JP3325148B2 - Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness - Google Patents

Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness

Info

Publication number
JP3325148B2
JP3325148B2 JP05676495A JP5676495A JP3325148B2 JP 3325148 B2 JP3325148 B2 JP 3325148B2 JP 05676495 A JP05676495 A JP 05676495A JP 5676495 A JP5676495 A JP 5676495A JP 3325148 B2 JP3325148 B2 JP 3325148B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
brittle crack
transformation point
crack propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05676495A
Other languages
Japanese (ja)
Other versions
JPH08225836A (en
Inventor
裕治 野見山
政和 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05676495A priority Critical patent/JP3325148B2/en
Publication of JPH08225836A publication Critical patent/JPH08225836A/en
Application granted granted Critical
Publication of JP3325148B2 publication Critical patent/JP3325148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高価な合金元素の添加を
必要とせず、優れた脆性亀裂伝播停止特性を飛躍的に向
上させた、構造用厚鋼板の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a structural steel plate which does not require the addition of an expensive alloy element and has a remarkably improved excellent brittle crack propagation stopping characteristic.

【0002】[0002]

【従来の技術】厚鋼板の脆性亀裂伝播停止特性を向上さ
せる冶金学的方法としては結晶粒の微細化とNi量の増
加が主な方法である。Ni量の増加はミクロ組織によら
ず脆性亀裂伝播停止特性を向上できる方法であるが、当
然コストの増加を招く。従って、製造方法の工夫により
結晶粒を微細化することが好ましい。厚鋼板全体の脆性
亀裂伝播・停止挙動から、実際に脆性亀裂伝播停止特性
の向上に大きく寄与するのは、脆性亀裂伝播時に厚鋼板
表層部に発生するシアリップと称する塑性変形領域であ
り、このシアリップが形成されると、脆性亀裂の有する
伝播エネルギーの吸収能が増大し脆性亀裂伝播停止特性
が飛躍的に向上する。シアリップ形成も結晶粒の微細化
により達成される。
2. Description of the Related Art As a metallurgical method for improving the brittle crack propagation arresting property of a thick steel plate, the main method is to refine crystal grains and increase the amount of Ni. Increasing the Ni content is a method that can improve brittle crack propagation arrest characteristics regardless of the microstructure, but naturally causes an increase in cost. Therefore, it is preferable to refine the crystal grains by devising a manufacturing method. From the brittle crack propagation and termination behavior of the entire thick steel plate, what actually contributes to the improvement of the brittle crack propagation stop characteristics is the plastic deformation region called the shear lip generated on the surface layer of the thick steel plate when the brittle crack propagates. Is formed, the ability to absorb the propagation energy of the brittle crack increases, and the brittle crack propagation arresting property is dramatically improved. Shear lip formation is also achieved by the refinement of crystal grains.

【0003】そこで、従来から脆性破壊伝播停止特性の
向上を結晶粒の微細化により計る試みが種々行われてい
る。一般的には熱間圧延における制御圧延を強化した
り、さらに制御圧延を容易にするためにNbを添加する
方法がとられているが、制御圧延の強化は生産性の低下
を招き、また、Nbの添加は溶接部の靱性劣化を生じや
すくなる上、これらの方法では大幅な細粒化は望めず、
得られる脆性亀裂伝播停止特性の向上は小さい。
[0003] Therefore, various attempts have conventionally been made to measure the improvement of the brittle fracture propagation arrestability by refining crystal grains. In general, a method of strengthening controlled rolling in hot rolling or adding Nb to facilitate controlled rolling has been adopted. However, strengthening of controlled rolling causes a decrease in productivity, The addition of Nb tends to cause the toughness of the weld to deteriorate, and these methods cannot be expected to significantly reduce the grain size.
The improvement in brittle crack propagation arrestability obtained is small.

【0004】最近では、例えば、特開昭61−2355
34号公報においては、鋳片表面から中心部への板厚の
1/8以上の距離にわたってAr3 変態点以下に冷却
し、鋳片の厚み方向に温度差をつけたまま圧延を開始
し、圧延中または圧延後に鋳片厚の全域をAc3 変態点
以上に復熱することにより、ESSO試験による−20
℃における脆性亀裂伝播停止特性を表すKcaが460
〜960kgf・mm-3/2程度の厚鋼板を製造する方法
を提案している。
Recently, for example, Japanese Patent Application Laid-Open No. 61-2355
In No. 34, cooling to an Ar 3 transformation point or less over a distance of 1/8 or more of the plate thickness from the slab surface to the center, rolling is started with a temperature difference in the thickness direction of the slab, By reheating the entire slab thickness to or above the Ac 3 transformation point during or after rolling, -20 according to the ESSO test was achieved.
Kca representing brittle crack propagation arresting property at ℃ is 460
The ~960kgf · mm -3/2 about steel plate has proposed a method of manufacturing.

【0005】しかし、最近の構造物の使用環境の苛酷化
の傾向にともない、鋼材にもさらに高い脆性破壊伝播停
止特定が要求されるようになってきており、前記方法に
より達成される特性では十分でない場合が生じている。
前記特開昭61−235534号公報の方法において
は、鋳片全域をAc3 変態点以上に単純に復熱させる工
程であり、最終的にγ−α変態で得られるα粒径はせい
ぜい5μm以下であるため、一層の脆性亀裂伝播停止特
性の改善を図るにはさらに、新しい技術が要求される。
[0005] However, with the recent tendency for the use environment of structures to be severer, steel materials are required to have a higher specification of stopping brittle fracture propagation, and the characteristics achieved by the above method are not sufficient. Is not the case.
In the method disclosed in JP-A-61-235534, the entire slab is simply reheated to the Ac 3 transformation point or more, and the α particle size finally obtained by the γ-α transformation is at most 5 μm or less. Therefore, in order to further improve the brittle crack propagation stopping characteristics, a new technology is required.

【0006】また、ごく最近においては、特開平4−1
41517号公報に示されているように、表層部を冷却
後、復熱中の圧延により表層部の結晶粒を顕著に微細化
して脆性亀裂伝播停止特性を向上させる方法が提案され
ている。この方法によれば平均的には表層部が超細粒化
し、表層部のシアリップの形成により−50℃において
も優れた脆性亀裂伝播停止特性が得られる。しかし、復
熱中に主としてフェライトの加工再結晶により超微細化
させるため、微妙な熱履歴の変動により組織や材質の不
均一を生じやすいという問題が新たに持ち上っている。
[0006] More recently, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent No. 41517, there has been proposed a method of remarkably refining the crystal grains in the surface layer by rolling during recuperation after cooling the surface layer, thereby improving the brittle crack propagation stopping characteristics. According to this method, on the average, the surface layer portion becomes ultrafine, and excellent brittle crack propagation stopping characteristics can be obtained even at −50 ° C. due to the formation of a shear lip in the surface layer portion. However, since the ferrite is made ultra-fine by processing and recrystallization of ferrite mainly during recuperation, there is a new problem that the structure and the material are likely to be non-uniform due to minute fluctuations in the heat history.

【0007】[0007]

【発明が解決しようとする課題】本発明は表層部に微細
な結晶粒を有する組織を形成することによって鋼板全体
として良好な脆性亀裂伝播停止特性を得るための製造方
法を提供するものであって、表層部の組織を安定して微
細化し、脆性亀裂伝播停止特性の変動が少なく、一層優
れた特性が得られるものである。
SUMMARY OF THE INVENTION The present invention provides a manufacturing method for obtaining a good brittle crack propagation arresting property as a whole steel sheet by forming a structure having fine crystal grains in a surface layer. In addition, the structure of the surface layer portion can be stably refined, brittle crack propagation arrest characteristics are less changed, and more excellent characteristics can be obtained.

【0008】[0008]

【課題を解決するための手段】本発明は、前記従来技術
のうち、特開平4−141517号公報に示されてい
る、表層部を冷却後、復熱中の圧延により表層部の結晶
粒を顕著に細粒化して脆性亀裂伝播停止特性を向上させ
る方法において、表層部の超細粒組織をより均一微細化
することにより、一層優れた脆性亀裂伝播停止特性を得
られると考え、鋭意研究を進めた結果、復熱前の微視組
織を均一かつ微細にすることによって、最終的に得られ
る表層部の超細粒組織も均一かつ微細になることを見出
し、本発明を完成するに至った。
According to the present invention, of the prior art, the crystal grains in the surface layer portion are remarkably formed by rolling during cooling while cooling the surface layer portion as disclosed in JP-A-4-141517. In the method of improving the arrestability of brittle crack propagation by finer graining, it is thought that more excellent brittle crack arrestability can be obtained by making the ultrafine grain structure of the surface layer more uniform and finer. As a result, it was found that by making the microstructure before reheating uniform and fine, the ultrafine grain structure of the surface layer finally obtained becomes uniform and fine, and the present invention was completed.

【0009】本発明は前記課題を解決するものであって
その要旨とするところは、重量%で、C:0.04〜
0.30%、Si:≦0.5%、Mn:≦2.0%、A
l:≦0.1%、Ti:0.003〜0.10%、N:
0.001〜0.01%を含有し、残部がFeおよび不
可避不純物からなる鋼片をAc3 変態点以上、1100
℃以下の温度に加熱して950℃以下での累積圧下率が
10〜50%の圧延を行い、そのときの板厚の2〜33
%に対応する上下各表層部の領域をAr3 変態点以上の
温度から2℃/s以上の冷却速度で冷却し、Ar3 変態
点以下で前記冷却を停止し、その後さらに30%以上の
圧延を行ないつつ前記上下各表層部の領域をAc 3 変態
点以上に復熱させ、かつ前記さらに行なう30%以上の
圧延中における逆変態もしくは未変態のオーステナイト
の分率を50%未満とすることを特徴とする脆性亀裂伝
播停止特性と低温靱性の優れた厚鋼板の製造方法であ
る。
The present invention solves the above-mentioned problems, and the gist of the invention is that C: 0.04 to 100% by weight.
0.30%, Si: ≦ 0.5%, Mn: ≦ 2.0%, A
l: ≦ 0.1%, Ti: 0.003-0.10%, N:
Containing 0.001% to 0.01%, the steel strip and the balance being Fe and inevitable impurities Ac 3 transformation point or higher, 1100
° C. is performed 10 to 50% of the rolling cumulative rolling reduction at 950 ° C. or less and heated to a temperature, 2 to 33 of plate thickness at that time
% The area of the upper and lower surface portion corresponding to the cooling at 2 ° C. / s or more cooling rate from Ar 3 transformation point or more of the temperature, to stop the cooling below Ar 3 transformation point, then further 30% or more
While rolling, the upper and lower surface areas are transformed into Ac 3
Reheat to more than the point and more than 30%
Reverse-transformed or untransformed austenite during rolling
Is less than 50%, and is a method for producing a thick steel sheet having excellent brittle crack propagation stopping characteristics and low-temperature toughness.

【0010】また本発明は前記成分の鋼片を、Ac3
態点以上、1100℃以下の温度に加熱して950℃以
下での累積圧下率が10〜50%の圧延を行い、そのと
の板厚の2〜33%に対応する上下各表層部の領域を
Ar3 変態点以上の温度から2℃/s以上の冷却速度で
冷却し、Ar3 変態点以下で前記冷却を停止し、その後
さらに圧延を行ないつつ前記上下各表層部の領域を復熱
させ、さらにその後、前記上下各表層部の領域を冷却し
てのち圧延を行ないつつ復熱させることをを1回以上行
い、かつ前記さらに行なう圧延以降の圧下率が30%以
上であって圧延中における逆変態もしくは未変態のオー
ステナイトの分率を50%未満とすることを特徴とする
脆性亀裂伝播停止特性と低温靱性の優れた厚鋼板の製造
方法である。
In the present invention, the slab of the above-mentioned composition is heated to a temperature of not less than the Ac 3 transformation point and not more than 1100 ° C., and is rolled at 950 ° C. or less with a cumulative draft of 10 to 50%.
Upper and lower regions of the surface layer portion is cooled at 2 ° C. / s or more cooling rate from Ar 3 transformation point or more of the temperature, to stop the cooling below Ar 3 transformation point corresponding to 2-33% of the plate thickness can ,afterwards
Further re-heats the upper and lower surface areas while rolling.
Then, the upper and lower surface layer areas are cooled.
At least once, re-heat while rolling.
And the rolling reduction after the further rolling is 30% or less.
The reverse or untransformed
A method for producing a thick steel sheet having excellent brittle crack propagation arrestability and low-temperature toughness, characterized in that the fraction of stainite is less than 50% .

【0011】ここにおいて鋼片はさらに、重量%で、
r:≦0.5%、Ni:≦1.0%、Mo:≦0.5
%、V:≦0.1%、Nb:≦0.05%、B:≦0.
0015%、Cu:≦1.5%の1種または2種以上を
含有することも特徴とする。 また上記の各工程に続け
て、60℃/s以下の冷却速度で650℃以下の温度ま
で冷却すること、または、60℃/s以下の冷却速度で
650℃以下の温度まで冷却し、ついで、Ac 3 変態点
以下で焼戻しすることも特徴とする。
[0011] Here, the billet further comprises, by weight%, C
r: ≦ 0.5%, Ni: ≦ 1.0%, Mo: ≦ 0.5
%, V: ≦ 0.1%, Nb: ≦ 0.05%, B: ≦ 0.
0015%, Cu: 1 of1.5%, or two or more of
It is also characterized by containing. Continue with the above steps
To a temperature of 650 ° C or less at a cooling rate of 60 ° C / s or less.
Or at a cooling rate of 60 ° C / s or less.
Cool to a temperature of 650 ° C. or lower and then Ac 3 transformation point
It is also characterized by tempering below.

【0012】[0012]

【作用】鋼片を熱間圧延するに際し、熱間圧延中あるい
は熱間圧延途中で表層部の適当な厚みの領域を、水冷等
の手段によりAr3 変態点よりも低い温度まで一旦冷却
して内部と温度差を付けた後、温度差のついたままの状
態からさらに熱間圧延を行うと、フェライト主体組織を
有する表層部は内部の顕熱により、復熱されながら加工
を受けることになり、この復熱中の加工条件を適正化す
ることにより、表層部のフェライト結晶粒が顕著に細粒
化し、さらに表層部が内部に比べて低温のときに圧延す
るため、表層部に比べて内部の変形抵抗が小さく、均一
な温度分布の鋼片を圧延する場合に比べて、内部に有効
に加工効果が伝わるために、内部の変態後の組織も微細
化する。その結果、脆性亀裂伝播停止特性とともに中心
部の低温靱性も顕著に向上することが判明した。
[Function] During hot rolling of a steel slab, during hot rolling or hot rolling, a region of an appropriate thickness of the surface layer is once cooled to a temperature lower than the Ar 3 transformation point by means of water cooling or the like. After applying a temperature difference from the inside, if hot rolling is further performed from the state where the temperature difference is kept, the surface layer having ferrite-based structure will be processed while being recuperated by the internal sensible heat. However, by optimizing the processing conditions during this reheating, the ferrite crystal grains in the surface layer part are remarkably fine-grained, and the surface layer part is rolled at a lower temperature than the inside, so that the inner part is smaller than the surface part. Compared to rolling a steel slab having a low deformation resistance and a uniform temperature distribution, the working effect is effectively transmitted to the inside, so that the internal transformed microstructure is also refined. As a result, it was found that the low-temperature toughness of the central portion was significantly improved as well as the brittle crack propagation stopping characteristics.

【0013】本発明者らは上記事実から、表層部に生成
される非常に微細なフェライト組織層の組織的特徴と脆
性亀裂伝播停止特性の関係を詳細に解析した結果、どの
ような破壊条件でも、安定して脆性亀裂伝播時に、表層
部が早期に脆性破壊せずにシアリップを形成し、良好な
脆性亀裂伝播停止特性を付与するためには、復熱加工後
の板厚の2〜33%に対応する上下各表層部領域のフェ
ライト組織は、全面的に均一な超微細粒となる必要があ
り、そのためには表層部をAr3 変態点以下まで冷却す
る前の加熱、圧延条件を適正化することが必要であるこ
とを見出した。
From the above facts, the present inventors have analyzed in detail the relationship between the microstructural characteristics of the very fine ferrite microstructure layer formed in the surface layer portion and the brittle crack propagation arresting characteristics, and have found that In order to stably form a shear lip without brittle fracture of the surface layer at the early stage of brittle crack propagation and to provide good brittle crack propagation arresting properties, the thickness is 2 to 33% of the sheet thickness after reheat processing. The ferrite structure in the upper and lower surface layer regions corresponding to the above needs to be uniform ultra-fine grains over the entire surface, and for this purpose, the heating and rolling conditions before cooling the surface layer to the Ar 3 transformation point or below are optimized It is necessary to do.

【0014】すなわち、鋼板全体として優れた脆性亀裂
伝播停止特性を有するためには、表層部の組織は均一か
つ超微細なフェライトとする必要があり、一部でも粗大
な組織が残存すると、そこから脆性破壊を生じやすくな
り、安定して良好な脆性亀裂伝播停止特性を示すことが
困難となる。粗大な組織は全てフェライトが加工された
ままで再結晶せず、あるいは十分回復していない未再結
晶粒である。従って、均一組織を得るためには未再結晶
組織を残存させないよう、復熱加工前の表層部の組織を
微細化する必要があり、そのために、先ず、熱間圧延前
の鋼片の加熱オーステナイト粒を十分微細化する必要が
ある。
That is, in order for the steel sheet as a whole to have excellent brittle crack propagation arresting characteristics, the surface layer must have a uniform and ultrafine ferrite structure. Brittle fracture is likely to occur, and it is difficult to stably exhibit good brittle crack propagation stopping characteristics. All coarse structures are unrecrystallized grains that have not been recrystallized with ferrite being processed or have not been sufficiently recovered. Therefore, in order to obtain a uniform structure, it is necessary to refine the structure of the surface layer before reheat processing so as not to leave an unrecrystallized structure. The grains need to be sufficiently refined.

【0015】本発明では、Ti、N含有量を定めること
により加熱時にTiNの分散によるオーステナイト粒の
ピン止め効果を用いるとともに、鋼片の加熱温度を11
00℃以下に限定することによりオーステナイト粒の微
細化を計ることができる。加熱温度の下限はAc3 変態
点以上とするが、これは加熱温度がAc3 変態点未満で
あると溶体化が不十分であることと、復熱加工するため
の内部の顕熱を確保することが困難となるためである。
In the present invention, the pinning effect of austenite grains due to the dispersion of TiN during heating is used by determining the contents of Ti and N, and the heating temperature of the steel slab is set to 11
By limiting the temperature to 00 ° C. or lower, it is possible to reduce the size of austenite grains. The lower limit of the heating temperature is equal to or higher than the Ac 3 transformation point. When the heating temperature is lower than the Ac 3 transformation point, the solution is insufficient and the internal sensible heat for recuperation processing is secured. This is because it becomes difficult.

【0016】熱間圧延条件も同様の理由で、変態前のオ
ーステナイト粒の微細化及び加工による歪の蓄積を計
り、復熱前の変態組織を微細化するために、950℃以
下での累積圧下率を10〜50%とした。950℃以下
の圧下率に限定したのは、再結晶オーステナイト粒径や
未再結晶オーステナイト粒中への歪蓄積の効果が、95
0℃以下の熱間圧延で顕著になるためである。950℃
以下での圧下率が10%未満であると圧延の効果が不十
分であるため下限を10%とした。圧下率をさらに増加
すれば復熱加工前の組織微細化には有利であるが、この
圧下率が大きすぎると、その後の復熱中での圧延におい
てフェライトの微細化に十分な圧下量が確保できなくな
る場合が生じるため、最終的な表層部の組織微細化に適
正な圧下率として、基礎実験の結果に基づいて決定した
もので、その値を50%とした。
For the same reason, the hot rolling conditions are the same as above. In order to measure the refinement of austenite grains before transformation and the accumulation of strain due to processing, and to refine the transformed structure before reheating, the cumulative rolling at 950 ° C. or lower is performed. The rate was 10 to 50%. The reason why the reduction rate is limited to 950 ° C. or less is that the effect of the grain size of the recrystallized austenite and the strain accumulation in the non-recrystallized austenite grains is 95%.
This is because hot rolling at 0 ° C. or less becomes remarkable. 950 ° C
If the rolling reduction below is less than 10%, the effect of rolling is insufficient, so the lower limit was made 10%. If the rolling reduction is further increased, it is advantageous for refining the structure before recuperation processing.However, if this rolling reduction is too large, sufficient rolling reduction can be ensured for the refining of ferrite in rolling during subsequent reheating. Since the case may disappear, the rolling reduction appropriate for the final refinement of the structure of the surface layer is determined based on the results of a basic experiment, and the value is set to 50%.

【0017】上記の条件で十分オーステナイト粒の微細
化、未再結晶領域での圧延を施した上で、該鋼材の上下
各表層部の領域を水冷等の手段により冷却し、該鋼材の
水冷前の熱間圧延時点での板厚に対し2〜33%に対応
する上下各表層部の領域を、Ar3 変態点以下まで冷却
するとともに、表層部と内部に温度差をつけるが、その
際、該鋼材の水冷前の熱間圧延時点で、板厚の2〜33
%に対応する上下各表層部領域の冷却速度は、2℃/s
以上にする必要がある。これは冷却速度が2℃/s未満
では、冷却前の熱間圧延によりオーステナイトを微細化
しておいても、冷却後の変態組織が粗大となり、その後
の復熱中の圧延で均一な超微細フェライト組織を得るこ
とが困難となるためである。
After sufficiently austenite grains are refined under the above conditions and rolling is performed in a non-recrystallized region, the upper and lower surface layers of the steel material are cooled by means such as water cooling. The upper and lower surface layer regions corresponding to 2 to 33% of the sheet thickness at the time of hot rolling are cooled to the Ar 3 transformation point or lower, and a temperature difference is formed between the surface layer portion and the inside. At the time of hot rolling before the water cooling of the steel material, the thickness of the steel plate was 2 to 33.
%, The cooling rate of the upper and lower surface layer regions is 2 ° C./s
It is necessary to do above. When the cooling rate is less than 2 ° C./s, the transformed structure after cooling becomes coarse even if the austenite is refined by hot rolling before cooling, and the uniform ultrafine ferrite structure is obtained by rolling during subsequent reheating. Is difficult to obtain.

【0018】また、圧延中の組織分率と圧下率を規定し
たのは、下記の理由によるものである。厚板圧延ではオ
ーステナイトとフェライトの変態抵抗を測定すると、オ
ーステナイトの変態抵抗の方が高くなる。そこで、同じ
温度でオーステナイトと、フェライトの分率を変化させ
た基礎実験を行った結果、オーステナイトが存在する方
が、フェライト粒が安定して超微粒化するとの実験結果
が得られた。この結果からオーステナイト分率が50%
未満であると超微粒化が顕著となり、また、その時の圧
下率は30%以上で安定して超細粒化できることが判明
した。この時のオーステナイトが仕上げ圧延前の冷却に
より変態しても、残った未変態オーステナイトでも、冷
却後に逆変態したオーステナイトのいずれでもかまわな
い。オーステナイトの変形抵抗がフェライトに比べ高い
理由は合金元素等の濃化であると考えられている。
The structure fraction and the rolling reduction during rolling are specified for the following reasons. In plate rolling, when the transformation resistance of austenite and ferrite is measured, the transformation resistance of austenite is higher. Then, as a result of conducting a basic experiment in which the fractions of austenite and ferrite were changed at the same temperature, an experimental result was obtained in which the presence of austenite resulted in stable and ultrafine ferrite grains. From this result, the austenite fraction was 50%.
If it is less than the above, ultra-fine graining becomes remarkable, and it has been found that the reduction rate at that time can be stably ultra-fine grained at 30% or more. The austenite at this time may be transformed by cooling before finish rolling, may remain untransformed austenite, or may be austenite reverse transformed after cooling. It is considered that the reason why the deformation resistance of austenite is higher than that of ferrite is concentration of alloying elements and the like.

【0019】以上の理由により、該鋼材の冷却前の熱間
圧延時点での板厚の2〜33%に対応する上下各表層部
の領域を、2℃/s以上の冷却速度でAr3 変態点以下
まで冷却し、その後所定の組織分率と圧下率にて仕上げ
圧延を行う際、内部の顕熱によるか、あるいは外部から
の加熱を利用して板厚の2〜33%に対応する上下各表
層部の領域を、昇温中に圧延を施すことにより該領域の
組織が微細化し、脆性亀裂伝播停止特性の向上が可能と
なる。なお、本発明では、冷却時の圧力を5kg/cm
2 以上に限定している。これはヘッダーの干渉を防止で
きる最低限の圧力からであり、デスケーリング時の圧力
は150kg/cm2 以上としたのは、スケールの剥離
性から一定圧力以上が必要な理由からである。
For the above reasons, the upper and lower surface regions corresponding to 2 to 33% of the sheet thickness at the time of hot rolling before cooling the steel material are subjected to Ar 3 transformation at a cooling rate of 2 ° C./s or more. Cooling to below the point, and then performing finish rolling at a predetermined structure fraction and rolling reduction, use the internal sensible heat or use external heating to adjust the upper and lower sides corresponding to 2 to 33% of the sheet thickness. By rolling the surface layer region during the temperature rise, the structure of the region is refined, and the brittle crack propagation stopping characteristics can be improved. In the present invention, the pressure during cooling is 5 kg / cm
Limited to two or more. This is from the minimum pressure that can prevent the interference of the header, and the pressure at the time of descaling is set to 150 kg / cm 2 or more because a certain pressure or more is required due to the peelability of the scale.

【0020】仕上げ圧延後の復熱温度により表層部の微
細組織の形成挙動の種類は異なるが、各々以下に述べる
ようにいずれも脆性亀裂伝播停止特性向上に寄与する。
すなわち、復熱温度がAc3 変態点未満の場合は、フェ
ライト主体組織を圧延することになり、フェライトが高
温で加工されることによりフェライトが十分再結晶して
フェライト粒を顕著に微細化する。その結果、該表層部
が顕著に高靱化するとともに鋼板全体の脆性亀裂伝播停
止特性も向上する。
The type of behavior of the formation of the microstructure in the surface layer varies depending on the reheating temperature after the finish rolling, but each contributes to the improvement of the brittle crack propagation stopping characteristics as described below.
That is, when the reheat temperature is lower than the Ac 3 transformation point, the ferrite-based structure is rolled, and the ferrite is processed at a high temperature, whereby the ferrite is sufficiently recrystallized and the ferrite grains are remarkably refined. As a result, the toughness of the surface layer is remarkably increased, and the brittle crack propagation stopping characteristics of the entire steel sheet are improved.

【0021】また、該鋼材の冷却前の熱間圧延時点での
板厚の2〜33%に対応する、上下各表層部の領域をA
3 変態点以上に復熱すると、該圧延が逆変態過程内で
の圧延のため、フェライトからオーステナイトへの逆変
態の際に加工の影響により、オーステナイトが微細化
し、その後、圧延後の冷却過程で再びフェライトに変態
するときにフェライトが顕著に微細化し得る。その結
果、該表層部が顕著に高靱化するとともに鋼板全体の脆
性亀裂伝播停止特性も向上する。
The upper and lower surface layer regions corresponding to 2 to 33% of the sheet thickness at the time of hot rolling before cooling the steel material are denoted by A.
When recuperated to c 3 transformation point or higher, for rolling in the rolling reverse transformation process, due to the influence of the processing when the ferrite reverse transformation to austenite, the austenite is fine, then the cooling process after rolling When it is transformed again into ferrite, the ferrite can be remarkably miniaturized. As a result, the toughness of the surface layer is remarkably increased, and the brittle crack propagation stopping characteristics of the entire steel sheet are improved.

【0022】以上のAr3 変態点以下への冷却と復熱中
の加工工程は、仕上げ圧延中に複数回繰り返すことによ
り効果が重畳するため、1回以上の繰り返し行っても所
望の微細組織を得ることが可能である。その場合、復熱
温度がAc3 変態点以下か、以上かの条件を一定にする
必要はなく、繰り返しの復熱過程において、任意の組み
合わせでAc3 変態点以下あるいはAc3 変態点以上へ
の復熱過程をとっても効果が損なわれることはない。
The above-described processing steps during cooling to below the Ar 3 transformation point and during reheating are repeated a plurality of times during finish rolling, so that the effect is superimposed. Therefore, a desired microstructure can be obtained even if performed one or more times. It is possible. If so, recuperation temperature Ac 3 below transformation temperature need not be constant over one of the conditions, the recuperation process of repetition, to Ac 3 below transformation point or Ac 3 transformation point or above in any combination The reheating process does not impair the effect.

【0023】以上は板厚の2〜33%に対応する上下各
表層部の組織を、顕著に微細化するための製造方法の限
定理由であるが、該製造方法によれば表層部だけでな
く、内部の高靱化も同時に達成することが可能となる。
すなわち、板厚の2〜33%に対応する上下各表層部の
領域を、Ar3 変態点以上の温度から2℃/s以上の冷
却速度で冷却を開始し、Ar3 変態点以下で冷却を停止
して復熱させると、表層部の方が内部に比べて温度が低
いことと、粒径が微細であることにより変形抵抗が大き
くなる。このような状態で圧延加工を加えることによ
り、変形抵抗の小さい内部がより大きな歪を受けるよう
になり、変態後のフェライト組織が一段と微細化すると
ともにセンターポロシティの圧着も容易となる。その結
果、内部の靱性が顕著に向上する。
The above is the reason for limiting the manufacturing method for remarkably miniaturizing the structure of each of the upper and lower surface portions corresponding to 2 to 33% of the plate thickness. In addition, the internal toughness can be achieved at the same time.
That is, the regions of the upper and lower surface layers corresponding to 2 to 33% of the plate thickness are cooled at a temperature of not less than the Ar 3 transformation point at a cooling rate of 2 ° C./s or more, and are cooled at a temperature of not more than the Ar 3 transformation point. When the heating is stopped and the heat is recovered, the deformation resistance is increased due to the lower temperature of the surface layer portion and the finer grain size than the inside. By performing rolling in such a state, the inside having a small deformation resistance receives more strain, the ferrite structure after the transformation is further refined, and the center porosity can be easily pressed. As a result, the internal toughness is significantly improved.

【0024】表層部の超微細化する領域の厚さは、脆性
破壊の亀裂伝播挙動から、板厚の上下各表層部で2%以
上ないと、シアリップによるエネルギー吸収効果が十分
でなく、実質的に脆性亀裂伝播停止特性を改善すること
ができない。表層の細粒部分の厚さは厚くなればなるほ
ど、脆性亀裂伝播停止特性は改善されるが、33%を超
えると効果が飽和するのと、鋼材内部の顕熱を利用して
復熱させる場合には、表層部の細粒部の厚さを33%以
上とするような条件で冷却すると、鋼材自体の顕熱がな
くなるため、板厚中心部の温度が下がりすぎて靱性が劣
化する。従って、厚鋼板の脆性亀裂伝播停止特性の向上
と板厚中心部の靱性の両者を満足できる範囲として、表
層部の細粒化する部分の厚さは上下各表層部で3〜33
%の範囲が適切である。
From the crack propagation behavior of brittle fracture, the thickness of the superfine region in the surface layer portion is not more than 2% in each of the upper and lower surface layer portions of the sheet thickness. In addition, the brittle crack propagation stopping characteristics cannot be improved. The greater the thickness of the fine-grained portion of the surface layer, the better the brittle crack propagation arresting property is. However, if the thickness exceeds 33%, the effect saturates. When the steel is cooled under conditions such that the thickness of the fine-grained portion of the surface layer is 33% or more, the sensible heat of the steel itself disappears, so that the temperature at the center of the sheet thickness is too low, and the toughness is deteriorated. Therefore, as long as both the improvement of the brittle crack propagation stopping characteristic of the thick steel plate and the toughness of the central portion of the plate thickness can be satisfied, the thickness of the portion where the surface layer is to be refined is 3 to 33 in each of the upper and lower surface layers.
A range of% is appropriate.

【0025】以上が、本発明の要件であり、圧延、復熱
が終了した段階で所望の組織を得ることができる。復熱
終了後の冷却は放冷あるいは強制冷却等手段によらず、
目的の脆性亀裂伝播停止特性と靱性を得ることはできる
が、強度の向上等、用途によっては復熱終了後の鋼板
を、60℃/s以下の冷却速度で650℃以下まで冷却
したり、60℃/s以下の冷却速度で650℃以下まで
冷却し、ついで、Ac1変態点以下で焼戻しすることも
できる。また、脆性亀裂伝播停止特性、低温靱性に対し
ては結晶粒界以外の因子も影響を及ぼすため、化学成分
についても配慮が必要である。
The above is a requirement of the present invention, and a desired structure can be obtained at the stage where rolling and reheating are completed. Cooling after the end of recuperation does not depend on means such as cooling or forced cooling.
Although the desired brittle crack propagation arresting property and toughness can be obtained, the steel sheet after the completion of reheating is cooled to 650 ° C. or less at a cooling rate of 60 ° C./s or less, depending on applications such as improvement of strength. It is also possible to cool to 650 ° C. or lower at a cooling rate of not more than 650 ° C./s and then to temper at an Ac 1 transformation point or lower. In addition, factors other than crystal grain boundaries also affect brittle crack propagation arresting characteristics and low-temperature toughness, so that chemical components also need to be considered.

【0026】以下に化学成分の限定理由を説明する。C
は鋼材の強度確保のために有効な元素であるが、過剰に
添加すると靱性や溶接性の劣化を招くため、0.04〜
0.30%の範囲とする。Siは脱酸に必要な元素であ
るが、過剰に添加すると特に溶接部の靱性を劣化させる
ため、上限を0.5%とする。Mnは強度と靱性の向上
を目的として添加するが、過剰に添加すると溶接割れを
生じやすくなるため、2.0%以下に限定する。Alは
Siと同様、脱酸のために必要であり、AlNを形成す
ることによって結晶粒を微細化して靱性向上に寄与する
が、過剰に添加すると靱性劣化を生じたり、鋼中の介在
物の増加を招きやすいため、0.1%以下の添加とす
る。
The reasons for limiting the chemical components will be described below. C
Is an element effective for securing the strength of the steel material. However, if added excessively, the toughness and weldability are deteriorated.
The range is 0.30%. Si is an element necessary for deoxidation, but if added excessively, it particularly deteriorates the toughness of the welded portion, so the upper limit is made 0.5%. Mn is added for the purpose of improving the strength and toughness, but if added in an excessive amount, weld cracks are likely to occur, so Mn is limited to 2.0% or less. Al is necessary for deoxidation, similar to Si, and by forming AlN, refines crystal grains and contributes to improvement of toughness. However, excessive addition of Al causes toughness degradation or inclusion of inclusions in steel. Since the increase is likely to occur, the addition is made 0.1% or less.

【0027】TiはTiNとして加熱オーステナイト粒
径の微細化を通し、鋼材全体の靱性向上に寄与するとと
もに、後述するように、表層部の微細組織を安定的、均
一に得るために必要な、表層部の復熱前の組織微細化に
有効な元素である。0.003%未満の添加ではオース
テナイト粒径微細化の効果が小さく、0.10%を超え
る添加は効果が飽和するとともに形成されるTiNが粗
大となって、靱性を劣化させる恐れがあるため、0.0
03〜0.10%の範囲が好ましい。NはAlやTiと
窒化物を形成するために適量含有せしめる必要がある
が、過剰に添加すると固溶Nが増加して靱性を劣化さえ
るため、適正な範囲として0.001〜0.01%とす
る。
Ti contributes to improving the toughness of the entire steel material through refinement of the heated austenite grain size as TiN, and, as will be described later, the surface layer required to obtain a stable and uniform microstructure of the surface layer. It is an element effective for refining the structure before reheating the part. If the addition is less than 0.003%, the effect of reducing the austenite grain size is small, and if the addition exceeds 0.10%, the effect is saturated and the TiN formed becomes coarse, which may deteriorate the toughness. 0.0
The range of 03 to 0.10% is preferable. N must be contained in an appropriate amount in order to form a nitride with Al or Ti. However, if added excessively, solute N increases and even toughness deteriorates. And

【0028】Cr,Ni,Mo,V,Nb,B,Cuは
いずれも母材の強度上昇に有効であり、所望の強度を得
るために1種または2種以上組み合わせて、適量添加す
ることができる。ただし、いずれも過剰に添加すれば鋼
自体の靱性の劣化、また、溶接性や溶接部での靱性の劣
化を招くため、各々その添加量の上限を定めている。
Cr, Ni, Mo, V, Nb, B, and Cu are all effective in increasing the strength of the base material, and one or more of them may be added in appropriate amounts in combination to obtain a desired strength. it can. However, if any of them is added excessively, the toughness of the steel itself is deteriorated, and the weldability and the toughness of the welded portion are also deteriorated.

【0029】以上の理由により限定された化学成分を有
し、残部Fe及び不可避不純物からなる鋼片をAc3
態点以上、1100℃以下の温度に加熱し、950℃以
下での累積圧下率が10〜50%の圧延を行った後、そ
の段階での板厚の2〜33%に対応する上下各表層部の
領域を、Ar3 変態点以上の温度から2℃/s以上の冷
却速度で冷却を開始し、Ar3 変態点以下で冷却を停止
して復熱させることを1回以上経由させる経過で、最後
の冷却後の復熱が終了するまでの間に逆変態もしくは未
変態のオーステナイトの分率が50%未満の組織にて、
30%以上の圧延を行って熱間圧延を完了させ、該圧延
完了後の鋼板の前記上下表層域をAc3変態点未満に、
またはAc3 変態点以上に、あるいはAc3 変態点とそ
の上下温度域に復熱することにより、脆性亀裂伝播停止
特性と低温靱性に優れた厚鋼板を製造することが可能と
なる。
A slab having a limited chemical composition for the above reasons and consisting of the balance of Fe and unavoidable impurities is heated to a temperature of not less than the Ac 3 transformation point and not more than 1100 ° C., and the cumulative draft at 950 ° C. or less is reduced. After rolling of 10 to 50%, the upper and lower surface layer regions corresponding to 2 to 33% of the plate thickness at that stage are cooled at a cooling rate of 2 ° C./s or more from a temperature of the Ar 3 transformation point or higher. A process in which cooling is started, cooling is stopped at or below the Ar 3 transformation point, and reheating is performed at least once, and reverse transformation or untransformed austenite is completed until reheating after the last cooling is completed. In the organization where the fraction of is less than 50%,
The hot rolling is completed by performing rolling of 30% or more, and the upper and lower surface areas of the steel sheet after the rolling are completed are less than the Ac 3 transformation point,
Alternatively, by recovering the heat to a temperature higher than or equal to the Ac 3 transformation point or to the temperature range above and below the Ac 3 transformation point, it becomes possible to produce a thick steel sheet having excellent brittle crack propagation stopping characteristics and low-temperature toughness.

【0030】[0030]

【実施例】表1に示す化学成分の供試鋼を用いて、表2
および表3に示す製造条件で製造した厚鋼板のシャルピ
ー試験による靱性(破面遷移温度vTrs)、ESSO
試験による脆性亀裂伝播停止特性(Kca値が600k
gf・mm-3/2となる温度)を表4に示す。
EXAMPLES Using test steels having the chemical compositions shown in Table 1, Table 2
And toughness (fracture surface transition temperature vTrs) by Charpy test of thick steel plates manufactured under the manufacturing conditions shown in Table 3, ESSO
Brittle crack propagation arrest characteristics by test (Kca value is 600k
gf · mm −3/2 ) is shown in Table 4.

【0031】[0031]

【表1】 [Table 1]

【0032】本発明の化学成分を有する鋼種1〜12を
用いて、本発明の製造方法により製造した試験記号A−
1〜A−15の厚鋼板は、Kca値が600kgf・m
-3/2となる温度が−85〜−110℃となり、非常に
優れた脆性亀裂伝播停止特性を示すとともに、表層部、
板厚中心部ともvTrsで−85℃以下の優れた靱性を
示す。一方、化学成分が本発明の範囲外であったり、製
造方法が本発明に合致しない比較例の試験記号B−1〜
B−8の厚鋼板では、本発明法による厚鋼板に比べて、
脆性亀裂伝播停止特性、シャルピー特性とも明らかに劣
っている。当然、比較鋼B6,B7のように、通常の制
御圧延により圧延し、圧延後制御冷却しただけでは十分
な特性が得られないが、比較鋼B−1〜B−5,B−8
のように、仕上げ圧延前に表層部を急冷、復熱させて
も、他の条件が本発明を満足していなければ、本発明鋼
のような優れた脆性亀裂伝播停止特性は得られないこと
が表4の実施例から明らかである。
The test symbol A- produced by the method of the present invention using steel types 1 to 12 having the chemical components of the present invention.
Thick steel plates 1 to A-15 have a Kca value of 600 kgfm.
temperature at which the m -3/2 is -85-110 ° C., and the it exhibits excellent brittle crack propagation stopping characteristics, the surface layer portion,
The center portion of the sheet shows excellent toughness of -85 ° C or less in vTrs. On the other hand, the test symbols B-1 to B-1 of the comparative examples in which the chemical components are out of the range of the present invention or the production method does not conform to the present invention.
In the steel plate of B-8, compared with the steel plate according to the method of the present invention,
Both brittle crack propagation arrestability and Charpy properties are clearly inferior. Naturally, as with the comparative steels B6 and B7, sufficient properties cannot be obtained only by rolling by ordinary controlled rolling and controlled cooling after rolling, but the comparative steels B-1 to B-5 and B-8
Even if the surface layer is quenched and reheated before finish rolling as described above, if the other conditions do not satisfy the present invention, excellent brittle crack propagation stopping characteristics like the steel of the present invention cannot be obtained. Are clear from the examples in Table 4.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【発明の効果】本発明は、従来は合金の多量添加でしか
得られなかった脆性亀裂伝播停止特性の向上を、従来に
ない製造法で安定して達成できるようにするものであ
り、構造物として安全性の高い厚鋼板を経済性、生産性
を損なうことなく製造できる方法としての産業上の効果
は極めて大きい。
According to the present invention, it is possible to stably achieve the improvement of brittle crack propagation arresting property which was conventionally obtained only by adding a large amount of an alloy by an unprecedented manufacturing method. The industrial effect as a method for producing a highly safe thick steel plate without impairing the economy and productivity is extremely large.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.04〜0.30% Si:≦0.5% Mn:≦2.0% Al:≦0.1% Ti:0.003〜0.10% N :0.001〜0.01% を含有し、残部がFeおよび不可避不純物からなる鋼片
をAc3 変態点以上、1100℃以下の温度に加熱して
950℃以下での累積圧下率が10〜50%の圧延を
い、そのときの板厚の2〜33%に対応する上下各表層
部の領域をAr3変態点以上の温度から2℃/s以上の
冷却速度で冷却し、Ar3 変態点以下で前記冷却を停止
、その後さらに30%以上の圧延を行ないつつ前記上
下各表層部の領域をAc 3 変態点以上に復熱させ、かつ
前記さらに行なう30%以上の圧延中における逆変態も
しくは未変態のオーステナイトの分率を50%未満とす
ことを特徴とする脆性亀裂伝播停止特性と低温靱性の
優れた厚鋼板の製造方法。
C: 0.04 to 0.30% Si: ≤ 0.5% Mn: ≤ 2.0% Al: ≤ 0.1% Ti: 0.003 to 0.10% by weight% A steel slab containing N: 0.001 to 0.01%, with the balance being Fe and unavoidable impurities, is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1100 ° C. to have a cumulative draft of 10% at 950 ° C. or lower. 50% line the rolling of
There, the area of upper and lower surface portion corresponding to 2-33% of the thickness of the case is cooled at 2 ° C. / s or more cooling rate from Ar 3 transformation point or more of temperature, the cooling below Ar 3 transformation point Is stopped, and then rolling is further performed by 30% or more.
Recover the lower surface area to above the Ac 3 transformation point, and
The reverse transformation during rolling of 30% or more, which is further performed as described above,
Or less than 50% of untransformed austenite
Method for producing a superior steel plate of brittle crack propagation stopping characteristics and low-temperature toughness, characterized in that that.
【請求項2】 重量%で、 C :0.04〜0.30% Si:≦0.5% Mn:≦2.0% Al:≦0.1% Ti:0.003〜0.10% N :0.001〜0.01% を含有し、残部がFeおよび不可避不純物からなる鋼片
をAc3 変態点以上、1100℃以下の温度に加熱して
950℃以下での累積圧下率が10〜50%の圧延を
い、そのときの板厚の2〜33%に対応する上下各表層
部の領域をAr3変態点以上の温度から2℃/s以上の
冷却速度で冷却し、Ar3 変態点以下で前記冷却を停止
、その後さらに圧延を行ないつつ前記上下各表層部の
領域を復熱させ、さらにその後、前記上下各表層部の領
域を冷却してのち圧延を行ないつつ復熱させることをを
1回以上行い、かつ前記さらに行なう圧延以降の圧下率
が30%以上であって圧延中における逆変態もしくは未
変態のオーステナイトの分率を50%未満とすることを
特徴とする脆性亀裂伝播停止特性と低温靱性の優れた厚
鋼板の製造方法。
2. In% by weight, C: 0.04 to 0.30% Si: ≤ 0.5% Mn: ≤ 2.0% Al: ≤ 0.1% Ti: 0.003 to 0.10% A steel slab containing N: 0.001 to 0.01%, with the balance being Fe and unavoidable impurities, is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1100 ° C. to have a cumulative draft of 10% at 950 ° C. or lower. 50% line the rolling of
There, the area of upper and lower surface portion corresponding to 2-33% of the thickness of the case is cooled at 2 ° C. / s or more cooling rate from Ar 3 transformation point or more of temperature, the cooling below Ar 3 transformation point Is stopped, and then further rolling is performed on the upper and lower surface portions.
The region is reheated, and then the upper and lower surface layers
To cool the area and then re-roll it while rolling.
Rolling reduction at least once and after the further rolling
Is 30% or more and reverse transformation during rolling or not
A method for producing a thick steel sheet having excellent brittle crack propagation arrestability and low-temperature toughness, characterized in that the fraction of transformed austenite is less than 50% .
【請求項3】 鋼片はさらに、重量%で、 Cr:≦0.5% Ni:≦1.0% Mo:≦0.5% V :≦0.1% Nb:≦0.05% B :≦0.0015% Cu:≦1.5%の1種または2種以上を含有することを特徴とする請求
項1または2に記載の脆性亀裂伝播停止特性と低温靱性
の優れた厚鋼板の製造方法。
3. The steel slab further comprises : Cr: ≦ 0.5% Ni: ≦ 1.0% Mo: ≦ 0.5% V: ≦ 0.1% Nb: ≦ 0.05% B : ≦ 0.0015% Cu: ≦ 1.5% One or more types are contained.
Item 1. Brittle crack propagation arrestability and low temperature toughness according to item 1 or 2.
Manufacturing method of excellent steel plate.
【請求項4】 さらに前記の工程に続けて、60℃/s
以下の冷却速度で650℃以下の温度まで冷却すること
を特徴とする請求項1ないし3のいずれかに記載の脆性
亀裂伝播停止特性と低温靱性の優れた厚鋼板の製造方
法。
4. A method according to claim 1, further comprising the step of :
The method for producing a thick steel sheet having excellent brittle crack propagation arrestability and low-temperature toughness according to any one of claims 1 to 3, wherein the steel sheet is cooled to a temperature of 650 ° C or less at the following cooling rate.
【請求項5】 さらに前記の工程に続けて、60℃/s
以下の冷却速度で650℃以下の温度まで冷却し、つい
で、Ac3 変態点以下で焼戻しすることを特徴とする請
求項1ないし3のいずれかに記載の脆性亀裂伝播停止特
性と低温靱性の優れた厚鋼板の製造方法。
5. The method according to claim 5, further comprising the step of :
4. The brittle crack propagation arresting property and low-temperature toughness according to any one of claims 1 to 3 , wherein the alloy is cooled to a temperature of 650 ° C. or less at the following cooling rate, and then tempered at an Ac 3 transformation point or less. Method of manufacturing thick steel plate.
JP05676495A 1995-02-22 1995-02-22 Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness Expired - Lifetime JP3325148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05676495A JP3325148B2 (en) 1995-02-22 1995-02-22 Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05676495A JP3325148B2 (en) 1995-02-22 1995-02-22 Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness

Publications (2)

Publication Number Publication Date
JPH08225836A JPH08225836A (en) 1996-09-03
JP3325148B2 true JP3325148B2 (en) 2002-09-17

Family

ID=13036570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05676495A Expired - Lifetime JP3325148B2 (en) 1995-02-22 1995-02-22 Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness

Country Status (1)

Country Link
JP (1) JP3325148B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058097B2 (en) * 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability
JP5087966B2 (en) * 2007-03-28 2012-12-05 Jfeスチール株式会社 Method for producing hot-rolled steel sheet with excellent surface quality and ductile crack propagation characteristics
JPWO2020116538A1 (en) 2018-12-07 2021-02-15 Jfeスチール株式会社 Steel plate and its manufacturing method

Also Published As

Publication number Publication date
JPH08225836A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
US20030066580A1 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP3845113B2 (en) Thick steel plate with excellent brittle crack propagation stopping property and low temperature toughness and its manufacturing method
EP2623625A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
JP2008297570A (en) Low yield ratio steel sheet
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JPS6160891B2 (en)
JP3255790B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JP3325148B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JPS625216B2 (en)
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH0941077A (en) High tensile strength steel plate excellent in crack propagating arrest characteristic and its production
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JPH08319538A (en) Hot rolled steel plate excellent in toughness and having low yield ratio and high strength and its production
JPH06240355A (en) Production of high toughness thick tmcp steel plate
JP2655901B2 (en) Manufacturing method of direct quenching type high strength steel sheet with excellent toughness
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JP3246994B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JPS583012B2 (en) Manufacturing method of high toughness high tensile strength steel plate
JPH083636A (en) Production of low yield ratio high toughness steel
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JP3255004B2 (en) High strength steel material for welding excellent in toughness and arrestability and method for producing the same
KR100946050B1 (en) Method for manufacturing the ultra-fine ferrite by dynamic transformation
JPH10102183A (en) Thick steel plate excellent in brittle crack arrest property and toughness at low temperature, and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term