JP2005154906A - High tensile strength cold-rolled steel sheet having excellent strain age hardening property, and its production method - Google Patents

High tensile strength cold-rolled steel sheet having excellent strain age hardening property, and its production method Download PDF

Info

Publication number
JP2005154906A
JP2005154906A JP2005021732A JP2005021732A JP2005154906A JP 2005154906 A JP2005154906 A JP 2005154906A JP 2005021732 A JP2005021732 A JP 2005021732A JP 2005021732 A JP2005021732 A JP 2005021732A JP 2005154906 A JP2005154906 A JP 2005154906A
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold
group
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005021732A
Other languages
Japanese (ja)
Other versions
JP4265545B2 (en
Inventor
Tsutomu Kami
力 上
Kaneharu Okuda
金晴 奥田
Akio Tosaka
章男 登坂
Kazunori Osawa
一典 大澤
Takuya Yamazaki
琢也 山▲崎▼
Takashi Ishikawa
孝 石川
Shinjiro Kaneko
真次郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005021732A priority Critical patent/JP4265545B2/en
Publication of JP2005154906A publication Critical patent/JP2005154906A/en
Application granted granted Critical
Publication of JP4265545B2 publication Critical patent/JP4265545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength cold rolled steel sheet having excellent strain age hardening properties, and suitable as an automobile body, and to provide its production method. <P>SOLUTION: In the method of producing a high tensile strength cold-rolled steel sheet, a slab having a composition containing ≤0.02% Al and 0.0050 to 0.0250% N and in which N/Al is controlled to ≥0.3 is subjected to hot rolling at an FDT (finishing mill delivery temperature) of ≥800°C, and is coiled at a CT (coiling temperature) of ≤750°C. Then, after cold rolling, the steel is subjected to continuous annealing at a recrystallization temperature to 900°C, is subjected to primary cooling so as to be rapidly cooled to ≤500°C and is subjected to secondary cooling in which residence time in the temperature range of the primary cooling stopping temperature to ≥400°C is controlled to ≤300 s to form a steel sheet having a structure including an F phase with a grain size of ≤10 μm by ≥50% and N in a solid solution state by ≥0.0010%. In the method, it is also possible that the continuous annealing temperature is controlled to the two phase region of Ac<SB>1</SB>to Ac<SB>3</SB>, and cooling where the average cooling rate from 600 to 300°C is controlled to CR defined in accordance with the contents of the alloy elements or above, thus the steel is provided with a structure comprising a F phase by ≥50% and a M phase by ≥3%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として自動車車体用として好適な高加工性高張力冷延鋼板に係り、とくに引張強さ(TS)440 MPa 以上で歪時効硬化特性に優れた高張力冷延鋼板、およびその製造方法に関する。本発明の高張力冷延鋼板は、軽度の曲げ加工やロールフォーミングによりパイプに成形されるような比較的軽加工に供されるものから比較的厳しい絞り成形に供されるものまで、広範囲の用途に適するものである。なお、本発明における鋼板とは、鋼板、鋼帯を含むものとする。   TECHNICAL FIELD The present invention relates to a high workability high-tensile cold-rolled steel sheet that is suitable mainly for automobile bodies, and in particular, a high-tensile cold-rolled steel sheet having a tensile strength (TS) of 440 MPa or more and excellent strain aging hardening characteristics, and a method for producing the same. About. The high-tensile cold-rolled steel sheet of the present invention is used in a wide range of applications, from those used for relatively light processing such as being formed into pipes by mild bending and roll forming to those used for relatively severe drawing. It is suitable for. In addition, the steel plate in this invention shall include a steel plate and a steel strip.

また、本発明において、「歪時効硬化特性に優れた」とは、引張歪5%の予変形後、170 ℃の温度に20min 保持する条件で時効処理したとき、この時効処理前後の変形応力増加量(BH量と記す;BH量=(時効処理後の降伏応力)−(時効処理前の予変形応力))が80MPa 以上であり、かつ歪時効処理(前記予変形+前記時効処理)前後の引張強さ増加量(ΔTSと記す;ΔTS=(時効処理後の引張強さ)−(予変形前の引張強さ))が40MPa 以上であることを意味する。   In the present invention, “excellent strain age hardening characteristics” means that after pre-deformation with a tensile strain of 5%, when subjected to aging treatment at a temperature of 170 ° C. for 20 minutes, the deformation stress increases before and after this aging treatment. The amount (denoted as BH amount; BH amount = (yield stress after aging treatment) − (predeformation stress before aging treatment)) is 80 MPa or more and before and after strain aging treatment (predeformation + the aging treatment) It means that the amount of increase in tensile strength (denoted as ΔTS; ΔTS = (tensile strength after aging treatment) − (tensile strength before pre-deformation)) is 40 MPa or more.

昨今の地球環境問題からの排出ガス規制に関連し、自動車における車体重量の軽減は極めて重要な課題となっている。自動車の車体重量軽減のためには、多量に使用されている鋼板の強度を増加させ、すなわち高張力鋼板を適用して、使用する鋼板の薄肉化を図るのが有効である。
しかし、薄肉の高張力鋼板を使用した自動車部品でも、その役割に応じて課されるパフォーマンスが必要十分に発揮されねばならない。かかるパフォーマンスとしては、例えば曲げ、ねじり変形に対する静的強度、耐疲労性、耐衝撃特性などがある。したがって、自動車部品に適用される高張力鋼板は、成形加工後にかかる特性にも優れることが必要となる。
In connection with recent exhaust gas regulations due to global environmental problems, the reduction of vehicle weight in automobiles has become an extremely important issue. In order to reduce the weight of an automobile body, it is effective to increase the strength of a steel plate used in large quantities, that is, to apply a high-tensile steel plate to reduce the thickness of the steel plate to be used.
However, even automobile parts that use thin high-strength steel sheets must exhibit the necessary and sufficient performance according to their roles. Such performance includes, for example, static strength against bending and torsional deformation, fatigue resistance, and impact resistance. Therefore, a high-tensile steel plate applied to automobile parts needs to have excellent properties after forming.

また、自動車部品を作る過程においては、鋼板に対してプレス成形が行われるが、鋼板の強度が高すぎるとプレス成形した場合には、
(イ)形状凍結性が低下する、
(ロ)延性が低下するため成形時に割れやネッキングなどの不具合を生ずる、
といった問題が生じ、自動車車体への高張力鋼板の適用拡大を阻んでいた。
Also, in the process of making automotive parts, press forming is performed on the steel sheet, but if the strength of the steel sheet is too high,
(I) The shape freezing property decreases,
(B) Since the ductility is reduced, problems such as cracking and necking occur during molding.
As a result, the application of high-tensile steel sheets to automobile bodies has been hindered.

これを打開するための手法として、例えば外板パネル用の冷延鋼板では、極低炭素鋼を素材とし、最終的に固溶状態で残存するC量を適正範囲に制御した鋼板が知られている。この種鋼板は、プレス成形時には軟質に保たれ、形状凍結性、延性を確保し、プレス成形後に行われる、170 ℃×20 min程度の塗装焼付工程で起こる歪時効硬化現象を利用した降伏応力の上昇を得て、耐デント性を確保しようとするものである。この種鋼板では、プレス成形時にはCが鋼中に固溶して軟質であり、一方、プレス成形後には、塗装焼付工程で、プレス成形時に導入された転位に固溶Cが固着して、降伏応力が上昇する。   As a technique for overcoming this, for example, in the case of cold-rolled steel sheets for outer panel panels, steel sheets are known in which ultra-low carbon steel is used as a raw material, and finally the amount of C remaining in a solid solution state is controlled within an appropriate range. Yes. This kind of steel sheet is kept soft during press forming, ensuring shape freezing and ductility, and yield stress using the strain age hardening phenomenon that occurs in the paint baking process of about 170 ℃ × 20 min. It is intended to obtain a rise and secure dent resistance. In this type of steel plate, C is dissolved and soft in the steel at the time of press forming. On the other hand, after press forming, the solid solution C adheres to dislocations introduced at the time of press forming in the paint baking process, yielding. Stress increases.

しかし、この種鋼板では、表面欠陥となるストレーッチャーストレインの発生を防止する観点から、歪時効硬化による降伏応力上昇量は低く抑えられている。このため、実際に部品の軽量化に寄与するところは小さいことになる。
すなわち、部品の軽量化には、単に歪時効により降伏応力のみ上昇するのではなく、さらに変形が進んだときの強度特性の上昇が必要である。言い換えれば、歪時効後の引張強さの上昇が望まれている。
However, in this type of steel sheet, the yield stress increase due to strain age hardening is kept low from the viewpoint of preventing the occurrence of the strainer strain that becomes a surface defect. For this reason, the place which actually contributes to the weight reduction of components is small.
That is, in order to reduce the weight of a part, it is necessary not only to increase the yield stress due to strain aging but also to increase the strength characteristics when the deformation progresses further. In other words, an increase in tensile strength after strain aging is desired.

一方、外観があまり問題にならない用途に対しては、固溶Nを用いて焼付硬化量をさらに増加させた鋼板や、組織をフェライトとマルテンサイトからなる複合組織とすることで焼付硬化性をより一層向上させた鋼板が提案されている。
例えば、特許文献1には、C:0.02〜0.15%、Mn:0.8 〜3.5 %、P:0.02〜0.15%、Al:0.10%以下、N:0.005 〜0.025 %を含む鋼を550 ℃以下の温度で巻き取る熱間圧延と、冷延後の焼鈍を制御冷却熱処理とする延性およびスポット溶接性がともに良好な高強度薄鋼板の製造方法が開示されている。特許文献1に記載された技術で製造された鋼板は、フェライトとマルテンサイトを主体とする低温変態生成物相からなる混合組織を有し延性に優れるとともに、積極的に添加されたNによる塗装焼付けの際の歪時効を利用して、高強度を得ようとするものである。
On the other hand, for applications where the appearance is not a problem, the bake hardenability can be further improved by using a solid solution N to further increase the amount of bake-hardening and making the structure a composite structure of ferrite and martensite. A further improved steel sheet has been proposed.
For example, Patent Document 1 discloses a steel containing C: 0.02 to 0.15%, Mn: 0.8 to 3.5%, P: 0.02 to 0.15%, Al: 0.10% or less, and N: 0.005 to 0.025% at a temperature of 550 ° C or less. Discloses a method for producing a high-strength thin steel sheet having good ductility and spot weldability, both of which are hot-rolling wound on the steel and controlled annealing heat treatment after annealing after cold rolling. The steel sheet manufactured by the technique described in Patent Document 1 has a mixed structure composed of a low-temperature transformation product phase mainly composed of ferrite and martensite, and is excellent in ductility, and is baked by coating with positively added N. It is intended to obtain a high strength by utilizing the strain aging at the time.

しかしながら、特許文献1に記載された技術では、歪時効硬化による降伏応力YSの増加量は大きいが引張強さTSの増加量が少なく、また、降伏応力YSの増加量も大きくばらつくなど機械的性質の変動も大きいため、現状で要望されている自動車部品の軽量化に寄与できるほどの鋼板の薄肉化が期待できない。
また、特許文献2には、C:0.08〜0.20%、Mn:1.5 〜3.5 %を含み残部Feおよび不可避的不純物からなる成分組成を有し、組織がフェライト量5%以下の均一なベイナイトもしくは一部マルテンサイトを含むベイナイトで構成された焼付硬化性高張力冷延薄鋼板が開示されている。特許文献2に記載された冷延鋼板は、連続焼鈍後の冷却過程で400 〜200 ℃の温度範囲を急冷とし、その後を徐冷とすることにより、組織をベイナイト主体の組織として、従来になかった高い焼付硬化量を得ようとするものである。
However, in the technique described in Patent Document 1, mechanical properties such as an increase in yield stress YS due to strain age hardening is large but an increase in tensile strength TS is small, and an increase in yield stress YS varies greatly. Therefore, the steel sheet cannot be expected to be thin enough to contribute to the weight reduction of automobile parts currently required.
Patent Document 2 discloses a uniform bainite having a component composition including C: 0.08 to 0.20%, Mn: 1.5 to 3.5% and the balance Fe and unavoidable impurities and having a ferrite content of 5% or less. A bake-hardening high-tensile cold-rolled thin steel plate composed of bainite containing part martensite is disclosed. The cold-rolled steel sheet described in Patent Document 2 is not conventionally used by rapidly cooling the temperature range of 400 to 200 ° C. in the cooling process after continuous annealing and then gradually cooling the structure to make the structure mainly composed of bainite. It is intended to obtain a high bake hardening amount.

しかしながら、特許文献2に記載された鋼板では、塗装焼付け後に降伏強さが上昇し従来になかった高い焼付け硬化量が得られるものの、引張強さまでは上昇させることができず、強度部材に適用した場合、成形後の耐疲労特性、耐衝撃特性の向上が期待できない。このため、耐疲労特性、耐衝撃性等が強く要求される用途への適用ができないという問題が残されていた。   However, in the steel sheet described in Patent Document 2, the yield strength is increased after baking and a high bake hardening amount that has not been obtained in the past can be obtained, but it cannot be increased by the tensile strength and applied to a strength member. In this case, improvement in fatigue resistance and impact resistance after molding cannot be expected. For this reason, the problem that it cannot apply to the use for which fatigue resistance, impact resistance, etc. are requested | required strongly remained.

また、プレス成形後に熱処理を施し、降伏応力のみならず引張強さをも上昇させようとする鋼板が、熱延鋼板ではあるが、提案されている。
例えば、特許文献3には、C:0.02〜0.13%、Si:2.0 %以下、Mn:0.6 〜2.5 %、sol.Al:0.10%以下、N:0.0080〜0.0250%を含む鋼を、1100℃以上に再加熱し、850 〜900 ℃で仕上圧延を終了する熱間圧延を施し、ついで15℃/s以上の冷却速度で150 ℃未満の温度まで冷却し巻取り、フェライトとマルテンサイトを主体とする複合組織とする、熱延鋼板の製造方法が提案されている。しかしながら特許文献3に記載された技術で製造された鋼板では、歪時効硬化により降伏応力とともに引張強さが増加するものの、150 ℃未満という極めて低い巻取温度で巻き取るため、機械的特性の変動が大きいという問題があった。また、プレス成形−塗装焼付け処理後の降伏応力の増加量のばらつきが大きく、さらに、穴拡げ率(λ)が低く,伸びフランジ加工性が低下しプレス成形性が不足するという問題もあった。
Further, a steel sheet that is subjected to heat treatment after press forming to increase not only the yield stress but also the tensile strength is proposed, although it is a hot-rolled steel sheet.
For example, in Patent Document 3, steel containing C: 0.02 to 0.13%, Si: 2.0% or less, Mn: 0.6 to 2.5%, sol.Al: 0.10% or less, N: 0.0080 to 0.0250%, 1100 ° C. or more To 850 to 900 ℃, and then finish rolling at 850 to 900 ℃, then cool down to a temperature of less than 150 ℃ at a cooling rate of 15 ℃ / s and wind up, mainly ferrite and martensite A method for producing a hot-rolled steel sheet having a composite structure has been proposed. However, in the steel sheet manufactured by the technique described in Patent Document 3, although tensile strength increases with yield stress due to strain aging hardening, it is wound at an extremely low winding temperature of less than 150 ° C. There was a problem that was large. In addition, there is a large variation in the amount of increase in yield stress after press molding-paint baking treatment, and there is also a problem that the hole expansion rate (λ) is low, stretch flangeability is lowered, and press formability is insufficient.

また、比較的高い降伏応力を有する高張力鋼板としては、Ti、Nb、V等の炭窒化物形成元素を添加し、それらの微細な析出物によって強化する、いわゆる析出強化鋼があるが、熱延巻取り後に十分保熱する工程を経る熱延鋼板はともかくとして、冷延鋼板においては、短時間の連続焼鈍工程では十分な析出を進行させることは困難であり、高い降伏比(引張強さに対する降伏応力の割合:YS/TS)を有する鋼板を製造することは困難であった。特に、溶接性を考慮して低C化しようとすると、C量が低い領域では析出物そのものの量が減少するためか、高降伏比を得るのが一段と難しくなるという問題もあった。   Moreover, as a high strength steel plate having a relatively high yield stress, there is a so-called precipitation strengthened steel in which carbonitride forming elements such as Ti, Nb, and V are added and strengthened by these fine precipitates. Regardless of hot-rolled steel sheets that have undergone a process of sufficiently retaining heat after coiling, cold-rolled steel sheets are difficult to sufficiently precipitate in a short-time continuous annealing process, and have a high yield ratio (tensile strength). It was difficult to produce a steel sheet having a yield stress ratio to YS / TS). In particular, if the C content is reduced in consideration of weldability, there is a problem that it becomes more difficult to obtain a high yield ratio because the amount of precipitates itself decreases in a region where the C content is low.

さらに、上記した従来の鋼板では、単純な引張試験による塗装焼付処理後の強度評価では優れているものの、実プレス条件にしたがって、塑性変形させたときの強度に大きなばらつきが存在し、信頼性が要求される部品に適用するには必ずしも十分とはいえなかったのである。
特開昭60-52528号公報 特公平5-24979 号公報 特公平8−23048 号公報
Furthermore, although the above-described conventional steel plate is excellent in strength evaluation after the baking treatment by a simple tensile test, there is a large variation in strength when plastically deformed according to actual press conditions, and reliability is high. It was not always sufficient to apply to the required parts.
JP-A-60-52528 Japanese Patent Publication No. 5-24979 Japanese Patent Publication No. 8-23048

本発明は、上記した従来技術の限界を打破し、高い成形性と、あるいはさらに高い耐衝撃特性と、安定した品質特性とを有するうえ、自動車部品に成形したのちに自動車部品として十分な強度が得られ自動車車体の軽量化に充分に寄与できる、歪時効硬化特性に優れた高張力冷延鋼板およびこれら鋼板を工業的に安価に、かつ形状を乱さずに製造できる製造方法を提供することを目的とする。本発明における歪時効硬化特性は、引張歪5%の予変形後、170 ℃の温度に20min 保持する時効条件で、BH量が80MPa 以上、ΔTSが40MPa 以上を目標とする。   The present invention breaks the limitations of the prior art described above, has high moldability, or even higher impact resistance and stable quality characteristics, and has sufficient strength as an automobile part after being molded into an automobile part. To provide a high-tensile cold-rolled steel sheet excellent in strain age hardening characteristics that can sufficiently contribute to weight reduction of the obtained automobile body, and a manufacturing method that can manufacture these steel sheets industrially at low cost and without disturbing the shape. Objective. The strain age hardening characteristics in the present invention are targeted at a BH amount of 80 MPa or more and a ΔTS of 40 MPa or more under the aging conditions of holding at a temperature of 170 ° C. for 20 minutes after pre-deformation with a tensile strain of 5%.

本発明者らは、上記課題を達成するために、組成および製造条件を種々変えて鋼板を製造し、多くの材質評価実験を行った。その結果、高加工性が要求される分野では従来あまり積極的に利用されることがなかったNを強化元素として、この強化元素の作用により発現する大きな歪時効硬化現象を有利に活用することにより、成形性の向上と成形後の高強度化とを容易に両立させることができることを知見した。   In order to achieve the above-mentioned problems, the present inventors manufactured steel sheets with various compositions and manufacturing conditions, and conducted many material evaluation experiments. As a result, in the field where high workability is required, N, which has not been actively used so far, is used as a strengthening element, and the large strain age hardening phenomenon expressed by the action of this strengthening element is advantageously utilized. It has been found that it is possible to easily achieve both improvement in moldability and increase in strength after molding.

さらに、本発明者らは、Nによる歪時効硬化現象を有利に活用するためには、Nによる歪時効硬化現象を自動車の塗装焼付け条件、あるいはさらに積極的に成形後の熱処理条件と有利に結合させる必要があり、そのために、熱延条件や冷延、冷延焼鈍条件を適正化して、鋼板の微視組織と固溶N量とをある範囲に制御することが有効であることを見いだした。また、Nによる歪時効硬化現象を安定して発現させるためには、組成の面で、特にAl含有量をN含有量に応じて制御することが重要であることも見いだした。また、本発明者らは、鋼板の微視組織を、フェライトを主相とし、平均粒径を10μm 以下とすることにより、従来問題であった室温時効劣化の問題もなく、Nを充分に活用できることを見い出した。   Furthermore, in order to make the best use of the strain age hardening phenomenon caused by N, the present inventors advantageously combined the strain age hardening phenomenon caused by N with the paint baking conditions of automobiles or more actively with the heat treatment conditions after molding. For that purpose, it was found that it is effective to control the microscopic structure of steel sheet and the amount of solute N within a certain range by optimizing hot rolling conditions, cold rolling and cold rolling annealing conditions. . In addition, in order to stably develop the strain age hardening phenomenon due to N, it has been found that it is important to control the Al content according to the N content particularly in terms of composition. In addition, the present inventors have made full use of N without the problem of room temperature aging degradation, which has been a problem in the past, by making the microstructure of the steel sheet the main phase of ferrite and the average grain size to be 10 μm or less. I found what I could do.

また、さらに本発明者らは、鋼板の微視組織をフェライトを主相とし、第2相として、マルテンサイト相を面積率で3%以上含む組織とすることにより、低降伏比が達成でき、延性、加工性が向上するとともに、Nにより発現される歪時効硬化現象を有利に利用して、加工後の強度が増加し、部品特性としての耐衝撃特性が改善できることを見い出した。
すなわち、本発明者らは、Nを強化元素として用い、Al含有量をN含有量に応じて適正な範囲に制御するとともに、熱延条件や冷延、冷延焼鈍条件を適正化して、微視組織と固溶Nを最適化することにより、従来の固溶強化型のC−Mn系鋼板、析出強化型鋼板に比べて格段に優れた成形性と、上記した従来の鋼板にない歪時効硬化特性と、あるいはさらに部品特性としての優れた耐衝撃特性とを有する鋼板が得られることを見いだしたのである。
Furthermore, the present inventors can achieve a low yield ratio by making the microstructure of the steel sheet a ferrite main phase and a structure containing a martensite phase in an area ratio of 3% or more as the second phase, It has been found that the ductility and workability are improved, and the strain age hardening phenomenon expressed by N is advantageously used to increase the strength after processing and to improve the impact resistance as part characteristics.
That is, the present inventors use N as a reinforcing element, control the Al content to an appropriate range according to the N content, optimize the hot rolling conditions, cold rolling and cold rolling annealing conditions, By optimizing the visual structure and solid solution N, the formability that is much superior to conventional solid solution strengthened C-Mn steel plates and precipitation strengthened steel plates, and strain aging not found in the above conventional steel plates It has been found that a steel sheet having hardening characteristics or excellent impact resistance characteristics as part characteristics can be obtained.

また、本発明の鋼板は、単純な引張試験による塗装焼付処理後の強度が従来の鋼板よりも高いうえ、さらに実プレス条件にしたがって塑性変形させたときの強度のばらつきが小さく、安定した部品強度特性が得られる。例えば、歪が大きく加わり板厚が減少した部分は、他の部分より硬化代が大きく(板厚)×(強度)という載荷重能力で評価すると均一化する方向であり、部品としての強度は安定するのである。また逆に歪が小さい部分では、歪時効による強度上昇は小さいが、もともとの強度が高いことで必要な強度を確保できるため、種々の範囲の歪で形成される実部品ではその強度安定性に有利に寄与する。   In addition, the steel sheet of the present invention is higher in strength after paint baking treatment by a simple tensile test than the conventional steel sheet, and further, there is little variation in strength when plastically deformed according to actual press conditions, and stable component strength Characteristics are obtained. For example, a portion where the strain is greatly applied and the plate thickness is reduced has a larger curing allowance than the other portions, and it is in a direction to equalize when evaluated with a load capacity of (plate thickness) x (strength), and the strength as a part is stable To do. On the other hand, the strength increase due to strain aging is small in the portion where the strain is small, but the necessary strength can be secured because the original strength is high, so the strength stability is improved in actual parts formed with various ranges of strain. Contributes favorably.

本発明は、上記した知見に基づき、さらに検討を加え完成されたものである。 すなわち、第1の本発明である高張力冷延鋼板の要旨はつぎのとおりである。
(1)質量%で、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有する組成と、平均結晶粒径10μm以下のフェライト相を面積率で50%以上含む組織とを有することを特徴とする引張強さ440MPa以上で歪時効硬化特性に優れた高張力冷延鋼板。
(2)前記組成が、質量%で、C:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下、P:0.08%以下、S:0.02%以下、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有し、残部がFeおよび不可避的不純物からなる組成であることを特徴とする(1)に記載の高張力冷延鋼板
(3)前記組成に加えてさらに、質量%で、下記a群〜d群の1群または2群以上を含むことを特徴とする(2)に記載の高張力冷延鋼板。
The present invention has been completed with further studies based on the above findings. That is, the gist of the high-tensile cold-rolled steel sheet according to the first invention is as follows.
(1) By mass%, Al: 0.02% or less, N: 0.0050 to 0.0250%, N / Al is 0.3 or more, and solid solution N contains 0.0010% or more, and average crystal grain size is 10 μm or less A high-tensile cold-rolled steel sheet having a tensile strength of 440 MPa or more and excellent strain age hardening characteristics, characterized by having a structure containing 50% or more of the above ferrite phase.
(2) The composition is% by mass, C: 0.15% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.08% or less, S: 0.02% or less, Al: 0.02% or less, N: 0.0050 -0.0250%, N / Al is 0.3 or more, solid solution N is contained 0.0010% or more, and the balance is composed of Fe and inevitable impurities. Tensile cold-rolled steel sheet (3) The high-tensile cold-rolled steel sheet according to (2), further comprising one group or two or more groups of the following groups a to d in mass% in addition to the above composition.


a群:Cu、Ni、Cr、Moの1種または2種以上を合計で1.0 %以下
b群:Nb、Ti、Vの1種または2種以上を合計で0.1 %以下
c群:Bを0.0030%以下
d群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
(4)前記組成が、質量%で、C:0.15%以下、Mn:3.0 %以下、S:0.02%以下、Al:0.02%以下、N:0.0050〜0.0250%を含み、さらに、Mo:0.05〜1.0 %、Cr:0.05〜1.0 %のうちの1種または2種を含有し、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有し、残部がFeおよび不可避的不純物からなる組成であり、前記組織が、平均結晶粒径10μm以下のフェライト相を面積率で50%以上含み、さらにマルテンサイト相を面積率で3%以上含む組織であることを特徴とする(1)に記載の高張力冷延鋼板。
(5)前記組成に加えてさらに、質量%で、下記j群〜m群のうちの1群または2群以上を含むことを特徴とする(4)に記載の高張力冷延鋼板。
Group a: One or more of Cu, Ni, Cr, and Mo total 1.0% or less in total Group b: One or two or more of Nb, Ti, and V total 0.1% or less in total c Group: B 0.0030% or less d group: One or two of Ca and REM in total 0.0010 to 0.010%
(4) The composition contains, by mass%, C: 0.15% or less, Mn: 3.0% or less, S: 0.02% or less, Al: 0.02% or less, N: 0.0050 to 0.0250%, and Mo: 0.05 to 1.0%, Cr: One or two of 0.05 to 1.0%, N / Al is 0.3 or more, N in solid solution is 0.0010% or more, and the balance consists of Fe and inevitable impurities (1), wherein the structure includes a ferrite phase having an average crystal grain size of 10 μm or less in an area ratio of 50% or more, and further includes a martensite phase in an area ratio of 3% or more. The high-tensile cold-rolled steel sheet described.
(5) The high-tensile cold-rolled steel sheet according to (4), further including one group or two or more groups among the following j groups to m groups in addition to the composition.


j群:Si:0.05〜1.5 %、P:0.03〜0.15%、B:0.0003〜0.01%の1種または2種 以上
k群:Nb:0.01〜0.1 %、Ti:0.01〜0.2 %、V:0.01〜0.2 %の1種または2種以 上
l群:Cu:0.05〜1.5 %、Ni:0.05〜1.5 %の1種または2種
m群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
(6)前記高張力冷延鋼板が板厚3.2 mm以下のものである(1)ないし(5)のいずれかに記載の高張力冷延鋼板。
(7)(1)ないし(6)のいずれかに記載の高張力冷延鋼板に電気めっきまたは溶融めっきを施してなる高張力冷延めっき鋼板。
Group j: Si: 0.05 to 1.5%, P: 0.03 to 0.15%, B: 0.0003 to 0.01% or two or more k group: Nb: 0.01 to 0.1%, Ti: 0.01 to 0.2%, V: One or more of 0.01 to 0.2% Group 1: Cu: 0.05 to 1.5%, Ni: 0.05 to 1.5%, 1 or 2 types m group: 1 or 2 types of Ca and REM in total 0.0010 ~ 0.010%
(6) The high-tensile cold-rolled steel sheet according to any one of (1) to (5), wherein the high-tensile cold-rolled steel sheet has a thickness of 3.2 mm or less.
(7) A high-tensile cold-rolled steel sheet obtained by electroplating or hot-plating the high-tensile cold-rolled steel sheet according to any one of (1) to (6).

また、第2の本発明である高張力冷延鋼板の製造方法の要旨はつぎのとおりである。
すなわち、第2の本発明は、質量%で、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上である組成を有する鋼スラブを、スラブ加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し、巻取温度: 750℃以下で巻き取り熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、該冷延板に所定の温度で所定の時間保持する焼鈍を行い、ついで所定の冷却速度で冷却を行う冷延板焼鈍工程とを、順次施すことを特徴とする引張強さ440MPa以上で歪時効硬化特性に優れた高張力冷延鋼板の製造方法である。
Moreover, the summary of the manufacturing method of the high-tensile cold-rolled steel sheet according to the second invention is as follows.
That is, according to the second aspect of the present invention, a steel slab having a composition containing, by mass%, Al: 0.02% or less, N: 0.0050 to 0.0250%, and N / Al of 0.3 or more is used. Heating to the above, rough rolling into a sheet bar, finishing rolling to a finish rolling exit temperature of 800 ° C. or higher, and rolling up to 750 ° C. A rolling process, a cold rolling process in which the hot-rolled sheet is pickled and cold-rolled to form a cold-rolled sheet, and the cold-rolled sheet is annealed at a predetermined temperature for a predetermined time, and then cooled to a predetermined temperature. A method for producing a high-tensile cold-rolled steel sheet having a tensile strength of 440 MPa or more and excellent strain aging hardening characteristics, characterized by sequentially performing a cold-rolled sheet annealing step of cooling at a speed.

また、第2の本発明では、質量%で、C:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下、P:0.08%以下、S:0.02%以下、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上であり、あるいはさらに次a群〜d群
a群:Cu、Ni、Cr、Moの1種または2種以上を合計で1.0 %以下
b群:Nb、Ti、Vの1種または2種以上を合計で0.1 %以下
c群:Bを0.0030%以下
d群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
のうちから選ばれた1群または2群以上を含み、好ましくは残部Feおよび不可避的不純物からなる組成を有する鋼スラブを、スラブ加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し、仕上圧延後、好ましくは0.5 秒以内に冷却を開始し冷却速度:40℃/s以上で急冷し、巻取温度:750 ℃以下、好ましくは巻取温度:650 ℃以下で巻き取り熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、該冷延板に再結晶温度以上900 ℃以下の温度で保持時間:10〜60sとする焼鈍を行い、ついで500 ℃以下の温度域まで冷却速度:10〜300 ℃/sで冷却する一次冷却と、ついで前記一次冷却の停止温度以下400 ℃以上の温度域での滞留時間を300 s以下とする二次冷却とを行う冷延板焼鈍工程とを、順次施すことが好ましく、また、第2の本発明では、前記冷延板焼鈍工程に続いてさらに、伸び率:1.0 〜15%の調質圧延またはレベラー加工を施すことが好ましい。また、第2の本発明では、前記粗圧延と前記仕上圧延の間で、相前後するシートバー同士を接合することが好ましく、また、第2の本発明では、前記粗圧延と前記仕上圧延の間で、前記シートバーの幅端部を加熱するシートバーエッジヒータ、前記シートバーの長さ端部を加熱するシートバーヒータのいずれか一方または両方を使用することが好ましい。
In the second aspect of the present invention, C: 0.15% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.08% or less, S: 0.02% or less, Al: 0.02% or less, N : 0.0050 to 0.0250% is included, and N / Al is 0.3 or more, or further a group a to d group a group: one or more of Cu, Ni, Cr, and Mo is 1.0% or less in total b Group: One or more of Nb, Ti, and V in total 0.1% or less c Group: B in 0.0030% or less d Group: One or two of Ca and REM in total 0.0010 to 0.010%
A steel slab containing one group or two or more groups selected from the above, preferably having a composition comprising the balance Fe and unavoidable impurities, is heated to a slab heating temperature of 1000 ° C. or higher, and is roughly rolled into a sheet bar. The sheet bar is subjected to finish rolling at a finish rolling exit temperature of 800 ° C. or higher, and after finish rolling, cooling is preferably started within 0.5 seconds, followed by rapid cooling at a cooling rate of 40 ° C./s or more. : Hot rolling step of 750 ° C. or lower, preferably winding temperature: 650 ° C. or lower to obtain a hot rolled sheet, and cold rolling step of pickling and cold rolling the hot rolled sheet to obtain a cold rolled sheet And the cold-rolled sheet is annealed at a recrystallization temperature of 900 ° C. or lower and a holding time of 10 to 60 s, and then cooled to a temperature range of 500 ° C. or lower at a cooling rate of 10 to 300 ° C./s. Cooling, and then the residence time in the temperature range of 400 ° C or higher below the primary cooling stop temperature It is preferable to sequentially perform a cold-rolled sheet annealing step in which secondary cooling is performed at a rate of 300 s or less. In the second aspect of the present invention, the elongation ratio: 1.0 is further added following the cold-rolled plate annealing step. It is preferable to apply -15% temper rolling or leveler processing. In the second aspect of the present invention, it is preferable to join adjacent sheet bars between the rough rolling and the finish rolling. In the second aspect of the present invention, the rough rolling and the finish rolling are performed. It is preferable to use either or both of a sheet bar edge heater for heating the width end portion of the seat bar and a sheet bar heater for heating the length end portion of the seat bar.

また、第2の本発明では、質量%で、C:0.15%以下、Mn:3.0 %以下、S:0.02%以下、Al:0.02%以下、N:0.0050〜0.0250%を含み、さらに、Mo:0.05〜1.0 %、Cr:0.05〜1.0 %のうちの1種または2種を含有し、かつN/Alが0.3 以上であり、あるいはさらに、次j群〜m群
j群:Si:0.05〜1.5 %、P:0.03〜0.15%、B:0.0003〜0.01%の1種または2種 以上
k群:Nb:0.01〜0.1 %、Ti:0.01〜0.2 %、V:0.01〜0.2 %の1種または2種以 上
l群:Cu:0.05〜1.5 %、Ni:0.05〜1.5 %の1種または2種
m群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
のうちから選ばれた1群または2群以上を含み、好ましくは残部Feおよび不可避的不純物からなる組成を有する鋼スラブを、スラブ加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し、仕上圧延後、好ましくは0.5 秒以内に冷却を開始し冷却速度:40℃/s以上で急冷し、巻取温度:750 ℃以下で巻き取り熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、該冷延板に、(Ac1変態点)〜(Ac3変態点)の温度で保持時間:10〜 120sとする焼鈍を行い、ついで600 〜300 ℃間の平均冷却速度を次(1)または(2)式
B<0.0003%の場合
log CR=−1.73〔Mn+2.67Mo+1.3Cr +0.26Si+3.5P+0.05Cu+0.05Ni〕+3.95……(1)
B≧0.0003%の場合
log CR=−1.73〔Mn+2.67Mo+1.3Cr +0.26Si+3.5P+0.05Cu+0.05Ni〕+3.40……(2)
(ここに、CR:冷却速度(℃/s)、Mn、Mo、Cr、Si、P、Cu、Ni:各元素含有量(質量%))
で定義される臨界冷却速度CR以上として冷却を行う冷延板焼鈍工程とを、順次施し、加工性、耐衝撃特性に優れる冷延鋼板とすることが好ましい。また、第2の本発明では、前記冷延板焼鈍工程に続いてさらに、伸び率:1.0 〜15%の調質圧延またはレベラー加工を施すことが好ましい。また、第2の本発明では、前記粗圧延と前記仕上圧延の間で、相前後するシートバー同士を接合することが好ましく、また、第2の本発明では、前記粗圧延と前記仕上圧延の間で、前記シートバーの幅端部を加熱するシートバーエッジヒータ、前記シートバーの長さ端部を加熱するシートバーヒータのいずれか一方または両方を使用することが好ましい。
Further, in the second aspect of the present invention, by mass%, C: 0.15% or less, Mn: 3.0% or less, S: 0.02% or less, Al: 0.02% or less, N: 0.0050 to 0.0250%, and Mo: 0.05 to 1.0%, Cr: 1 or 2 of 0.05 to 1.0%, and N / Al is 0.3 or more, or further j group to m group j group: Si: 0.05 to 1.5 %, P: 0.03 to 0.15%, B: 0.0003 to 0.01%, 1 type or 2 types or more k group: Nb: 0.01 to 0.1%, Ti: 0.01 to 0.2%, V: 0.01 to 0.2%, 1 type or 2 Species or more Group I: Cu: 0.05 to 1.5%, Ni: 0.05 to 1.5%, 1 or 2 types m Group: 1 or 2 types of Ca and REM in total 0.0010 to 0.010%
A steel slab containing one group or two or more groups selected from the above, preferably having a composition comprising the balance Fe and unavoidable impurities, is heated to a slab heating temperature of 1000 ° C. or higher, and is roughly rolled into a sheet bar. The sheet bar is subjected to finish rolling at a finish rolling exit temperature of 800 ° C. or higher, and after finish rolling, cooling is preferably started within 0.5 seconds, and the cooling rate is rapidly cooled at 40 ° C./s or more, and the coiling temperature : A hot rolling process for winding a hot rolled sheet at 750 ° C. or lower, a cold rolling process for pickling and cold rolling the hot rolled sheet to form a cold rolled sheet, and (Ac Annealing is performed at a temperature of 1 transformation point) to (Ac 3 transformation point) and a holding time of 10 to 120 s, and then the average cooling rate between 600 to 300 ° C. is set as follows (1) or (2) Formula B <0.0003% in the case of
log CR = -1.73 [Mn + 2.67Mo + 1.3Cr + 0.26Si + 3.5P + 0.05Cu + 0.05Ni] + 3.95 (1)
When B ≧ 0.0003%
log CR = −1.73 [Mn + 2.67Mo + 1.3Cr + 0.26Si + 3.5P + 0.05Cu + 0.05Ni] + 3.40 …… (2)
(Here, CR: cooling rate (° C./s), Mn, Mo, Cr, Si, P, Cu, Ni: content of each element (mass%))
It is preferable to perform a cold-rolled sheet annealing step for cooling at a critical cooling rate CR defined by (1) or more in order to obtain a cold-rolled steel sheet having excellent workability and impact resistance. In the second aspect of the present invention, after the cold-rolled sheet annealing step, temper rolling or leveler processing with an elongation of 1.0 to 15% is preferably performed. In the second aspect of the present invention, it is preferable to join adjacent sheet bars between the rough rolling and the finish rolling. In the second aspect of the present invention, the rough rolling and the finish rolling are performed. It is preferable to use either or both of a sheet bar edge heater for heating the width end portion of the seat bar and a sheet bar heater for heating the length end portion of the seat bar.

本発明によれば、予変形−塗装焼付け処理により降伏応力が80MPa 以上および引張強さが40MPa 以上と、ともに増加する高い歪時効硬化特性と高い成形性と、あるいはさらに高い耐衝撃特性を兼備する高張力冷延鋼板を、安価にかつ形状を乱さずに製造でき、産業上格段の効果を奏する。さらに本発明の高張力冷延鋼板を自動車部品に適用した場合、塗装焼付け処理などにより降伏応力とともに引張強さも増加して安定した高い部品特性を得ることができ、使用する鋼板の板厚を、例えば2.0mm 厚から1.6 mm厚と、従来より1グレード低減することを可能とし、自動車車体の軽量化に充分に寄与することができるという効果もある。   According to the present invention, the yield stress is 80 MPa or more and the tensile strength is 40 MPa or more due to the pre-deformation-paint baking process, and both high strain age hardening properties and high formability, or even higher impact resistance properties are increased. A high-tensile cold-rolled steel sheet can be manufactured at low cost without disturbing the shape, and has a remarkable industrial effect. Furthermore, when the high-tensile cold-rolled steel sheet of the present invention is applied to automobile parts, it is possible to obtain stable and high part characteristics by increasing the tensile strength as well as the yield stress by paint baking treatment, etc. For example, from 2.0 mm to 1.6 mm thick, it is possible to reduce the grade by 1 grade from the conventional level, and there is also an effect that it can sufficiently contribute to weight reduction of the car body.

本発明の鋼板は、引張強さ440MPa以上で歪時効硬化特性に優れた高張力冷延鋼板である。まず、本発明鋼板の組成限定理由について説明する。なお、質量%は、以下、単に%と記す。
本発明鋼板は、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有する組成を有する。
The steel sheet of the present invention is a high-tensile cold-rolled steel sheet having a tensile strength of 440 MPa or more and excellent strain age hardening characteristics. First, the reasons for limiting the composition of the steel sheet of the present invention will be described. Hereinafter, the mass% is simply referred to as%.
The steel sheet of the present invention has a composition containing Al: 0.02% or less, N: 0.0050 to 0.0250%, N / Al being 0.3 or more, and solid solution N being 0.0010% or more.

Al:0.02%以下
Alは、脱酸剤として作用し鋼の清浄度を向上させるのに有効な元素であり、さらに鋼板の組織を微細化する元素でもあり、本発明では0.001 %以上の含有が望ましい。一方、過剰のAl含有は、鋼板表面性状を悪化させ、さらに本発明の重要な構成要件である固溶状態のNを減少させ、歪時効硬化現象に寄与する固溶Nの不足を生じ、製造条件がばらついた場合本発明の特徴である歪時効硬化特性にばらつきが生じやすくなる。このため、本発明では、Al含有量は0.02%以下と低く限定した。なお、材質安定性の観点からは、Alは0.015 %以下とするのが好ましい。
Al: 0.02% or less
Al is an element that acts as a deoxidizer and is effective in improving the cleanliness of the steel, and is also an element that refines the structure of the steel sheet. In the present invention, Al is preferably contained in an amount of 0.001% or more. On the other hand, excessive Al content deteriorates the surface properties of the steel sheet, further reduces the solid solution N, which is an important constituent element of the present invention, and causes a shortage of solid solution N that contributes to the strain age hardening phenomenon. When the conditions vary, the strain age hardening characteristic, which is a feature of the present invention, tends to vary. For this reason, in the present invention, the Al content is limited to as low as 0.02% or less. From the viewpoint of material stability, Al is preferably 0.015% or less.

N:0.0050〜0.0250%
Nは、固溶強化と歪時効硬化により鋼板の強度を増加させる元素であり、本発明において最も重要な元素である。また、Nには鋼の変態点を下げる働きもあり、Nの含有は薄物で変態点を大きく割り込んだ圧延が忌避される状況下での操業安定化にも有用である。本発明では、適量のNを含有して、製造条件を制御することにより、冷延製品あるいはめっき製品で必要かつ十分な量の固溶状態のNを確保し、それによって固溶強化と歪時効硬化での強度(YS、TS)上昇効果が十分に発揮され、TS440MPa以上、焼付け硬化量(BH量)80MPa 以上、歪時効処理前後での引張強さの増加量ΔTS40MPa 以上という本発明鋼板の機械的性質要件を安定して満足することができる。
N: 0.0050-0.0250%
N is an element that increases the strength of the steel sheet by solid solution strengthening and strain age hardening, and is the most important element in the present invention. N also has a function of lowering the transformation point of steel, and the content of N is also useful for stabilizing the operation in a situation where rolling with a thin material that greatly interrupts the transformation point is avoided. In the present invention, an appropriate amount of N is contained and the production conditions are controlled, thereby securing a necessary and sufficient amount of N in a solid solution state in a cold-rolled product or a plated product, thereby strengthening solid solution and strain aging. Strength of steel (YS, TS) increase effect in hardening, TS440MPa or more, bake hardening amount (BH amount) 80MPa or more, increase in tensile strength before and after strain aging treatment ΔTS40MPa or more It is possible to stably satisfy the physical property requirements.

Nが0.0050%未満では、上記の強度上昇効果が安定して現れにくい。一方、Nが0.0250%を超えると、鋼板の内部欠陥発生率が高くなるとともに、連続鋳造時のスラブ割れなどが多発するようになる。このため、Nは0.0050〜0.0250%の範囲とした。なお、製造工程全体を考慮した材質の安定性・歩留り向上の観点からは、Nは0.0070〜0.0170%の範囲とするのがより好ましい。なお、本発明範囲内のN量であれば、スポット溶接、アーク溶接等の溶接性への悪影響は全くない。   When N is less than 0.0050%, the above-described strength increasing effect is not likely to appear stably. On the other hand, if N exceeds 0.0250%, the rate of occurrence of internal defects in the steel sheet increases, and slab cracking during continuous casting occurs frequently. For this reason, N was made into the range of 0.0050-0.0250%. Note that N is more preferably in the range of 0.0070 to 0.0170% from the viewpoint of improving the stability and yield of the material considering the entire manufacturing process. If the N amount is within the range of the present invention, there is no adverse effect on weldability such as spot welding and arc welding.

固溶状態のN:0.0010%以上
冷延製品で十分な強度が確保され、さらにNによる歪時効硬化が十分に発揮されるには、鋼中に固溶状態のN(固溶Nともいう)が0.0010%以上の量(濃度)で存在する必要がある。
ここで、固溶N量は、鋼中の全N量から析出N量を差し引いて求めるものとする。なお、析出N量の分析法としては、本発明者らが種々の分析法を比較検討した結果によれば、定電位電解法を用いた電解抽出分析法により求めるのが有効である。なお抽出分析に用いる地鉄を溶解する方法として、酸分解法、ハロゲン法および電解法がある。この中で、電解法は炭化物、窒化物などの極めて不安定な析出物を分解させることなく、安定して地鉄のみを溶解できる。電解液としてはアセチルアセトン系を用いて、定電位にて電解する。本発明では定電位電解法を用いて析出N量を測定した結果が、実際の部品強度ともっともよい対応を示した。
Solid solution state N: 0.0010% or more In order to ensure sufficient strength in cold-rolled products and to fully exhibit strain age hardening due to N, solid solution state N in steel (also called solid solution N) Must be present in an amount (concentration) of at least 0.0010%.
Here, the solute N amount is obtained by subtracting the precipitated N amount from the total N amount in the steel. As an analysis method for the amount of precipitated N, it is effective to obtain by an electrolytic extraction analysis method using a constant potential electrolysis method according to the results of a comparative study of various analysis methods by the present inventors. In addition, there are an acid decomposition method, a halogen method, and an electrolytic method as a method for dissolving the base iron used for the extraction analysis. Among these, the electrolytic method can dissolve only the iron core stably without decomposing extremely unstable precipitates such as carbides and nitrides. Electrolysis is performed at a constant potential using an acetylacetone system as the electrolytic solution. In the present invention, the result of measuring the amount of precipitated N using a constant potential electrolysis method showed the best correspondence with the actual component strength.

このようなことから、本発明では、定電位電解法により抽出した残渣を化学分析して残渣中のN量を求め、これを析出N量とする。
なお、より高いBH量、ΔTSを得るためには、固溶N量は0.0020%以上、さらに高い値を得るためには、0.0030%以上、さらにより高い値を得るためには、0.0050%以上とするのが好ましい。
For this reason, in the present invention, the residue extracted by the constant potential electrolysis method is chemically analyzed to determine the amount of N in the residue, which is used as the amount of precipitated N.
In order to obtain a higher BH amount and ΔTS, the solid solution N amount is 0.0020% or more. To obtain a higher value, 0.0030% or more. To obtain a higher value, 0.0050% or more. It is preferable to do this.

N/Al(N含有量とAl含有量の比):0.3 以上
製品状態で、固溶Nを0.0010%以上安定させて残留させるためには、Nを強力に固定する元素であるAlの量を制限する必要がある。本発明の組成範囲内のN含有量とAl含有量の組合せを広範囲に変えた鋼板について検討した結果、冷延製品およびめっき製品での固溶Nを0.0010%以上とするには、Al量を0.02%以下と低く限定した場合、N/Alを0.3 以上とすることが必要であることがわかった。すなわち、Al含有量は(N含有量)/0.3 以下に制限される。
N / Al (ratio of N content to Al content): 0.3 or more In the product state, in order to make solid solution N stable and remain at 0.0010% or more, the amount of Al, which is an element that strongly fixes N, is changed. Need to be restricted. As a result of examining a steel sheet in which the combination of N content and Al content within the composition range of the present invention is changed over a wide range, in order to make the solid solution N in cold-rolled products and plated products 0.0010% or more, the Al content is It was found that N / Al needs to be 0.3 or more when limited to 0.02% or less. That is, the Al content is limited to (N content) /0.3 or less.

さらに、本発明鋼板は、平均結晶粒径10μm以下のフェライト相を面積率で50%以上含む組織を有する。本発明鋼板の組織について説明する。
フェライト相の面積率:50%以上
本発明の冷延鋼板は、高度な加工性が要求される自動車用鋼板等の使途を目的としており、延性を確保するために、フェライト相を面積率で50%以上含む、フェライト相を主相とする組織とする。フェライト相の面積率が50%未満では、高度な加工性が要求される自動車用鋼板として必要な延性を確保することが困難となる。なお、さらに良好な延性が要求される場合は、フェライト相の面積率は75%以上とするのが好ましい。なお、本発明でいうフェライトは、通常の意味のフェライト(ポリゴナルフェライト)のみならず、炭化物を含まないベイニティックフェライト、アシキュラーフェライトをも含むものとする。
Furthermore, the steel sheet of the present invention has a structure containing a ferrite phase having an average crystal grain size of 10 μm or less in an area ratio of 50% or more. The structure of the steel sheet of the present invention will be described.
Area ratio of ferrite phase: 50% or more The cold-rolled steel sheet of the present invention is intended for use in automobile steel sheets and the like that require high workability, and in order to ensure ductility, the ferrite phase is 50% in area ratio. % Or more of the ferrite phase as the main phase. If the area ratio of the ferrite phase is less than 50%, it becomes difficult to ensure the ductility necessary for a steel sheet for automobiles that requires high workability. In addition, when better ductility is required, the area ratio of the ferrite phase is preferably 75% or more. In addition, the ferrite referred to in the present invention includes not only the ordinary meaning of ferrite (polygonal ferrite) but also bainitic ferrite and acicular ferrite not containing carbide.

なお、フェライト相以外の第2相は、とくに限定されないが、強度を高める観点からは、ベイナイト、マルテンサイトの単相あるいは混合相とするのが好ましい。また、第2相として、パーライトを主体とする組織としてもよい。なお、残留オーステナイトは、本発明鋼板の組成範囲であれば、面積率で概ね3%未満出現する場合がある。
フェライト相の平均結晶粒径:10μm以下
本発明では結晶粒径として、断面組織写真からASTMに規定の求積法により算出した値と、断面組織写真からASTMに規定の切断法により求めた公称粒径(例えば梅本ら:熱処理, 24(1984), 334 参照)のうち、いずれか大きい方を採用する。
The second phase other than the ferrite phase is not particularly limited, but is preferably a single phase or a mixed phase of bainite or martensite from the viewpoint of increasing the strength. Moreover, it is good also as a structure | tissue which mainly has pearlite as a 2nd phase. In addition, the retained austenite may appear in an area ratio of less than about 3% within the composition range of the steel sheet of the present invention.
Average crystal grain size of ferrite phase: 10 μm or less In the present invention, as the crystal grain size, the value calculated by the quadrature method prescribed in ASTM from the sectional structure photograph and the nominal grain obtained by the cutting method prescribed by ASTM from the sectional structure photograph The larger one of the diameters (for example, see Umemoto et al .: Heat treatment, 24 (1984), 334) is used.

本発明の冷延鋼板は、製品として所定量の固溶Nを確保しているが、本発明者らの実験・検討結果によれば、固溶N量を一定に保ってもフェライト相の平均結晶粒径が10μmを超えると歪時効硬化特性に大きなばらつきが生じることが判明した。また、室温で保管した場合の機械的特性の劣化も顕著となる。この詳細な機構は現在のところ不明であるが、歪時効硬化特性のばらつきの原因の一つが結晶粒径にあり、結晶粒界への合金元素の偏析と析出、さらにはこれらに及ぼす加工、熱処理の影響に関係するものと推定される。したがって、歪時効硬化特性の安定化を図るには、フェライト相の平均結晶粒径を10μm以下とする必要がある。なお、BH量およびΔTS量のさらなる増加を、安定して得るためにはフェライトの平均結晶粒径は8μm以下とするのが好ましい。   The cold-rolled steel sheet of the present invention secures a predetermined amount of solute N as a product, but according to the results of experiments and examinations by the present inventors, the average of the ferrite phase is maintained even if the amount of solute N is kept constant. It has been found that when the crystal grain size exceeds 10 μm, the strain age hardening characteristics vary greatly. In addition, the deterioration of mechanical properties when stored at room temperature becomes significant. The details of this mechanism are currently unknown, but one of the causes of the variation in strain age hardening characteristics is the crystal grain size. Segregation and precipitation of alloy elements at the grain boundaries, as well as the processing and heat treatments affecting them. It is presumed to be related to the effects of Therefore, in order to stabilize the strain age hardening characteristics, the average crystal grain size of the ferrite phase needs to be 10 μm or less. In order to stably obtain a further increase in the BH amount and ΔTS amount, the average crystal grain size of ferrite is preferably 8 μm or less.

上記した組成と組織を有する本発明の冷延鋼板は、引張強さTSが440MPa以上で、歪時効硬化特性に優れた冷延鋼板である。
TSが440MPaを下回る鋼板では、構造部材的な要素をもつ部材に広く適用することができない。また、さらに適用範囲を拡げるにはTSは500MPa以上とするのが望ましい。
本発明において、「歪時効硬化特性に優れた」とは、上記したように、引張歪5%の予変形後、170 ℃の温度に20min 保持する条件で時効処理したとき、この時効処理前後の変形応力増加量(BH量と記す;BH量=時効処理後の降伏応力−時効処理前の予変形応力)が80MPa 以上であり、かつ歪時効処理(前記予変形+前記時効処理)前後の引張強さ増加量(ΔTSと記す;ΔTS=時効処理後の引張強さ−予変形前の引張強さ)が40MPa 以上であることを意味する。
The cold-rolled steel sheet of the present invention having the composition and structure described above is a cold-rolled steel sheet having a tensile strength TS of 440 MPa or more and excellent strain age hardening characteristics.
A steel sheet having a TS of less than 440 MPa cannot be widely applied to members having structural members. In order to further expand the applicable range, it is desirable that TS is 500 MPa or more.
In the present invention, “excellent in strain age hardening characteristics” means that, as described above, after pre-deformation with a tensile strain of 5%, when subjected to aging treatment at a temperature of 170 ° C. for 20 minutes, before and after this aging treatment. Tensile stress before and after strain aging treatment (pre-deformation + aging treatment) when deformation stress increase (BH amount; BH amount = yield stress after aging treatment-pre-deformation stress before aging treatment) is 80 MPa or more It means that the amount of increase in strength (denoted as ΔTS; ΔTS = tensile strength after aging treatment−tensile strength before pre-deformation) is 40 MPa or more.

歪時効硬化特性を規定する場合、予歪(予変形)量が重要な因子となる。本発明者らは、自動車用鋼板に適用される変形様式を想定して、歪時効硬化特性に及ぼす予歪量の影響について調査し、その結果、(i)前記変形様式における変形応力は、極めて深い絞り加工の場合を除き、概ね1軸相当歪(引張歪)量で整理できること、(ii)実部品ではこの1軸相当歪量が概ね5%を上回っていること、(iii )部品強度が、予歪5%の歪時効処理後に得られる強度(YSおよびTS)と良く対応することを突き止めた。この知見をもとに、本発明では、歪時効処理の予変形を引張歪5%に定めた。   When the strain age hardening characteristic is specified, the amount of pre-strain (pre-deformation) is an important factor. Assuming the deformation mode applied to the steel sheet for automobiles, the present inventors investigated the influence of the pre-strain amount on the strain age hardening characteristics. As a result, (i) the deformation stress in the deformation mode is extremely high. Except in the case of deep drawing, the strain can be roughly organized by the amount equivalent to uniaxial strain (tensile strain). (Ii) In actual parts, the amount of strain equivalent to uniaxially exceeds 5%. It was found that it corresponds well with the strength (YS and TS) obtained after the strain aging treatment with 5% pre-strain. Based on this knowledge, in the present invention, the pre-deformation of the strain aging treatment is set to 5% tensile strain.

従来の塗装焼付け処理条件は、170 ℃×20min が標準として採用されている。なお、一般に、硬化量を稼ぐには、過度の時効で軟化させない限りにおいて、より高温で、より長時間保持することが有利であるとされるが、多量の固溶Nを含む本発明鋼板に5%以上の歪が加わる場合は、より緩やかな(低温側の)処理でも硬化が達成され、言い換えれば時効条件をより幅広くとることが可能である。   Conventional coating baking conditions of 170 ° C x 20 min have been adopted as standard. In general, in order to earn a hardened amount, it is advantageous to hold at a higher temperature for a longer time unless softened by excessive aging. When strain of 5% or more is applied, curing can be achieved even by a more gradual (low temperature side) treatment, in other words, a wider range of aging conditions can be taken.

具体的に述べると、本発明鋼板では、予変形後に硬化が顕著となる加熱温度の下限は概ね100 ℃である。一方、加熱温度が300 ℃を超えると硬化が頭打ちとなり、逆にやや軟化する傾向が現れるほか、熱歪やテンパーカラーの発生が目立つようになる。また、保持時間については、加熱温度200 ℃程度のとき概ね30s程度以上とすれば略十分な硬化が達成される。さらに大きな安定した硬化を得るには保持時間60s以上とするのが好ましい。しかし、20min を超える保持では、さらなる硬化を望みえないばかりか、生産効率も著しく低下して実用面では不利である。   Specifically, in the steel sheet of the present invention, the lower limit of the heating temperature at which hardening becomes significant after pre-deformation is approximately 100 ° C. On the other hand, when the heating temperature exceeds 300 ° C., the curing reaches its peak, and on the contrary, there is a tendency to slightly soften, and the occurrence of thermal distortion and temper color becomes conspicuous. As for the holding time, when the heating temperature is about 200 ° C., if it is about 30 seconds or longer, substantially sufficient curing can be achieved. In order to obtain larger and more stable curing, it is preferable that the holding time is 60 seconds or longer. However, if the holding time exceeds 20 minutes, further curing cannot be expected, and the production efficiency is significantly reduced, which is disadvantageous in practical use.

以上のことから、本発明では、時効処理条件として従来の塗装焼付処理条件の加熱温度である170 ℃、保持時間を20min で評価すると定めた。従来の塗装焼付け型鋼板では十分な硬化が達成されない低温加熱・短時間保持の時効処理条件下でも、本発明鋼板では大きな硬化が安定的に達成される。なお、加熱の仕方はとくに制限されず、通常の塗装焼付けに採用されている炉による雰囲気加熱のほか、たとえば誘導加熱や、無酸化炎、レーザ、プラズマなどによる加熱などのいずれも好ましく用いうる。   From the above, in the present invention, it was determined that the aging treatment conditions were evaluated at 170 ° C. which is the heating temperature of the conventional paint baking treatment conditions and the holding time was 20 minutes. Even with the low temperature heating and short-time aging treatment conditions in which sufficient hardening cannot be achieved with conventional paint-baked steel sheets, large hardening is stably achieved with the steel sheets of the present invention. The heating method is not particularly limited, and any of induction heating, heating with a non-oxidizing flame, laser, plasma, etc., for example, can be preferably used in addition to atmospheric heating with a furnace employed for ordinary paint baking.

自動車用の部品強度は外部からの複雑な応力負荷に抗しうる必要があり、それゆえ素材鋼板では小さな歪域での強度特性だけでなく大きな歪域での強度特性も重要となる。本発明者らはこの点に鑑み、自動車部品の素材となすべき本発明鋼板のBH量を80MPa 以上とするとともに、ΔTS量を40MPa 以上とする。なお、より好ましくは、BH量100MPa以上、ΔTS50MPa 以上とする。BH量とΔTS量をより大きくするには、時効処理の際の加熱温度をより高温側に、および/または、保持時間をより長時間側に、設定すればよい。   The strength of parts for automobiles must be able to withstand complex stress loads from the outside. Therefore, in a steel plate, not only strength characteristics in a small strain range but also strength characteristics in a large strain range are important. In view of this point, the present inventors set the BH amount of the steel sheet of the present invention to be a material for automobile parts to 80 MPa or more and the ΔTS amount to 40 MPa or more. More preferably, the BH amount is 100 MPa or more and ΔTS50 MPa or more. In order to increase the BH amount and the ΔTS amount, the heating temperature during the aging treatment may be set to a higher temperature side and / or the holding time may be set to a longer time side.

また、本発明鋼板は、成形加工されない状態では、室温で1年程度の長時間放置されても時効劣化(YSが増加しかつEl(伸び)が減少する現象)が極めて起こりにくいという、従来にない利点が備わっている。
ところで、本発明の効果は製品板厚が比較的厚い場合でも発揮されうるが、製品板厚が3.2mm を超える場合には、冷延板焼鈍工程で必要十分な冷却速度を確保することができず、連続焼鈍時に歪時効が生じ、製品として目標とする歪時効硬化特性が得にくくなる。したがって、本発明鋼板の板厚は3.2 mm以下とするのが好ましい。
In addition, the steel sheet of the present invention has a conventional structure in which it is extremely difficult to cause aging deterioration (a phenomenon in which YS increases and El (elongation) decreases) even if it is left for about a year at room temperature when not formed. Has no advantages.
By the way, the effect of the present invention can be exhibited even when the product plate thickness is relatively thick. However, when the product plate thickness exceeds 3.2 mm, a necessary and sufficient cooling rate can be secured in the cold-rolled plate annealing process. However, strain aging occurs during continuous annealing, making it difficult to obtain the target strain age hardening characteristics as a product. Therefore, the thickness of the steel sheet of the present invention is preferably 3.2 mm or less.

また、本発明では、上記した本発明冷延鋼板の表面に電気めっきまたは溶融めっきを施しても何ら問題はない。これらめっき鋼板も、めっき前と同程度のTS、BH量、ΔTS量を示す。めっきの種類としては、電気亜鉛めっき、溶融亜鉛めっき、合金化溶融亜鉛めっき、電気錫めっき、電気クロムめっき、電気ニッケルめっき等、いずれも好ましく適用しうる。   In the present invention, there is no problem even if the surface of the cold-rolled steel sheet of the present invention is electroplated or hot-plated. These plated steel sheets also exhibit the same amount of TS, BH, and ΔTS as before plating. As the kind of plating, any of electrogalvanizing, hot dip galvanizing, alloying hot dip galvanizing, electrotin plating, electrochromic plating, electronickel plating, etc. can be preferably applied.

本発明鋼板では、上記したAl、N以外の化学成分は、要求特性に応じ適宜選択できる。
第1の好適態様の鋼板は、前記組成を、前記したAl:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有する組成に加え、さらにC:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下、P:0.08%以下、S:0.02%以下含有し、あるいはさらに、次a群〜d群
a群:Cu、Ni、Cr、Moの1種または2種以上を合計で1.0 %以下
b群:Nb、Ti、Vの1種または2種以上を合計で0.1 %以下
c群:Bを0.0030%以下
d群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
の1群または2群以上を含み、残部がFeおよび不可避的不純物からなる組成と、平均結晶粒径10μm以下のフェライト相を面積率で50%以上含む組織とを有する鋼板である。
In the steel sheet of the present invention, chemical components other than the above-described Al and N can be appropriately selected according to required characteristics.
The steel sheet according to the first preferred embodiment includes the above-described composition containing Al: 0.02% or less, N: 0.0050 to 0.0250%, N / Al is 0.3 or more, and N in a solid solution state is 0.0010% or more. In addition, C: 0.15% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.08% or less, S: 0.02% or less, or further, the following a group to d group a group: Cu, 1 type or 2 types or more of Ni, Cr and Mo in total 1.0% or less b group: 1 type or 2 types or more of Nb, Ti and V in total 0.1% or less c group: B is 0.0030% or less d group: One or two of Ca and REM in total 0.0010 to 0.010%
1 or 2 or more, and the balance is composed of Fe and inevitable impurities, and a structure including a ferrite phase having an average crystal grain size of 10 μm or less in an area ratio of 50% or more.

上記した第1の好適態様である鋼板のAl、N以外の組成限定理由について、説明する。組織限定の理由は上記した理由と同様である。
C:0.15%以下
Cは、鋼板の強度を増加する元素であり、また本発明の重要な構成要件であるフェライトの平均粒径10μm 以下を達成するため、さらに所望の強度を確保するという観点から、0.005 %以上含有するのが好ましい。なお、より好ましくは、0.03%以上である。一方、0.15%を超えると、鋼板中の炭化物分率が過大となり、延性が顕著に低下し成形性が劣化するうえ、さらにスポット溶接性、アーク溶接性などが顕著に低下する。このような成形性および溶接性の観点からCは0.15%以下に限定した。なお、好ましくは0.10%以下、さらに良好な延性が要求される用途では0.08%以下とするのが好ましい。
The reasons for limiting the composition other than Al and N of the steel sheet as the first preferred embodiment will be described. The reason for limiting the organization is the same as described above.
C: 0.15% or less C is an element that increases the strength of the steel sheet, and in order to achieve an average grain size of ferrite of 10 μm or less, which is an important constituent element of the present invention, from the viewpoint of further securing a desired strength. , 0.005% or more is preferable. More preferably, it is 0.03% or more. On the other hand, if it exceeds 0.15%, the carbide fraction in the steel sheet becomes excessive, the ductility is remarkably reduced and formability is deteriorated, and further, spot weldability, arc weldability, etc. are remarkably lowered. From the viewpoints of formability and weldability, C is limited to 0.15% or less. In addition, it is preferably 0.10% or less, and 0.08% or less for applications that require better ductility.

Si:2.0 %以下
Siは、鋼の延性を顕著に低下させることなく鋼板を高強度化させることができる有用な元素であり、0.1 %以上含有するのが好ましい。一方、Siは、熱間圧延時に変態点を大きく上昇させて品質、形状の確保を困難にしたり、あるいはまた表面性状、化成処理性など鋼板表面の美麗性に悪影響を与える元素であり、本発明では2.0 %以下に限定した。Siが2.0 %以下であれば、併合添加するMnの量を調整することで変態点の顕著な上昇を抑制することができ、良好な表面性状も確保できる。なお、引張強さTS500MPa超級高張力鋼板で、高延性を確保したい場合には、強度と延性のバランスの観点から、Siを0.3 %以上含有するのがより好ましい。
Si: 2.0% or less
Si is a useful element that can increase the strength of the steel sheet without significantly reducing the ductility of the steel, and is preferably contained in an amount of 0.1% or more. On the other hand, Si is an element that greatly increases the transformation point during hot rolling and makes it difficult to ensure quality and shape, or adversely affects the beauty of the steel sheet surface such as surface properties and chemical conversion properties. Then, it limited to 2.0% or less. If Si is 2.0% or less, a remarkable increase in transformation point can be suppressed by adjusting the amount of Mn added in combination, and good surface properties can be secured. In addition, when it is desired to ensure high ductility in a tensile strength TS500 MPa super high strength steel sheet, it is more preferable to contain 0.3% or more of Si from the viewpoint of balance between strength and ductility.

Mn:3.0 %以下
Mnは、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて添加するのが好ましく、またMnは本発明の重要な構成要件である結晶粒の微細化に対して大きな効果があり、積極的に添加して材質改善に利用するのが好ましい。Sを安定して固定する観点からは、Mnは0.2 %以上含有するのが好ましい。
Mn: 3.0% or less
Mn is an effective element for preventing hot cracking due to S, and is preferably added according to the amount of S contained, and Mn is an important component of the present invention for the refinement of crystal grains. It has a great effect, and it is preferable to add it positively and use it for improving the material. From the viewpoint of stably fixing S, Mn is preferably contained in an amount of 0.2% or more.

また、Mnは鋼板強度を増加させる元素であり、TS500MPa超の強度要求に対しては、1.2 %以上含有するのが好ましい。なお、強度を安定して確保する観点からより好ましくは1.5 %以上である。Mn含有量をこのレベルまで高めると、熱延条件を含め製造条件の変動に対する鋼板の機械的性質、および歪時効硬化特性のばらつきが小さくなり、品質安定化に効果的である。   Mn is an element that increases the strength of the steel sheet, and is preferably contained in an amount of 1.2% or more for the strength requirement exceeding TS500 MPa. From the viewpoint of stably securing the strength, it is more preferably 1.5% or more. When the Mn content is increased to this level, variations in the mechanical properties and strain age hardening characteristics of the steel sheet with respect to fluctuations in production conditions including hot rolling conditions are reduced, which is effective in stabilizing the quality.

また、Mnは熱間圧延時に変態点を下げる働きがあり、Siとともに含有することにより、Si含有による変態点の上昇を相殺することができる。とくに板厚が薄い製品では、変態点の変動によって品質・形状が敏感に変わるため、MnとSiの含有量を厳密にバランスさせることが肝腎となる。このようなことから、Mn/Si は3.0 以上とするのがより好ましい。
一方、Mnを3.0 %を超えて多量に含有すると、鋼板の熱間変形抵抗が増加する傾向となるうえ、スポット溶接性、および溶接部の成形性が劣化する傾向となり、さらに、フェライトの生成が抑制されるため、延性が顕著に低下する傾向となる。このため、Mnは3.0 %以下に限定した。なお、より良好な耐食性と成形性が要求される用途では、Mnは2.5 %以下とするのが望ましい。
Further, Mn has a function of lowering the transformation point during hot rolling, and inclusion with Si can offset an increase in transformation point due to the inclusion of Si. Especially for products with thin plate thickness, quality and shape change sensitively due to changes in transformation point, so it is important to balance Mn and Si contents precisely. For these reasons, Mn / Si is more preferably 3.0 or more.
On the other hand, if Mn is contained in a large amount exceeding 3.0%, the hot deformation resistance of the steel sheet tends to increase, the spot weldability and the formability of the welded portion tend to deteriorate, and further, the formation of ferrite occurs. Since it is suppressed, the ductility tends to decrease remarkably. For this reason, Mn was limited to 3.0% or less. In applications where better corrosion resistance and formability are required, Mn is desirably 2.5% or less.

P:0.08%以下
Pは、鋼の固溶強化元素として有用な元素であり、この観点からは0.001 %以上の含有が望ましいが、過剰に含有すると鋼を脆化させ、さらに鋼板の伸びフランジ加工性を低下させる。また、Pは鋼中で偏析する傾向が強いためそれに起因した溶接部の脆化をもたらす。このため、Pは0.08%以下に限定した。なお、伸びフランジ加工性や溶接部靱性が特に重要視される場合は0.04%以下とするのが好ましい。なお、より好ましくは溶接部靱性の観点から0.02%以下である。
P: 0.08% or less P is an element useful as a solid solution strengthening element of steel. From this point of view, it is desirable to contain 0.001% or more. Reduce sex. Moreover, since P has a strong tendency to segregate in steel, it causes embrittlement of the weld due to it. For this reason, P was limited to 0.08% or less. In addition, when the stretch flange workability and weld toughness are particularly important, 0.04% or less is preferable. Further, it is more preferably 0.02% or less from the viewpoint of weld zone toughness.

S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、さらには耐食性の劣化をもたらす元素であり、本発明ではSは0.02%以下に限定した。なお、特に良好な加工性 (特に、伸びフランジ性、 穴拡げ性)が要求される用途においては、0.015 %以下とするのが好ましい。さらに伸びフランジ性の要求レベルが高い場合は、Sは0.008 %以下とするのが好ましい。また、歪時効硬化特性を安定して高レベルに維持するためには、詳細な機構は不明であるが、Sを0.008 %以下まで低減するのが好ましい。
S: 0.02% or less S is an element which exists as an inclusion in the steel sheet and causes deterioration of the ductility and further corrosion resistance of the steel sheet. In the present invention, S is limited to 0.02% or less. In applications that require particularly good workability (especially stretch flangeability and hole expansibility), the content is preferably 0.015% or less. Further, when the required level of stretch flangeability is high, S is preferably 0.008% or less. Further, in order to stably maintain the strain age hardening characteristics at a high level, the detailed mechanism is unknown, but it is preferable to reduce S to 0.008% or less.

本発明鋼板の第1の好適態様では、上記した組成に加えてさらに、次a群〜d群
a群:Cu、Ni、Cr、Moの1種または2種以上を合計で1.0 %以下
b群:Nb、Ti、Vの1種または2種以上を合計で0.1 %以下
c群:Bを0.0030%以下
d群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
の1群または2群以上を含有するのが好ましい。
In the first preferred embodiment of the steel sheet of the present invention, in addition to the above-described composition, the following a group to d group: a group: one or more of Cu, Ni, Cr, and Mo in total 1.0% or less b group : One or more of Nb, Ti, and V in total 0.1% or less c group: B in 0.0030% or less d group: One or two of Ca and REM in total 0.0010 to 0.010%
It is preferable to contain 1 group or 2 groups or more.

a群の元素:Cu、Ni、Cr、Moは、いずれも鋼板の強度上昇に寄与する元素であり、この効果を得るにはおのおのCu:0.01%以上、Ni:0.01%以上、Cr:0.01%以上、Mo:0.01%以上とすることが好ましく、必要に応じ選択して単独または複合して含有できる。しかし、含有量が多すぎると熱間変形抵抗が増加し、あるいは化成処理性や広義の表面処理特性が悪化するうえ、溶接部が硬化し溶接部成形性が低下する。このため、a群の元素は合計で1.0 %以下とするのが好ましい。   Group a elements: Cu, Ni, Cr, and Mo are all elements that contribute to increasing the strength of the steel sheet. To obtain this effect, Cu: 0.01% or more, Ni: 0.01% or more, Cr: 0.01% As mentioned above, it is preferable to set it as Mo: 0.01% or more, It can select as needed and can contain individually or in combination. However, when the content is too large, the hot deformation resistance increases, or the chemical conversion property and the surface treatment characteristics in a broad sense are deteriorated, and the welded portion is hardened to deteriorate the weldability. For this reason, it is preferable that the elements in group a be 1.0% or less in total.

b群の元素:Nb、Ti、Vは、いずれも結晶粒の微細化・均一化に寄与する元素であり、この効果を得るにはおのおのNb:0.002 %以上、Ti:0.002 %以上、V:0.002 %以上とすることが好ましく、必要に応じ選択して単独または複合して含有できる。しかし、含有量が多すぎると、熱間変形抵抗が増加し、化成処理性や広義の表面処理特性が悪化する。このため、b群の元素は合計で0.1 %以下とするのが好ましい。   Group b elements: Nb, Ti, and V are all elements that contribute to refinement and uniformity of crystal grains. To obtain this effect, Nb is 0.002% or more, Ti is 0.002% or more, and V: The content is preferably 0.002% or more, and can be selected alone or in combination, depending on necessity. However, when there is too much content, hot deformation resistance will increase and chemical conversion property and the surface treatment characteristic in a broad sense will deteriorate. For this reason, it is preferable that the total amount of elements in group b is 0.1% or less.

c群の元素:Bは、鋼の焼入れ性を向上させる効果を有する元素であり、フェライト相以外の低温変態相の分率を増加させて、鋼の強度を増加させる目的で必要に応じ含有することができる。この効果を得るにはB:0.0002%以上で含有することが好ましい。しかし、量が多すぎると熱間変形能が低下し、BNを生成することで固溶Nを低減させる。このため、Bは0.0030%以下とするが好ましい。   Group c element: B is an element having an effect of improving the hardenability of the steel, and is contained as necessary for the purpose of increasing the strength of the steel by increasing the fraction of the low-temperature transformation phase other than the ferrite phase. be able to. In order to obtain this effect, B is preferably contained in an amount of 0.0002% or more. However, when the amount is too large, the hot deformability is lowered, and the solute N is reduced by generating BN. For this reason, B is preferably 0.0030% or less.

d群の元素:Ca、REM は、いずれも介在物の形態制御に役立つ元素であり、特に伸びフランジ成形性の要求がある場合には、単独または複合して含有するのが好ましい。その場合、d群の元素の合計で、0.0010%未満では介在物の形態制御効果が不足し、一方、0.010 %を超えると表面欠陥の発生が目立つようになる。このため、d群の元素は合計で0.0010〜0.010 %の範囲に限定するのが好ましい。   The elements of group d: Ca and REM are all elements that are useful for controlling the form of inclusions, and are particularly preferably contained alone or in combination when there is a demand for stretch flange formability. In that case, if the total amount of elements in the d group is less than 0.0010%, the effect of controlling the shape of inclusions is insufficient. On the other hand, if it exceeds 0.010%, surface defects are conspicuous. For this reason, it is preferable to limit the elements of the d group to a total range of 0.0010 to 0.010%.

上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、O:0.0050%以下などが許容される。
上記した組成と組織を有する本発明の冷延鋼板は、引張強さTSが440MPa以上で、歪時効硬化特性に優れた冷延鋼板である。
つぎに、本発明鋼板の第2の好適態様について説明する。
The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, O: 0.0050% or less is allowed.
The cold-rolled steel sheet of the present invention having the composition and structure described above is a cold-rolled steel sheet having a tensile strength TS of 440 MPa or more and excellent strain age hardening characteristics.
Below, the 2nd suitable aspect of this invention steel plate is demonstrated.

第2の好適態様の鋼板は、前記組成を、前記したAl:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有する組成に加え、さらに、C:0.15%以下、Mn:3.0 %以下、S:0.02%以下を含有し、さらにMo:0.05〜1.0 %、Cr:0.05〜1.0 %のうちの1種または2種を含有し、あるいはさらに、次j群〜m群
j群:Si:0.05〜1.5 %、P:0.03〜0.15%、B:0.0003〜0.01%の1種または2種 以上
k群:Nb:0.01〜0.1 %、Ti:0.01〜0.2 %、V:0.01〜0.2 %の1種または2種以 上
l群:Cu:0.05〜1.5 %、Ni:0.05〜1.5 %の1種または2種
m群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
のうちの1群または2群以上を含み、残部がFeおよび不可避的不純物からなる組成と、前記組織が、平均結晶粒径10μm以下のフェライト相を面積率で50%以上含み、さらにマルテンサイト相を面積率で3%以上含む組織であって、歪時効硬化性特性に優れるとともに、加工性、耐衝撃特性に優れることを特徴とする鋼板である。
The steel sheet according to the second preferred embodiment contains the above-mentioned composition: Al: 0.02% or less, N: 0.0050 to 0.0250%, N / Al is 0.3 or more, and N in a solid solution state is 0.0010% or more. In addition, C: 0.15% or less, Mn: 3.0% or less, S: 0.02% or less, and Mo: 0.05 to 1.0%, Cr: 0.05 to 1.0% Or further j group to m group j group: Si: 0.05 to 1.5%, P: 0.03 to 0.15%, B: 0.0003 to 0.01% or two or more k group: Nb: 0.01 to 0.1% , Ti: 0.01 to 0.2%, V: 0.01 to 0.2%, 1 type or 2 types Group 1: Cu: 0.05 to 1.5%, Ni: 0.05 to 1.5%, 1 type or 2 types m group: Ca, REM 1 type or 2 types in total 0.0010-0.010%
Including one or more of them, the balance consisting of Fe and inevitable impurities, and the structure contains 50% or more ferrite phase with an average crystal grain size of 10 μm or less in area ratio, and further martensite phase The steel sheet is characterized in that it has a structure containing 3% or more in terms of area ratio and is excellent in strain age-hardening properties, as well as workability and impact resistance properties.

第2の好適態様の鋼板のAl、N以外の組成限定理由について説明する。
C:0.15%以下
Cは、鋼板の強度を増加する元素であり、また、本発明の重要な構成要件であるフェライトの平均粒径10μm 以下を達成するため、さらに所望の強度を確保し、第2相としてマルテンサイト相を形成するという観点から、0.005 %以上含有するのが好ましい。なお、より好ましくは0.03%以上である。一方、0.15%を超えると、鋼板中の炭化物分率が過大となり、延性が顕著に低下し成形性が劣化し、マルテンサイト変態温度が低下するうえ、さらにスポット溶接性、アーク溶接性などが顕著に低下する。このような成形性、溶接性および微視組織調整の観点からCは0.15%以下に限定した。なお、好ましくは0.10%以下、さらに良好な延性が要求される用途では0.08%以下とするのが好ましい。
The reasons for limiting the composition other than Al and N of the steel sheet of the second preferred embodiment will be described.
C: 0.15% or less C is an element that increases the strength of the steel sheet. Further, in order to achieve an average grain size of ferrite of 10 μm or less, which is an important component of the present invention, a desired strength is further ensured. From the viewpoint of forming a martensite phase as two phases, the content is preferably 0.005% or more. In addition, More preferably, it is 0.03% or more. On the other hand, if it exceeds 0.15%, the carbide fraction in the steel sheet becomes excessive, the ductility is remarkably lowered, the formability is deteriorated, the martensitic transformation temperature is lowered, and spot weldability and arc weldability are further remarkable. To drop. From the viewpoint of such formability, weldability, and microstructural adjustment, C is limited to 0.15% or less. In addition, it is preferably 0.10% or less, and 0.08% or less for applications that require better ductility.

Mn:3.0 %以下
Mnは、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて添加するのが好ましく、またMnは本発明の重要な構成要件である結晶粒の微細化に対し大きな効果があり、積極的に添加して材質改善に利用するのが好ましい。また、Mnは焼入れ性を向上する元素であり、第2相としてマルテンサイト相を安定して形成するという観点からは積極的に添加するのが好ましい。Sの固定、およびマルテンサイト相の形成という観点からは、Mnは0.2 %以上含有するのが好ましい。
Mn: 3.0% or less
Mn is an effective element for preventing hot cracking due to S, and is preferably added according to the amount of S contained, and Mn is great for crystal grain refinement, which is an important constituent of the present invention. It is effective, and it is preferable to add it positively and use it for improving the material. Further, Mn is an element that improves hardenability, and it is preferably added positively from the viewpoint of stably forming a martensite phase as the second phase. From the viewpoint of fixing S and forming a martensite phase, Mn is preferably contained in an amount of 0.2% or more.

また、Mnは鋼板強度を増加させる元素であり、TS500MPa超の強度要求に対しては、1.2 %以上含有するのが好ましい。なお、強度を安定して得る観点から、より好ましくは1.5 %以上である。さらに、Mn含有量をこのレベルまで高めると、熱延条件を含め製造条件の変動に対する鋼板の機械的性質、および歪時効硬化特性のばらつきが小さくなり、品質安定化に効果的である。   Mn is an element that increases the strength of the steel sheet, and is preferably contained in an amount of 1.2% or more for the strength requirement exceeding TS500 MPa. From the viewpoint of stably obtaining the strength, it is more preferably 1.5% or more. Further, when the Mn content is increased to this level, the variation in the mechanical properties and strain age hardening characteristics of the steel sheet with respect to fluctuations in manufacturing conditions including hot rolling conditions is reduced, which is effective in stabilizing the quality.

一方、Mnを3.0 %を超えて多量に含有すると、鋼板の熱間変形抵抗が増加する傾向となるうえ、スポット溶接性、および溶接部の成形性が劣化する傾向となり、さらに、フェライトの生成が抑制されるため、延性が顕著に低下する傾向となる。このため、Mnは3.0 %以下に限定した。なお、より良好な耐食性と成形性が要求される用途では、Mnは2.5 %以下とするのが望ましい。   On the other hand, if Mn is contained in a large amount exceeding 3.0%, the hot deformation resistance of the steel sheet tends to increase, the spot weldability and the formability of the welded portion tend to deteriorate, and further, the formation of ferrite occurs. Since it is suppressed, the ductility tends to decrease remarkably. For this reason, Mn was limited to 3.0% or less. In applications where better corrosion resistance and formability are required, Mn is desirably 2.5% or less.

S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、さらには耐食性の劣化をもたらす元素であり、本発明ではSは0.02%以下に限定した。なお、特に良好な加工性(特に伸びフランジ性、穴拡げ性)が要求される用途においては、0.015 %以下とするのが好ましい。さらに伸びフランジ性の要求レベルが高い場合は、Sは0.008 %以下とするのが好ましい。また、歪時効硬化特性を安定して高レベルに維持するためには、詳細な機構は不明であるが、Sを0.008 %以下まで低減するのが好ましい。
S: 0.02% or less S is an element which exists as an inclusion in the steel sheet and causes deterioration of the ductility and further corrosion resistance of the steel sheet. In the present invention, S is limited to 0.02% or less. In applications that require particularly good workability (especially stretch flangeability and hole expansibility), the content is preferably 0.015% or less. Further, when the required level of stretch flangeability is high, S is preferably 0.008% or less. Further, in order to stably maintain the strain age hardening characteristics at a high level, the detailed mechanism is unknown, but it is preferable to reduce S to 0.008% or less.

Mo:0.05〜1.0 %、Cr:0.05〜1.0 %のうちの1種または2種
Mo、Crは、いずれも鋼板の強度上昇に寄与し、さらに鋼の焼入れ性を向上させ、第2相としてマルテンサイト相を生成しやすくする元素であり、単独または複合して含有する。とくに、Mo、Crはマルテンサイト相を微細に分散する作用を有し、降伏強さを低下させ低降伏比を容易に実現させるという効果を有する。このような効果は、Mo、Crとも0.05%以上の含有で認められる。一方、Moを1.0 %超えて含有すると、加工性、表面処理性が低下するうえ、製造コストが上昇し経済的に不利となる。また、Crを1.0 %超えて含有すると、めっき濡れ性が低下する。このため、Moは0.05〜1.0 %、Crは0.05〜1.0 %に限定するのが好ましい。
One or two of Mo: 0.05-1.0% and Cr: 0.05-1.0%
Both Mo and Cr are elements that contribute to increasing the strength of the steel sheet, further improve the hardenability of the steel, and easily form a martensite phase as the second phase, and are contained alone or in combination. In particular, Mo and Cr have the effect of finely dispersing the martensite phase, and have the effect of easily reducing the yield strength and realizing a low yield ratio. Such an effect is recognized when the content of Mo and Cr is 0.05% or more. On the other hand, if the Mo content exceeds 1.0%, the workability and the surface treatment property are lowered, and the production cost is increased, which is economically disadvantageous. On the other hand, if the Cr content exceeds 1.0%, the plating wettability decreases. For this reason, it is preferable to limit Mo to 0.05 to 1.0% and Cr to 0.05 to 1.0%.

本発明の第2の好適態様の鋼板においては、上記した組成に加えてさらに、次j群〜m群
j群:Si:0.05〜1.5 %、P:0.03〜0.15%、B:0.0003〜0.01%の1種または2種 以上
k群:Nb:0.01〜0.1 %、Ti:0.01〜0.2 %、V:0.01〜0.2 %の1種または2種以 上
l群:Cu:0.05〜1.5 %、Ni:0.05〜1.5 %の1種または2種
m群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
の1群または2群以上を含有するのが好ましい。
In the steel sheet of the second preferred embodiment of the present invention, in addition to the above composition, the following j group to m group j group: Si: 0.05 to 1.5%, P: 0.03 to 0.15%, B: 0.0003 to 0.01% 1 type or 2 types or more of k group: Nb: 0.01 to 0.1%, Ti: 0.01 to 0.2%, V: 0.01 to 0.2%, 1 type or 2 types or more l group: Cu: 0.05 to 1.5%, Ni: 0.05 to 1.5% of 1 or 2 types m group: 1 or 2 types of Ca and REM in total 0.0010 to 0.010%
It is preferable to contain 1 group or 2 groups or more.

j群の元素:Si、P、Bは、いずれも焼入れ性を向上させてマルテンサイト相を形成するのに有効な元素であり、また、延性やr値を向上させ加工性を改善するのに有効な元素であり、必要に応じ単独または複合して含有できる。このような効果は、第2の好適態様においてはおのおのSiが0.05%以上、Pが0.03%以上、Bが0.0003%以上の含有で認められる。一方、おのおのSiを1.5 %、Pを0.15%、Bを0.01%超えて含有すると、靱性、溶接性、加工性等が低下する。このため、Siは0.05〜1.5 %、Pは0.03〜0.15%、Bは0.0003〜0.01%に限定するのが好ましい。   The elements of group j: Si, P, and B are all effective elements for improving the hardenability and forming the martensite phase, and for improving the ductility and the r value to improve the workability. It is an effective element and can be contained alone or in combination as required. Such an effect is recognized in the second preferred embodiment when each Si content is 0.05% or more, P is 0.03% or more, and B is 0.0003% or more. On the other hand, if each Si content exceeds 1.5%, P content exceeds 0.15% and B content exceeds 0.01%, toughness, weldability, workability and the like deteriorate. For this reason, it is preferable to limit Si to 0.05 to 1.5%, P to 0.03 to 0.15%, and B to 0.0003 to 0.01%.

k群の元素:Nb、Ti、Vは、いずれも結晶粒の微細化・均一化に寄与する元素であり、必要に応じ選択して単独または複合して含有できる。このような効果は、第2の好適態様においては、おのおのNb:0.01%以上、Ti:0.01%以上、V:0.01%以上の含有で認められるが、おのおのNb:0.1 %、Ti:0.2 %、V:0.2 %を超える含有は、熱間変形抵抗を増加させ、また化成処理性や広義の表面処理特性を悪化させる。このため、Nb:0.01〜0.1 %、Ti:0.01〜0.2 %、V:0.01〜0.2 %におのおの限定するのが好ましい。   The elements of group k: Nb, Ti, and V are all elements that contribute to the refinement and homogenization of crystal grains, and can be selected alone or in combination as required. In the second preferred embodiment, such an effect is recognized in each case of Nb: 0.01% or more, Ti: 0.01% or more, V: 0.01% or more, but each Nb: 0.1%, Ti: 0.2%, If the content exceeds V: 0.2%, the hot deformation resistance is increased, and the chemical conversion property and the surface treatment characteristics in a broad sense are deteriorated. For this reason, it is preferable to limit to Nb: 0.01-0.1%, Ti: 0.01-0.2%, V: 0.01-0.2%, respectively.

l群の元素:Cu、Niは、いずれも、焼入れ性を向上し、鋼板の強度上昇に寄与する元素であり、必要に応じ選択して単独または複合して含有できる。このような効果は、第2の好適態様においては、おのおのCu:0.05%以上、Ni:0.05%以上の含有で認められる。しかし、おのおのCu:1.5 %、Ni:1.5 %を超えて含有すると、熱間変形抵抗が増加し、あるいは化成処理性や広義の表面処理特性が悪化するうえ、溶接部が硬化し溶接部成形性が劣化する。このため、おのおのCu:0.05〜1.5 %、Ni:0.05〜1.5 %に限定するのが好ましい。   Group l elements: Cu and Ni are elements that improve the hardenability and contribute to an increase in strength of the steel sheet, and can be selected alone or in combination as required. In the second preferred embodiment, such an effect is recognized when Cu: 0.05% or more and Ni: 0.05% or more. However, if each Cu content exceeds 1.5% and Ni exceeds 1.5%, the hot deformation resistance increases, the chemical conversion property and the surface treatment characteristics in a broad sense deteriorate, and the welded part hardens to form the welded part. Deteriorates. For this reason, it is preferable to limit to Cu: 0.05-1.5% and Ni: 0.05-1.5%, respectively.

m群の元素:Ca、REM は、いずれも介在物の形態制御に役立つ元素であり、特に伸びフランジ成形性の要求がある場合には、単独または複合して含有するのが好ましい。その場合、d群の元素の合計で、0.0010%未満では介在物の形態制御効果が不足し、一方、0.010 %を超えると表面欠陥の発生が目立つようになる。このため、m群の元素は合計で0.0010〜0.010 %の範囲に限定するのが好ましい。   The elements of group m: Ca and REM are all elements that are useful for controlling the form of inclusions, and are particularly preferably contained alone or in combination when there is a demand for stretch flange formability. In that case, if the total amount of elements in the d group is less than 0.0010%, the effect of controlling the shape of inclusions is insufficient. On the other hand, if it exceeds 0.010%, surface defects are conspicuous. For this reason, it is preferable to limit the elements of the m group to a total range of 0.0010 to 0.010%.

上記した成分以外の残部は、Feおよび不可避的不純物である。不可避不純物としては、O:0.0050%以下などが許容できる。
次に、本発明の第2の好適態様の鋼板の組織について説明する。
本発明の第2の好適態様の鋼板の組織は、平均結晶粒径10μm 以下のフェライト相を主相として面積率で50%以上含み、第2相としてマルテンサイト相を面積率で3%以上含む微視組織である。
The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, O: 0.0050% or less is acceptable.
Next, the structure of the steel sheet according to the second preferred embodiment of the present invention will be described.
The structure of the steel sheet of the second preferred embodiment of the present invention includes a ferrite phase having an average crystal grain size of 10 μm or less as a main phase in an area ratio of 50% or more, and a martensite phase as a second phase in an area ratio of 3% or more. It is a microscopic tissue.

フェライト相を面積率で50%以上含むことにより、第1の好適態様と同様に、高度な加工性が要求される自動車用鋼板として必要な延性を確保することができる。なお、さらに良好な延性が要求される場合は、フェライト相の面積率は75%以上とするのが好ましい。なお、フェライト相の面積率が97%を超えると、複合組織としての効果が期待できなくなる。第2相としてのマルテンサイト相は、主相であるフェライト相の主として粒界に分散して存在する。マルテンサイトは硬質相であり、組織強化により鋼板強度を増加させる作用を有する。さらに、変態時に可動転位の発生を伴うため、延性向上や、鋼板の降伏比を低下させる作用を有する。これらの効果は、マルテンサイト相が面積率で3%以上存在したときに顕著となる。なお、30%を超えて存在すると、延性の低下という問題がある。このため、第2相としてのマルテンサイト相は面積率で3%以上、好ましくは30%以下、より好ましくは20%以下とする。なお、第2相としては、このような量のマルテンサイト以外に、ベイナイトを10%以下含有してもなんら問題はない。   By including the ferrite phase in an area ratio of 50% or more, as in the first preferred embodiment, it is possible to ensure the ductility necessary for a steel sheet for automobiles that requires high workability. In addition, when better ductility is required, the area ratio of the ferrite phase is preferably 75% or more. When the area ratio of the ferrite phase exceeds 97%, the effect as a composite structure cannot be expected. The martensite phase as the second phase is dispersed mainly at the grain boundaries of the ferrite phase that is the main phase. Martensite is a hard phase and has the effect of increasing the strength of the steel sheet by strengthening the structure. Furthermore, since the generation of movable dislocations is accompanied during transformation, it has the effect of improving ductility and reducing the yield ratio of the steel sheet. These effects become significant when the martensite phase is present in an area ratio of 3% or more. In addition, when it exists exceeding 30%, there exists a problem of a ductility fall. For this reason, the martensite phase as the second phase is 3% or more, preferably 30% or less, more preferably 20% or less in terms of area ratio. As the second phase, in addition to such an amount of martensite, 10% or less of bainite may be contained without any problem.

また、フェライト相の平均結晶粒径は、第1の好適態様と同様に歪時効硬化特性の安定化を図るため10μm 以下とする。
上記した組成と組織を有する本発明の第2の好適態様の鋼板は、引張強さTSが440MPa以上で、歪時効硬化特性に優れるとともに、加工性、および耐衝撃特性に優れた高張力冷延鋼板となる。
In addition, the average crystal grain size of the ferrite phase is set to 10 μm or less in order to stabilize the strain age hardening characteristics as in the first preferred embodiment.
The steel sheet of the second preferred embodiment of the present invention having the composition and structure described above has a tensile strength TS of 440 MPa or more, excellent strain age hardening characteristics, and high tensile cold rolling excellent in workability and impact resistance characteristics. It becomes a steel plate.

次に、本発明鋼板の製造方法について説明する。
本発明鋼板は、基本的に、上記した範囲内の組成を有する、すなわち、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上である組成を有する鋼スラブを、スラブ加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し、巻取温度: 750℃以下で巻き取り熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、該冷延板に所定の温度で所定の時間保持する焼鈍を行い、ついで所定の冷却速度で冷却を行う冷延板焼鈍工程とを、順次施すことにより製造される。
Next, the manufacturing method of this invention steel plate is demonstrated.
The steel sheet of the present invention basically has a composition within the above-described range, that is, a steel slab having a composition containing Al: 0.02% or less, N: 0.0050-0.0250%, and N / Al being 0.3 or more. Slab heating temperature: heated to 1000 ° C or higher, roughly rolled into a sheet bar, finished rolling to a finish rolling exit temperature of 800 ° C or higher, and wound at a winding temperature of 750 ° C or lower A hot-rolling step for forming a hot-rolled sheet, a cold-rolling step for pickling and cold-rolling the hot-rolled plate to form a cold-rolled plate, and annealing for holding the cold-rolled plate at a predetermined temperature for a predetermined time Followed by a cold-rolled sheet annealing step for cooling at a predetermined cooling rate.

本発明の製造方法で使用するスラブは、成分のマクロな偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法、薄スラブ連鋳法で製造してもよい。また、スラブを製造後いったん室温まで冷却して再度加熱する通常プロセスのほか、冷却せず温片のままで加熱炉に挿入したのち圧延する直送圧延、あるいは僅かの保熱を行った後に直ちに圧延する直接圧延などの省エネルギープロセスも問題なく適用できる。とくに、固溶状態のNを有効に確保するには、Nの析出が遅延する直送圧延は有用な技術の一つである。   The slab used in the production method of the present invention is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot forming method or a thin slab continuous casting method. In addition to the normal process of once cooling the slab to room temperature and heating it again, it is rolled directly after rolling in a furnace after inserting it into a heating furnace without cooling or rolling immediately after performing a slight heat retention. Energy saving processes such as direct rolling can also be applied without problems. In particular, in order to effectively secure N in a solid solution state, direct feed rolling in which precipitation of N is delayed is one of useful techniques.

まず、熱間圧延工程条件の限定理由について説明する。
スラブ加熱温度:1000℃以上
スラブ加熱温度は、初期状態として、必要かつ十分な固溶N量を確保し、製品での固溶N量の目標値(0.0010%以上)を満たすために、1000℃以上とするのが好ましい。なお、酸化重量の増加に伴うロスの増大を避ける観点から、スラブ加熱温度は1280℃以下とするのが好ましい。
First, the reasons for limiting the hot rolling process conditions will be described.
Slab heating temperature: 1000 ° C or more The slab heating temperature is 1000 ° C in order to ensure the necessary and sufficient amount of solute N in the initial state and to meet the target value (0.0010% or more) of solute N in the product. The above is preferable. From the viewpoint of avoiding an increase in loss accompanying an increase in oxidized weight, the slab heating temperature is preferably 1280 ° C. or lower.

上記した条件で加熱されたスラブは、粗圧延によりシートバーとされる。なお、粗圧延の条件はとくに規定する必要はなく、常法にしたがって行えばよい。しかし、固溶N量の確保という観点からはできるだけ短時間での処理とするのが望ましい。
ついで、シートバーを仕上圧延して熱延板とする。
なお、本発明では、粗圧延と仕上圧延の間で、相前後するシートバー同士を接合し、連続的に仕上圧延することが好ましい。接合手段としては、圧接法、レーザ溶接法、電子ビーム溶接法などを用いるのが好ましい。
The slab heated under the above conditions is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be performed according to a conventional method. However, from the viewpoint of securing the solid solution N amount, it is desirable to perform the treatment in as short a time as possible.
Next, the sheet bar is finish-rolled to obtain a hot-rolled sheet.
In the present invention, it is preferable to join successive sheet bars between rough rolling and finish rolling and continuously finish rolling. As the joining means, it is preferable to use a pressure welding method, a laser welding method, an electron beam welding method or the like.

これにより、仕上圧延およびその後の冷却において形状の乱れを生じやすい非定常部(被処理材の先端部および後端部)の存在割合が減少し、安定圧延長さ(同一条件で圧延できる連続長さ)および安定冷却長さ(張力をかけたまま冷却できる連続長さ)が延長して、製品の形状・寸法精度および歩留りが向上する。
また、従来のシートバー毎の単発圧延では通板性や噛込み性等の問題により実施が難しかった薄物・広幅に対する潤滑圧延が容易に実施できるようになり、圧延荷重およびロール面圧が低減してロールの寿命が延長する。
As a result, the proportion of unsteady parts (the front end and the rear end of the material to be processed) that are likely to be disturbed in finish rolling and subsequent cooling is reduced, and the stable rolling length (continuous length that can be rolled under the same conditions) is reduced. And the stable cooling length (continuous length that can be cooled with tension applied) are extended, and the shape / dimensional accuracy and yield of the product are improved.
In addition, it has become possible to easily carry out lubrication rolling for thin objects and wide widths, which was difficult to perform due to problems such as sheeting and biting by conventional single rolling for each sheet bar, reducing rolling load and roll surface pressure. This extends the life of the roll.

また、本発明では、粗圧延と仕上圧延の間で、シートバーの幅端部を加熱するシートバーエッジヒータ、シートバーの長さ端部を加熱するシートバーヒータのいずれか一方または両方を使用して、シートバーの幅方向および長手方向の温度分布を均一化することが好ましい。これにより、鋼板内の材質ばらつきをさらに小さくすることができる。シートバーエッジヒータ、シートバーヒータは誘導加熱方式のものとするのが好ましい。   In the present invention, either one or both of a sheet bar edge heater that heats the width end portion of the sheet bar and a sheet bar heater that heats the length end portion of the sheet bar is used between rough rolling and finish rolling. Thus, it is preferable to make the temperature distribution in the width direction and the longitudinal direction of the sheet bar uniform. Thereby, the material dispersion | variation in a steel plate can be made still smaller. The sheet bar edge heater and the sheet bar heater are preferably of the induction heating type.

使用手順は、まずシートバーエッジヒータにより幅方向の温度差を補償することが望ましい。このときの加熱量は、鋼組成などにもよるが、仕上圧延出側での幅方向温度分布範囲が概ね20℃以下となるように設定するのが好ましい。次いでシートバーヒータにより長手方向の温度差を補償する。このときの加熱量は、長さ端部温度が中央部温度よりも20〜40℃程度高くなるように設定するのが好ましい。   As for the use procedure, it is desirable to first compensate for the temperature difference in the width direction by the sheet bar edge heater. The amount of heating at this time is preferably set so that the temperature distribution range in the width direction on the finish rolling exit side is approximately 20 ° C. or less, although it depends on the steel composition and the like. Next, the temperature difference in the longitudinal direction is compensated by the sheet bar heater. The heating amount at this time is preferably set so that the length end temperature is higher by about 20 to 40 ° C. than the center temperature.

仕上圧延出側温度:800 ℃以上
仕上圧延出側温度FDTは、鋼板の組織を均一かつ微細とするために、800 ℃以上とする。FDTが800 ℃を下回ると、組織が不均一となり、一部に加工組織が残留したりする。このような加工組織の残留は、巻取温度を高温とすることにより回避できる。しかし、巻取温度を高温にすると、粗大結晶粒が発生し、また固溶N量も大きく低下するため、目標の引張強さであるTS440MPa以上を得ることが困難となる。なお、機械的性質をさらに改善させるには、FDTは820 ℃以上とするのが望ましい。また、圧延温度の上がりすぎによるスケール疵等の発生を防止する観点からは、FDTは1000℃以下とするのが好ましい。仕上圧延後は結晶粒の微細化と固溶N量の確保のため、早期に鋼板を冷却するのが望ましい。
Finishing rolling exit temperature: 800 ° C. or more The finishing rolling exit temperature FDT is set to 800 ° C. or more in order to make the structure of the steel sheet uniform and fine. When the FDT is below 800 ° C., the structure becomes non-uniform, and the processed structure remains in part. Such remaining of the processed structure can be avoided by increasing the coiling temperature. However, when the coiling temperature is increased, coarse crystal grains are generated and the amount of solute N is greatly reduced, making it difficult to obtain a target tensile strength of TS440 MPa or more. In order to further improve the mechanical properties, the FDT is desirably 820 ° C. or higher. Further, from the viewpoint of preventing the occurrence of scale flaws and the like due to excessive increase in the rolling temperature, the FDT is preferably set to 1000 ° C. or less. After finish rolling, it is desirable to cool the steel sheet at an early stage in order to refine crystal grains and secure a solid solution N amount.

仕上圧延後の冷却:仕上げ圧延終了後0.5 秒以内に冷却を開始、冷却速度40℃/s以上の急冷
本発明では、仕上圧延終了後直ちに(0.5 秒以内に)冷却を開始し、冷却中の平均冷却速度を40℃/s以上とするのが望ましい。この条件を満足させることにより、AlN が析出する高温域を急冷でき、固溶状態のNを有効に確保できる。この冷却開始時間または冷却速度が、上記条件を満足しない場合には、粒成長が進みすぎて結晶粒径の微細化が達成しにくいうえ、圧延で導入された歪エネルギーによるAlN の析出が進みすぎて固溶N量が欠乏する恐れが増大する。なお、材質・形状の均一性を確保する観点からは、冷却速度は300 ℃/s以下に抑えるのが好ましい。
Cooling after finish rolling: Start cooling within 0.5 seconds after finishing rolling, rapid cooling at a cooling rate of 40 ° C / s or more In the present invention, cooling is started immediately after finishing rolling (within 0.5 seconds) The average cooling rate is desirably 40 ° C./s or more. By satisfying this condition, the high temperature region where AlN precipitates can be rapidly cooled, and N in a solid solution state can be effectively secured. If this cooling start time or cooling rate does not satisfy the above conditions, grain growth proceeds too much, making it difficult to reduce the crystal grain size, and precipitation of AlN due to strain energy introduced by rolling proceeds too much. This increases the risk that the amount of dissolved N will be deficient. From the viewpoint of ensuring the uniformity of the material and shape, the cooling rate is preferably suppressed to 300 ° C./s or less.

巻取温度:750 ℃以下
巻取温度CTの低下につれて、鋼板強度が増加する傾向を示す。目標の引張強さTS440MPa以上を確保するためには、CTは750 ℃以下とするのが好ましい。なお、CTが200 ℃未満では鋼板形状が乱れやすくなり、実操業上、不具合を生じる危険性が高く、材質の均一性が低下する傾向を示す。このため、CTは200 ℃以上とするのが望ましい。なお、より材質の均一性が要求される場合には、CTは300 ℃以上とするのが好ましい。なお、より好ましくは450 ℃以上である。
Winding temperature: 750 ° C. or less The steel sheet strength tends to increase as the winding temperature CT decreases. In order to ensure the target tensile strength of TS440 MPa or higher, the CT is preferably 750 ° C. or lower. If the CT is less than 200 ° C., the shape of the steel sheet tends to be disturbed, and there is a high risk of causing problems in actual operation, and the uniformity of the material tends to decrease. For this reason, it is desirable that CT be 200 ° C. or higher. When more uniform material is required, CT is preferably 300 ° C. or higher. More preferably, it is 450 ° C. or higher.

また、本発明では、仕上圧延において、熱間圧延荷重を低減するために、潤滑圧延を行ってもよい。潤滑圧延を行うことにより、熱延板の形状・材質がより均一化されるという効果がある。なお、潤滑圧延の際の摩擦係数は0.25〜0.10の範囲とするのが好ましい。また、潤滑圧延と連続圧延とを組み合わせることによりさらに、熱間圧延の操業が安定する。   In the present invention, in the finish rolling, lubrication rolling may be performed in order to reduce the hot rolling load. By performing lubrication rolling, there is an effect that the shape and material of the hot-rolled sheet are made more uniform. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.25-0.10. Moreover, the operation of hot rolling is further stabilized by combining lubrication rolling and continuous rolling.

上記した熱間圧延工程を施された熱延板は、ついで、冷間圧延工程により、酸洗および冷間圧延を施されて冷延板となる。
酸洗の条件は通常公知の条件でよく、とくに限定されない。なお、熱延板のスケールが極めて薄い場合には、酸洗を施すことなく直ちに冷間圧延を行ってもよい。
また、冷間圧延条件は、通常公知の条件でよく、とくに限定されない。なお、組織の均一性確保という観点から冷間圧下率は40%以上とするのが好ましい。
The hot-rolled sheet that has been subjected to the above-described hot-rolling step is then subjected to pickling and cold-rolling in the cold-rolling step to become a cold-rolled plate.
The conditions for pickling may be generally known conditions and are not particularly limited. In addition, when the scale of a hot-rolled sheet is extremely thin, cold rolling may be performed immediately without performing pickling.
Further, the cold rolling conditions may be generally known conditions and are not particularly limited. Note that the cold rolling reduction is preferably 40% or more from the viewpoint of ensuring the uniformity of the structure.

ついで、冷延板は、連続焼鈍による冷延板焼鈍工程を施される。
また、冷延板焼鈍工程に続いてさらに、伸び率:1.0 〜15%の調質圧延またはレベラー加工を施してもよい。冷延板焼鈍工程後に調質圧延またレベラー加工を施すことにより、BH量、ΔTS量といった歪時効硬化特性を安定して向上することができる。調質圧延またはレベラー加工における伸び率は合計で1.0 %以上とするのが好ましい。伸び率が1.0 %未満では歪時効硬化特性の向上が少なく、一方、伸び率が15%を超えると、鋼板の延性が低下する。なお、調質圧延とレベラー加工ではその加工様式が相違するが、本発明者らは、鋼板の歪時効硬化特性に対する効果には大きな相違がないことを確認している。
Next, the cold-rolled sheet is subjected to a cold-rolled sheet annealing step by continuous annealing.
Further, following the cold-rolled sheet annealing step, temper rolling or leveler processing with an elongation of 1.0 to 15% may be performed. By performing temper rolling or leveler processing after the cold-rolled sheet annealing step, strain age hardening characteristics such as BH amount and ΔTS amount can be stably improved. The total elongation in temper rolling or leveler processing is preferably 1.0% or more. If the elongation is less than 1.0%, the strain age hardening property is not improved, while if the elongation exceeds 15%, the ductility of the steel sheet is lowered. Although the processing modes differ between temper rolling and leveler processing, the present inventors have confirmed that there is no significant difference in the effect on the strain age hardening characteristics of the steel sheet.

本発明の第1の好適態様では、スラブ組成として、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上であり、さらにC:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下、P:0.08%以下、S:0.02%以下を含み、あるいはさらに次a群〜d群
a群:Cu、Ni、Cr、Moの1種または2種以上を合計で1.0 %以下
b群:Nb、Ti、Vの1種または2種以上を合計で0.1 %以下
c群:Bを0.0030%以下
d群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
を含有し、 好ましくは、残部Feおよび不可避的不純物からなるスラブを使用し、、上記した熱間圧延工程と、上記した冷間圧延工程を経て冷延板とした後、該冷延板に再結晶温度以上900 ℃以下の温度で保持時間:10〜60sとする焼鈍を行い、ついで500 ℃以下の温度域まで冷却速度:10〜300 ℃/sで冷却する一次冷却と、ついで前記一次冷却の停止温度以下400 ℃以上の温度域での滞留時間を300 s以下とする二次冷却とを行う冷延板焼鈍工程を順次施す。
In the first preferred embodiment of the present invention, the slab composition includes Al: 0.02% or less, N: 0.0050 to 0.0250%, N / Al is 0.3 or more, C: 0.15% or less, Si: 2.0% In the following, Mn: 3.0% or less, P: 0.08% or less, S: 0.02% or less, or the following a group to d group a group: one or more of Cu, Ni, Cr, Mo in total 1.0% or less Group b: One or more of Nb, Ti, and V is 0.1% or less in total. Group c: B is 0.0030% or less. Group d: One or two of Ca and REM are combined in a total of 0.0010 to 0.010. %
Preferably, a slab composed of the remaining Fe and unavoidable impurities is used, and after the hot rolling step and the cold rolling step described above, a cold rolled plate is obtained, and then the cold rolled plate is reused. Annealing at a temperature not lower than the crystal temperature and not higher than 900 ° C. and holding time: 10 to 60 s, and then cooling to a temperature range of 500 ° C. or lower at a cooling rate of 10 to 300 ° C./s, and then the primary cooling. A cold-rolled sheet annealing step is performed in order to perform secondary cooling in which the residence time in the temperature range of 400 ° C. or lower is 300 s or lower.

本発明の第1の好適態様におけるスラブ組成の限定理由は上記本発明の第1の好適態様の鋼板組成の限定理由と同じである。また、本発明の第1の好適態様では、前記熱間圧延工程における巻取温度は、強度確保の観点から650 ℃以下とすることがさらに好ましい。次に本発明の第1の好適態様における冷延板焼鈍工程の限定理由について説明する。
連続焼鈍温度:再結晶温度以上で900 ℃以下
連続焼鈍の焼鈍温度は再結晶温度以上とすることが好ましい。
The reason for limiting the slab composition in the first preferred embodiment of the present invention is the same as the reason for limiting the steel plate composition of the first preferred embodiment of the present invention. Moreover, in the 1st suitable aspect of this invention, it is more preferable that the coiling temperature in the said hot rolling process shall be 650 degrees C or less from a viewpoint of ensuring intensity | strength. Next, the reason for limiting the cold-rolled sheet annealing step in the first preferred embodiment of the present invention will be described.
Continuous annealing temperature: above the recrystallization temperature and below 900 ° C. The annealing temperature for continuous annealing is preferably set above the recrystallization temperature.

連続焼鈍温度が再結晶温度未満では、再結晶が完了せず、強度は目標を満足するものの延性が低く、そのため成形性が低下し自動車用鋼板としては適用できない。なお、成形性をより一層向上させるためには、連続焼鈍温度は700 ℃以上とするのが好ましい。一方、連続焼鈍温度が900 ℃を超えると、AlN 等の窒化物が析出し、製品である鋼板の固溶N量が不足する。このため、連続焼鈍温度は再結晶温度以上で900 ℃以下とするのが好ましい。   If the continuous annealing temperature is lower than the recrystallization temperature, the recrystallization is not completed, and the strength satisfies the target, but the ductility is low, so that the formability is lowered and the steel sheet cannot be applied. In order to further improve the formability, the continuous annealing temperature is preferably 700 ° C. or higher. On the other hand, when the continuous annealing temperature exceeds 900 ° C., nitrides such as AlN are precipitated, and the amount of solute N in the steel plate as a product is insufficient. For this reason, the continuous annealing temperature is preferably not less than the recrystallization temperature and not more than 900 ° C.

連続焼鈍温度での保持時間:10〜60s
連続焼鈍温度での保持時間は、組織の微細化、所望以上の固溶N量を確保する観点から、できるだけ短時間とするのが好ましいが、操業の安定性からは10s以上とするのが望ましい。保持時間が60sを超えると、組織の微細化、固溶N量の確保が困難となる。このため、連続焼鈍温度における保持時間は10〜60sの範囲とするのが好ましい。
Holding time at continuous annealing temperature: 10-60s
The holding time at the continuous annealing temperature is preferably as short as possible from the viewpoint of refining the structure and securing an amount of solute N that is higher than desired, but is preferably 10 s or longer from the viewpoint of operational stability. . If the holding time exceeds 60 s, it becomes difficult to refine the structure and secure the amount of solute N. For this reason, the holding time at the continuous annealing temperature is preferably in the range of 10 to 60 s.

一次冷却:500 ℃以下の温度域まで冷却速度:10〜300 ℃/s
連続焼鈍における均熱後の冷却は、組織の微細化、固溶N量の確保の観点から重要であり、本発明では一次冷却として、500 ℃以下の温度域まで10〜300 ℃/sの冷却速度で連続冷却する。冷却速度が10℃/s未満では、均一で微細な組織と所望量以上の固溶Nの確保が困難となる。一方、冷却速度が300 ℃/sを超えると、鋼板の幅方向での材質の均一性が不足する。10〜300 ℃/sの冷却速度で冷却した際の冷却停止温度が、500 ℃超えの温度では、組織の微細化が達成できない。
Primary cooling: Cooling rate to temperature range below 500 ° C: 10-300 ° C / s
Cooling after soaking in continuous annealing is important from the viewpoint of refining the structure and securing the amount of dissolved N. In the present invention, cooling is performed at a temperature of 10 to 300 ° C./s as a primary cooling to a temperature range of 500 ° C. or lower. Cool continuously at speed. When the cooling rate is less than 10 ° C./s, it is difficult to ensure a uniform and fine structure and a desired amount of solid solution N or more. On the other hand, when the cooling rate exceeds 300 ° C./s, the uniformity of the material in the width direction of the steel sheet is insufficient. When the cooling stop temperature when cooling at a cooling rate of 10 to 300 ° C./s exceeds 500 ° C., the structure cannot be refined.

二次冷却条件:一次冷却の冷却停止温度以下400 ℃以上の温度域での滞留時間を300 s以下とする冷却
一次冷却後の二次冷却が、歪時効硬化特性の観点から重要となる。詳細な機構については、現在のところ不明であるが、二次冷却の条件によって、固溶C、N量が変化し歪時効特性に影響しているものと推察される。本発明では、一次冷却に続いて、冷却を継続し、一次冷却の停止温度以下400 ℃以上の温度域での滞留時間を300 s以下とする冷却を行うことが好ましい。本発明では、連続焼鈍後、いわゆる過時効処理を行ってもよいが、過時効処理を行うと歪時効硬化特性が低下する。したがって、本発明では、連続焼鈍炉の過時効帯を通板させる場合には、過時効帯の温度を極めて低い温度として行うことが望ましい。なお、本発明の第1の好適態様では上記した調質圧延またはレベラー加工を施してもよい。
Secondary cooling condition: Cooling in which the residence time in the temperature range of 400 ° C. or higher of the primary cooling is 300 s or less is the secondary cooling after the primary cooling is important from the viewpoint of strain age hardening characteristics. Although the detailed mechanism is unknown at present, it is presumed that the amount of solid solution C and N varies depending on the secondary cooling conditions, and this affects the strain aging characteristics. In the present invention, following the primary cooling, it is preferable to continue the cooling, and to perform the cooling so that the residence time in the temperature range of 400 ° C. or higher below the primary cooling stop temperature is 300 s or shorter. In the present invention, after the continuous annealing, so-called overaging treatment may be performed, but when overaging treatment is performed, strain age hardening characteristics are deteriorated. Therefore, in the present invention, when passing the overaging zone of the continuous annealing furnace, it is desirable to set the temperature of the overaging zone to an extremely low temperature. In the first preferred embodiment of the present invention, the above-described temper rolling or leveler processing may be performed.

また、本発明の第2の好適態様では、スラブ組成として、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上であり、さらにC:0.15%以下、Mn:3.0 %以下、S:0.02%以下を含み、さらに、Mo:0.05〜1.0 %、Cr:0.05〜1.0 %のうちの1種または2種を含有し、あるいはさらに、次j群〜m群
j群:Si:0.05〜1.5 %、P:0.03〜0.15%、B:0.0003〜0.01%の1種または2種 以上
k群:Nb:0.01〜0.1 %、Ti:0.01〜0.2 %、V:0.01〜0.2 %の1種または2種以 上
l群:Cu:0.05〜1.5 %、Ni:0.05〜1.5 %の1種または2種
m群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
のうちから選ばれた1群または2群以上を含み、好ましくは残部Feおよび不可避的不純物からなるスラブを使用し、上記した熱間圧延工程と、上記した冷間圧延工程を経て冷延板とした後、該冷延板に、(Ac1変態点)〜(Ac3変態点)の温度で保持時間:10〜 120sとする焼鈍を行い、ついで600 〜300 ℃間の平均冷却速度を次(1)または(2)式
B<0.0003%の場合
log CR=−1.73〔Mn+2.67Mo+1.3Cr +0.26Si+3.5P+0.05Cu+0.05Ni〕+3.95……(1)
B≧0.0003%の場合
log CR=−1.73〔Mn+2.67Mo+1.3Cr +0.26Si+3.5P+0.05Cu+0.05Ni〕+3.40……(2)
(ここに、CR:冷却速度(℃/s)、Mn、Mo、Cr、Si、P、Cu、Ni:各元素含有量(質量%))
で定義される臨界冷却速度CR以上として冷却を行う冷延板焼鈍工程とを、順次施す。
In the second preferred embodiment of the present invention, the slab composition contains Al: 0.02% or less, N: 0.0050 to 0.0250%, N / Al is 0.3 or more, C: 0.15% or less, Mn: 3.0% or less, S: 0.02% or less, and further containing one or two of Mo: 0.05 to 1.0%, Cr: 0.05 to 1.0%, or further j group to m group j group : Si: 0.05 to 1.5%, P: 0.03 to 0.15%, B: 0.0003 to 0.01%, one or more kinds k group: Nb: 0.01 to 0.1%, Ti: 0.01 to 0.2%, V: 0.01 to 0.2 Group 1: Cu: 0.05 to 1.5%, Ni: 0.05 to 1.5%, 1 or 2 types m Group: 1 or 2 types of Ca and REM in total 0.0010 to 0.010%
Including one group or two or more groups selected from the above, preferably using a slab composed of the remaining Fe and inevitable impurities, and through the hot rolling step described above and the cold rolling step described above, After that, the cold-rolled sheet is annealed at a temperature of (Ac 1 transformation point) to (Ac 3 transformation point) and a holding time of 10 to 120 s, and then the average cooling rate between 600 to 300 ° C. is 1) or (2) When formula B <0.0003%
log CR = -1.73 [Mn + 2.67Mo + 1.3Cr + 0.26Si + 3.5P + 0.05Cu + 0.05Ni] + 3.95 (1)
When B ≧ 0.0003%
log CR = −1.73 [Mn + 2.67Mo + 1.3Cr + 0.26Si + 3.5P + 0.05Cu + 0.05Ni] + 3.40 …… (2)
(Here, CR: cooling rate (° C./s), Mn, Mo, Cr, Si, P, Cu, Ni: content of each element (mass%))
And a cold-rolled sheet annealing step for cooling at a critical cooling rate CR defined by (1) or higher.

本発明の第2の好適態様におけるスラブ組成の限定理由は上記本発明の第2の好適態様の限定理由と同じである。
本発明の第2の好適態様における冷延板焼鈍工程の限定理由について説明する。
焼鈍温度:(Ac1変態点)〜(Ac3変態点)
焼鈍は、生産性の観点から連続焼鈍とするのが好ましい。焼鈍処理では、(Ac1変態点)〜(Ac3変態点)の2相域の温度に加熱する。2相域に加熱することにより、オーステナイト(γ)相とフェライト(α)相の2相となりγ相にCが濃化して、冷却中にγ相がマルテンサイト相へ変態し、第2相を形成してα+マルテンサイトの複合組織となる。これにより、延性、加工性が向上し、低降伏比が実現する。
The reason for limiting the slab composition in the second preferred embodiment of the present invention is the same as the reason for limiting the second preferred embodiment of the present invention.
The reason for limitation of the cold rolled sheet annealing step in the second preferred embodiment of the present invention will be described.
Annealing temperature: (Ac 1 transformation point) to (Ac 3 transformation point)
The annealing is preferably continuous annealing from the viewpoint of productivity. In the annealing treatment, heating is performed to a temperature in a two-phase region from (Ac 1 transformation point) to (Ac 3 transformation point). By heating to the two-phase region, the austenite (γ) phase and the ferrite (α) phase become two phases, C concentrates in the γ phase, and during cooling, the γ phase transforms into the martensite phase, This forms a composite structure of α + martensite. Thereby, ductility and workability are improved, and a low yield ratio is realized.

一方、焼鈍温度がAc1変態点未満では、フェライト+パーライト組織となり、Ac3変態点超えでは、γ相への合金元素濃化が不十分となりα+マルテンサイトの複合組織が得られにくく、ともに延性が不十分となる。
焼鈍保持時間:10〜120 s
焼鈍温度における保持時間は10〜 120sとするのが好ましい。焼鈍温度での保持時間は、組織の微細化、固溶N量を確保する観点から、できるだけ短時間とするのが好ましいが、操業の安定性からは10s以上とするのが望ましい。保持時間が 120sを超えると、組織の微細化、固溶N量の確保が困難となる。
On the other hand, if the annealing temperature is less than the Ac 1 transformation point, it becomes a ferrite + pearlite structure, and if it exceeds the Ac 3 transformation point, the alloy element is not sufficiently concentrated in the γ phase, making it difficult to obtain a composite structure of α + martensite. Is insufficient.
Annealing holding time: 10 to 120 s
The holding time at the annealing temperature is preferably 10 to 120 s. The holding time at the annealing temperature is preferably as short as possible from the viewpoint of refining the structure and ensuring the amount of solute N, but is preferably 10 s or longer from the viewpoint of operational stability. When the holding time exceeds 120 s, it becomes difficult to refine the structure and secure the amount of solute N.

なお、焼鈍の均熱温度までの加熱は、少なくとも600 ℃〜(Ac1変態点)間を5℃/s以上の加熱速度とするのが好ましい。5℃/s未満では、固溶N量の確保の面で問題がある。より好ましくは5〜30℃/sである。
均熱後の冷却:600 〜300 ℃間の平均冷却速度を臨界冷却速度CR以上
焼鈍における均熱後の冷却は、組織の微細化、固溶N量の確保およびマルテンサイト形成の観点から重要であり、本発明では、600 〜300 ℃間の平均冷却速度を、合金元素量に応じた次(1) または(2)式
B<0.0003%の場合
log CR=−1.73〔Mn+2.67Mo+1.3Cr +0.26Si+3.5P+0.05Cu+0.05Ni〕+3.95……(1)
B≧0.0003%の場合
log CR=−1.73〔Mn+2.67Mo+1.3Cr +0.26Si+3.5P+0.05Cu+0.05Ni〕+3.40……(2)
(ここに、CR:冷却速度(℃/s)、Mn、Mo、Cr、Si、P、Cu、Ni:各元素含有量(質量%))
で定義される臨界冷却速度CR以上として冷却を行う。なお、(1)、(2)式では、含有しない元素については0として計算するものとする。
In addition, it is preferable that the heating to the soaking temperature of annealing shall be a heating rate of at least 5 ° C./s between 600 ° C. and (Ac 1 transformation point). If it is less than 5 ° C./s, there is a problem in securing the amount of dissolved N. More preferably, it is 5-30 degreeC / s.
Cooling after soaking: The average cooling rate between 600 and 300 ° C is higher than the critical cooling rate CR. Cooling after soaking in annealing is important from the viewpoint of refining the structure, securing the amount of solute N and forming martensite. Yes, in the present invention, the average cooling rate between 600-300 ° C. is the following (1) or (2) when the formula B <0.0003% according to the amount of alloying elements
log CR = -1.73 [Mn + 2.67Mo + 1.3Cr + 0.26Si + 3.5P + 0.05Cu + 0.05Ni] + 3.95 (1)
When B ≧ 0.0003%
log CR = −1.73 [Mn + 2.67Mo + 1.3Cr + 0.26Si + 3.5P + 0.05Cu + 0.05Ni] + 3.40 …… (2)
(Here, CR: cooling rate (° C./s), Mn, Mo, Cr, Si, P, Cu, Ni: content of each element (mass%))
Cooling is performed at a critical cooling rate CR defined by In the formulas (1) and (2), elements not contained are calculated as 0.

合金元素量に応じ、(1)または(2)式のうちのいずれかの臨界冷却速度CR以上の平均冷却速度で冷却することにより、冷却中でのパーライトの析出を防止できる。上記各式で定義されるCR(℃/s)未満の冷却速度で冷却すると、第2相をマルテンサイトM(一部べイナイトBを含む場合もある)とすることが困難となり、製品板の組織をα+M(+B)からなる複合組織とすることができない。なお、平均冷却速度が 300℃/sを超えると、鋼板の幅方向での材質均一性が不足する。このため、焼鈍後の冷却は、600 〜300 ℃間の平均冷却速度が(1)または(2)式で定義されるCR以上、好ましくは 300℃/s以下とする。なお、300 ℃未満の温度領域での平均冷却速度は5℃/s以上とするのが好ましい。   By cooling at an average cooling rate equal to or higher than the critical cooling rate CR in either of the formulas (1) or (2) according to the amount of alloy elements, precipitation of pearlite during cooling can be prevented. When cooling at a cooling rate less than CR (° C./s) defined by the above formulas, it becomes difficult to make the second phase martensite M (which may include partly bainite B). The tissue cannot be a composite tissue composed of α + M (+ B). When the average cooling rate exceeds 300 ° C./s, the material uniformity in the width direction of the steel sheet is insufficient. For this reason, the cooling after annealing is performed at an average cooling rate of 600 to 300 ° C. above CR defined by the formula (1) or (2), preferably 300 ° C./s or less. The average cooling rate in the temperature region below 300 ° C. is preferably 5 ° C./s or more.

また、本発明の第2の好適態様においても、第1の好適態様と同様に、冷延板焼鈍工程に続いてさらに、伸び率:1.0 〜15%の調質圧延またはレベラー加工を施してもよい。   Also in the second preferred embodiment of the present invention, as in the first preferred embodiment, after the cold-rolled sheet annealing step, temper rolling or leveler processing with an elongation of 1.0 to 15% is further performed. Good.

(実施例1)
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これらスラブを表2に示す条件で加熱し、粗圧延して表2に示す厚さのシートバーとし、ついで表2に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。なお、一部については、仕上圧延で潤滑圧延を行った。
(Example 1)
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These slabs were heated under the conditions shown in Table 2, roughly rolled to obtain sheet bars having the thicknesses shown in Table 2, and then hot-rolled sheets were formed by a hot rolling process in which finish rolling under the conditions shown in Table 2 was performed. In some cases, lubrication rolling was performed by finish rolling.

これら熱延板を酸洗および表2に示す条件の冷間圧延からなる冷間圧延工程により冷延板とした。ついで、これら冷延板に表2に示す条件で連続焼鈍炉による連続焼鈍を行った。一部について、冷延板焼鈍工程につづいて、調質圧延を施した。なお、連続焼鈍の焼鈍温度はいずれも再結晶温度以上であった。
得られた冷延焼鈍板について、固溶N量、微視組織、引張特性、成形性、歪時効硬化特性、耐疲労特性および耐衝撃特性を調査した。
(1)固溶N量の調査
固溶N量は、化学分析により求めた鋼中の全N量から析出N量を差し引いて求めた。析出N量は、上記した定電位電解法を用いた分析法により求めた。
(2)微視組織
各冷延焼鈍板から試験片を採取し、圧延方向に直交する断面(C断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置を用いて主相であるフェライトの組織分率および第2相の種類あるいはさらに組織分率を求めた。
These hot-rolled sheets were made into cold-rolled sheets by a cold rolling process comprising pickling and cold rolling under the conditions shown in Table 2. Subsequently, these cold-rolled sheets were subjected to continuous annealing using a continuous annealing furnace under the conditions shown in Table 2. About some, temper rolling was performed following the cold-rolled sheet annealing process. In addition, all the annealing temperatures of continuous annealing were more than the recrystallization temperature.
The obtained cold-rolled annealed sheet was examined for the amount of dissolved N, microstructure, tensile characteristics, formability, strain age hardening characteristics, fatigue resistance characteristics, and impact resistance characteristics.
(1) Investigation of solute N amount The solute N amount was obtained by subtracting the precipitated N amount from the total N amount in steel obtained by chemical analysis. The amount of precipitated N was determined by an analysis method using the above-described constant potential electrolysis method.
(2) Microscopic structure A specimen is collected from each cold-rolled annealed plate, and a microscopic structure is imaged using an optical microscope or a scanning electron microscope with respect to a cross section (C cross section) orthogonal to the rolling direction. Was used to determine the structure fraction of the main phase ferrite, the type of the second phase, or the structure fraction.

また、主相であるフェライトの結晶粒径は、圧延方向に直交する断面(C断面)についての組織写真からASTMに規定の求積法により算出した値またはASTMに規定の切断法により求めた公称粒径のうち、いずれか大きい方を採用した。
(3)引張特性
各冷延焼鈍板からJIS 5号試験片を圧延方向に採取し、JIS Z 2241の規定に準拠して歪速度:3×10-3/sで引張試験を実施し、降伏強さYS、引張強さTS、伸びElを求めた。
(4)成形性
成形性の指標としてr値を求めた。
Further, the crystal grain size of ferrite as the main phase is a value calculated by a quadrature method prescribed in ASTM from a structural photograph of a cross section (C cross section) orthogonal to the rolling direction or a nominal value obtained by a cutting method prescribed in ASTM. The larger of the particle sizes was adopted.
(3) Tensile properties JIS No. 5 test specimens were taken from each cold-rolled annealed sheet in the rolling direction, and subjected to a tensile test at a strain rate of 3 × 10 −3 / s according to the provisions of JIS Z 2241 to yield. Strength YS, tensile strength TS, and elongation El were determined.
(4) Formability The r value was determined as an index of formability.

各冷延焼鈍板の圧延方向(L方向)、圧延方向に対し45°方向(D方向)、圧延方向に対し90°方向(C方向)から、JIS 13B 号試験片を採取した。これら試験片に15%の単軸引張予歪を付与した時の各試験片の幅歪と板厚歪を求め、幅歪と板厚歪の比、
r=ln(w/w0 )/ln(t/t0
(ここで、w0 、t0 は試験前の試験片の幅および板厚であり、w、tは試験後の試験片の幅および板厚である。)
から各方向のr値を求め、次式
mean=(rL +2 rD +rc )/4
により平均r値rmeanを求めた。ここで、rL は、圧延方向(L方向)のr値であり、rD は、圧延方向(L方向)に対し45°方向(D方向)のr値であり、rc は、圧延方向(L方向)に対し90°方向(C方向)のr値である。
(5)歪時効硬化特性
各冷延焼鈍板からJIS 5号試験片を圧延方向に採取し、予変形としてここでは5%の引張予歪を与えて、ついで170 ℃×20min の塗装焼付処理相当の熱処理を施したのち、歪速度:3×10-3/sで引張試験を実施し、予変形−塗装焼付処理後の引張特性(降伏応力YSBH、引張強さTSBH)を求め、BH量=YSBH−YS5%、ΔTS=TSBH−TSを算出した。なお、YS5%は、製品板を5%予変形したときの変形応力であり、YSBH、TSBHは予変形−塗装焼付処理後の降伏応力、引張強さであり、TSは製品板の引張強さである。
(6)耐疲労特性
各冷延焼鈍板から疲労試験片を圧延方向に採取し、JIS Z 2273の規定に準拠して、最小応力:0MPa とする引張疲労試験を実施し、疲労限(繰り返し数:107 回)σFLを求めた。また、予変形として5%の引張予歪を与えて、ついで170 ℃×20min の塗装焼付処理相当の熱処理を施したのち、同様の疲労試験を実施し疲労限(σFLBHを求め、予変形−塗装焼付処理による耐疲労特性の向上代((σFLBH−σFL)を評価した。
(7)耐衝撃特性
各冷延焼鈍板から衝撃試験片を圧延方向に採取し、「Journal of the Society of Materials Science Japan, 10(1998), p1058」に記載された高速引張試験方法に準拠して、歪速度:2×103 /sで高速引張試験を実施し、応力−歪曲線を測定した。得られた応力−歪曲線を用いて、応力を歪0〜30%の範囲で積分して吸収エネルギーEを求めた。また、予変形として5%の引張予歪を与えて、ついで170 ℃×20min の塗装焼付処理相当の熱処理を施したのち、同様の衝撃試験を実施し、吸収エネルギーEBHを求め、予変形−塗装焼付処理による耐衝撃特性の向上代EBH/Eを評価した。
JIS 13B test pieces were collected from the rolling direction (L direction) of each cold-rolled annealed plate, 45 ° direction (D direction) with respect to the rolling direction, and 90 ° direction (C direction) with respect to the rolling direction. Obtain the width strain and plate thickness strain of each test piece when 15% uniaxial tensile pre-strain is applied to these test pieces, and the ratio of width strain to plate thickness strain,
r = ln (w / w 0 ) / ln (t / t 0 )
(Wherein, w 0, t 0 is the width and thickness of the specimen before the test, w, t is the width and thickness of the test piece after the test.)
The r value in each direction is obtained from the following equation: r mean = (r L +2 r D + r c ) / 4
The average r value r mean was determined by Here, r L is the r value in the rolling direction (L direction), r D is the r value in the rolling direction (L direction) with respect to the 45 ° direction (D direction), r c is the rolling direction The r value is in the 90 ° direction (C direction) with respect to the (L direction).
(5) Strain age hardening characteristics JIS No. 5 test specimens were taken from each cold-rolled annealed sheet in the rolling direction, and as a pre-deformation, 5% tensile pre-strain was applied here, and then it was equivalent to 170 ° C x 20min. After performing the heat treatment, a tensile test was carried out at a strain rate of 3 × 10 −3 / s, and the tensile properties (yield stress YS BH , tensile strength TS BH ) after pre-deformation-paint baking treatment were obtained, and BH Amount = YS BH −YS 5% , ΔTS = TS BH −TS was calculated. YS 5% is the deformation stress when the product plate is pre-deformed 5%, YS BH and TS BH are the pre-deformation-yield stress and tensile strength after paint baking, TS is the product plate Tensile strength.
(6) Fatigue resistance characteristics Fatigue specimens were taken from each cold-rolled annealed sheet in the rolling direction, and subjected to a tensile fatigue test with a minimum stress of 0 MPa in accordance with the provisions of JIS Z 2273. : 10 7 times) σ FL was determined. In addition, after applying a tensile pre-strain of 5% as pre-deformation, and then performing a heat treatment equivalent to 170 ° C x 20min, the same fatigue test was conducted to determine the fatigue limit (σ FL ) BH. The improvement margin ((σ FL ) BH −σ FL ) of fatigue resistance by deformation-paint baking treatment was evaluated.
(7) Impact resistance properties Impact test specimens were taken from each cold-rolled annealed sheet in the rolling direction, and conformed to the high-speed tensile test method described in "Journal of the Society of Materials Science Japan, 10 (1998), p1058". Then, a high-speed tensile test was performed at a strain rate of 2 × 10 3 / s, and a stress-strain curve was measured. Using the obtained stress-strain curve, the absorbed energy E was determined by integrating the stress in the range of strain 0-30%. Also, after applying a tensile pre-strain of 5% as a pre-deformation, and then performing a heat treatment equivalent to a 170 ° C x 20 min paint baking process, the same impact test was conducted to determine the absorbed energy E BH and pre-deformation The improvement cost E BH / E of impact resistance characteristics by paint baking treatment was evaluated.

なお、一部の鋼板表面に、溶融亜鉛めっきを施しめっき鋼板とし、同様に各種特性を評価した。
これらの結果を表3に示す。
In addition, the hot dip galvanization was given to some steel plate surfaces, and it was set as the plated steel plate, and various characteristics were evaluated similarly.
These results are shown in Table 3.

本発明例では、いずれも優れた延性と、優れた歪時効硬化特性を有し、格段に高いBH量、ΔTSを呈し、また、歪時効処理による耐疲労特性、耐衝撃特性の向上代も大きい。
なお、No. 11、No. 13の鋼板表面に、溶融亜鉛めっきを施しためっき鋼板の特性は、めっき前の特性と殆ど変化はなかった。
また、本発明例である鋼板No.1と比較例である鋼板No.5について、時効条件を種々変更して歪時効硬化特性を調査した。その結果を表4に示す。なお、試験方法は、時効温度、時効時間のみを変更し、 他は同様とした。
In the examples of the present invention, all have excellent ductility and excellent strain age hardening characteristics, exhibit a significantly high BH amount and ΔTS, and have a large allowance for improving fatigue resistance and impact resistance by strain aging treatment. .
In addition, the characteristics of the plated steel sheet in which the hot dip galvanized surfaces were applied to the surface of No. 11 and No. 13 steel sheets were almost the same as the characteristics before plating.
Further, regarding the steel plate No. 1 as an example of the present invention and the steel plate No. 5 as a comparative example, the aging conditions were variously changed and the strain age hardening characteristics were investigated. The results are shown in Table 4. The test method was the same except that only the aging temperature and aging time were changed.

本発明例である鋼板No.1では、標準の時効条件である170 ℃×20min の時効処理でBH量115 MPa 、ΔTS60MPa という値を得たが、表4に示すような広範囲の時効処理条件でもBH量80MPa 以上、ΔTS40MPa 以上を満足することができた。一方、比較例では100 〜300 ℃までの範囲で時効温度を変えても、本発明例におけるような大きなBH量、ΔTSを示すことはなかった。   In the steel plate No. 1 as an example of the present invention, BH amount 115 MPa and ΔTS60 MPa were obtained by aging treatment of 170 ° C. × 20 min, which is a standard aging condition, but even under a wide range of aging treatment conditions as shown in Table 4. A BH amount of 80 MPa or more and ΔTS of 40 MPa or more could be satisfied. On the other hand, in the comparative example, even when the aging temperature was changed in the range of 100 to 300 ° C., the large BH amount and ΔTS as in the present invention example were not shown.

すなわち本発明の鋼板は広範囲の時効処理条件でも高いBH量、ΔTSを確保できる。
(実施例2)
表5に示す組成になる鋼を、実施例1と同様の方法でスラブとなし、該スラブを表6に示す条件で加熱し、粗圧延して25mm厚のシートバーとし、ついで表6に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。なお、粗圧延後で仕上圧延入側で相前後するシートバー同士を溶融圧接法で接合して連続圧延した。また、シートバーの幅端部、長さ方向端部を誘導加熱方式のシートバーエッジヒータ、シートバーヒータを使用してシートバーの温度を調節した。
That is, the steel sheet of the present invention can secure a high BH amount and ΔTS even under a wide range of aging conditions.
(Example 2)
The steel having the composition shown in Table 5 was made into a slab in the same manner as in Example 1, and the slab was heated under the conditions shown in Table 6 and roughly rolled into a 25 mm-thick sheet bar. It was set as the hot rolled sheet by the hot rolling process which performs finish rolling of conditions. In addition, the sheet | seat bar | burr which flanks on the finishing rolling entrance side after rough rolling was joined by the melt-pressing method, and was continuously rolled. In addition, the temperature of the seat bar was adjusted by using an induction heating type seat bar edge heater and a sheet bar heater at the width end portion and the length direction end portion of the seat bar.

これら熱延板を酸洗および表6に示す条件の冷間圧延からなる冷間圧延工程により1.6 mm厚の冷延板とした。ついで、これら冷延板に表6に示す条件で連続焼鈍炉による連続焼鈍を行った。なお、連続焼鈍の焼鈍温度はいずれも再結晶温度以上とした。
得られた冷延焼鈍板について、実施例1と同様に固溶N量、微視組織、引張特性、成形性、歪時効硬化特性、耐疲労特性および耐衝撃特性を調査した。
These hot-rolled sheets were made into 1.6 mm-thick cold-rolled sheets by a cold rolling process consisting of pickling and cold rolling under the conditions shown in Table 6. Subsequently, these cold-rolled sheets were subjected to continuous annealing using a continuous annealing furnace under the conditions shown in Table 6. In addition, all the annealing temperatures of continuous annealing were made into the recrystallization temperature or more.
The obtained cold-rolled annealed plate was examined in the same manner as in Example 1 for the amount of solute N, microstructure, tensile characteristics, formability, strain age hardening characteristics, fatigue resistance characteristics, and impact resistance characteristics.

それらの結果を表7に示す。   The results are shown in Table 7.

本発明例は、いずれも優れた歪時効硬化特性を有し、製造条件の変動にもかかわらず、安定して格段に高いBH量、ΔTSを呈し、また、歪時効処理による耐疲労特性、耐衝撃特性の向上代も大きい。また、本発明例では、連続圧延とシートバーの長手方向、幅方向温度調整を実施することにより、製品鋼板の板厚精度および形状が向上した。
(実施例3)
表8に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これらスラブを表9に示す条件で加熱し、粗圧延して表9に示す厚さのシートバーとし、ついで表9に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。なお、一部については(鋼板No.5-2、No.5-3)、仕上圧延で潤滑圧延を行った。また一部については、粗圧延後で仕上圧延入側で相前後するシートバー同士を溶融圧接法で接合して連続圧延した。また、シートバーの幅端部、長さ方向端部を誘導加熱方式のシートバーエッジヒータ、シートバーヒータを使用してシートバーの温度を調節した。
All of the examples of the present invention have excellent strain age hardening characteristics, exhibit stable and remarkably high BH amount and ΔTS, despite fluctuations in production conditions, and fatigue resistance and resistance to strain aging treatment. The cost for improving impact characteristics is also large. Moreover, in the example of this invention, the board thickness precision and shape of the product steel plate improved by implementing continuous rolling and the longitudinal direction and width direction temperature adjustment of a sheet bar.
(Example 3)
Molten steel having the composition shown in Table 8 was melted in a converter and made into a slab by a continuous casting method. These slabs were heated under the conditions shown in Table 9, roughly rolled to obtain sheet bars having the thicknesses shown in Table 9, and then hot-rolled sheets by a hot rolling process in which finish rolling under the conditions shown in Table 9 was performed. In some cases (steel plates No. 5-2 and No. 5-3), lubrication rolling was performed by finish rolling. Moreover, about one part, the sheet | seat bar which precedes and finishes by the finish rolling entrance side after rough rolling was joined by the melt-pressing method, and was continuously rolled. In addition, the temperature of the seat bar was adjusted by using an induction heating type seat bar edge heater and a sheet bar heater at the width end portion and the length direction end portion of the seat bar.

これら熱延板を酸洗および表9に示す条件の冷間圧延からなる冷間圧延工程により冷延板とした。ついで、これら冷延板に表9に示す条件で連続焼鈍炉による焼鈍(連続焼鈍)を行い、焼鈍後さらに表9に示す条件で冷却する冷延板焼鈍工程を施した。一部について、冷延板焼鈍工程につづいて、調質圧延を施した。
得られた冷延焼鈍板について、実施例1と同様の方法で、固溶N量、微視組織、引張特性、成形性、歪時効硬化特性、および耐衝撃特性を調査した。
These hot-rolled sheets were made into cold-rolled sheets by a cold rolling process comprising pickling and cold rolling under the conditions shown in Table 9. Subsequently, these cold-rolled sheets were subjected to annealing (continuous annealing) using a continuous annealing furnace under the conditions shown in Table 9, and further subjected to a cold-rolled sheet annealing step of cooling under the conditions shown in Table 9 after annealing. About some, temper rolling was performed following the cold-rolled sheet annealing process.
The obtained cold-rolled annealed plate was examined in the same manner as in Example 1 for the amount of dissolved N, microstructure, tensile properties, formability, strain age hardening properties, and impact resistance properties.

これらの結果を表10に示す。   These results are shown in Table 10.

本発明例では、いずれも優れた延性と低い降伏比を示し、さらに優れた歪時効硬化特性を有し、格段に高いBH量、ΔTSを呈し、また、歪時効処理による耐衝撃特性の向上代も大きい。   In the examples of the present invention, all exhibit excellent ductility and a low yield ratio, and further have excellent strain age hardening characteristics, exhibit a significantly higher amount of BH and ΔTS, and allowance for improvement in impact resistance by strain aging treatment. Is also big.

Claims (14)

質量%で、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有する組成と、平均結晶粒径10μm以下のフェライト相を面積率で50%以上含む組織とを有することを特徴とする引張強さ440MPa以上で歪時効硬化特性に優れた高張力冷延鋼板。   A composition containing, in mass%, Al: 0.02% or less, N: 0.0050 to 0.0250%, N / Al being 0.3 or more, and solid solution N containing 0.0010% or more, and a ferrite phase having an average crystal grain size of 10 μm or less A high-tensile cold-rolled steel sheet having a tensile strength of 440 MPa or more and excellent strain age hardening characteristics, characterized by having a structure containing at least 50% in area ratio. 前記組成が、質量%で、
C:0.15%以下、 Si:2.0 %以下、
Mn:3.0 %以下、 P:0.08%以下、
S:0.02%以下、 Al:0.02%以下、
N:0.0050〜0.0250%
を含み、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有し、残部がFeおよび不可避的不純物からなる組成であることを特徴とする請求項1に記載の高張力冷延鋼板。
The composition is in weight percent,
C: 0.15% or less, Si: 2.0% or less,
Mn: 3.0% or less, P: 0.08% or less,
S: 0.02% or less, Al: 0.02% or less,
N: 0.0050-0.0250%
And N / Al is 0.3 or more, N in a solid solution state is contained by 0.0010% or more, and the balance is composed of Fe and inevitable impurities. steel sheet.
前記組成に加えてさらに、質量%で、下記a群〜d群の1群または2群以上を含むことを特徴とする請求項2に記載の高張力冷延鋼板。

a群:Cu、Ni、Cr、Moの1種または2種以上を合計で1.0 %以下
b群:Nb、Ti、Vの1種または2種以上を合計で0.1 %以下
c群:Bを0.0030%以下
d群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
The high-tensile cold-rolled steel sheet according to claim 2, further comprising one group or two or more groups of the following groups a to d in mass% in addition to the composition.
Group a: One or more of Cu, Ni, Cr, and Mo total 1.0% or less in total Group b: One or two or more of Nb, Ti, and V total 0.1% or less in total c Group: B 0.0030% or less d group: One or two of Ca and REM in total 0.0010 to 0.010%
前記組成が、質量%で、
C:0.15%以下、 Mn:3.0 %以下、
S:0.02%以下、 Al:0.02%以下、
N:0.0050〜0.0250%
を含み、さらに、Mo:0.05〜1.0 %、Cr:0.05〜1.0 %のうちの1種または2種を含有し、かつN/Alが0.3 以上、固溶状態のNを0.0010%以上含有し、残部がFeおよび不可避的不純物からなる組成であり、前記組織が、平均結晶粒径10μm以下のフェライト相を面積率で50%以上含み、さらにマルテンサイト相を面積率で3%以上含む組織であることを特徴とする請求項1に記載の高張力冷延鋼板。
The composition is in weight percent,
C: 0.15% or less, Mn: 3.0% or less,
S: 0.02% or less, Al: 0.02% or less,
N: 0.0050-0.0250%
And Mo: 0.05 to 1.0%, Cr: 0.05 to 1.0%, or N / Al is 0.3 or more, and N in a solid solution state is 0.0010% or more, The balance is a composition composed of Fe and inevitable impurities, and the structure includes a ferrite phase having an average crystal grain size of 10 μm or less in an area ratio of 50% or more, and further includes a martensite phase in an area ratio of 3% or more. The high-tensile cold-rolled steel sheet according to claim 1.
前記組成に加えてさらに、質量%で、下記j群〜m群のうちの1群または2群以上を含むことを特徴とする請求項4に記載の高張力冷延鋼板。

j群:Si:0.05〜1.5 %、P:0.03〜0.15%、B:0.0003〜0.01%の1種または2種 以上
k群:Nb:0.01〜0.1 %、Ti:0.01〜0.2 %、V:0.01〜0.2 %の1種または2種以 上
l群:Cu:0.05〜1.5 %、Ni:0.05〜1.5 %の1種または2種
m群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
5. The high-tensile cold-rolled steel sheet according to claim 4, further comprising one group or two or more groups among the following j groups to m groups in addition to the composition.
Group j: Si: 0.05 to 1.5%, P: 0.03 to 0.15%, B: 0.0003 to 0.01% or two or more k group: Nb: 0.01 to 0.1%, Ti: 0.01 to 0.2%, V: One or more of 0.01 to 0.2% Group 1: Cu: 0.05 to 1.5%, Ni: 0.05 to 1.5%, 1 or 2 types m group: 1 or 2 types of Ca and REM in total 0.0010 ~ 0.010%
前記高張力冷延鋼板が板厚3.2 mm以下のものである請求項1ないし5のいずれかに記載の高張力冷延鋼板。   The high-tensile cold-rolled steel sheet according to any one of claims 1 to 5, wherein the high-tensile cold-rolled steel sheet has a thickness of 3.2 mm or less. 請求項1ないし6のいずれかに記載の高張力冷延鋼板に電気めっきまたは溶融めっきを施してなる高張力冷延めっき鋼板。   A high-tensile cold-rolled steel sheet obtained by electroplating or hot-plating the high-tensile cold-rolled steel sheet according to any one of claims 1 to 6. 質量%で、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上である組成を有する鋼スラブを、スラブ加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し、巻取温度:750 ℃以下で巻き取り熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、該冷延板に所定の温度で所定の時間保持する焼鈍を行い、ついで所定の冷却速度で冷却を行う冷延板焼鈍工程とを、順次施すことを特徴とする引張強さ440MPa以上で歪時効硬化特性に優れた高張力冷延鋼板の製造方法。   A steel slab having a composition containing Al: 0.02% or less, N: 0.0050-0.0250%, and N / Al being 0.3 or more in terms of mass% is heated to a slab heating temperature: 1000 ° C. or more and subjected to rough rolling. A sheet bar, a hot rolling process in which the sheet bar is subjected to finish rolling at a finish rolling exit temperature of 800 ° C. or more, and a winding temperature is 750 ° C. or less to obtain a hot rolled sheet; Cold rolling process in which pickling and cold rolling are performed to form a cold rolled sheet, and cold rolled sheet annealing is performed in which the cold rolled sheet is annealed by holding at a predetermined temperature for a predetermined time, and then cooled at a predetermined cooling rate. A method for producing a high-tensile cold-rolled steel sheet having a tensile strength of 440 MPa or more and excellent strain age hardening characteristics, characterized by sequentially performing the steps. 前記鋼スラブを、質量%で、
C:0.15%以下、 Si:2.0 %以下、
Mn:3.0 %以下、 P:0.08%以下、
S:0.02%以下、 Al:0.02%以下、
N:0.0050〜0.0250%
を含み、かつN/Alが0.3 以上であり、あるいはさらに下記a群〜d群のうちから選ばれた1群または2群以上を含む組成を有する鋼スラブとし、前記冷延板焼鈍工程における、所定の温度で所定の時間保持する前記焼鈍を、再結晶温度以上900 ℃以下の温度で保持時間:10〜60sとする焼鈍とし、焼鈍後の前記冷却を、500 ℃以下の温度域まで冷却速度:10〜300 ℃/sで冷却する一次冷却と、ついで前記一次冷却の停止温度以下400 ℃以上の温度域での滞留時間を300 s以下とする二次冷却とを行う冷却とすることを特徴とする請求項8に記載の高張力冷延鋼板の製造方法。

a群:Cu、Ni、Cr、Moの1種または2種以上を合計で1.0 %以下
b群:Nb、Ti、Vの1種または2種以上を合計で0.1 %以下
c群:Bを0.0030%以下
d群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
The steel slab is in mass%,
C: 0.15% or less, Si: 2.0% or less,
Mn: 3.0% or less, P: 0.08% or less,
S: 0.02% or less, Al: 0.02% or less,
N: 0.0050-0.0250%
And N / Al is 0.3 or more, or a steel slab having a composition including one or more groups selected from the following groups a to d, and in the cold-rolled sheet annealing step, The annealing that is held at a predetermined temperature for a predetermined time is annealed at a recrystallization temperature of 900 ° C. or lower and a holding time of 10 to 60 seconds, and the cooling after annealing is performed at a cooling rate to a temperature range of 500 ° C. or lower. : Primary cooling that cools at 10 to 300 ° C./s, and then secondary cooling in which the residence time in the temperature range of 400 ° C. or higher is equal to or lower than the primary cooling stop temperature is 300 s or shorter. The manufacturing method of the high-tensile cold-rolled steel sheet according to claim 8.
Group a: One or more of Cu, Ni, Cr, and Mo total 1.0% or less in total Group b: One or two or more of Nb, Ti, and V total 0.1% or less in total c Group: B 0.0030% or less d group: One or two of Ca and REM in total 0.0010 to 0.010%
前記鋼スラブを、質量%で、
C:0.15%以下、 Mn:3.0 %以下、
S:0.02%以下、 Al:0.02%以下、
N:0.0050〜0.0250%
を含み、さらに、Mo:0.05〜1.0 %、Cr:0.05〜1.0 %のうちの1種または2種を含有し、かつN/Alが0.3 以上であり、あるいはさらに下記j群〜m群のうちから選ばれた1群または2群以上を含む組成の鋼スラブとし、前記冷延板焼鈍工程における、所定の温度で所定の時間保持する前記焼鈍を、(Ac1変態点)〜(Ac3変態点)の温度で保持時間:10〜120 sとする焼鈍とし、焼鈍後の前記冷却を、600 〜300 ℃間の平均冷却速度を下記(1)または(2)式で定義される臨界冷却速度CR以上とする冷却とすることを特徴とする請求項8に記載の高張力冷延鋼板の製造方法。

j群:Si:0.05〜1.5 %、P:0.03〜0.15%、B:0.0003〜0.01%の1種または2種 以上
k群:Nb:0.01〜0.1 %、Ti:0.01〜0.2 %、V:0.01〜0.2 %の1種または2種以 上
l群:Cu:0.05〜1.5 %、Ni:0.05〜1.5 %の1種または2種
m群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
B<0.0003%の場合
log CR=−1.73〔Mn+2.67Mo+1.3Cr +0.26Si+3.5P+0.05Cu+0.05Ni〕+3.95……(1)
B≧0.0003%の場合
log CR=−1.73〔Mn+2.67Mo+1.3Cr +0.26Si+3.5P+0.05Cu+0.05Ni〕+3.40……(2)
ここに、CR:冷却速度(℃/s)
Mn、Mo、Cr、Si、P、Cu、Ni:各元素含有量(質量%)
The steel slab is in mass%,
C: 0.15% or less, Mn: 3.0% or less,
S: 0.02% or less, Al: 0.02% or less,
N: 0.0050-0.0250%
And Mo: 0.05 to 1.0%, Cr: 0.05 to 1.0%, or N / Al is 0.3 or more, or further among the following groups j to m The steel slab having a composition including one group or two or more groups selected from the above, and the annealing to be held for a predetermined time at a predetermined temperature in the cold-rolled sheet annealing step, (Ac 1 transformation point) to (Ac 3 transformation) The critical cooling rate defined by the following formula (1) or (2) is the average cooling rate between 600 and 300 ° C. The method for producing a high-tensile cold-rolled steel sheet according to claim 8, wherein the cooling is set to CR or higher.
Group j: Si: 0.05 to 1.5%, P: 0.03 to 0.15%, B: 0.0003 to 0.01% or two or more k group: Nb: 0.01 to 0.1%, Ti: 0.01 to 0.2%, V: One or more of 0.01 to 0.2% Group 1: Cu: 0.05 to 1.5%, Ni: 0.05 to 1.5%, 1 or 2 types m group: 1 or 2 types of Ca and REM in total 0.0010 ~ 0.010%
When B <0.0003%
log CR = -1.73 [Mn + 2.67Mo + 1.3Cr + 0.26Si + 3.5P + 0.05Cu + 0.05Ni] + 3.95 (1)
When B ≧ 0.0003%
log CR = −1.73 [Mn + 2.67Mo + 1.3Cr + 0.26Si + 3.5P + 0.05Cu + 0.05Ni] + 3.40 …… (2)
Where CR: cooling rate (° C./s)
Mn, Mo, Cr, Si, P, Cu, Ni: Content of each element (mass%)
前記仕上圧延後、0.5 s以内に冷却を開始し冷却速度40℃/s以上で急冷し、前記巻き取りを行うことを特徴とする請求項8ないし10のいずれかに記載の高張力冷延鋼板の製造方法。   The high-tensile cold-rolled steel sheet according to any one of claims 8 to 10, wherein after the finish rolling, cooling is started within 0.5 s, the steel sheet is rapidly cooled at a cooling rate of 40 ° C / s or more, and the winding is performed. Manufacturing method. 前記冷延板焼鈍工程に続いてさらに、伸び率:1.0 〜15%の調質圧延またはレベラー加工を施すことを特徴とする請求項8ないし11のいずれかに記載の高張力冷延鋼板の製造方法。   The high-tensile cold-rolled steel sheet according to any one of claims 8 to 11, further comprising temper rolling or leveler processing with an elongation of 1.0 to 15% following the cold-rolled sheet annealing step. Method. 前記粗圧延と前記仕上圧延の間で、相前後するシートバー同士を接合することを特徴とする請求項8ないし12のいずれかに記載の高張力冷延鋼板の製造方法。   The method for producing a high-tensile cold-rolled steel sheet according to any one of claims 8 to 12, wherein sheet bars that follow each other are joined between the rough rolling and the finish rolling. 前記粗圧延と前記仕上圧延の間で、前記シートバーの幅端部を加熱するシートバーエッジヒータ、前記シートバーの長さ端部を加熱するシートバーヒータのいずれか一方または両方を使用することを特徴とする請求項8ないし13のいずれかに記載の高張力冷延鋼板の製造方法。   Between the rough rolling and the finish rolling, one or both of a sheet bar edge heater for heating the width end portion of the sheet bar and a sheet bar heater for heating the length end portion of the sheet bar are used. The method for producing a high-tensile cold-rolled steel sheet according to any one of claims 8 to 13.
JP2005021732A 2000-02-29 2005-01-28 High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same Expired - Fee Related JP4265545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021732A JP4265545B2 (en) 2000-02-29 2005-01-28 High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000053923 2000-02-29
JP2000151170 2000-05-23
JP2000162497 2000-05-31
JP2005021732A JP4265545B2 (en) 2000-02-29 2005-01-28 High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001054706A Division JP3846206B2 (en) 2000-02-29 2001-02-28 High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005154906A true JP2005154906A (en) 2005-06-16
JP4265545B2 JP4265545B2 (en) 2009-05-20

Family

ID=34743771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021732A Expired - Fee Related JP4265545B2 (en) 2000-02-29 2005-01-28 High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4265545B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106350A (en) * 2006-09-28 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet and its production method
JP2008106351A (en) * 2006-09-29 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet excellent in workability and its production method
JP2008169427A (en) * 2007-01-11 2008-07-24 Jfe Steel Kk High strength steel sheet excellent in deep drawability and secondary working embrittlement resistance, and its production method
JP2010202904A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Steel for machine structure, method for manufacturing the same, and component for machine structure
CN103993226A (en) * 2014-05-12 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 High-strength cold rolled steel plate and preparing method thereof
CN103993227A (en) * 2014-05-12 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 Cold rolled steel plate and preparation method thereof
CN104018079A (en) * 2014-06-18 2014-09-03 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet, preparation method thereof, galvanized steel sheet and preparation method thereof
CN104018077A (en) * 2014-06-18 2014-09-03 攀钢集团攀枝花钢铁研究院有限公司 Cold-roll steel sheet and preparation method thereof
CN104060166A (en) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof, as well as hot-galvanized steel sheet and preparation method thereof
CN104060168A (en) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof, as well as hot-galvanized steel sheet and preparation method thereof
CN104120345A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel plate and preparation method thereof, and galvanized steel plate and preparation method thereof
CN104120344A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparing method thereof
CN104120346A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel plate and preparation method thereof, and galvanized steel plate and preparation method thereof
CN104120347A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and manufacturing method thereof
CN104131223A (en) * 2014-07-16 2014-11-05 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel plate and making method thereof
CN104195430A (en) * 2014-07-16 2014-12-10 攀钢集团攀枝花钢铁研究院有限公司 Cold-roll steel sheet, manufacturing method thereof, galvanized steel sheet and manufacturing method thereof
WO2015033933A1 (en) * 2013-09-04 2015-03-12 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working
EP2589677A4 (en) * 2010-06-29 2015-07-01 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
EP2447390A4 (en) * 2009-06-26 2016-03-30 Jfe Steel Corp High-strength molten zinc-plated steel sheet and process for production thereof
CN105899696A (en) * 2013-10-22 2016-08-24 杰富意钢铁株式会社 High-strength steel sheet with small in-plane anisotropy of elongation and manufacturing method therefor
CN115852243A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 High-corrosion-resistance heat-resistance nickel pre-plated battery shell steel and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377489B1 (en) 2011-12-29 2014-03-26 현대제철 주식회사 METHOD OF MANUFACTURING ULTRA-HIGH STRENGTH STEEL SHEET WITH 980MPa GRADE TENSILE STRENGTH AND EXCELLENT GALVANIZING PROPERTY

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106350A (en) * 2006-09-28 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet and its production method
JP2008106351A (en) * 2006-09-29 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet excellent in workability and its production method
JP2008169427A (en) * 2007-01-11 2008-07-24 Jfe Steel Kk High strength steel sheet excellent in deep drawability and secondary working embrittlement resistance, and its production method
JP2010202904A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Steel for machine structure, method for manufacturing the same, and component for machine structure
EP2447390A4 (en) * 2009-06-26 2016-03-30 Jfe Steel Corp High-strength molten zinc-plated steel sheet and process for production thereof
EP2589677A4 (en) * 2010-06-29 2015-07-01 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
WO2015033933A1 (en) * 2013-09-04 2015-03-12 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working
CN105899696A (en) * 2013-10-22 2016-08-24 杰富意钢铁株式会社 High-strength steel sheet with small in-plane anisotropy of elongation and manufacturing method therefor
CN103993226A (en) * 2014-05-12 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 High-strength cold rolled steel plate and preparing method thereof
CN103993227A (en) * 2014-05-12 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 Cold rolled steel plate and preparation method thereof
CN103993227B (en) * 2014-05-12 2016-01-13 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof
CN103993226B (en) * 2014-05-12 2016-01-13 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet of a kind of high strength and preparation method thereof
CN104060166A (en) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof, as well as hot-galvanized steel sheet and preparation method thereof
CN104018077A (en) * 2014-06-18 2014-09-03 攀钢集团攀枝花钢铁研究院有限公司 Cold-roll steel sheet and preparation method thereof
CN104018079A (en) * 2014-06-18 2014-09-03 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet, preparation method thereof, galvanized steel sheet and preparation method thereof
CN104018079B (en) * 2014-06-18 2016-04-06 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
CN104060168B (en) * 2014-06-18 2016-04-06 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
CN104060168A (en) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof, as well as hot-galvanized steel sheet and preparation method thereof
CN104018077B (en) * 2014-06-18 2016-01-06 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof
CN104060166B (en) * 2014-06-18 2016-01-06 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
CN104120344B (en) * 2014-07-16 2016-03-09 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof
CN104120347B (en) * 2014-07-16 2016-01-13 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof
CN104120344A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparing method thereof
CN104131223B (en) * 2014-07-16 2016-01-20 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof
CN104120345B (en) * 2014-07-16 2016-03-02 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
CN104195430B (en) * 2014-07-16 2016-03-02 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
CN104120345A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel plate and preparation method thereof, and galvanized steel plate and preparation method thereof
CN104120346B (en) * 2014-07-16 2016-03-09 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
CN104120347A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and manufacturing method thereof
CN104120346A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel plate and preparation method thereof, and galvanized steel plate and preparation method thereof
CN104195430A (en) * 2014-07-16 2014-12-10 攀钢集团攀枝花钢铁研究院有限公司 Cold-roll steel sheet, manufacturing method thereof, galvanized steel sheet and manufacturing method thereof
CN104131223A (en) * 2014-07-16 2014-11-05 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel plate and making method thereof
CN115852243A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 High-corrosion-resistance heat-resistance nickel pre-plated battery shell steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP4265545B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5163356B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
KR100595946B1 (en) High tensile cold-rolled steel sheet having excellent strain aging hardening properties
KR100611541B1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US6364968B1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4524850B2 (en) High-tensile cold-rolled steel sheet with excellent ductility and strain age hardening characteristics and method for producing high-tensile cold-rolled steel sheet
KR20020019124A (en) Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
JP4206642B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP4839527B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
CN115461482B (en) Steel sheet, component, and method for manufacturing same
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP2006183140A (en) High-strength cold rolled steel sheet and its production method
JP4337604B2 (en) Strain aging treatment method for high-tensile steel sheet and method for producing high-strength structural member
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP5035268B2 (en) High tensile cold-rolled steel sheet
JP4556348B2 (en) Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4292986B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP3959934B2 (en) High-tensile cold-rolled steel sheet excellent in strain age hardening characteristics, impact resistance characteristics and workability, and a method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees