  • a hardness distribution in the thickness direction is generated due to a plurality of complicated factors, and variations in strength tend to occur in the thickness direction. Therefore, the steel sheet of the present invention can be obtained by reducing the hardness distribution in the plate thickness direction by subjecting the hot rolled plate to batch annealing under the recommended conditions described later.
  • Polygonal ferrite is defined as ferrite grains having equiaxed crystal grains and an aspect ratio (major axis / minor axis ratio) of less than 2.
  • the average crystal grain size of the bainitic ferrite can be measured as follows. That is, the crystal grain size of bainitic ferrite existing at three locations, the outermost layer portion, the plate thickness 1 ⁇ 4 portion, and the plate thickness center portion, is measured. As for the particle size of one bainitic ferrite particle, the side part in the rolling direction of each measurement point was subjected to nital corrosion, and the corresponding part was photographed with five fields of view with a scanning electron microscope (SEM; magnification 1000 times). The average crystal grain size of ferrite crystal grains was determined based on the center of gravity diameter by image analysis.
  • the steel plate of the present invention may be produced according to any method as long as the raw steel having the above composition can be formed into a desired plate thickness. For example, it can be carried out by preparing a molten steel having the above component composition in a converter under the conditions shown below, slab this by ingot casting or continuous casting, and then rolling it into a hot-rolled steel sheet having a desired thickness. .
  • the N content in the molten steel is adjusted by adding a raw material containing an N compound to the molten steel and / or controlling the converter atmosphere to an N 2 atmosphere during melting in the converter. can do.
  • Heating before hot rolling is performed at 1100 to 1300 ° C. This heating requires high-temperature heating conditions in order to dissolve as much N as possible without producing an N compound.
  • the minimum with a preferable heating temperature is 1100 degreeC, and a more preferable minimum is 1150 degreeC.
  • temperatures exceeding 1300 ° C. are difficult to operate.
  • Hot rolling is performed so that the finish rolling temperature is 880 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation will occur at a high temperature, and the precipitated carbides in ferrite (generically referred to as bainitic ferrite and polygonal ferrite) will become coarse and fatigue strength will deteriorate.
  • the above finish rolling temperature is required.
  • the finish rolling temperature is more preferably 900 ° C. or higher in order to coarsen the austenite grains and increase the grain size of the bainitic ferrite to some extent.
  • the upper limit of the finish rolling temperature is set to 1000 ° C. because it is difficult to secure the temperature.
  • the thickness of the hot-rolled steel sheet of the present invention is 3 to 20 mm.
  • the final reduction ratio of tandem rolling of finish rolling is set to 15% or more.
  • the finish rolling is performed by tandem rolling of 5 to 7 passes, but a pass schedule is set from the viewpoint of control of sheet penetration, and the final rolling reduction is about 12 to 13%.
  • the final rolling reduction is preferably 16% or more, more preferably 17% or more.
  • the higher the final reduction ratio is 20% or 30%, the more effective the crystal grains are refined, but the upper limit is defined to be about 30% from the viewpoint of rolling control.
  • the pearlite transformation is promoted, or when the quenching stop temperature is less than 550 ° C., the bainite transformation is suppressed, both of which are bainitic ferrite-polygonal having a predetermined phase fraction. It becomes difficult to obtain ferrite-pearlite steel, and cold workability and surface quality after processing deteriorate.
  • the quenching stop temperature is 650 ° C. or more, the precipitated carbide in the ferrite is coarsened, and the fatigue strength is deteriorated.
  • the quenching stop temperature is preferably 560 to 640 ° C, more preferably 580 to 620 ° C.
  • the hot rolled plate (hot rolled coil) is subjected to batch annealing under the following conditions. That is, in this batch annealing, in order to suppress generation of surface scale and decarburization, the steel sheet is heated from room temperature to 400 ° C. or higher and Ac1 or lower in an atmosphere of H 2 : 15 to 20% by volume, and then 1 h or longer and 15 h or shorter. Hold and do.
  • the holding temperature and holding time vary depending on the thickness of the hot rolled plate and the size of the coil, but the degree of hardness distribution limit required in correspondence with the required cold working degree, It is appropriately selected depending on the uniformity of the temperature inside the coil.
  • This heat treatment removes residual stress generated during hot rolling, softens it, reduces strain, promotes the release of fixed N elements and spheroidization of carbides, and dissolves fine lamellae in austenite. By doing so, the hardness distribution in the plate thickness direction is reduced.
  • the steel sheet is cooled to 600 ° C. at a rate of 10 ° C./h or less, thereby promoting the spheroidization of the carbide.
  • the cooling is performed at a rate of 15 ° C./h or less from 600 to 400 ° C., in order to stabilize the shape such as coil crushing by uniformly cooling the inside of the coil.
  • cooling can be performed at a high cooling rate (such as about 50 to 100 ° C./h or higher) by water cooling or the like as long as the temperature distribution in the coil can be uniformly cooled.
  • the holding temperature is more preferably 450 to 650 ° C, particularly preferably 500 to 600 ° C.
  • the holding time is more preferably 2 to 14 h, particularly preferably 3 to 12 h.
  • cooling was performed at a cooling rate of 10 ° C./h or less up to 600 ° C., 15 ° C./h or less from 600 to 400 ° C., and water cooling was performed at 400 ° C. or less.
  • the hot-rolled steel sheet was evaluated for the cold workability and the hardness after working as follows.
  • FORGE manufactured by TRANSVALOR
  • FORGE manufactured by TRANSVALOR
  • steel no. 1-2 to 1-6, 2, 3, 7 to 14, and 25 to 28 were all manufactured using the steel types satisfying the requirements of the component composition provisions of the present invention under the recommended production conditions.
  • Invented steel that meets the requirements of the organization regulations. Both cold workability and post-working hardness satisfy the acceptance criteria, and good strong cold during machining that causes extremely high strain in cold working. It was confirmed that a hot-rolled steel sheet having a predetermined hardness (strength) was obtained after the processing while exhibiting the workability.
  • Steel No. 1-1, 1-7 to 1-10, 4 to 6, 15 to 24, and 29 are comparative steels that do not satisfy at least one of the component composition and the structure requirements defined in the present invention, and are strongly cold worked. At least one of the properties and post-processing hardness does not satisfy the acceptance criteria.
  • steel No. 1-1 satisfies the requirements of the component composition, but is not subjected to batch annealing after hot rolling, the hardness distribution in the plate thickness direction is expanded, and at least the cold workability is inferior.
  • steel No. In No. 1-8 although the requirements of the component composition are satisfied, the holding temperature of batch annealing after hot rolling is too high outside the recommended range, and the post-processing hardness is inferior.
  • steel No. 1-10 satisfies the requirements of the component composition, but the holding time of batch annealing after hot rolling is too short outside the recommended range, the hardness distribution in the sheet thickness direction is expanded, and at least strong cold workability Is inferior.
  • steel No. No. 16 steel type k
  • the production conditions are in the recommended range, the N content is too high and at least the strong cold workability is inferior.
  • Steel No. No. 18 (steel type m) has a manufacturing condition in the recommended range, but the Si content is too high, and at least the cold workability is inferior.
  • steel no Although 20 (steel type o) has a production condition in the recommended range, the Mn content is too high and at least the strong cold workability is inferior.
  • steel No. for 24 steel type s
  • the production conditions other than the final rolling reduction during hot rolling are in the recommended range
  • the Al content is too high and at least the cold workability is poor.
  • steel No. Although 29 (steel type x) is in the recommended range of manufacturing conditions, it does not satisfy the requirement of 10C + N ⁇ 3.0, and at least strong cold workability is inferior.
  • the hot-rolled steel sheet of the present invention exhibits good workability during cold working and exhibits a predetermined hardness after working, and is particularly used for various parts for automobiles, such as transmission parts such as gears and cases. Useful as steel.

Abstract

This hot-rolled steel sheet has a thickness of 3-20 mm and contains specific amounts of C, Si, Mn, P, S, Al and N with the balance made up of iron and unavoidable impurities. The contents of solid-solved N, C and N are within specific ranges, and bainitic ferrite having a specific average crystal grain size and pearlite have specific area occupancies in the structure, with the balance occupied by polygonal ferrite. This hot-rolled steel sheet has a specific hardness distribution in the thickness direction.

Description

強冷間加工性と加工後の硬さに優れる熱延鋼板Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
 本発明は、冷間加工において局部的に極めて高い変形ひずみを生じるような加工中は、良好な冷間加工性(強冷間加工性)を示しつつ、加工後は所定の硬さを示す熱延鋼板に関する。 The present invention shows a good cold workability (strong cold workability) during processing that causes extremely high deformation strain locally in cold working, and a heat that shows a predetermined hardness after working. It relates to rolled steel sheets.
 近年、環境保護の観点から、自動車の燃費向上を目的として、自動車用の各種部品、例えばギヤなどのトランスミッション部品やケース等に用いられる鋼材の軽量化、すなわち高強度化に対する要求が益々高まっている。このような軽量化・高強度化の要請に応えるために、一般に用いられる鋼材としては、棒鋼を熱間鍛造した鋼材(熱間鍛造材)が用いられてきた。また、部品製造工程におけるCOの排出量削減のため、これまで熱間鍛造によって加工されていたギヤなどの部品の冷間鍛造化に関する要求も高まっている。  In recent years, from the viewpoint of environmental protection, for the purpose of improving the fuel efficiency of automobiles, there is an increasing demand for reducing the weight of steel materials used for various parts for automobiles, for example, transmission parts such as gears and cases, that is, increasing the strength. . In order to meet such demands for weight reduction and high strength, steel materials obtained by hot forging steel bars (hot forging materials) have been used as steel materials that are generally used. In addition, in order to reduce CO 2 emissions in the component manufacturing process, there is an increasing demand for cold forging of components such as gears that have been processed by hot forging.
 ところで、冷間加工(冷間鍛造)は、熱間加工や温間加工に比較して生産性が高く、しかも寸法精度および鋼材の歩留まりがともに良好な利点がある。しかし、このような冷間加工によって部品を製造する場合に問題となるのは、冷間加工された部品の強度を期待される所定値以上に確保するためには、必然的に強度、すなわち変形抵抗の高い鋼材を用いる必要があることである。ところが、使用する鋼材の変形抵抗が高いものほど冷間加工用金型の寿命短縮を招く。  By the way, cold working (cold forging) has advantages of higher productivity than hot working and warm working and good dimensional accuracy and yield of steel materials. However, the problem in manufacturing parts by such cold working is that in order to ensure the strength of the cold-worked parts to be higher than the expected value, the strength, ie deformation, is inevitably required. It is necessary to use a steel material with high resistance. However, the higher the deformation resistance of the steel material used, the shorter the service life of the cold working mold.
 また、トランスミッション部品の分野では、棒鋼の鍛造品(熱間鍛造、冷間鍛造等)から、部品の軽量化、低コスト化を狙いとして鋼板による部品製造の検討も進んでいる。しかしながら、鋼板の冷間加工(プレス成形、鍛造加工など)において、トランスミッション部品は複雑な形状をしていることから、局部的に極めて高い変形ひずみ(真ひずみ量でおよそ2以上)が生じる部位が存在し、局部割れを発生しやすい難点がある。 Also, in the field of transmission parts, from steel bar forging (hot forging, cold forging, etc.), the study of parts production using steel plates is also progressing with the aim of reducing the weight and cost of parts. However, in cold working (press forming, forging, etc.) of steel plates, transmission parts have a complicated shape, so there are some parts where extremely high deformation strain (approximately 2 or more in terms of true strain) occurs locally. There is a difficulty that exists and is easy to generate a local crack.
 このため、従来は、鋼材を所定形状に冷間鍛造した後、焼入れ焼戻し等の熱処理を行うことで、所定の強度(硬さ)が確保された高強度部品を製造する方法が実施されることもあった。しかしながら、冷間鍛造後の熱処理は、部品寸法が必然的に変化するため、二次的に切削などの機械加工により修正する必要があり、熱処理やその後の加工が省略できるような解決策が望まれていた。 For this reason, conventionally, after cold forging a steel material into a predetermined shape, a method of manufacturing a high-strength part with a predetermined strength (hardness) is performed by performing a heat treatment such as quenching and tempering. There was also. However, since heat treatment after cold forging inevitably changes the part dimensions, it is necessary to correct by secondary machining such as cutting, and a solution that can omit heat treatment and subsequent machining is desired. It was rare.
 上記課題を解決すべく、たとえば、低炭素鋼で固溶Cを利用して常温時効の進行を抑制し、歪時効による所定の時効硬化量を確保することで、歪時効特性に優れた冷間鍛造用線材・棒鋼が得られることが開示されている(特許文献1参照)。 In order to solve the above-mentioned problem, for example, by using solute C in low carbon steel, the progress of normal temperature aging is suppressed, and a predetermined age hardening amount due to strain aging is ensured, thereby providing a cold having excellent strain aging characteristics. It is disclosed that a wire rod and steel bar for forging can be obtained (see Patent Document 1).
 しかしながら、この技術は、固溶C量のみによって歪時効を制御するものであり、十分な冷間加工性と、加工後の所要の表面品質および硬さ・強度を兼備する鋼材を得ることは困難であった。 However, this technology controls strain aging only by the amount of solute C, and it is difficult to obtain a steel material having sufficient cold workability and required surface quality, hardness and strength after processing. Met.
 そこで、本出願人は、鋼材に含まれる固溶Cと固溶Nが変形抵抗と静的ひずみ時効に及ぼす影響の違いに着目し、種々検討した結果、これらの固溶元素の量を適正に制御することで、加工中は良好な冷間加工性を発揮しつつ、冷間加工(冷間鍛造)後は所定の硬さ(強度)を示す機械構造用鋼材が得られることを知見し、すでに特許出願を行った(特許文献2参照)。 Therefore, the present applicant paid attention to the difference in the effects of solute C and solute N contained in steel materials on deformation resistance and static strain aging, and as a result of various studies, the amount of these solute elements was appropriately determined. By controlling, it is found that a steel material for machine structure showing a predetermined hardness (strength) can be obtained after cold working (cold forging) while exhibiting good cold workability during working, A patent application has already been filed (see Patent Document 2).
 この鋼材は、冷間加工性と加工後の高硬度化(高強度化)の両立を実現したものであるが、上記特許文献1に記載された線材・棒鋼と同様、熱間鍛造材であり、製造コストが高いことが難点であった。そこで、製造コストのさらなる低コスト化のために、従来の熱間鍛造材に替えて、熱延鋼板で自動車用部品を冷間加工により作製することも検討されている。 This steel material realizes both cold workability and high hardness (high strength) after processing, but is a hot forging material, like the wire rod and bar steel described in Patent Document 1 above. The manufacturing cost is high. Therefore, in order to further reduce the manufacturing cost, it has been studied to produce automobile parts by cold working using hot-rolled steel sheets instead of the conventional hot forging materials.
 たとえば、窒化処理後に高い表面硬度および十分な硬化深さが得られる窒化処理用の熱延鋼板が提案されている(特許文献3参照)。  For example, a hot-rolled steel sheet for nitriding that has a high surface hardness and a sufficient hardening depth after nitriding has been proposed (see Patent Document 3).
 しかしながら、この技術は、冷間加工後にさらに窒化処理を必要とするものであり、十分な低コスト化が実現できない問題がある。  However, this technique requires further nitriding after cold working, and there is a problem that a sufficient cost reduction cannot be realized.
 また、C:0.10%以下、Si:0.01%未満、Mn:1.5%以下およびAl:0.20%以下を含有すると共に、(Ti+Nb)/2:0.05~0.50%の範囲で含有し、S:0.005%以下、N:0.005%以下、O:0.004%以下で、かつ、S,NおよびOの合計が0.0100%以下で含む組成とし、かつミクロ組織を95%以上の実質的フェライト単相組織とする熱延鋼板が提案されており、この熱延鋼板は、精密打ち抜き加工面の寸法精度に優れ、かつ加工後の打ち抜き面の表面硬度が極めて高く、さらには耐赤スケール疵性にも優れるとしている(特許文献4参照)。  Further, it contains C: 0.10% or less, Si: less than 0.01%, Mn: 1.5% or less, and Al: 0.20% or less, and (Ti + Nb) / 2: 0.05-0. 50%, S: 0.005% or less, N: 0.005% or less, O: 0.004% or less, and the total of S, N and O is 0.0100% or less A hot-rolled steel sheet having a composition and having a microstructure of 95% or more of a substantially ferritic single-phase structure has been proposed. This hot-rolled steel sheet has excellent dimensional accuracy of a precision punched surface and a stamped surface after processing. Is extremely high in surface hardness and is also excellent in red scale resistance (see Patent Document 4).
 しかしながら、この熱延鋼板は、Nは有害元素として、きわめて低い含有量に制限されており、Nを積極的に利用する本願発明に係る熱延鋼板とは、技術的思想をまったく異にするものである。 However, in this hot-rolled steel sheet, N is limited to a very low content as a harmful element, and the technical idea is completely different from the hot-rolled steel sheet according to the present invention that actively uses N. It is.
日本国特開平10-306345号公報Japanese Unexamined Patent Publication No. 10-306345 日本国特開2009-228125号公報Japanese Unexamined Patent Publication No. 2009-228125 日本国特開2007-162138号公報Japanese Unexamined Patent Publication No. 2007-162138 日本国特開2004-137607号公報Japanese Unexamined Patent Publication No. 2004-137607
 本発明は上記事情に着目してなされたものであり、その目的は、冷間加工において極めて高いひずみを生じるような加工中は、良好な冷間加工性(強冷間加工性)を示しつつ、加工後は所定の硬さを示す熱延鋼板を提供することにある。 The present invention has been made by paying attention to the above circumstances, and its purpose is to show good cold workability (strong cold workability) during working that causes extremely high strain in cold working. It is to provide a hot-rolled steel sheet having a predetermined hardness after processing.
 本発明の第1発明に係る強冷間加工性と加工後の硬さに優れる熱延鋼板は、 
 板厚が3~20mmであり、 
 成分組成が、質量%で、
 C :0%超0.3%以下、 
 Si:0%超0.5%以下、 
 Mn:0.2~1%、 
 P :0%超0.05%以下、 
 S :0%超0.05%以下、 
 Al:0.01~0.1%、 
 N :0.008~0.025%、 
残部は鉄および不可避的不純物からなり、 
 固溶N:0.007%以上、かつ、 
 CとNの含有量が10C+N≦3.0の関係を満足し、
 組織が、全組織に対する面積率で、ベイニティックフェライト:5%以上、パーライト:20%未満、残部:ポリゴナルフェライトであり、 
 前記ベイニティックフェライトの平均結晶粒径が3~50μmの範囲であり、 
 板厚方向の硬さ分布が、表面部と、tを板厚としたときt/4部と、中心部の3箇所におけるビッカース硬さのうち最大値をHvmax、最小値をHvminとすると、(Hvmax-Hvmin)/Hvminが 0.3以下である 
ことを特徴とする。 
A hot-rolled steel sheet excellent in strong cold workability and hardness after processing according to the first invention of the present invention,
The plate thickness is 3-20mm,
Ingredient composition is mass%,
C: more than 0% and 0.3% or less,
Si: more than 0% and 0.5% or less,
Mn: 0.2 to 1%
P: more than 0% and 0.05% or less,
S: more than 0% and 0.05% or less,
Al: 0.01 to 0.1%,
N: 0.008 to 0.025%,
The balance consists of iron and inevitable impurities,
Solid solution N: 0.007% or more, and
The content of C and N satisfies the relationship of 10C + N ≦ 3.0,
The structure is an area ratio with respect to the entire structure, bainitic ferrite: 5% or more, pearlite: less than 20%, the balance: polygonal ferrite,
The average grain size of the bainitic ferrite is in the range of 3 to 50 μm;
When the hardness distribution in the thickness direction is the surface portion, t / 4 where t is the thickness, and the maximum value of the Vickers hardness at three locations in the center is Hv max and the minimum value is Hv min. , (Hv max −Hv min ) / Hv min is 0.3 or less
It is characterized by that.
 本発明の第2発明に係る強冷間加工性と加工後の硬さに優れる熱延鋼板は、 
 上記第1発明において、 
 成分組成が、さらに、質量%で、 
 Cr:0%超2%以下、および、 
 Mo:0%超2%以下よりなる群から選ばれる少なくとも1種 
を含むものである。 
A hot-rolled steel sheet excellent in strong cold workability and hardness after processing according to the second invention of the present invention,
In the first invention,
Ingredient composition is further mass%,
Cr: more than 0% and 2% or less, and
Mo: At least one selected from the group consisting of more than 0% and 2% or less
Is included.
 本発明の第3発明に係る強冷間加工性と加工後の硬さに優れる熱延鋼板は、
 上記第1または第2発明において、 
 成分組成が、さらに、 
 Ti:0%超0.2%以下、 
 Nb:0%超0.2%以下、および、
 V :0%超0.2%以下よりなる群から選ばれる少なくとも1種 
を含むものである。 
A hot-rolled steel sheet excellent in strong cold workability and hardness after processing according to the third invention of the present invention,
In the first or second invention,
Ingredient composition further
Ti: more than 0% and 0.2% or less,
Nb: more than 0% and 0.2% or less, and
V: At least one selected from the group consisting of more than 0% and 0.2% or less
Is included.
 本発明の第4発明に係る強冷間加工性と加工後の硬さに優れる熱延鋼板は、 
 上記第1~第3発明のいずれか1つの発明において、 
 成分組成が、さらに、質量%で、 
 B:0%超0.005%以下 
を含むものである。 
A hot-rolled steel sheet excellent in strong cold workability and hardness after processing according to the fourth invention of the present invention,
In any one of the first to third inventions,
Ingredient composition is further mass%,
B: Over 0% to 0.005% or less
Is included.
 本発明の第5発明に係る強冷間加工性と加工後の硬さに優れる熱延鋼板は、
 上記第1~第4発明のいずれか1つの発明において、 
 成分組成が、さらに、質量%で、 
 Cu:0%超5%以下、 
 Ni:0%超5%以下、および、 
 Co:0%超5%以下よりなる群から選ばれる少なくとも1種 
を含むものである。 
A hot-rolled steel sheet excellent in strong cold workability and hardness after processing according to the fifth invention of the present invention,
In any one of the first to fourth inventions,
Ingredient composition is further mass%,
Cu: more than 0% and 5% or less,
Ni: more than 0% and 5% or less, and
Co: at least one selected from the group consisting of more than 0% and not more than 5%
Is included.
 本発明の第6発明に係る強冷間加工性と加工後の硬さに優れる熱延鋼板は、 
 上記第1~第5発明のいずれか1つの発明において、 
 成分組成が、さらに、質量%で、 
 Ca:0%超0.05%以下、 
 REM:0%超0.05%以下、 
 Mg:0%超0.02%以下、 
 Li:0%超0.02%以下、 
 Pb:0%超0.5%以下、および、 
 Bi:0%超0.5%以下よりなる群から選ばれる少なくとも1種 
を含むものである。
A hot-rolled steel sheet excellent in strong cold workability and hardness after processing according to the sixth invention of the present invention,
In any one of the first to fifth inventions,
Ingredient composition is further mass%,
Ca: more than 0% and 0.05% or less,
REM: more than 0% and 0.05% or less,
Mg: more than 0% and 0.02% or less,
Li: more than 0% and 0.02% or less,
Pb: more than 0% and 0.5% or less, and
Bi: At least one selected from the group consisting of more than 0% and 0.5% or less
Is included.
 本発明によれば、所定の平均粒径を有するベイニティックフェライト+ポリゴナルフェライト主体の組織において、固溶N量を確保するとともに、Cの含有量とNの含有量とを所定の関係を満足させることで、冷間加工中における変形抵抗が低減されて、金型の寿命が延長されるとともに、板厚方向の硬さ分布を所定範囲内に制限することで、局部的に極めて高い変形ひずみを生じるような冷間加工においても、局部割れを発生しにくく、加工後に得られる部品は所定の加工後硬さを確保できる熱延鋼板を提供できるようになった。 According to the present invention, in a structure mainly composed of bainitic ferrite and polygonal ferrite having a predetermined average particle diameter, a solid solution N amount is ensured, and the C content and the N content have a predetermined relationship. By satisfying, the deformation resistance during cold working is reduced, the life of the mold is extended, and the hardness distribution in the plate thickness direction is limited within a predetermined range, thereby extremely high deformation locally. Even in cold working that causes strain, local cracks are unlikely to occur, and the parts obtained after working can provide a hot-rolled steel sheet that can ensure a predetermined post-working hardness.
実施例において、強冷間加工性を評価するために使用したくさび型圧縮試験装置の概略構成を示す図である。In an Example, it is a figure which shows schematic structure of the wedge type | mold compression test apparatus used in order to evaluate strong cold workability.
 以下、本発明に係る熱延鋼板(以下、「本発明鋼板」、あるいは、単に「鋼板」ともいう。)について、さらに詳細に説明する。本発明鋼板は、上記特許文献2に記載された熱間鍛造材とは、N固溶量を確保するとともに、C含有量とN含有量とを所定の関係を満足させる点で共通するが、C含有量を高めの範囲まで許容し、組織をベイニティックフェライト-ポリゴナルフェライト-パーライト複相組織とするとともに、ベイニティックフェライト粒を微細化する点、さらには、板厚方向の硬さ分布を所定範囲内に制限する点で異なっている。 Hereinafter, the hot-rolled steel sheet according to the present invention (hereinafter also referred to as “the steel sheet of the present invention” or simply “the steel sheet”) will be described in more detail. The steel sheet of the present invention is common to the hot forging material described in Patent Document 2 above in that the N solid solution amount is ensured and the C content and the N content satisfy a predetermined relationship. The C content is allowed to a higher range, the structure is a bainitic ferrite-polygonal ferrite-pearlite double phase structure, the bainitic ferrite grains are refined, and the hardness in the thickness direction The difference is that the distribution is limited within a predetermined range.
〔本発明鋼板の板厚:3~20mm〕
 まず、本発明鋼板は、板厚が3~20mmのものを対象とする。板厚が3mm未満では、構造体としての剛性が確保できなくなる。一方、板厚が20mmを超えると、本発明で規定する組織形態を達成することが難しく、所望の効果が得られなくなる。好ましい板厚は4~19mmである。
[Thickness of the steel sheet of the present invention: 3 to 20 mm]
First, the steel sheet of the present invention has a thickness of 3 to 20 mm. If the plate thickness is less than 3 mm, rigidity as a structure cannot be secured. On the other hand, if the plate thickness exceeds 20 mm, it is difficult to achieve the tissue form defined in the present invention, and the desired effect cannot be obtained. A preferred plate thickness is 4 to 19 mm.
 次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。 Next, the component composition constituting the steel sheet of the present invention will be described. Hereinafter, all the units of chemical components are mass%.
〔本発明鋼板の成分組成〕
<C:0%超0.3%以下> 
 Cは、鋼板の組織の形成に大きな影響を及ぼす元素であり、組織は、ベイニティックフェライト-ポリゴナルフェライト-パーライト複相組織ではあるが、できるだけパーライトの少ないベイニティックフェライト-ポリゴナルフェライト主体組織とするために、含有量を制限する必要がある元素である。Cを過剰に含有させると、鋼板組織中のパーライト分率が上昇し、パーライトの加工硬化によって変形抵抗が過大となるおそれがある。そこで、鋼板中のC含有量は、0.3%以下、好ましくは0.25%以下、さらに好ましくは0.2%以下、特に好ましくは0.15%以下に制限する。ただし、Cの含有量が少なすぎると、鋼の溶製中における脱酸が困難になるとともに、冷間加工後の強度、硬さを満たし難くなるので、好ましくは0.0005%以上、さらに好ましくは0.0008%以上、特に好ましくは0.001%以上とする。
[Component composition of the steel sheet of the present invention]
<C: more than 0% and 0.3% or less>
C is an element that has a great influence on the formation of the structure of a steel sheet, and the structure is bainitic ferrite-polygonal ferrite-pearlite multiphase structure, but bainitic ferrite-polygonal ferrite mainly containing as little pearlite as possible. It is an element whose content needs to be limited in order to form a structure. When C is contained excessively, the pearlite fraction in the steel sheet structure increases, and the deformation resistance may be excessive due to work hardening of the pearlite. Therefore, the C content in the steel sheet is limited to 0.3% or less, preferably 0.25% or less, more preferably 0.2% or less, and particularly preferably 0.15% or less. However, if the content of C is too small, deoxidation during the melting of steel becomes difficult, and it becomes difficult to satisfy the strength and hardness after cold working, so 0.0005% or more, more preferably Is 0.0008% or more, particularly preferably 0.001% or more.
<Si:0%超0.5%以下>
 Siは、鋼中に固溶することによって鋼板の変形抵抗を増加させるため、極力低減する必要がある元素である。そのため、鋼板中のSi含有量は、変形抵抗の増加を抑制するため、0.5%以下、好ましくは0.45%以下、さらに好ましくは0.4%以下、特に好ましくは0.3%以下に制限する。しかし、Siの含有量が極端に少ないと、溶製中の脱酸が困難になるとともに、冷間加工後の強度、硬さを満たし難くなるので、好ましくは0.005%以上、さらに好ましくは0.008%以上、特に好ましくは0.01%以上とする。
<Si: more than 0% and 0.5% or less>
Si is an element that needs to be reduced as much as possible in order to increase the deformation resistance of the steel sheet by dissolving in steel. Therefore, the Si content in the steel sheet is 0.5% or less, preferably 0.45% or less, more preferably 0.4% or less, and particularly preferably 0.3% or less in order to suppress an increase in deformation resistance. Restrict to. However, if the Si content is extremely small, deoxidation during melting becomes difficult, and it becomes difficult to satisfy the strength and hardness after cold working, so 0.005% or more, more preferably 0.008% or more, particularly preferably 0.01% or more.
<Mn:0.2~1%>
 Mnは、製鋼過程において脱酸および脱硫の作用を有する元素である。さらに鋼材中のNの含有量を高めた場合、加工中の発熱による動的ひずみ時効によって割れが発生しやすくなるが、いっぽうでMnはその時の加工性を向上させ、割れを抑制する効果がある。これらの作用を有効に発揮させるために、鋼材中のMn含有量は0.2%以上、好ましくは0.22%以上、さらに好ましくは0.25%以上とする。ただし、Mn含有量が過剰になると変形抵抗が過大となり、偏析による組織の不均一性が生じるので、1%以下、好ましくは0.98%以下、さらに好ましくは0.95%以下とする。 
<Mn: 0.2-1%>
Mn is an element having a deoxidizing and desulfurizing action in the steel making process. Furthermore, when the content of N in the steel material is increased, cracks are likely to occur due to dynamic strain aging due to heat generation during processing. On the other hand, Mn improves the workability at that time and has the effect of suppressing cracks. . In order to effectively exhibit these actions, the Mn content in the steel material is 0.2% or more, preferably 0.22% or more, and more preferably 0.25% or more. However, when the Mn content is excessive, the deformation resistance becomes excessive and the structure is not uniform due to segregation. Therefore, the content is set to 1% or less, preferably 0.98% or less, and more preferably 0.95% or less.
<P:0%超0.05%以下> 
 Pは鋼に不可避的に含有される不純物元素であるが、これがフェライトに含有されるとフェライト粒界に偏析して冷間加工性を劣化させ、また、フェライトを固溶強化して変形抵抗の増大の原因となる元素である。そこで、Pの含有量は冷間加工性の観点からは極力低減することが望ましいが、極端な低減は製鋼コストの増加を招くため、工程能力を考慮して、0.05%以下、好ましくは0.03%以下とする。
<P: more than 0% and 0.05% or less>
P is an impurity element inevitably contained in the steel, but if it is contained in ferrite, it segregates at the ferrite grain boundaries and degrades the cold workability. It is an element that causes an increase. Therefore, it is desirable to reduce the P content as much as possible from the viewpoint of cold workability. However, since extreme reduction leads to an increase in steelmaking costs, it is 0.05% or less, preferably in consideration of process capability. 0.03% or less.
<S:0%超0.05%以下> 
 SもPと同様に不可避的不純物であり、FeSとして結晶粒界に膜状に析出し、加工性を劣化させる元素である。また、熱間脆性を引き起こす作用もある。そこで、変形能を向上させる観点から、本発明ではS含有量を0.05%以下、好ましくは0.03%以下とする。ただし、S含有量を0にすることは工業上困難である。なお、Sは被削性を向上させる効果を有するため、被削性向上の観点からは、好ましくは0.002%以上、より好ましくは0.006%以上含有させることが推奨される。
<S: more than 0% and 0.05% or less>
S, like P, is an unavoidable impurity and is an element that precipitates in the form of a film at the grain boundary as FeS and degrades workability. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, in the present invention, the S content is set to 0.05% or less, preferably 0.03% or less. However, it is industrially difficult to reduce the S content to zero. In addition, since S has an effect of improving machinability, it is recommended to contain 0.002% or more, more preferably 0.006% or more from the viewpoint of improving machinability.
<Al:0.01~0.1%>
 Alは、製鋼過程において脱酸に有効な元素である。この脱酸の効果を得るために、鋼材中のAl含有量は0.01%以上、好ましくは0.015%以上、さらに好ましくは0.02%以上とする。ただし、Alの含有量が過剰になると、靭性を低下させ、割れが発生しやすくなるので、0.1%以下、好ましくは0.09%以下、さらに好ましくは0.08質量%以下とする。
<Al: 0.01 to 0.1%>
Al is an element effective for deoxidation in the steelmaking process. In order to obtain this deoxidation effect, the Al content in the steel material is set to 0.01% or more, preferably 0.015% or more, and more preferably 0.02% or more. However, if the Al content is excessive, the toughness is reduced and cracking is likely to occur. Therefore, the content is 0.1% or less, preferably 0.09% or less, and more preferably 0.08% by mass or less.
<N:0.008~0.025%> 
 Nは加工後の静的ひずみ時効によって所定の強度を得るために重要な元素である。そこで、鋼材中のN含有量は、0.008%以上、好ましくは0.0085%以上、さらに好ましくは0.009%以上とする。ただし、Nの含有量が過剰になると静的ひずみ時効のほか、加工中の動的ひずみ時効の影響が顕著となり、変形抵抗が増加して不適であるので、0.025%以下、好ましくは0.023%以下、さらに好ましくは0.02%以下とする。
<N: 0.008 to 0.025%>
N is an important element for obtaining a predetermined strength by static strain aging after processing. Therefore, the N content in the steel material is 0.008% or more, preferably 0.0085% or more, and more preferably 0.009% or more. However, if the N content is excessive, in addition to static strain aging, the influence of dynamic strain aging during processing becomes significant, and deformation resistance increases, which is unsuitable. Therefore, 0.025% or less, preferably 0 0.02% or less, more preferably 0.02% or less.
<固溶N:0.007%以上>
 そして、鋼板中に固溶Nを所定量(以下、「固溶N量」という。)確保することで、変形抵抗をあまり上げず、静的ひずみ時効を促進させることができる。冷間加工後に所要の強度を確保するためには、固溶N量が0.007%以上必要である。ただし、固溶N量が過剰になると、冷間加工性が劣化するとともに、加工ひずみへの固溶Nの固着量も多くなって、熱延板の板厚方向において硬さ分布が発生しやすくなり、後述する焼鈍条件を適用しても板厚方向の硬さ分布を解消できず、局部的に極めて高い変形ひずみを生じるような加工により割れが発生しやすくなる。このため、好ましくは0.03%以下とする。なお、鋼材中のNの含有量は0.025%以下であるので、実質的に固溶N量は0.025%以上になることはない。
<Solution N: 0.007% or more>
By securing a predetermined amount of solid solution N in the steel sheet (hereinafter referred to as “solid solution N amount”), the static strain aging can be promoted without significantly increasing the deformation resistance. In order to ensure the required strength after cold working, the amount of solute N needs to be 0.007% or more. However, when the amount of solute N becomes excessive, cold workability deteriorates and the amount of solute N fixed to the processing strain increases, and hardness distribution tends to occur in the thickness direction of the hot-rolled sheet. Thus, even if the annealing conditions described later are applied, the hardness distribution in the plate thickness direction cannot be eliminated, and cracking is likely to occur due to processing that causes extremely high deformation strain locally. For this reason, it is preferably 0.03% or less. In addition, since content of N in steel materials is 0.025% or less, the amount of solute N does not become 0.025% or more substantially.
 ここで、本発明における固溶N量は、JIS G 1228に準拠して、鋼材中の全N量から全N化合物の量を差し引いて求められる量である。この固溶N量の実用的な測定法を以下に例示する。 Here, the solid solution N amount in the present invention is an amount obtained by subtracting the amount of all N compounds from the total N amount in the steel material in accordance with JIS G 1228. A practical method for measuring the amount of dissolved N will be exemplified below.
(a)不活性ガス融解法-熱伝導度法(全N量の測定) 
 供試材から切り出したサンプルをルツボに入れ、不活性ガス気流中で融解してNを抽出し、抽出物を熱伝導度セルに搬送して熱伝導度の変化を測定して全N量を求める。
(b)アンモニア蒸留分離インドフェノール青吸光光度法(全N化合物量の測定) 
 供試材から切り出したサンプルを、10%AA系電解液に溶解し、定電流電解を行って、鋼中の全N化合物量を測定する。用いる10%AA系電解液は、10%アセトン、10%塩化テトラメチルアンモニウム、残部メタノールからなる非水溶媒系の電解液であり、鋼表面に不働態皮膜を生成させない溶液である。
(A) Inert gas melting method-thermal conductivity method (measurement of total N content)
A sample cut from the test material is put in a crucible, extracted in an inert gas stream to extract N, the extract is transported to a thermal conductivity cell, and the change in thermal conductivity is measured to determine the total N amount. Ask.
(B) Ammonia distillation separation indophenol blue spectrophotometry (measurement of total N compound amount)
A sample cut out from the test material is dissolved in a 10% AA-based electrolytic solution, subjected to constant current electrolysis, and the total amount of N compounds in the steel is measured. The 10% AA electrolyte used is a non-aqueous solvent electrolyte consisting of 10% acetone, 10% tetramethylammonium chloride, and the remainder methanol, and does not generate a passive film on the steel surface.
 供試材のサンプル約0.5gを、この10%AA系電解液に溶解させ、生成する不溶解残渣(N化合物)を、穴サイズが0.1μmのポリカーボネート製のフィルタでろ過する。得られた不溶解残渣を、硫酸、硫酸カリウムおよび純銅製チップ中で加熱して分解し、分解物をろ液に合わせる。この溶液を、水酸化ナトリウムでアルカリ性にした後、水蒸気蒸留を行い、留出したアンモニアを希硫酸に吸収させる。さらに、フェノール、次亜塩素酸ナトリウムおよびペンタシアノニトロシル鉄(III)酸ナトリウムを加えて青色錯体を生成させ、吸光光度計を用いて吸光度を測定して全N化合物量を求める。
 そして、上記(a)の方法によって求められた全N量から、上記(b)の方法によって求められた全N化合物量を差し引いて固溶N量を求めることができる。 
About 0.5 g of the sample material is dissolved in this 10% AA-based electrolyte, and the resulting insoluble residue (N compound) is filtered through a polycarbonate filter having a hole size of 0.1 μm. The obtained insoluble residue is decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and the decomposition product is combined with the filtrate. After making this solution alkaline with sodium hydroxide, steam distillation is performed, and the distilled ammonia is absorbed in dilute sulfuric acid. Further, phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and the absorbance is measured using an absorptiometer to determine the total N compound amount.
And the amount of solid solution N can be calculated | required by subtracting the total N compound amount calculated | required by the method of said (b) from the total N amount calculated | required by the method of said (a).
<CとNの含有量が10C+N≦3.0の関係を満足>
 本発明の鋼材において、固溶Cは変形抵抗を大きく増加させ、静的ひずみ時効にあまり寄与せず、一方、固溶Nは変形抵抗をあまり上昇させずに、静的ひずみ時効を促進させることができるため加工後の硬さを増加させることができる作用を有する。そのため、本発明の鋼材においては、加工中の変形抵抗をあまり上昇させずに、加工後の硬さを増加させるために、Cの含有量とNの含有量とは、10C+N≦3.0の関係を満足させることが必須であり、好ましくは0.009≦10C+N≦2.8、さらに好ましくは0.01≦10C+N≦2.5、特に好ましくは0.01≦10C+N≦2.0とする。熱延鋼板での結晶粒の微細化および該鋼板の成形性の確保の観点からはC含有量および固溶C量をある程度必要とするが、10C+N>3.0では、Cおよび/またはNの量が過剰となり、変形抵抗が過大となる。ここで、上記不等式において、C含有量の係数をN含有量の係数の10倍としたのは、固溶Cは固溶Nに比べて同じ含有量でも、本発明の熱延鋼板での強度および変形抵抗を上昇させる度合いが1桁(10倍)程度大きいことを考慮したものである。
<The content of C and N satisfies the relationship of 10C + N ≦ 3.0>
In the steel material of the present invention, solid solution C greatly increases deformation resistance and does not contribute much to static strain aging, while solid solution N promotes static strain aging without significantly increasing deformation resistance. Therefore, the hardness after processing can be increased. Therefore, in the steel material of the present invention, in order to increase the hardness after processing without significantly increasing the deformation resistance during processing, the content of C and the content of N are 10C + N ≦ 3.0. It is essential to satisfy the relationship, preferably 0.009 ≦ 10C + N ≦ 2.8, more preferably 0.01 ≦ 10C + N ≦ 2.5, and particularly preferably 0.01 ≦ 10C + N ≦ 2.0. From the viewpoint of refining crystal grains in a hot-rolled steel sheet and ensuring the formability of the steel sheet, a C content and a solute C content are required to some extent, but when 10C + N> 3.0, C and / or N The amount becomes excessive and the deformation resistance becomes excessive. Here, in the above inequality, the coefficient of the C content is set to 10 times the coefficient of the N content because the solid solution C has the same content as the solid solution N but the strength in the hot-rolled steel sheet of the present invention. Further, it is considered that the degree of increasing the deformation resistance is about one digit (10 times) larger.
 本発明の鋼は上記成分を基本的に含有し、残部が鉄および不可避的不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。 The steel of the present invention basically contains the above components, and the balance is iron and inevitable impurities, but the following permissible components can be added as long as the effects of the present invention are not impaired.
<Cr:0%超2%以下、および、
Mo:0%超2%以下よりなる群から選ばれる少なくとも1種>
 Crは結晶粒界の強度を高めることで鋼の変形能を向上させる作用を有する元素であり、このような作用を有効に発揮させるためには、Crは0.2%以上含有させることが好ましい。しかし、Crを過剰に含有させると、変形抵抗が増大し、冷間加工性が低下するおそれがあるため、その含有量は2%以下、さらには1.5%以下、特に1%以下が推奨される。
<Cr: more than 0% and 2% or less, and
Mo: at least one selected from the group consisting of more than 0% and 2% or less>
Cr is an element that has the effect of improving the deformability of steel by increasing the strength of the grain boundaries. In order to effectively exhibit such an effect, Cr is preferably contained in an amount of 0.2% or more. . However, if Cr is excessively contained, deformation resistance increases and cold workability may be lowered. Therefore, the content is recommended to be 2% or less, more preferably 1.5% or less, especially 1% or less. Is done.
 また、Moは、加工後の鋼材の硬さおよび変形能を増加させる作用を有する元素であり、このような作用を有効に発揮させるためには、Moは0.04%以上、さらに好ましくは0.08%以上含有させることが好ましい。しかし、Moを過剰に含有させると、冷間加工性が劣化するおそれがあるため、その含有量は2%以下、さらには1.5%以下、特に1%以下が推奨される。 Mo is an element having an action of increasing the hardness and deformability of the steel material after processing. In order to effectively exhibit such action, Mo is 0.04% or more, more preferably 0. It is preferable to contain 0.08% or more. However, if Mo is excessively contained, the cold workability may be deteriorated. Therefore, the content is recommended to be 2% or less, further 1.5% or less, particularly 1% or less.
<Ti:0%超0.2%以下、 
Nb:0%超0.2%以下、および、
V:0%超0.2%以下よりなる群から選ばれる少なくとも1種> 
 これらの元素はNとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靱性を向上させ、また、耐割れ性を向上させる役割を有する元素である。しかし、各元素とも上限値を超えて含有させても特性改善効果が得られない。各元素の含有量はそれぞれ、0.2%以下、さらには0.001~0.15%、特に0.002~0.1%が推奨される。
<Ti: more than 0% and 0.2% or less,
Nb: more than 0% and 0.2% or less, and
V: at least one selected from the group consisting of more than 0% and 0.2% or less>
These elements have a strong affinity for N, coexist with N to form N compounds, refine steel grains, improve the toughness of processed products obtained after cold working, and improve crack resistance. It is an element that has a role to improve. However, even if each element is contained exceeding the upper limit value, the effect of improving the characteristics cannot be obtained. It is recommended that the content of each element is 0.2% or less, further 0.001 to 0.15%, particularly 0.002 to 0.1%.
<B:0%超0.005%以下> 
 Bは、上記Ti、NbおよびVと同様、Nとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靱性を向上させ、また、耐割れ性を向上させる役割を有する元素である。そのため、本発明の鋼板がBを含有する場合、所要の固溶N量を確保して冷間加工後の強度を向上させることができることから、その含有量は0.005%以下、さらには0.0001~0.0035%、特に0.0002~0.002%が推奨される。
<B: more than 0% and 0.005% or less>
B, like Ti, Nb, and V, has a strong affinity with N, and coexists with N to form an N compound, refines the grain of steel, and improves the toughness of the workpiece obtained after cold working And an element having a role of improving crack resistance. Therefore, when the steel sheet of the present invention contains B, the required solid solution N amount can be secured and the strength after cold working can be improved, so the content is 0.005% or less, and further 0 0.0001 to 0.0035%, especially 0.0002 to 0.002% is recommended.
<Cu:0%超5%以下、 
Ni:0%超5%以下、および、 
Co:0%超5%以下よりなる群から選ばれる少なくとも1種> 
 これらの元素は、いずれも鋼材をひずみ時効させ、硬化させる作用があり、加工後強度を向上させるのに有効な元素である。このような作用を有効に発揮させるためには、これらの元素は、それぞれ0.1%以上、さらには0.3%以上含有させることが好ましい。しかし、これらの元素の含有量が過剰であると、鋼材をひずみ時効および硬化させる効果、さらに、加工後強度を向上させる効果が飽和し、また、割れを促進させるおそれがあるため、それぞれ5%以下、さらには4%以下、特に3%以下が推奨される。
<Cu: more than 0% and 5% or less,
Ni: more than 0% and 5% or less, and
Co: at least one selected from the group consisting of more than 0% and 5% or less>
All of these elements have the effect of strain aging and hardening the steel material, and are effective in improving the strength after processing. In order to effectively exhibit such an action, these elements are preferably contained in an amount of 0.1% or more, and more preferably 0.3% or more. However, if the content of these elements is excessive, the effects of strain aging and hardening of the steel material, and the effect of improving the strength after processing are saturated, and there is a possibility of promoting cracking. In the following, 4% or less, particularly 3% or less is recommended.
<Ca:0.05%以下(0%を含まない)、 
REM:0.05%以下(0%を含まない)、 
Mg:0.02%以下(0%を含まない)、 
Li:0.02%以下(0%を含まない)、 
Pb:0.5%以下(0%を含まない)、および、 
Bi:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種> 
 Caは、MnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Caは、0.0005%以上、さらには0.001%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.05%以下、さらには0.03%以下、特に0.01%以下が推奨される。
<Ca: 0.05% or less (excluding 0%),
REM: 0.05% or less (excluding 0%),
Mg: 0.02% or less (excluding 0%),
Li: 0.02% or less (excluding 0%),
Pb: 0.5% or less (excluding 0%), and
Bi: at least one selected from the group consisting of 0.5% or less (excluding 0%)>
Ca is an element that spheroidizes sulfide compound inclusions such as MnS, improves the deformability of steel, and contributes to improvement of machinability. In order to effectively exhibit such an action, Ca is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
 REMは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、REMは、0.0005%以上、さらには0.001%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.05%以下、さらには0.03%以下、特に0.01%以下が推奨される。
 なお、本発明において、REMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。
REM is an element that, like Ca, spheroidizes compound inclusions such as MnS to increase the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an action, REM is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
In the present invention, REM means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.
 Mgは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Mgは、0.0002%以上、さらには0.0005%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.02%以下、さらには0.015%以下、特に0.01%以下が推奨される。 Mg, like Ca, is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an action, Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
 Liは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めることができ、また、Al系酸化物を低融点化して無害化して被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Liは、0.0002%以上、さらには0.0005%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.02%以下、さらには0.015%以下、特に0.01%以下が推奨される。  Li can spheroidize sulfide compound inclusions such as MnS and increase the deformability of steel like Ca, and lower the melting point of Al-based oxides to make them harmless and improve machinability. It is a contributing element. In order to effectively exhibit such an action, Li is preferably contained in an amount of 0.0002% or more, and more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
 Pbは、被削性を向上させるために有効な元素である。このような作用を有効に発揮させるためには、Pbは0.005%以上、さらには0.01%以上含有させることが好ましい。しかし、過剰に含有させると、圧延疵の発生等の製造上の問題を生じるため、0.5%以下、さらには0.4%以下、特に0.3%以下が推奨される。 Pb is an effective element for improving machinability. In order to effectively exhibit such an action, Pb is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, if it is contained excessively, production problems such as generation of rolling defects occur, so 0.5% or less, further 0.4% or less, particularly 0.3% or less is recommended.
 Biは、Pbと同様に、被削性を向上させるために有効な元素である。このような作用を有効に発揮させるためには、Biは0.005%以上、さらには0.01%以上含有させることが好ましい。しかし、過剰に含有させても被削性向上の効果が飽和するため、0.5質量%以下、さらには0.4%以下、特に0.3%以下が推奨される。 Bi is an element effective for improving the machinability like Pb. In order to effectively exhibit such an action, Bi is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, since the effect of improving the machinability is saturated even if contained excessively, 0.5% by mass or less, further 0.4% or less, particularly 0.3% or less is recommended.
 次に、本発明鋼板を特徴づける組織について説明する。 Next, the structure characterizing the steel sheet of the present invention will be described.
〔本発明鋼板の組織〕
 上述したとおり、本発明鋼板は、ベイニティックフェライト-ポリゴナルフェライトパーライト複相組織鋼をベースとするものであるが、特に、ベイニティックフェライト粒のサイズを特定範囲に制御すること、さらには、板厚方向の硬さ分布を制御することを特徴とする。
[Structure of the steel sheet of the present invention]
As described above, the steel sheet according to the present invention is based on bainitic ferrite-polygonal ferrite pearlite double phase steel, and in particular, controls the bainitic ferrite grain size within a specific range, The hardness distribution in the thickness direction is controlled.
<ベイニティックフェライト:5%以上、パーライト:20%未満、残部:ポリゴナルフェライト>
 本発明鋼板の組織は、ベイニティックフェライトとポリゴナルフェライトとパーライトの複相組織で構成されるものとする。ベイニティックフェライトは、冷間加工中には加工性を高めるとともに、加工後には硬さを高める一方でストレッチャーストレインマークの発生を抑制する作用を有し、これらの作用を有効に発揮させるため、面積率で5%以上、好ましくは10%以上、さらに好ましくは15%以上とする。本発明鋼板におけるベイニティックフェライトの面積率の上限は実質的に90%程度であり、好ましくは85%、更に好ましくは80%である。また、パーライトが過剰に存在すると鋼板の成形性を劣化させるので、パーライトは面積率で20%以下、より好ましくは19%以下、さらに好ましくは18%以下、特に好ましくは15%以下とする。本発明鋼板におけるパーライトの面積率の下限は実質的に0.5%程度であり、好ましくは1%である。残部はポリゴナルフェライトであるが、ポリゴナルフェライトの面積率は5%以上が好ましい。
 なお、本発明鋼板の組織中には、上記組織以外に、セメンタイト相も存在しているが、その面積率は高々1%程度以下と極微量であることから、本明細書中では、ベイニティックフェライト、ポリゴナルフェライト、パーライトの各面積率は、これら3相の合計面積率が100%となるように規格化したものと定義した。
<Bainitic ferrite: 5% or more, pearlite: less than 20%, balance: polygonal ferrite>
The structure of the steel sheet of the present invention is composed of a multiphase structure of bainitic ferrite, polygonal ferrite and pearlite. Bainitic ferrite has the effect of improving the workability during cold working and increasing the hardness after processing while suppressing the occurrence of stretcher strain marks. The area ratio is 5% or more, preferably 10% or more, and more preferably 15% or more. The upper limit of the area ratio of bainitic ferrite in the steel sheet of the present invention is substantially about 90%, preferably 85%, more preferably 80%. Moreover, since the formability of the steel sheet is deteriorated when excessive pearlite is present, the pearlite is 20% or less in area ratio, more preferably 19% or less, still more preferably 18% or less, and particularly preferably 15% or less. The lower limit of the area ratio of pearlite in the steel sheet of the present invention is substantially about 0.5%, preferably 1%. The balance is polygonal ferrite, but the area ratio of polygonal ferrite is preferably 5% or more.
In addition to the above structure, a cementite phase is also present in the structure of the steel sheet of the present invention, but the area ratio is at most 1% or less, so in this specification, The area ratios of tick ferrite, polygonal ferrite, and pearlite were defined as those normalized so that the total area ratio of these three phases was 100%.
<前記ベイニティックフェライトの平均結晶粒径:3~50μmの範囲>
 ベイニティックフェライト組織を構成するベイニティックフェライトの平均結晶粒径は、鋼板の加工性を向上させるとともに、加工後の表面性状を満足させるため、3~50μmの範囲であることが必要である。ベイニティックフェライト粒が細かくなりすぎると、変形抵抗が高くなりすぎるため、その平均結晶粒径は3μm以上、好ましくは4μm以上、さらに好ましくは5μm以上とする。一方、ベイニティックフェライトが粗大化しすぎると、加工後の表面性状が劣化し、また靱性、疲労特性などが劣化するため、その平均結晶粒径は50μm以下、好ましくは45μm以下、さらに好ましくは40μm以下とする。
<Average crystal grain size of the bainitic ferrite: in the range of 3 to 50 μm>
The average grain size of bainitic ferrite constituting the bainitic ferrite structure needs to be in the range of 3 to 50 μm in order to improve the workability of the steel sheet and satisfy the surface properties after processing. . If the bainitic ferrite grains become too fine, the deformation resistance becomes too high, so the average crystal grain size is 3 μm or more, preferably 4 μm or more, more preferably 5 μm or more. On the other hand, if the bainitic ferrite is too coarse, the surface properties after processing deteriorate, and the toughness and fatigue characteristics deteriorate, so the average crystal grain size is 50 μm or less, preferably 45 μm or less, more preferably 40 μm. The following.
<板厚方向の硬さ分布:表面部と、板厚t/4部と、中心部の3箇所におけるビッカース硬さのうち最大値をHvmax、最小値をHvminとしたとき、(Hvmax-Hvmin)/Hvminを 0.3以下に制限>
 トランスミッション部品では、複雑形状を有するため、プレス成形や鍛造加工の際、局所的に変形ひずみが極めて高い領域(真ひずみε換算で2程度以上に相当)が存在するが、板厚方向の硬さ分布(強度分布、応力分布)が大きい鋼板では、不均一な塑性変形が生じてしまう。低い加工領域、すなわち低い変形ひずみの領域(εが2程度未満)では、その影響は小さく、問題は生じないが、高いひずみ量の領域(εが2程度以上)では、それにより局所割れを生じてしまう。このようなεが2程度以上の極めて高いひずみ量の領域でも局所割れを発生させないため、板厚方向の硬さ分布として、表面部と、板厚t/4部と、中心部の3箇所におけるビッカース硬さのうち最大値をHVmax、最小値をHVminとしたとき、(Hvmax-Hvmin)/Hvminを0.3以下、好ましくは0.2以下、さらに好ましくは0.15以下に制限する。 
<Hardness distribution in the plate thickness direction: When the maximum value is Hv max and the minimum value is Hv min among the Vickers hardness at the surface portion, the plate thickness t / 4 portion, and the central portion, (Hv max -Hv min ) / Hv min limited to 0.3 or less>
Since transmission parts have complex shapes, there is a region where deformation strain is extremely high locally (corresponding to about 2 or more in terms of true strain ε) during press forming and forging. In a steel plate having a large distribution (strength distribution, stress distribution), non-uniform plastic deformation occurs. In the low working area, that is, in the low deformation strain area (ε is less than about 2), the effect is small and no problem occurs. However, in the high strain area (ε is about 2 or more), local cracking occurs. End up. In order to prevent local cracks from occurring even in such an extremely high strain region where ε is about 2 or more, the hardness distribution in the thickness direction is the surface portion, the thickness t / 4 portion, and the central portion at three locations. Of the Vickers hardness, when the maximum value is HV max and the minimum value is HV min , (Hv max -Hv min ) / Hv min is 0.3 or less, preferably 0.2 or less, more preferably 0.15 or less. Limit to.
 ここで、従来の熱延鋼板で板厚方向に硬さ分布が発生する機構については以下のように想定される。すなわち、板厚の厚い熱延鋼板で、板厚方向に硬さ分布が発生する原因としては、熱間圧延過程で不可避的に生じる表面部と中心部での加工度合いの差、表面部と中心部の加工温度の差(加工発熱含む)があり、さらに、コイル冷却過程での相変態、残留応力の発生なども影響している。また本発明の合金成分では、固溶N量を多く含むため、加工ひずみが大きい領域へのNの固着作用により、そのような加工ひずみの大きい領域の硬さが上昇してしまうことも影響する。このように複数の複雑な要因により板厚方向の硬さ分布が発生し、板厚方向に強度のばらつきが生じやすい。
 そこで、本発明鋼板は、熱延上がり板を、後述する推奨条件でバッチ焼鈍することにより、板厚方向での硬さ分布を小さくすることで得ることができる。
Here, it is assumed as follows about the mechanism in which hardness distribution generate | occur | produces in a plate | board thickness direction with the conventional hot-rolled steel plate. That is, in the hot-rolled steel sheet having a large thickness, the reason why the hardness distribution occurs in the thickness direction is that the difference in the processing degree between the surface portion and the center portion inevitably generated in the hot rolling process, the surface portion and the center There is a difference in the processing temperature of the part (including processing heat generation), and further, the phase transformation during the coil cooling process, the occurrence of residual stress, etc. are also affected. In addition, since the alloy component of the present invention contains a large amount of solute N, it also affects that the hardness of such a region with a large processing strain increases due to the fixing action of N to the region with a large processing strain. . As described above, a hardness distribution in the thickness direction is generated due to a plurality of complicated factors, and variations in strength tend to occur in the thickness direction.
Therefore, the steel sheet of the present invention can be obtained by reducing the hardness distribution in the plate thickness direction by subjecting the hot rolled plate to batch annealing under the recommended conditions described later.
〔各相の面積率の測定方法〕
 上記各相の面積率については、各供試鋼板をナイタール腐食し、走査型電子顕微鏡(SEM;倍率1000倍)により5視野撮影し、ベイニティックフェライト、ポリゴナルフェライトおよびパーライトの各比率を点算法で求めることができる。
 ここで、ベイニティックフェライトは、ベイナイト(上部ベイナイトおよび下部ベイナイトを総称したもの)組織中に存在する、結晶粒の形状が長軸化したフェライト粒であって(古原 忠,「鉄鋼のベイナイト組織の定義」-現状の理解-,熱処理第50巻第1号,平成22年2月,p.22-27参照)、アスペクト比(長軸/短軸の比)が2以上のものと定義する。また、ポリゴナルフェライトは、結晶粒の形状が等軸状のフェライト粒であって、アスペクト比(長軸/短軸の比)が2未満のものと定義する。
[Measurement method of area ratio of each phase]
Regarding the area ratio of each of the above phases, each test steel sheet was subjected to Nital corrosion, taken with a scanning electron microscope (SEM; magnification 1000 times), five fields of view, and the ratios of bainitic ferrite, polygonal ferrite and pearlite were pointed out. It can be obtained by arithmetic.
Here, bainitic ferrite is a ferrite grain that exists in the structure of bainite (generically referred to as upper bainite and lower bainite). Definition ”-understanding the current situation-heat treatment volume 50 No. 1, February 2010, p. 22-27), defined as having an aspect ratio (major axis / minor axis ratio) of 2 or more . Polygonal ferrite is defined as ferrite grains having equiaxed crystal grains and an aspect ratio (major axis / minor axis ratio) of less than 2.
〔平均結晶粒径の測定方法〕 
 上記ベイニティックフェライトの平均結晶粒径については、以下のようにして測定することができる。すなわち、最表層部、板厚1/4部、板厚中心部の3箇所にそれぞれ存在するベイニティックフェライトの結晶粒径を測定する。ベイニティックフェライト粒子1個の粒径については、各測定箇所の圧延方向の側面部をナイタール腐食し、走査型電子顕微鏡(SEM;倍率1000倍)により該当部位を5視野撮影し、ベイニティックフェライトの結晶粒を画像解析による重心直径により、平均結晶粒径とした。 
[Measurement method of average crystal grain size]
The average crystal grain size of the bainitic ferrite can be measured as follows. That is, the crystal grain size of bainitic ferrite existing at three locations, the outermost layer portion, the plate thickness ¼ portion, and the plate thickness center portion, is measured. As for the particle size of one bainitic ferrite particle, the side part in the rolling direction of each measurement point was subjected to nital corrosion, and the corresponding part was photographed with five fields of view with a scanning electron microscope (SEM; magnification 1000 times). The average crystal grain size of ferrite crystal grains was determined based on the center of gravity diameter by image analysis.
〔板厚方向の硬さ分布の測定方法〕
 熱延鋼板の圧延方向に平行な板厚方向断面において、表面部(板表面から400μm深さの位置)、板厚1/4部、および板厚中心部の各箇所で、マイクロビッカース硬さ試験機を用いて、荷重:50g、測定回数:5回の条件でビッカース硬さ(Hv)を測定し、それぞれの平均を各箇所におけるビッカース硬さとした。
 そして、これら3箇所におけるビッカース硬さのうち最大値Hvmaxと最小値Hvminを求め、(Hvmax-Hvmin)/Hvminを算出した。
[Measurement method of hardness distribution in the thickness direction]
Micro Vickers hardness test at each of the surface portion (position 400 μm deep from the plate surface), the plate thickness ¼ portion, and the plate thickness center portion in the cross section in the plate thickness direction parallel to the rolling direction of the hot-rolled steel plate. Using a machine, the Vickers hardness (Hv) was measured under the conditions of load: 50 g, number of measurements: 5 times, and the average of each was taken as Vickers hardness at each location.
Then, the maximum value Hv max and the minimum value Hv min were obtained from the Vickers hardness at these three locations, and (Hv max −Hv min ) / Hv min was calculated.
 次に、上記本発明鋼板を得るための好ましい製造方法を以下に説明する。 Next, a preferred manufacturing method for obtaining the steel sheet of the present invention will be described below.
〔本発明鋼板の好ましい製造方法〕
 本発明鋼板の製造は、上記成分組成を有する原料鋼を所望の板厚に成形できる方法であれば、いずれの方法にしたがって行ってもよい。例えば、以下に示す条件にて、転炉で上記成分組成を有する溶鋼を調製し、これを造塊または連続鋳造によりスラブしてから所望板厚の熱延鋼板に圧延することによって行うことができる。
[Preferred production method of the steel sheet of the present invention]
The steel plate of the present invention may be produced according to any method as long as the raw steel having the above composition can be formed into a desired plate thickness. For example, it can be carried out by preparing a molten steel having the above component composition in a converter under the conditions shown below, slab this by ingot casting or continuous casting, and then rolling it into a hot-rolled steel sheet having a desired thickness. .
[溶鋼の調製]
 溶鋼中のNの含有量については、転炉での溶製の際に、溶鋼にN化合物を含む原料を添加すること、および/または、転炉の雰囲気をN雰囲気に制御することにより調整することができる。
[Preparation of molten steel]
The N content in the molten steel is adjusted by adding a raw material containing an N compound to the molten steel and / or controlling the converter atmosphere to an N 2 atmosphere during melting in the converter. can do.
[加熱]
 熱間圧延前の加熱は1100~1300℃で行う。この加熱では、N化合物を生成せずに、なるべく多くのNを固溶させるために、高温の加熱条件が必要である。加熱温度の好ましい下限は1100℃、さらに好ましい下限は1150℃である。一方、1300℃を超える温度は操業上困難である。
[heating]
Heating before hot rolling is performed at 1100 to 1300 ° C. This heating requires high-temperature heating conditions in order to dissolve as much N as possible without producing an N compound. The minimum with a preferable heating temperature is 1100 degreeC, and a more preferable minimum is 1150 degreeC. On the other hand, temperatures exceeding 1300 ° C. are difficult to operate.
[熱間圧延]
 熱間圧延は、仕上げ圧延温度が880℃以上になるように行う。仕上げ圧延温度を低温化しすぎるとフェライト変態が高温で起るようになり、フェライト(ベイニティックフェライトおよびポリゴナルフェライトを総称したもの)中の析出炭化物が粗大化し、疲労強度が劣化するため、一定以上の仕上げ圧延温度が必要である。仕上げ圧延温度は、オーステナイト粒を粗大化してベイニティックフェライトの粒径をある程度大きくするため、900℃以上とするのがより好ましい。なお、仕上げ圧延温度の上限は温度確保が難しいため、1000℃とする。
[Hot rolling]
Hot rolling is performed so that the finish rolling temperature is 880 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation will occur at a high temperature, and the precipitated carbides in ferrite (generically referred to as bainitic ferrite and polygonal ferrite) will become coarse and fatigue strength will deteriorate. The above finish rolling temperature is required. The finish rolling temperature is more preferably 900 ° C. or higher in order to coarsen the austenite grains and increase the grain size of the bainitic ferrite to some extent. The upper limit of the finish rolling temperature is set to 1000 ° C. because it is difficult to secure the temperature.
 本発明の熱延鋼板の板厚は3~20mmであるが、ベイニティックフェライト結晶粒を微細化して、その平均結晶粒径を所定の粒径範囲に制御するために、上記の圧延温度の制御だけでなく、仕上げ圧延のタンデム圧延の最終圧下率を15%以上とすることが必要である。通常、仕上げ圧延は、5~7パスのタンデム圧延を実施するが、板のカミ込み制御の観点でパススケジュールが設定され、最終圧下率は、12~13%程度までである。上記最終圧下率は、好ましくは16%以上、より好ましくは17%以上である。上記最終圧下率は、20%、30%と高いほど、結晶粒をより微細化する効果が得られるが、圧延制御の観点で上限は30%程度に規定される。 The thickness of the hot-rolled steel sheet of the present invention is 3 to 20 mm. In order to refine the bainitic ferrite crystal grains and control the average crystal grain size within a predetermined grain size range, In addition to control, it is necessary to set the final reduction ratio of tandem rolling of finish rolling to 15% or more. Normally, the finish rolling is performed by tandem rolling of 5 to 7 passes, but a pass schedule is set from the viewpoint of control of sheet penetration, and the final rolling reduction is about 12 to 13%. The final rolling reduction is preferably 16% or more, more preferably 17% or more. The higher the final reduction ratio is 20% or 30%, the more effective the crystal grains are refined, but the upper limit is defined to be about 30% from the viewpoint of rolling control.
[熱延後の急冷]
 上記仕上げ圧延終了後、5s以内に20℃/s以上の冷却速度(第1急冷速度)で急冷し、550℃以上650℃未満の温度(急冷停止温度)で急冷を停止する。所定の相分率のベイニティックフェライト-ポリゴナルフェライト-パーライト複相組織を得るためである。冷却速度(急冷速度)が20℃/s未満ではパーライト変態が促進され、または、急冷停止温度が550℃未満ではベイナイト変態が抑制され、いずれも所定の相分率のベイニティックフェライト-ポリゴナルフェライト-パーライト鋼を得るのが困難になり、冷間加工性や加工後の表面品質が劣化する。一方、急冷停止温度が650℃以上になるとフェライト中の析出炭化物が粗大化してしまい、疲労強度が劣化する。急冷停止温度は、好ましくは560~640℃、さらに好ましくは580~620℃である。 
[Rapid cooling after hot rolling]
After finishing the finish rolling, quenching is performed at a cooling rate (first quenching rate) of 20 ° C./s or more within 5 s, and rapid cooling is stopped at a temperature of 550 ° C. or more and less than 650 ° C. (quenching stop temperature). This is for obtaining a bainitic ferrite-polygonal ferrite-pearlite double phase structure having a predetermined phase fraction. When the cooling rate (quenching rate) is less than 20 ° C./s, the pearlite transformation is promoted, or when the quenching stop temperature is less than 550 ° C., the bainite transformation is suppressed, both of which are bainitic ferrite-polygonal having a predetermined phase fraction. It becomes difficult to obtain ferrite-pearlite steel, and cold workability and surface quality after processing deteriorate. On the other hand, when the quenching stop temperature is 650 ° C. or more, the precipitated carbide in the ferrite is coarsened, and the fatigue strength is deteriorated. The quenching stop temperature is preferably 560 to 640 ° C, more preferably 580 to 620 ° C.
[急冷停止後の緩冷]
 上記急冷停止後、放冷または空冷により10℃/s以下の冷却速度(緩冷速度)で5~20s緩冷する。これによりポリゴナルフェライトの形成を十分に進行させつつ、フェライト中の析出炭化物を適度に微細化させる。冷却速度が10℃/sを超え、または、緩冷時間が5s未満では、ポリゴナルフェライトの形成量が不足する。一方、緩冷時間が20sを超えると析出炭化物が粗大化せず、疲労強度が劣化する。
[Slow cooling after rapid cooling stop]
After the rapid cooling is stopped, it is slowly cooled for 5 to 20 seconds at a cooling rate (slow cooling rate) of 10 ° C./s or less by cooling or air cooling. Thereby, the formation of polygonal ferrite is sufficiently advanced, and the precipitated carbide in the ferrite is appropriately refined. When the cooling rate exceeds 10 ° C./s or the slow cooling time is less than 5 s, the amount of polygonal ferrite formed is insufficient. On the other hand, if the slow cooling time exceeds 20 s, the precipitated carbide is not coarsened and the fatigue strength is deteriorated.
[緩冷後の急冷、巻取り]
 上記緩冷後、再度20℃/s以上の冷却速度(第2急冷速度)で急冷し、500~600℃で巻き取る。ベイニティックフェライト+ポリゴナルフェライト主体の組織にすることで、冷間加工性を確保するためである。冷却速度(第2急冷速度)が20℃/s未満、または、巻取り温度が600℃超では、パーライトが多く形成されて冷間加工性が劣化し、一方500℃未満では、ベイニティックフェライトの形成量が不足して加工後の表面品質性が劣化する。
[Rapid cooling after slow cooling, winding]
After the slow cooling, it is rapidly cooled again at a cooling rate (second quenching rate) of 20 ° C./s or more, and wound at 500 to 600 ° C. This is because cold workability is ensured by using a bainitic ferrite + polygonal ferrite-based structure. When the cooling rate (second rapid cooling rate) is less than 20 ° C./s or the coiling temperature exceeds 600 ° C., a large amount of pearlite is formed and the cold workability is deteriorated. As a result, the surface quality after processing is deteriorated.
[熱延後のバッチ焼鈍]
 熱間圧延後、板厚方向の硬さ分布を上記所定範囲内に制限するために、熱延上がり板(熱延コイル)を以下の条件でバッチ焼鈍を行う。
 すなわち、本バッチ焼鈍は、表面スケールの生成や脱炭を抑制するため、H:15~20容積%の雰囲気下で、鋼板を室温から400℃以上Ac1以下まで加熱した後、1h以上15h以下保持して行う。
 なお、保持温度および保持時間は、熱延上がり板の板厚やコイルのサイズにより異なるが、要求される冷間加工度合いに対応して必要とされる板厚方向の硬さ分布の制限度合い、コイル内温度の均一性によって適宜選択される。
 この熱処理により、熱延時に発生した残留応力を除去し、軟化させたり、ひずみを少なくしたりするとともに、固着N元素の開放、炭化物の球状化を促進するとともに、微細ラメラを、オーステナイト中に溶解させることにより、板厚方向の硬さ分布を小さくする。上記バッチ焼鈍後は、鋼板を600℃まで10℃/h以下の速度で冷却し、これにより炭化物の球状化を促進させる。次いで600~400℃までは、15℃/h以下の速度で冷却するが、これはコイル内を均一に冷却することによりコイルつぶれなどの形状を安定化させるためである。その後、400℃以下では、コイル内の温度分布が均一に冷却できるのであれば、水冷等により高い冷却速度(50~100℃/h程度以上など)で冷却してよい。
 バッチ焼鈍の保持温度は、400℃未満では上記の効果は小さく、一方Ac1点を超えると組織が変化してしまう。保持温度は、より好ましくは450~650℃、特に好ましくは500~600℃である。
 保持時間は、1時間未満では上記の効果は小さく、一方15時間を超えると効果は飽和してしまい、生産性を阻害するとともに、表面スケールが生じやすくなり好ましくない。保持時間は、より好ましくは2~14h、特に好ましくは3~12hである。 
[Batch annealing after hot rolling]
After the hot rolling, in order to limit the hardness distribution in the thickness direction within the above predetermined range, the hot rolled plate (hot rolled coil) is subjected to batch annealing under the following conditions.
That is, in this batch annealing, in order to suppress generation of surface scale and decarburization, the steel sheet is heated from room temperature to 400 ° C. or higher and Ac1 or lower in an atmosphere of H 2 : 15 to 20% by volume, and then 1 h or longer and 15 h or shorter. Hold and do.
The holding temperature and holding time vary depending on the thickness of the hot rolled plate and the size of the coil, but the degree of hardness distribution limit required in correspondence with the required cold working degree, It is appropriately selected depending on the uniformity of the temperature inside the coil.
This heat treatment removes residual stress generated during hot rolling, softens it, reduces strain, promotes the release of fixed N elements and spheroidization of carbides, and dissolves fine lamellae in austenite. By doing so, the hardness distribution in the plate thickness direction is reduced. After the batch annealing, the steel sheet is cooled to 600 ° C. at a rate of 10 ° C./h or less, thereby promoting the spheroidization of the carbide. Next, the cooling is performed at a rate of 15 ° C./h or less from 600 to 400 ° C., in order to stabilize the shape such as coil crushing by uniformly cooling the inside of the coil. Thereafter, at a temperature of 400 ° C. or lower, cooling can be performed at a high cooling rate (such as about 50 to 100 ° C./h or higher) by water cooling or the like as long as the temperature distribution in the coil can be uniformly cooled.
When the holding temperature of batch annealing is less than 400 ° C., the above effect is small. On the other hand, when the temperature exceeds the Ac1 point, the structure changes. The holding temperature is more preferably 450 to 650 ° C, particularly preferably 500 to 600 ° C.
If the holding time is less than 1 hour, the above effect is small. On the other hand, if the holding time exceeds 15 hours, the effect is saturated, the productivity is hindered, and a surface scale is easily generated, which is not preferable. The holding time is more preferably 2 to 14 h, particularly preferably 3 to 12 h.
 以下、本発明を実施例によってさらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
 下記表1に示す成分組成の鋼を真空溶解法により溶製し、厚さ120mmのインゴットに鋳造し、これを下記表2および表3に示す条件にて、熱間圧延した後にさらにバッチ焼鈍を施し熱延鋼板を作製した。なお、いずれの試験においても、仕上げ圧延終了後における急冷停止までの冷却速度は20℃/s以上であり、急冷停止後の冷却は10℃/s以下の冷却速度で5~20s緩冷する条件であり、さらにバッチ焼鈍後は、600℃までは10℃/h以下、600~400℃までは15℃/h以下の各冷却速度で冷却し、400℃以下は水冷を行った。 Steel having the component composition shown in Table 1 below is melted by vacuum melting, cast into an ingot having a thickness of 120 mm, and further subjected to batch annealing after hot rolling under the conditions shown in Table 2 and Table 3 below. A hot-rolled steel sheet was prepared. In any test, the cooling rate until the quenching stop after finishing rolling is 20 ° C./s or more, and the cooling after the quenching stop is a condition of slow cooling for 5 to 20 s at a cooling rate of 10 ° C./s or less. Further, after the batch annealing, cooling was performed at a cooling rate of 10 ° C./h or less up to 600 ° C., 15 ° C./h or less from 600 to 400 ° C., and water cooling was performed at 400 ° C. or less.
 このようにして得られた熱延鋼板について、固溶N量、鋼板中組織の各相の面積率、ベイニティックフェライトの平均結晶粒径、および、板厚方向の硬さ分布を、上記[発明を実施するための形態]のところで説明した各測定方法により求めた。 About the hot-rolled steel sheet thus obtained, the amount of solute N, the area ratio of each phase of the structure in the steel sheet, the average crystal grain size of bainitic ferrite, and the hardness distribution in the thickness direction are It was calculated | required by each measuring method demonstrated in the form for inventing.
 また、上記熱延鋼板について、以下のようにして、強冷間加工性と、加工後の硬さを評価した。 Further, the hot-rolled steel sheet was evaluated for the cold workability and the hardness after working as follows.
(強冷間加工性の評価)
 局部的に極めて高い変形ひずみを生じるような冷間加工における加工性(強冷間加工性)を評価するために、試験片の表面部に導入される加工ひずみ量が真ひずみ換算で4以上となるような試験として、80トンプレス試験機にて、図1に概略構成を示すように、円柱状の試験片およびくさび型の治具を用いて、くさび型圧縮試験(圧縮速度1mm/秒で、試験片直径の80%圧下)を行った。なお、試験片としては、上記熱延鋼板から、板厚が10mm以上の場合は直径10mmに、板厚が10mm未満の場合は板厚を直径とするように、円柱状に切り出したものを用いた。
(Evaluation of strong cold workability)
In order to evaluate the workability in cold working (strong cold workability) that causes extremely high deformation strain locally, the amount of work strain introduced into the surface of the test piece is 4 or more in terms of true strain. As shown in FIG. 1, a wedge-type compression test (with a compression speed of 1 mm / second) was performed using a cylindrical test piece and a wedge-shaped jig as shown in FIG. , 80% reduction of the test piece diameter). In addition, as a test piece, what was cut out in the column shape from the said hot-rolled steel plate so that it may become a diameter 10mm when a plate | board thickness is 10 mm or more, and a plate | board thickness is a diameter when a plate | board thickness is less than 10 mm is used. It was.
 なお、本圧縮試験に先立ち、鍛造解析ソフトウェア:FORGE(TRANSVALOR社製)を用いて、上記圧縮試験の80%圧下時における、試験片中の真ひずみ量の分布を計算することにより、試験片の表面部のうち、圧縮治具のR部で圧縮される部位の表面から深さ100μmの位置で真ひずみεが4以上となることを確認している。 Prior to the main compression test, forging analysis software: FORGE (manufactured by TRANSVALOR) was used to calculate the distribution of the true strain in the test piece at 80% reduction in the compression test. It has been confirmed that the true strain ε is 4 or more at a position of 100 μm in depth from the surface of the portion compressed by the R portion of the compression jig in the surface portion.
 そして、上記くさび型圧縮試験後の試験片を目視観察することにより、以下の評価基準で強冷間加工性を評価し、○の場合を合格とした。
○:試験片に割れ発生せず 
△:試験片の表面に微小割れ発生 
×:試験片に割れ発生 
And by observing the test piece after the said wedge-type compression test visually, strong cold work property was evaluated with the following evaluation criteria, and the case of (circle) was set as the pass.
○: No crack occurred in the test piece
Δ: Microcracking occurred on the surface of the test piece
×: Crack occurred in the test piece
(加工後の硬さの評価)
 また、加工後の硬さの評価として、上記くさび型圧縮試験後の試験片の、圧縮治具により圧縮された部位の表面中央部を、ビッカース硬さ試験機を用いて荷重:500g、測定回数:5回の条件でビッカース硬さ(Hv)を測定し、その平均を加工後硬さとし、250Hv以上のものを合格とした。
(Evaluation of hardness after processing)
In addition, as an evaluation of the hardness after processing, the surface central portion of the portion compressed by the compression jig of the test piece after the wedge-type compression test was loaded using a Vickers hardness tester: 500 g, the number of measurements. : Vickers hardness (Hv) was measured under the conditions of 5 times, and the average was taken as the post-processing hardness, and a value of 250 Hv or higher was accepted.
 これらの測定結果を下記表4~6に示す。  These measurement results are shown in Tables 4 to 6 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4~6に示すように、鋼No.1-2~1-6、2、3、7~14、25~28はいずれも、本発明の成分組成規定の要件を満足する鋼種を用い、推奨の製造条件で製造した結果、本発明の組織規定の要件を充足する発明鋼であり、強冷間加工性および加工後硬さはいずれも合格基準を満たしており、冷間加工において極めて高いひずみを生じるような加工中は良好な強冷間加工性を示しつつ、加工後は所定の硬さ(強度)を示す熱延鋼板が得られることが確認できた。 As shown in Tables 4-6, steel no. 1-2 to 1-6, 2, 3, 7 to 14, and 25 to 28 were all manufactured using the steel types satisfying the requirements of the component composition provisions of the present invention under the recommended production conditions. Invented steel that meets the requirements of the organization regulations. Both cold workability and post-working hardness satisfy the acceptance criteria, and good strong cold during machining that causes extremely high strain in cold working. It was confirmed that a hot-rolled steel sheet having a predetermined hardness (strength) was obtained after the processing while exhibiting the workability.
 これに対し、鋼No.1-1、1-7~1-10、4~6、15~24、29は本発明で規定する成分組成および組織の要件のうち少なくともいずれかを満足しない比較鋼であり、強冷間加工性および加工後硬さのうち少なくともいずれかが合格基準を満たしていない。 In contrast, Steel No. 1-1, 1-7 to 1-10, 4 to 6, 15 to 24, and 29 are comparative steels that do not satisfy at least one of the component composition and the structure requirements defined in the present invention, and are strongly cold worked. At least one of the properties and post-processing hardness does not satisfy the acceptance criteria.
 例えば、鋼No.1-1は、成分組成の要件は満たしているものの、熱延後にバッチ焼鈍を施しておらず、板厚方向の硬さ分布が拡大し、少なくとも強冷間加工性が劣っている。 For example, steel No. 1-1 satisfies the requirements of the component composition, but is not subjected to batch annealing after hot rolling, the hardness distribution in the plate thickness direction is expanded, and at least the cold workability is inferior.
 また、鋼No.1-7は、成分組成の要件は満たしているものの、熱延後のバッチ焼鈍の保持温度が推奨範囲を外れて低すぎ、板厚方向の硬さ分布が拡大し、少なくとも強冷間加工性が劣っている。 Steel No. 1-7 satisfies the requirements of the component composition, but the holding temperature of batch annealing after hot rolling is too low outside the recommended range, the hardness distribution in the plate thickness direction is expanded, and at least strong cold workability Is inferior.
 一方、鋼No.1-8は、成分組成の要件は満たしているものの、熱延後のバッチ焼鈍の保持温度が推奨範囲を外れて高すぎ、加工後硬さが劣っている。  On the other hand, steel No. In No. 1-8, although the requirements of the component composition are satisfied, the holding temperature of batch annealing after hot rolling is too high outside the recommended range, and the post-processing hardness is inferior.
 また、鋼No.1-9は、成分組成の要件は満たしているものの、熱延後のバッチ焼鈍の保持時間が推奨範囲を外れて長すぎ、加工後硬さが劣っている。  Steel No. 1-9 satisfies the requirements for the component composition, but the holding time of batch annealing after hot rolling is too long outside the recommended range, and the post-processing hardness is inferior.
 一方、鋼No.1-10は、成分組成の要件は満たしているものの、熱延後のバッチ焼鈍の保持時間が推奨範囲を外れて短すぎ、板厚方向の硬さ分布が拡大し、少なくとも強冷間加工性が劣っている。  On the other hand, steel No. 1-10 satisfies the requirements of the component composition, but the holding time of batch annealing after hot rolling is too short outside the recommended range, the hardness distribution in the sheet thickness direction is expanded, and at least strong cold workability Is inferior.
 また、鋼No.4は、成分組成の要件は満たしているものの、熱延前の加熱温度が推奨範囲を外れて低すぎ、固溶N量が不足し、加工後硬さが劣っている。  Steel No. No. 4, although the requirements for the component composition are satisfied, the heating temperature before hot rolling is too low outside the recommended range, the amount of solute N is insufficient, and the hardness after processing is inferior.
 また、鋼No.5は、成分組成の要件は満たしているものの、熱延後の板厚が規定範囲を外れて大きすぎ、ベイニティックフェライトが不足する一方粗大化し、加工後硬さが劣っている。  Steel No. No. 5, although the requirements of the component composition are satisfied, the plate thickness after hot rolling is too large outside the specified range, the bainitic ferrite is insufficient, while it becomes coarse and the hardness after processing is inferior.
 また、鋼No.6は、成分組成の要件は満たしているものの、熱延時の最終圧下率が推奨範囲を外れて小さすぎ、ベイニティックフェライトが不足する一方粗大化し、加工後硬さが劣っている。  Steel No. No. 6, although the requirements for the component composition are satisfied, the final rolling reduction during hot rolling is too small outside the recommended range, and bainitic ferrite is insufficient while coarsening, resulting in poor hardness after processing.
 また、鋼No.15(鋼種j)は、製造条件は推奨範囲にあるものの、N含有量が低すぎ、加工後硬さが劣っている。  Steel No. Although 15 (steel type j) is in the recommended range of manufacturing conditions, the N content is too low and the post-working hardness is poor.
 一方、鋼No.16(鋼種k)は、製造条件は推奨範囲にあるものの、N含有量が高すぎ、少なくとも強冷間加工性が劣っている。  On the other hand, steel No. No. 16 (steel type k), although the production conditions are in the recommended range, the N content is too high and at least the strong cold workability is inferior.
 また、鋼No.17(鋼種l)は、製造条件は推奨範囲にあるものの、C含有量が高すぎるとともに10C+N≦3.0の要件を満たさず、パーライトが過剰に形成され、少なくとも強冷間加工性が劣っている。  Steel No. 17 (steel grade l), although the production conditions are in the recommended range, the C content is too high and does not satisfy the requirement of 10C + N ≦ 3.0, pearlite is excessively formed, and at least the cold workability is poor. Yes.
 また、鋼No.18(鋼種m)は、製造条件は推奨範囲にあるものの、Si含有量が高すぎ、少なくとも強冷間加工性が劣っている。  Steel No. No. 18 (steel type m) has a manufacturing condition in the recommended range, but the Si content is too high, and at least the cold workability is inferior.
 また、鋼No.19(鋼種n)は、製造条件は推奨範囲にあるものの、Mn含有量が低すぎ、加工後硬さが劣っている。  Steel No. Although 19 (steel type n) has a manufacturing condition in the recommended range, the Mn content is too low and the hardness after processing is inferior.
  一方、鋼No.20(鋼種o)は、製造条件は推奨範囲にあるものの、Mn含有量が高すぎ、少なくとも強冷間加工性が劣っている。  On the other hand, steel no. Although 20 (steel type o) has a production condition in the recommended range, the Mn content is too high and at least the strong cold workability is inferior.
 また、鋼No.21(鋼種p)は、製造条件は推奨範囲にあるものの、P含有量が高すぎ、少なくとも強冷間加工性が劣っている。  Steel No. Although 21 (steel type p) has production conditions in the recommended range, the P content is too high and at least the strong cold workability is inferior.
 また、鋼No.22(鋼種q)は、製造条件は推奨範囲にあるものの、S含有量が高すぎ、少なくとも強冷間加工性が劣っている。  Steel No. Although 22 (steel type q) has a production condition in the recommended range, the S content is too high and at least the strong cold workability is inferior.
 また、鋼No.23(鋼種r)は、製造条件は推奨範囲にあるものの、Al含有量が低すぎ、少なくとも強冷間加工性が劣っている。  Steel No. Although 23 (steel type r) has a production condition in the recommended range, the Al content is too low and at least the strong cold workability is inferior.
 一方、鋼No.24(鋼種s)は、熱延時の最終圧下率以外の製造条件は推奨範囲にあるものの、Al含有量が高すぎ、少なくとも強冷間加工性が劣っている。  On the other hand, steel No. For 24 (steel type s), although the production conditions other than the final rolling reduction during hot rolling are in the recommended range, the Al content is too high and at least the cold workability is poor.
 一方、鋼No.29(鋼種x)は、製造条件は推奨範囲にあるものの、10C+N≦3.0の要件を満たさず、少なくとも強冷間加工性が劣っている。  On the other hand, steel No. Although 29 (steel type x) is in the recommended range of manufacturing conditions, it does not satisfy the requirement of 10C + N ≦ 3.0, and at least strong cold workability is inferior.
 以上より、本発明の適用性が確認できた。 From the above, the applicability of the present invention was confirmed.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年4月18日出願の日本特許出願(特願2014-086747)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on April 18, 2014 (Japanese Patent Application No. 2014-086747), the contents of which are incorporated herein by reference.
 本発明の熱延鋼板は、冷間加工中は良好な加工性を示しつつ、加工後は所定の硬さを示し、特に自動車用の各種部品、例えばギヤなどのトランスミッション部品やケース等に用いられる鋼材として有用である。 The hot-rolled steel sheet of the present invention exhibits good workability during cold working and exhibits a predetermined hardness after working, and is particularly used for various parts for automobiles, such as transmission parts such as gears and cases. Useful as steel.

Claims (2)

  1.  板厚が3~20mmであり、 
     成分組成が、質量%で、
     C :0%超0.3%以下、 
     Si:0%超0.5%以下、 
     Mn:0.2~1%、 
     P :0%超0.05%以下、 
     S :0%超0.05%以下、 
     Al:0.01~0.1%、 
     N :0.008~0.025%、 
    残部は鉄および不可避的不純物からなり、 
     固溶N:0.007%以上、かつ、 
     CとNの含有量が10C+N≦3.0の関係を満足し、 
     組織が、全組織に対する面積率で、ベイニティックフェライト:5%以上、パーライト:20%未満、残部:ポリゴナルフェライトであり、 
     前記ベイニティックフェライトの平均結晶粒径が3~50μmの範囲であり、 
     板厚方向の硬さ分布が、表面部と、tを板厚としたときt/4部と、中心部の3箇所におけるビッカース硬さのうち最大値をHvmax、最小値をHvminとすると、(Hvmax-Hvmin)/Hvminが 0.3以下である 
    ことを特徴とする強冷間加工性と加工後の表面硬さに優れる熱延鋼板。
    The plate thickness is 3-20mm,
    Ingredient composition is mass%,
    C: more than 0% and 0.3% or less,
    Si: more than 0% and 0.5% or less,
    Mn: 0.2 to 1%
    P: more than 0% and 0.05% or less,
    S: more than 0% and 0.05% or less,
    Al: 0.01 to 0.1%,
    N: 0.008 to 0.025%,
    The balance consists of iron and inevitable impurities,
    Solid solution N: 0.007% or more, and
    The content of C and N satisfies the relationship of 10C + N ≦ 3.0,
    The structure is an area ratio with respect to the entire structure, bainitic ferrite: 5% or more, pearlite: less than 20%, the balance: polygonal ferrite,
    The average grain size of the bainitic ferrite is in the range of 3 to 50 μm;
    When the hardness distribution in the thickness direction is the surface portion, t / 4 where t is the thickness, and the maximum value of the Vickers hardness at three locations in the center is Hv max and the minimum value is Hv min. , (Hv max −Hv min ) / Hv min is 0.3 or less
    A hot-rolled steel sheet excellent in strong cold workability and surface hardness after processing.
  2.  成分組成が、さらに下記(a)~(e)の少なくとも一つを含有する請求項1記載の熱延鋼板。
    (a)質量%で、Cr:0%超2%以下、および、Mo:0%超2%以下よりなる群から選ばれる少なくとも1種 
    (b)質量%で、Ti:0%超0.2%以下、Nb:0%超0.2%以下、および、V:0%超0.2%以下よりなる群から選ばれる少なくとも1種 
    (c)質量%で、B:0%超0.005%以下 
    (d)質量%で、Cu:0%超5%以下、Ni:0%超5%以下、および、Co:0%超5%以下よりなる群から選ばれる少なくとも1種
    (e)質量%で、Ca:0%超0.05%以下、REM:0%超0.05%以下、Mg:0%超0.02%以下、Li:0%超0.02%以下、Pb:0%超0.5%以下、および、Bi:0%超0.5%以下よりなる群から選ばれる少なくとも1種
     
     
     
    The hot rolled steel sheet according to claim 1, wherein the component composition further contains at least one of the following (a) to (e).
    (A) at least one selected from the group consisting of Cr: more than 0% and 2% and Mo: more than 0% and 2% in mass%
    (B) at least one selected from the group consisting of Ti: more than 0% and 0.2% or less, Nb: more than 0% and 0.2% or less, and V: more than 0% and 0.2% or less.
    (C) By mass%, B: more than 0% and 0.005% or less
    (D) By mass%, at least one selected from the group consisting of Cu: more than 0% and 5% or less, Ni: more than 0% and 5% and Co: more than 0% and 5% or less (e) , Ca: more than 0% and less than 0.05%, REM: more than 0% and less than 0.05%, Mg: more than 0% and less than 0.02%, Li: more than 0% and less than 0.02%, Pb: more than 0% 0.5% or less and Bi: at least one selected from the group consisting of more than 0% and 0.5% or less

PCT/JP2015/061767 2014-04-18 2015-04-16 Hot-rolled steel sheet having good cold workability and excellent hardness after working WO2015159965A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112015001872.7T DE112015001872T5 (en) 2014-04-18 2015-04-16 Hot rolled steel sheet with good cold workability and excellent hardness after machining
KR1020167028769A KR101736019B1 (en) 2014-04-18 2015-04-16 Hot-rolled steel sheet having good cold workability and excellent hardness after working
CN201580019843.9A CN106232847B (en) 2014-04-18 2015-04-16 The deep-cold processing hot rolled steel plate excellent with the hardness after processing
US15/303,658 US20170037496A1 (en) 2014-04-18 2015-04-16 Hot-rolled steel sheet having good cold workability and excellent hardness after working
MX2016013517A MX2016013517A (en) 2014-04-18 2015-04-16 Hot-rolled steel sheet having good cold workability and excellent hardness after working.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014086747A JP6284813B2 (en) 2014-04-18 2014-04-18 Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
JP2014-086747 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015159965A1 true WO2015159965A1 (en) 2015-10-22

Family

ID=54324166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061767 WO2015159965A1 (en) 2014-04-18 2015-04-16 Hot-rolled steel sheet having good cold workability and excellent hardness after working

Country Status (7)

Country Link
US (1) US20170037496A1 (en)
JP (1) JP6284813B2 (en)
KR (1) KR101736019B1 (en)
CN (1) CN106232847B (en)
DE (1) DE112015001872T5 (en)
MX (1) MX2016013517A (en)
WO (1) WO2015159965A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107190267B (en) * 2017-06-13 2019-06-14 浙江协和首信钢业有限公司 A kind of manufacturing process of pickling coil of strip
CN107268012B (en) * 2017-06-13 2019-07-19 浙江协和薄钢科技有限公司 Manufacturing process is rolled up in pickling
EP3927858B1 (en) * 2019-02-18 2022-09-14 Tata Steel IJmuiden B.V. High strength steel with improved mechanical properties
CN115029618B (en) * 2021-03-03 2023-10-13 宝山钢铁股份有限公司 Cold forging gear steel with narrow hardenability and manufacturing method thereof
CN114921718A (en) * 2022-04-12 2022-08-19 首钢京唐钢铁联合有限责任公司 Container steel for multi-mode sheet billet continuous casting and rolling production line and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047536A (en) * 2000-02-23 2002-02-15 Kawasaki Steel Corp High tensile strength hot rolled steel plate having excellent strain age hardenability and its manufacturing method
JP2003231946A (en) * 2002-02-12 2003-08-19 Jfe Steel Kk Hot-dip galvanized steel sheet superior in strain age hardening characteristics, and manufacturing method therefor
JP2005206943A (en) * 2003-12-26 2005-08-04 Jfe Steel Kk High-tension hot-rolled sheet steel excellent in bake hardenability and resistance to room-temperature aging and its production method
JP2006233309A (en) * 2005-02-28 2006-09-07 Jfe Steel Kk High-tensile-strength hot-rolled steel plate with superior bake-hardenability and formability, and manufacturing method therefor
JP2015048527A (en) * 2013-09-04 2015-03-16 株式会社神戸製鋼所 Hot rolled steel sheet excellent in cold workability and surface property and hardness after worked

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125410A (en) * 1976-04-15 1977-10-21 Nisshin Steel Co Ltd Production of polished steel strrips dispersed fine spherulitic carbides
US4501626A (en) * 1980-10-17 1985-02-26 Kabushiki Kaisha Kobe Seiko Sho High strength steel plate and method for manufacturing same
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
JPH10306345A (en) 1997-04-28 1998-11-17 Kobe Steel Ltd Wire rod and bar steel for cold forging, excellent in strain aging characteristic, and their manufacture
US20030041932A1 (en) * 2000-02-23 2003-03-06 Akio Tosaka High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US6709224B2 (en) * 2002-06-12 2004-03-23 Rockland, Inc. Implement coupling assembly
JP4001116B2 (en) 2004-02-06 2007-10-31 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent precision punchability and red scale resistance
EP1905851B1 (en) * 2005-06-29 2015-11-04 JFE Steel Corporation High-carbon hot-rolled steel sheet and process for producing the same
JP5011846B2 (en) * 2005-06-29 2012-08-29 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
WO2008015707A1 (en) * 2006-08-03 2008-02-07 Ansaldo Energia S.P.A. Method and device for repairing the liquid-cooled electrical windings of the stator of an electric generator
JP4462264B2 (en) 2006-12-28 2010-05-12 Jfeスチール株式会社 Manufacturing method of cold rolled steel sheet for nitriding treatment
JP5297145B2 (en) 2008-02-29 2013-09-25 株式会社神戸製鋼所 Steel for machine structure and cold forged parts with excellent cold forgeability
US20090228125A1 (en) * 2008-03-04 2009-09-10 William Stewart Processing of heterogeneous media in a mobile computing device
EP2695961B1 (en) * 2011-03-31 2019-06-19 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheet excellent in workability and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047536A (en) * 2000-02-23 2002-02-15 Kawasaki Steel Corp High tensile strength hot rolled steel plate having excellent strain age hardenability and its manufacturing method
JP2003231946A (en) * 2002-02-12 2003-08-19 Jfe Steel Kk Hot-dip galvanized steel sheet superior in strain age hardening characteristics, and manufacturing method therefor
JP2005206943A (en) * 2003-12-26 2005-08-04 Jfe Steel Kk High-tension hot-rolled sheet steel excellent in bake hardenability and resistance to room-temperature aging and its production method
JP2006233309A (en) * 2005-02-28 2006-09-07 Jfe Steel Kk High-tensile-strength hot-rolled steel plate with superior bake-hardenability and formability, and manufacturing method therefor
JP2015048527A (en) * 2013-09-04 2015-03-16 株式会社神戸製鋼所 Hot rolled steel sheet excellent in cold workability and surface property and hardness after worked

Also Published As

Publication number Publication date
KR101736019B1 (en) 2017-05-15
KR20160124239A (en) 2016-10-26
US20170037496A1 (en) 2017-02-09
JP2015206071A (en) 2015-11-19
DE112015001872T5 (en) 2017-01-05
JP6284813B2 (en) 2018-02-28
CN106232847B (en) 2018-04-27
MX2016013517A (en) 2017-02-14
CN106232847A (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
JP6068314B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
US10060002B2 (en) H-section steel and method of producing the same
JP6177551B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after processing
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
WO2011115279A1 (en) Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
KR101965521B1 (en) Rolled steel bar or rolled wire material for cold-forged component
WO2015060311A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability
WO2015159965A1 (en) Hot-rolled steel sheet having good cold workability and excellent hardness after working
KR101892526B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
KR20190028782A (en) High frequency quenching steel
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
KR102455453B1 (en) High-strength steel sheet with excellent ductility and hole expandability
WO2011152328A1 (en) Hot-rolled high-strength steel sheet and process for production thereof
KR102064147B1 (en) High-strength thin steel sheet and method for manufacturing same
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
JP5363867B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
WO2019203251A1 (en) Hot-rolled steel sheet
JP2017197816A (en) Hot rolled steel sheet excellent in cold workability and hardness after being cold-worked
JP2018062692A (en) Hot rolled steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303658

Country of ref document: US

Ref document number: IDP00201606862

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/013517

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167028769

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015001872

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780143

Country of ref document: EP

Kind code of ref document: A1