JP3218442B2 - Manufacturing method of mechanical structural steel with excellent delayed fracture resistance - Google Patents
Manufacturing method of mechanical structural steel with excellent delayed fracture resistanceInfo
- Publication number
- JP3218442B2 JP3218442B2 JP12780192A JP12780192A JP3218442B2 JP 3218442 B2 JP3218442 B2 JP 3218442B2 JP 12780192 A JP12780192 A JP 12780192A JP 12780192 A JP12780192 A JP 12780192A JP 3218442 B2 JP3218442 B2 JP 3218442B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- delayed fracture
- weight
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、125kgf/mm2
以上の引張強度を有する耐遅れ破壊特性の優れた機械構
造用鋼の製造方法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to 125 kgf / mm 2
The present invention relates to a method for producing a steel for machine structural use having the above tensile strength and excellent in delayed fracture resistance.
【0002】[0002]
【従来の技術】高強度機械構造用鋼は、例えば高強度ボ
ルトとして、機械、自動車、橋、建物に多用されている
ほか、PC鋼線、自動車部品としても広く使用されてい
る。しかしながら、どの品種についても、引張強度が1
25kgf/mm2 を超えると遅れ破壊の危険性が高ま
ることが知られている。従って、現在使用されているボ
ルトの強度は、110kgf/mm2 級が上限となって
いる。2. Description of the Related Art High-strength steel for machine structural use is widely used, for example, as high-strength bolts in machines, automobiles, bridges and buildings, and is also widely used as PC steel wire and automobile parts. However, for all varieties, the tensile strength is 1
It is known that when the pressure exceeds 25 kgf / mm 2 , the risk of delayed fracture increases. Therefore, the strength of currently used bolts is limited to 110 kgf / mm 2 class.
【0003】しかしながら、近年、構造物の大型化に伴
い、継手効率の向上、軽量化の観点からボルトの高強度
化に対する要求が強くなってきている。一方、地球環境
保護の観点から燃費の向上が必要となる自動車において
も、燃費に直接的に関与する車体軽量化を達成するため
に、各種部品の高強度化が要請されている。而して、こ
れらの要請を満たすためには、強度が125kgf/m
m2 を超える機械構造用鋼の遅れ破壊の問題を解決しな
ければならない。高強度部材の遅れ破壊は、鋼中の水素
が原因であるとされている。特に、常温付近で容易に移
動し得る拡散性水素が引張応力集中部の結晶粒界に集積
し、粒界割れを助長するために遅れ破壊を惹起すると考
えられている。[0003] However, in recent years, with the increase in the size of the structure, there has been an increasing demand for higher strength bolts from the viewpoint of improving joint efficiency and reducing weight. On the other hand, in automobiles that need to improve fuel efficiency from the viewpoint of protection of the global environment, high strength of various components is required in order to achieve a reduction in vehicle weight that directly affects fuel efficiency. Therefore, in order to satisfy these requirements, the strength is 125 kgf / m
The problem of delayed fracture of steel for machine structural use exceeding m 2 must be solved. It is believed that delayed fracture of high strength members is caused by hydrogen in steel. In particular, it is considered that diffusible hydrogen, which can easily move around normal temperature, accumulates at the crystal grain boundary in the tensile stress concentrated portion and causes delayed fracture to promote grain boundary cracking.
【0004】従って、高強度機械構造用鋼は、水素、就
中拡散性水素に対して抵抗力のある鋼でなければならな
い。一方、高強度機械構造用鋼、例えば棒鋼、線材の製
造工程においては、材料を通常の冷却速度で冷却する
と、表層にミクロ偏析によってPが濃化した箇所から遅
れ破壊感受性の高い低温変態組織が形成され、材料巻取
り後において遅れ破壊を生じ、製品歩留りを低下させる
という問題もある。Accordingly, high-strength structural steel must be resistant to hydrogen, especially diffusible hydrogen. On the other hand, in the manufacturing process of high-strength steel for mechanical structural use, for example, steel bars and wires, when the material is cooled at a normal cooling rate, a low-temperature transformation structure having high delayed fracture susceptibility starts from a portion where P is concentrated by microsegregation in the surface layer. There is also a problem in that it is formed and delayed fracture occurs after winding of the material, thereby lowering the product yield.
【0005】[0005]
【発明が解決しようとする課題】本発明は、耐遅れ破壊
特性に優れた125kgf/mm2 以上の引張強度を有
する機械構造用鋼を製造する方法を提供することを目的
とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a steel for machine structural use having a tensile strength of 125 kgf / mm 2 or more, which is excellent in delayed fracture resistance.
【0006】[0006]
【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1) 重量で、C:0.15〜0.50%、Si≦
2.0%、Mn≦0.6%、P≦0.015%、S≦
0.02%、Cr:0.1〜3.0%、Mo:0.2〜
1.2%、Al:0.005〜1.0%、N≦0.03
%を含有し、さらにV:0.20%超、0.50%以
下、Ti:0.05%超、0.50%以下、Nb:0.
05%超、0.50%以下の1種または2種以上を含
み、残部Feおよび不可避的不純物からなる鋼を熱間圧
延した後、下記式によって定義されるKl≦130を満
たす条件下に冷却し、次いで球状化焼鈍を施した後、冷
間加工によって所定の形状に成形し、次いで焼入れ・焼
戻し処理を施すに際し、焼戻しを400℃以上の温度域
で行うことを特徴とする125kgf/mm2 以上の引
張強度を有する耐遅れ破壊特性の優れた機械構造用鋼の
製造方法。The gist of the present invention is as follows. (1) C: 0.15 to 0.50% by weight, Si ≦
2.0%, Mn ≦ 0.6%, P ≦ 0.015%, S ≦
0.02%, Cr: 0.1 to 3.0%, Mo: 0.2 to
1.2%, Al: 0.005 to 1.0%, N ≦ 0.03
V: more than 0.20%, 0.50% or less, Ti: more than 0.05%, 0.50% or less, Nb: 0.
After hot-rolling a steel containing one or more of not less than 05% and not more than 0.50%, the balance being Fe and unavoidable impurities, the steel is cooled under conditions satisfying Kl ≦ 130 defined by the following equation. After performing spheroidizing annealing, forming into a predetermined shape by cold working, and then performing quenching and tempering, tempering is performed in a temperature range of 400 ° C. or more, 125 kgf / mm 2. A method for producing a steel for machine structural use having the above tensile strength and excellent in delayed fracture resistance.
【0007】Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%S
i〕)×(1+4.10×〔%Mn〕)×(1+2.8
3×〔%P〕)×(1−0.62×〔%S〕)×(1+
2.33×〔%Cr〕)×(1+0.52×〔%N
i〕)×(1+3.14×〔%Mo〕) (単位:m
m、〔%X〕:元素Xの重量%) CR:鋼材の冷却速度(単位:℃/sec ) (2) 重量で、C:0.15〜0.50%、Si≦
2.0%、Mn≦0.6%、P≦0.015%、S≦
0.02%、Cr:0.1〜3.0%、Mo:0.2〜
1.2%、Al:0.005〜1.0%、N≦0.03
%を含有し、さらにV:0.20%超、0.50%以
下、Ti:0.05%超、0.50%以下、Nb:0.
05%超、0.50%以下の1種または2種以上を含
み、残部Feおよび不可避的不純物からなる鋼に圧延仕
上温度を650〜900℃の温度域とする熱間圧延を施
した後、下記式によって定義されるKl≦130を満た
す条件下に冷却し、次いで球状化焼鈍を施した後、冷間
加工によって所定の形状に成形し、次いで焼入れ・焼戻
し処理を施すに際し、焼戻しを400℃以上の温度域で
行うことを特徴とする125kgf/mm2 以上の引張
強度を有する耐遅れ破壊特性の優れた機械構造用鋼の製
造方法。Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% S
i]) × (1 + 4.10 × [% Mn]) × (1 + 2.8
3 x [% P]) x (1-0.62 x [% S]) x (1+
2.33 × [% Cr]) × (1 + 0.52 × [% N
i]) × (1 + 3.14 × [% Mo]) (unit: m
m, [% X]: weight% of element X) CR: cooling rate of steel material (unit: ° C./sec) (2) By weight, C: 0.15 to 0.50%, Si ≦
2.0%, Mn ≦ 0.6%, P ≦ 0.015%, S ≦
0.02%, Cr: 0.1 to 3.0%, Mo: 0.2 to
1.2%, Al: 0.005 to 1.0%, N ≦ 0.03
V: more than 0.20%, 0.50% or less, Ti: more than 0.05%, 0.50% or less, Nb: 0.
After hot rolling to a rolling finish temperature of 650 to 900 ° C. on a steel containing one or more of not less than 05% and 0.50% or less and the balance being Fe and unavoidable impurities, After cooling under conditions satisfying Kl ≦ 130 defined by the following formula, then performing spheroidizing annealing, forming into a predetermined shape by cold working, and then performing quenching / tempering treatment, tempering at 400 ° C. A method for producing a steel for machine structural use having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance, which is performed in the above temperature range.
【0008】Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%S
i〕)×(1+4.10×〔%Mn〕)×(1+2.8
3×〔%P〕)×(1−0.62×〔%S〕)×(1+
2.33×〔%Cr〕)×(1+0.52×〔%N
i〕)×(1+3.14×〔%Mo〕) (単位:m
m、〔%X〕:元素Xの重量%) CR:鋼材の冷却速度(単位:℃/sec ) (3) 重量で、C:0.15〜0.50%、Si≦
2.0%、Mn≦0.6%、P≦0.015%、S≦
0.02%、Cr:0.1〜3.0%、Mo:0.2〜
1.2%、Ni≦2.0%、Al:0.005〜1.0
%、N≦0.03%を含有し、さらにV:0.20%
超、0.50%以下、Ti:0.05%超、0.50%
以下、Nb:0.05%超、0.50%以下の1種また
は2種以上を含み、残部Feおよび不可避的不純物から
なる鋼を熱間圧延した後、下記式によって定義されるK
l≦130を満たす条件下に冷却し、次いで球状化焼鈍
を施した後、冷間加工によって所定の形状に成形し、次
いで焼入れ・焼戻し処理を施すに際し、焼戻しを400
℃以上の温度域で行うことを特徴とする125kgf/
mm2 以上の引張強度を有する耐遅れ破壊特性の優れた
機械構造用鋼の製造方法。Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% S
i]) × (1 + 4.10 × [% Mn]) × (1 + 2.8
3 x [% P]) x (1-0.62 x [% S]) x (1+
2.33 × [% Cr]) × (1 + 0.52 × [% N
i]) × (1 + 3.14 × [% Mo]) (unit: m
m, [% X]: weight% of element X) CR: cooling rate of steel material (unit: ° C./sec) (3) By weight, C: 0.15 to 0.50%, Si ≦
2.0%, Mn ≦ 0.6%, P ≦ 0.015%, S ≦
0.02%, Cr: 0.1 to 3.0%, Mo: 0.2 to
1.2%, Ni ≦ 2.0%, Al: 0.005 to 1.0
%, N ≦ 0.03%, and V: 0.20%
More than 0.50%, Ti: more than 0.05%, 0.50%
Hereinafter, after hot rolling a steel containing one or two or more kinds of Nb: more than 0.05% and 0.50% or less, the balance being Fe and unavoidable impurities, K defined by the following formula
After cooling under conditions satisfying l ≦ 130, and then performing spheroidizing annealing, forming into a predetermined shape by cold working, and then performing quenching / tempering treatment,
125 kgf /
A method for producing steel for machine structural use having a tensile strength of not less than 2 mm and excellent in delayed fracture resistance.
【0009】Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%S
i〕)×(1+4.10×〔%Mn〕)×(1+2.8
3×〔%P〕)×(1−0.62×〔%S〕)×(1+
2.33×〔%Cr〕)×(1+0.52×〔%N
i〕)×(1+3.14×〔%Mo〕) (単位:m
m、〔%X〕:元素Xの重量%) CR:鋼材の冷却速度(単位:℃/sec ) (4) 重量で、C:0.15〜0.50%、Si≦
2.0%、Mn≦0.6%、P≦0.015%、S≦
0.02%、Cr:0.1〜3.0%、Mo:0.2〜
1.2%、Ni≦2.0%、Al:0.005〜1.0
%、N≦0.03%を含有し、さらにV:0.20%
超、0.50%以下、Ti:0.05%超、0.50%
以下、Nb:0.05%超、0.50%以下の1種また
は2種以上を含み、残部Feおよび不可避的不純物から
なる鋼に圧延仕上温度を650〜900℃の温度域とす
る熱間圧延を施した後、下記式によって定義されるKl
≦130を満たす条件下に冷却し、次いで球状化焼鈍を
施した後、冷間加工によって所定の形状に成形し、次い
で焼入れ・焼戻し処理を施すに際し、焼戻しを400℃
以上の温度域で行うことを特徴とする125kgf/m
m2 以上の引張強度を有する耐遅れ破壊特性の優れた機
械構造用鋼の製造方法。Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% S
i]) × (1 + 4.10 × [% Mn]) × (1 + 2.8
3 x [% P]) x (1-0.62 x [% S]) x (1+
2.33 × [% Cr]) × (1 + 0.52 × [% N
i]) × (1 + 3.14 × [% Mo]) (unit: m
m, [% X]: weight% of element X) CR: cooling rate of steel material (unit: ° C./sec) (4) By weight, C: 0.15 to 0.50%, Si ≦
2.0%, Mn ≦ 0.6%, P ≦ 0.015%, S ≦
0.02%, Cr: 0.1 to 3.0%, Mo: 0.2 to
1.2%, Ni ≦ 2.0%, Al: 0.005 to 1.0
%, N ≦ 0.03%, and V: 0.20%
More than 0.50%, Ti: more than 0.05%, 0.50%
Hereinafter, Nb: hot-rolled steel containing one or more of 0.05% or more and 0.50% or less, and the balance consisting of Fe and unavoidable impurities, with a rolling finish temperature of 650 to 900 ° C. After rolling, Kl defined by the following equation:
After cooling under conditions satisfying ≦ 130, and then performing spheroidizing annealing, forming into a predetermined shape by cold working, and then performing quenching / tempering treatment, tempering at 400 ° C.
125 kgf / m, which is performed in the above temperature range
A method for producing a steel for machine structural use having a tensile strength of at least m 2 and excellent resistance to delayed fracture.
【0010】Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%S
i〕)×(1+4.10×〔%Mn〕)×(1+2.8
3×〔%P〕)×(1−0.62×〔%S〕)×(1+
2.33×〔%Cr〕)×(1+0.52×〔%N
i〕)×(1+3.14×〔%Mo〕) (単位:m
m、〔%X〕:元素Xの重量%) CR:鋼材の冷却速度(単位:℃/sec ) 以下、本発明を詳細に説明する。Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% S
i]) × (1 + 4.10 × [% Mn]) × (1 + 2.8
3 x [% P]) x (1-0.62 x [% S]) x (1+
2.33 × [% Cr]) × (1 + 0.52 × [% N
i]) × (1 + 3.14 × [% Mo]) (unit: m
m, [% X]: weight% of element X) CR: cooling rate of steel material (unit: ° C / sec) Hereinafter, the present invention will be described in detail.
【0011】本発明者等は、上記課題を解決すべく研究
を重ねた結果、鋼の化学成分の調整、特にMn、P含有
量を低下させること、Mo、Ni含有量を増加させるこ
と、およびV、Ti、Nbの1種または2種以上を添加
すること、ならびに焼戻し温度を調整することによっ
て、遅れ破壊に至らない限界拡散水素量を増加し得ると
いう知見を得、また熱間圧延後の材料の冷却速度を制御
することによって材料の遅れ破壊の発生頻度を大きく低
下させ得るという知見を得て本発明を完全させるに至っ
た。本発明によって、従来鋼よりも高い限界拡散水素量
を示す125kgf/mm2 以上の引張強度を有する機
械構造用鋼を得ることができる。As a result of repeated studies to solve the above problems, the inventors of the present invention have found that adjustment of the chemical composition of steel, in particular, reduction of Mn and P contents, increase of Mo and Ni contents, and By adding one or more of V, Ti, and Nb, and adjusting the tempering temperature, it was found that the critical diffusion hydrogen amount that does not lead to delayed fracture can be increased. The inventors have found that the frequency of delayed fracture of a material can be greatly reduced by controlling the cooling rate of the material, thereby completing the present invention. According to the present invention, it is possible to obtain a steel for machine structural use having a tensile strength of 125 kgf / mm 2 or more, which shows a higher critical diffusion hydrogen amount than conventional steel.
【0012】本発明者等は、耐遅れ破壊特性に及ぼす合
金元素の影響ならびに熱処理における焼戻し温度の影響
を調べた結果、従来の機械構造用鋼に比し、Mn、P含
有量を少なくすること、Mo、Ni含有量を増加させる
こと、V、Ti、Nbの多量添加が有効であること、な
らびに400℃以上の温度域で焼戻しを施すことが有効
であることを見出した。The present inventors have investigated the effects of alloying elements on delayed fracture resistance and the effect of tempering temperature in heat treatment. As a result, the inventors have found that the Mn and P contents are reduced as compared with conventional steels for machine structural use. , Mo, and Ni, increasing the amount of V, Ti, and Nb is effective, and tempering in a temperature range of 400 ° C. or more is effective.
【0013】また、材料の焼入れ性に応じて熱間圧延後
の材料の冷却速度を調節することによって、ワイヤ・コ
イル或はバー・コイルの割れ発生を抑えることができる
ことを見出した。さらに、熱間圧延における仕上温度を
650〜900℃の範囲内とすることによって、ワイヤ
・コイル或はバー・コイルの割れ発生をより一層抑制し
得ることを見出した。It has also been found that by adjusting the cooling rate of the material after hot rolling in accordance with the hardenability of the material, the occurrence of cracks in the wire coil or bar coil can be suppressed. Furthermore, it has been found that by setting the finishing temperature in the hot rolling within the range of 650 to 900 ° C., the occurrence of cracks in the wire coil or the bar coil can be further suppressed.
【0014】次に、本発明における材料の合金成分組成
の限定理由を説明する。Cは、焼入れ・焼戻しによって
高い強度の鋼とするためには、0.15%以上を含有せ
しめる必要がある。一方、0.50%を超える多量のC
を含有せしめると、鋼の靱性を劣化せしめるのみなら
ず、耐遅れ破壊特性をも劣化させる。Siは、鋼の脱酸
および鋼の強度向上のために必要な元素であるが、2.
0%を超える多量の添加は鋼の冷間加工性を損なう。Next, the reasons for limiting the alloy composition of the material in the present invention will be described. C must be contained in an amount of 0.15% or more in order to obtain high-strength steel by quenching and tempering. On the other hand, a large amount of C exceeding 0.50%
In addition, not only does the toughness of the steel deteriorate, but also the delayed fracture resistance deteriorates. Si is an element necessary for deoxidizing steel and improving the strength of steel.
Large amounts of addition exceeding 0% impair the cold workability of the steel.
【0015】Mnは、鋼の脱酸および鋼の焼入れ性確保
のために必要な元素であるが、オーステナイト域へ鋼を
加熱したときに粒界に偏析して粒界を脆化させるのみな
らず、鋼の耐遅れ破壊特性を劣化させるため0.6%以
下とした。Pは焼入れ性向上元素としては有効である
が、凝固時にミクロ偏析し、さらにオーステナイト域加
熱時に粒界に偏析して粒界を脆化させるとともに、耐遅
れ破壊特性を劣化させる元素であるために0.015%
以下とした。Mn is an element necessary for deoxidizing the steel and ensuring the hardenability of the steel. However, when the steel is heated to the austenite region, it not only segregates at the grain boundaries but also embrittles the grain boundaries. In order to deteriorate the delayed fracture resistance of steel, the content is set to 0.6% or less. P is effective as a hardenability improving element, but is an element that segregates microscopically during solidification, segregates at the grain boundaries during heating in the austenite region, embrittles the grain boundaries, and deteriorates delayed fracture resistance. 0.015%
It was as follows.
【0016】Sは不可避的不純物であるが、オーステナ
イト域加熱時に粒界に偏析して粒界を脆化させるととも
に、耐遅れ破壊特性を劣化させる元素であるために0.
02%以下とした。Crは鋼の焼入れ性を得るためには
0.1%以上必要であるが、多すぎると靱性の劣化、冷
間加工性の劣化を招く元素であるために3.0%以下と
した。S is an unavoidable impurity, but segregates at the grain boundaries during heating in the austenite region, embrittles the grain boundaries, and degrades the delayed fracture resistance.
02% or less. Cr is required to be 0.1% or more in order to obtain the hardenability of steel, but if it is too large, it is an element that causes deterioration of toughness and cold workability, so that Cr is set to 3.0% or less.
【0017】Moは鋼の焼入れ性を得るために必要であ
るとともに、焼戻し軟化抵抗を有し、400℃以上の焼
戻し温度で安定して125kgf/mm2 以上の引張荷
重を得るのに有効な元素であるが、多すぎるとその効果
は飽和し、コストの上昇を招くために1.2%以下とし
た。Alは鋼の脱酸に有効な元素であるために0.00
5%以上必要であるが、多すぎると靱性の劣化を招くた
めに1.0%以下とした。Mo is an element necessary for obtaining the hardenability of steel, has a tempering softening resistance, and is effective for obtaining a tensile load of 125 kgf / mm 2 or more stably at a tempering temperature of 400 ° C. or more. However, if the amount is too large, the effect is saturated and the cost is increased. Al is an effective element for deoxidizing steel, so
Although it is necessary to be 5% or more, if it is too much, the toughness is deteriorated.
【0018】Nはオーステナイト加熱時に粒界に偏析し
て粒界を脆化させるとともに、耐遅れ破壊特性も劣化さ
せる元素であるため0.03%以下とした。Niは必要
に応じて添加され、靱性を向上させるとともに、耐遅れ
破壊特性を向上させる元素である。しかし2.0%を超
えるとその効果は飽和し、むしろコスト上昇を招くため
に2.0%以下とした。N is an element that segregates at the grain boundary during austenite heating to embrittle the grain boundary and also deteriorates the delayed fracture resistance, so that N is set to 0.03% or less. Ni is an element that is added as needed and improves the toughness and the delayed fracture resistance. However, when the content exceeds 2.0%, the effect is saturated, and the cost is rather increased.
【0019】V、Ti、Nbは、結晶粒の微細化に寄与
し、かつ水素との親和性に富み、鋼中での水素の拡散・
集積を抑制することにより耐遅れ破壊特性向上に有効な
元素であるため、それぞれV:0.20%超、Ti:
0.05%超、Nb:0.05%超の添加が必要であ
る。ただし、多すぎるとその効果は飽和しむしろ靱性を
劣化させる元素であるために、添加量をそれぞれV:
0.50%以下、Ti:0.50%以下、Nb:0.5
0%以下とした。V, Ti, and Nb contribute to the refinement of crystal grains and have a high affinity for hydrogen.
Since these elements are effective for improving delayed fracture resistance by suppressing accumulation, V: more than 0.20% and Ti:
It is necessary to add more than 0.05% and Nb: more than 0.05%. However, if the content is too large, the effect saturates and the element is rather deteriorated in toughness.
0.50% or less, Ti: 0.50% or less, Nb: 0.5
0% or less.
【0020】熱処理条件に関しては125kgf/mm
2 以上の高強度において遅れ破壊を起こさないために焼
戻温度の下限値を設定した。すなわち、400℃未満で
は粒界脆化が顕著となり、耐遅れ破壊特性も劣化するた
め、焼戻温度を400℃以上とした。一方、棒鋼・線材
コイルの耐遅れ破壊特性を向上させ、コイル割れ発生を
抑制し、コイルの歩留りを上げるために圧延後の冷却速
度を決定し、さらにより一層のコイル割れ抑制のために
圧延仕上温度も決定した。すなわち、圧延後の冷却速度
に関しては、遅れ破壊感受性の高い低温変態組織の生成
を抑制し、遅れ破壊起因の割れを減少させるために徐冷
することが必須であるが、鋼材の焼入性・冷却速度を考
慮して、冷却速度(CR)をKl≦130を満たす範囲
に限定した。The heat treatment conditions are 125 kgf / mm
The lower limit of tempering temperature was set to prevent delayed fracture at high strength of 2 or more. That is, if the temperature is lower than 400 ° C., the grain boundary embrittlement becomes remarkable and the delayed fracture resistance deteriorates. On the other hand, the cooling rate after rolling is determined to improve the delayed fracture resistance of steel bars and wire rod coils, suppress the occurrence of coil cracks, increase the coil yield, and finish the rolling to further suppress coil cracks. The temperature was also determined. In other words, with regard to the cooling rate after rolling, it is necessary to gradually cool to suppress the generation of low-temperature transformation structure with high delayed fracture susceptibility and reduce cracking caused by delayed fracture. Considering the cooling rate, the cooling rate (CR) was limited to a range satisfying Kl ≦ 130.
【0021】ただし、 Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%Si〕) ×(1+4.10×〔%Mn〕)×(1+2.83×〔%P〕) ×(1+0.62×〔%S〕)×(1+2.33×〔%Cr〕) ×(1+0.52×〔%Ni〕)×(1+3.14×〔%Mo〕) (単位:mm、〔%X〕:元素Xの重量%) CR:冷却速度(単位:℃/sec) また、圧延仕上温度に関しては、細粒化によりコイルの
耐遅れ破壊特性を一層向上させるために有効な手段であ
るが、その効果は900℃を超えた温度では無効とな
り、650℃未満の温度では効果は飽和し、むしろ生産
性を阻害するために圧延仕上温度を650〜900℃と
した。Where Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% Si]) × (1 + 4.10 × [% Mn]) × (1 + 2 .83 × [% P]) × (1 + 0.62 × [% S]) × (1 + 2.33 × [% Cr]) × (1 + 0.52 × [% Ni]) × (1 + 3.14 × [% Mo] ]) (Unit: mm, [% X]: weight% of element X) CR: cooling rate (unit: ° C / sec) In addition, regarding the rolling finishing temperature, the fine grain size is further improved to improve the delayed fracture resistance of the coil. However, the effect is ineffective at a temperature exceeding 900 ° C., and the effect is saturated at a temperature lower than 650 ° C., but rather, the rolling finishing temperature is reduced to 650 to 900 ° C. to inhibit productivity. And
【0022】[0022]
【実施例】供試鋼の化学成分を表1に示す。(A)〜
(J)は本発明鋼であり、(K)〜(O)は比較鋼であ
る。これらの20mmφの棒鋼を用いて、引張強度が1
50 〜160kgf/mm2 を目標に、熱処理(焼入れ
・焼戻し)を行った。この時の熱処理条件および引張強
度を表2に示す。これらの鋼が遅れ破壊に対し、どの程
度の拡散性水素を許容し得るか、すなわち各鋼の限界水
素量を調べた。EXAMPLES The chemical components of the test steel are shown in Table 1. (A) ~
(J) is a steel of the present invention, and (K) to (O) are comparative steels.
You. Using these 20 mmφ steel bars, the tensile strength is 1
50 ~ 160kgf / mmTwoHeat treatment (quenching
Tempering). Heat treatment conditions and tensile strength
The degrees are shown in Table 2. How these steels resist delayed fracture
Degree of diffusible hydrogen is acceptable, i.e.
The elementary quantity was examined.
【0023】以下に限界水素量を求める方法について述
べる。図1に示したM10ボルトで軸部に2mmVの円
周ノッチを設けた試験片を作り、2本を組にして水素を
富化するために、20〜36%HClに20〜120分
間浸漬することにより試験片中の水素量を変化させた。
このうち1本はHClに浸漬し、大気中に30分放置し
た後、熱的分析法により水素量を測定し、他の1本は浸
漬後30分間大気中に放置した後、図2に示した試験機
で遅れ破壊試験を行った。図2において1は試験片、2
はバランスウェイト、3は支点を示す。また遅れ破壊試
験における試験荷重はHCl溶液に浸漬する前の各試験
片の破断荷重の70%と一定にした。Hereinafter, a method for obtaining the limit hydrogen amount will be described. A test piece provided with a circumferential notch of 2 mmV in the shaft portion with M10 bolt shown in FIG. 1 is prepared, and immersed in 20 to 36% HCl for 20 to 120 minutes to enrich hydrogen in a set of two pieces. Thus, the amount of hydrogen in the test piece was changed.
One of them was immersed in HCl and left in the air for 30 minutes, then the amount of hydrogen was measured by thermal analysis, and the other was left in the air for 30 minutes after immersion, as shown in FIG. Rupture test was carried out using a test machine. In FIG. 2, 1 is a test piece, 2
Indicates a balance weight, and 3 indicates a fulcrum. The test load in the delayed fracture test was constant at 70% of the fracture load of each test piece before immersion in the HCl solution.
【0024】以上の手順に従い、HClの濃度・浸漬時
間を種々変えた場合に、得られた拡散性水素量と遅れ破
壊試験における破断時間との関係を表3に示す。同表か
ら、各鋼の遅れ破壊を起こさない上限の拡散性水素量、
すなわち限界拡散性水素量を推定すると表4のようにな
る。この表より、本発明の組成および焼戻温度の範囲に
ある(A)〜(J)は、比較材である(K)〜(O)に
比べて限界水素量が高く、遅れ破壊しにくいことが明ら
かである。Table 3 shows the relationship between the amount of diffusible hydrogen obtained and the rupture time in the delayed fracture test when the concentration of HCl and the immersion time are variously changed in accordance with the above procedure. From the table, the upper limit diffusible hydrogen amount that does not cause delayed fracture of each steel,
That is, when the amount of critical diffusible hydrogen is estimated, Table 4 is obtained. From this table, (A) to (J) in the range of the composition and tempering temperature of the present invention have a higher critical hydrogen content than the comparative materials (K) to (O), and are less susceptible to delayed fracture. Is evident.
【0025】次に本発明鋼を用いて1200℃に加熱
後、圧延仕上温度および圧延後の冷却速度を変えて断面
25mmφ、直径1400mmのコイルを100kgず
つ製造した場合の、製造後100時間以内のコイル割れ
発生状況を表5に示す。本発明の冷却条件の範囲外であ
るKl>130の冷却速度で冷却した場合には、圧延仕
上温度に関係なくコイルの割れ発生率は0.17%以上
であるのに対し、本発明のKl≦130を満たす冷却速
度で冷却した場合には、0.05%以下の発生率に抑え
られ、割れ発生率の低減にKl≦130を満たす徐冷を
行うことが有効であることが明らかである。さらに圧延
仕上温度を1000℃から850℃に下げることにより
コイルの割れ発生率は0.02%以下に抑えられ、圧延
仕上温度を900℃以下に下げることが、コイル割れ発
生率低減に有効であることが明らかである。Next, when the steel of the present invention is heated to 1200 ° C., and the rolling finish temperature and the cooling rate after the rolling are changed, 100 kg of a coil having a cross section of 25 mmφ and a diameter of 1400 mm is produced within 100 hours after the production. Table 5 shows the state of occurrence of coil cracks. When cooling is performed at a cooling rate of Kl> 130, which is outside the range of the cooling conditions of the present invention, the crack occurrence rate of the coil is 0.17% or more regardless of the rolling finishing temperature, whereas the Kl of the present invention is When cooled at a cooling rate that satisfies ≦ 130, the generation rate is suppressed to 0.05% or less, and it is clear that it is effective to perform slow cooling that satisfies Kl ≦ 130 to reduce the crack generation rate. . Further, by lowering the rolling finish temperature from 1000 ° C. to 850 ° C., the crack occurrence rate of the coil is suppressed to 0.02% or less, and lowering the rolling finish temperature to 900 ° C. or less is effective for reducing the coil cracking rate. It is clear that.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【表3】 [Table 3]
【0029】[0029]
【表4】 [Table 4]
【0030】[0030]
【表5】 [Table 5]
【0031】[0031]
【発明の効果】本発明により125kgf/mm2 以上
の引張強度を有し、耐遅れ破壊特性の優れたボルトが期
待できる。これによってボルトの継手効率の向上が図ら
れ、自動車等の軽量化に寄与する。またコイル製造後の
割れ発生も抑制でき歩留り低下という操業上の問題点も
解決できる。従って工業的効果は大きい。According to the present invention, a bolt having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance can be expected. As a result, the joint efficiency of the bolt is improved, which contributes to weight reduction of automobiles and the like. In addition, it is possible to suppress the occurrence of cracks after the coil is manufactured, and it is also possible to solve the operational problem of lowering the yield. Therefore, the industrial effect is great.
【図1】試験片の形状の説明図である。FIG. 1 is an explanatory diagram of a shape of a test piece.
【図2】遅れ破壊試験装置の説明図である。FIG. 2 is an explanatory diagram of a delayed fracture test apparatus.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/00-8/10 C22C 38/00-38/60
Claims (4)
i≦2.0%、Mn≦0.6%、P≦0.015%、S
≦0.02%、Cr:0.1〜3.0%、Mo:0.2
〜1.2%、Al:0.005〜1.0%、N≦0.0
3%を含有し、さらにV:0.20%超、0.50%以
下、Ti:0.05%超、0.50%以下、Nb:0.
05%超、0.50%以下の1種または2種以上を含
み、残部Feおよび不可避的不純物からなる鋼を熱間圧
延した後、下記式によって定義されるKl≦130を満
たす条件下に冷却し、次いで球状化焼鈍を施した後、冷
間加工によって所定の形状に成形し、次いで焼入れ・焼
戻し処理を施すに際し、焼戻しを400℃以上の温度域
で行うことを特徴とする125kgf/mm2 以上の引
張強度を有する耐遅れ破壊特性の優れた機械構造用鋼の
製造方法。 Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%S
i〕)×(1+4.10×〔%Mn〕)×(1+2.8
3×〔%P〕)×(1−0.62×〔%S〕)×(1+
2.33×〔%Cr〕)×(1+0.52×〔%N
i〕)×(1+3.14×〔%Mo〕) (単位:m
m、〔%X〕:元素Xの重量%) CR:鋼材の冷却速度(単位:℃/sec )1. C: 0.15 to 0.50% by weight, S
i ≦ 2.0%, Mn ≦ 0.6%, P ≦ 0.015%, S
≦ 0.02%, Cr: 0.1-3.0%, Mo: 0.2
1.21.2%, Al: 0.005 to 1.0%, N ≦ 0.0
3%, V: more than 0.20%, 0.50% or less, Ti: more than 0.05%, 0.50% or less, Nb: 0.
After hot-rolling a steel containing one or more of not less than 05% and not more than 0.50%, the balance being Fe and unavoidable impurities, the steel is cooled under conditions satisfying Kl ≦ 130 defined by the following equation. After performing spheroidizing annealing, forming into a predetermined shape by cold working, and then performing quenching and tempering, tempering is performed in a temperature range of 400 ° C. or more, 125 kgf / mm 2. A method for producing a steel for machine structural use having the above tensile strength and excellent in delayed fracture resistance. Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% S
i]) × (1 + 4.10 × [% Mn]) × (1 + 2.8
3 x [% P]) x (1-0.62 x [% S]) x (1+
2.33 × [% Cr]) × (1 + 0.52 × [% N
i]) × (1 + 3.14 × [% Mo]) (unit: m
m, [% X]: weight% of element X) CR: cooling rate of steel material (unit: ° C / sec)
i≦2.0%、Mn≦0.6%、P≦0.015%、S
≦0.02%、Cr:0.1〜3.0%、Mo:0.2
〜1.2%、Al:0.005〜1.0%、N≦0.0
3%を含有し、さらにV:0.20%超、0.50%以
下、Ti:0.05%超、0.50%以下、Nb:0.
05%超、0.50%以下の1種または2種以上を含
み、残部Feおよび不可避的不純物からなる鋼に圧延仕
上温度を650〜900℃の温度域とする熱間圧延を施
した後、下記式によって定義されるKl≦130を満た
す条件下に冷却し、次いで球状化焼鈍を施した後、冷間
加工によって所定の形状に成形し、次いで焼入れ・焼戻
し処理を施すに際し、焼戻しを400℃以上の温度域で
行うことを特徴とする125kgf/mm2 以上の引張
強度を有する耐遅れ破壊特性の優れた機械構造用鋼の製
造方法。 Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%S
i〕)×(1+4.10×〔%Mn〕)×(1+2.8
3×〔%P〕)×(1−0.62×〔%S〕)×(1+
2.33×〔%Cr〕)×(1+0.52×〔%N
i〕)×(1+3.14×〔%Mo〕) (単位:m
m、〔%X〕:元素Xの重量%) CR:鋼材の冷却速度(単位:℃/sec )2. C: 0.15 to 0.50% by weight, S
i ≦ 2.0%, Mn ≦ 0.6%, P ≦ 0.015%, S
≦ 0.02%, Cr: 0.1-3.0%, Mo: 0.2
1.21.2%, Al: 0.005 to 1.0%, N ≦ 0.0
3%, V: more than 0.20%, 0.50% or less, Ti: more than 0.05%, 0.50% or less, Nb: 0.
After hot rolling to a rolling finish temperature of 650 to 900 ° C. on a steel containing one or more of not less than 05% and 0.50% or less and the balance being Fe and unavoidable impurities, After cooling under conditions satisfying Kl ≦ 130 defined by the following formula, then performing spheroidizing annealing, forming into a predetermined shape by cold working, and then performing quenching and tempering treatment, tempering at 400 ° C. A method for producing steel for machine structural use having a tensile strength of 125 kgf / mm 2 or more and excellent in delayed fracture resistance, characterized by being carried out in the above temperature range. Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% S
i]) × (1 + 4.10 × [% Mn]) × (1 + 2.8
3 x [% P]) x (1-0.62 x [% S]) x (1+
2.33 × [% Cr]) × (1 + 0.52 × [% N
i]) × (1 + 3.14 × [% Mo]) (unit: m
m, [% X]: weight% of element X) CR: cooling rate of steel material (unit: ° C / sec)
i≦2.0%、Mn≦0.6%、P≦0.015%、S
≦0.02%、Cr:0.1〜3.0%、Mo:0.2
〜1.2%、Ni≦2.0%、Al:0.005〜1.
0%、N≦0.03%を含有し、さらにV:0.20%
超、0.50%以下、Ti:0.05%超、0.50%
以下、Nb:0.05%超、0.50%以下の1種また
は2種以上を含み、残部Feおよび不可避的不純物から
なる鋼を熱間圧延した後、下記式によって定義されるK
l≦130を満たす条件下に冷却し、次いで球状化焼鈍
を施した後、冷間加工によって所定の形状に成形し、次
いで焼入れ・焼戻し処理を施すに際し、焼戻しを400
℃以上の温度域で行うことを特徴とする125kgf/
mm2 以上の引張強度を有する耐遅れ破壊特性の優れた
機械構造用鋼の製造方法。 Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%S
i〕)×(1+4.10×〔%Mn〕)×(1+2.8
3×〔%P〕)×(1−0.62×〔%S〕)×(1+
2.33×〔%Cr〕)×(1+0.52×〔%N
i〕)×(1+3.14×〔%Mo〕) (単位:m
m、〔%X〕:元素Xの重量%) CR:鋼材の冷却速度(単位:℃/sec )3. C: 0.15 to 0.50% by weight, S
i ≦ 2.0%, Mn ≦ 0.6%, P ≦ 0.015%, S
≦ 0.02%, Cr: 0.1-3.0%, Mo: 0.2
-1.2%, Ni≤2.0%, Al: 0.005-1.
0%, N ≦ 0.03%, V: 0.20%
More than 0.50%, Ti: more than 0.05%, 0.50%
Hereinafter, after hot rolling a steel containing one or two or more kinds of Nb: more than 0.05% and 0.50% or less, the balance being Fe and unavoidable impurities, K defined by the following formula
After cooling under conditions satisfying l ≦ 130, and then performing spheroidizing annealing, forming into a predetermined shape by cold working, and then performing quenching / tempering treatment,
125 kgf /
A method for producing steel for machine structural use having a tensile strength of not less than 2 mm and excellent in delayed fracture resistance. Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% S
i]) × (1 + 4.10 × [% Mn]) × (1 + 2.8
3 x [% P]) x (1-0.62 x [% S]) x (1+
2.33 × [% Cr]) × (1 + 0.52 × [% N
i]) × (1 + 3.14 × [% Mo]) (unit: m
m, [% X]: weight% of element X) CR: cooling rate of steel material (unit: ° C / sec)
i≦2.0%、Mn≦0.6%、P≦0.015%、S
≦0.02%、Cr:0.1〜3.0%、Mo:0.2
〜1.2%、Ni≦2.0%、Al:0.005〜1.
0%、N≦0.03%を含有し、さらにV:0.20%
超、0.50%以下、Ti:0.05%超、0.50%
以下、Nb:0.05%超、0.50%以下の1種また
は2種以上を含み、残部Feおよび不可避的不純物から
なる鋼に圧延仕上温度を650〜900℃の温度域とす
る熱間圧延を施した後、下記式によって定義されるKl
≦130を満たす条件下に冷却し、次いで球状化焼鈍を
施した後、冷間加工によって所定の形状に成形し、次い
で焼入れ・焼戻し処理を施すに際し、焼戻しを400℃
以上の温度域で行うことを特徴とする125kgf/m
m2 以上の引張強度を有する耐遅れ破壊特性の優れた機
械構造用鋼の製造方法。 Kl=Dl+260×1og10(CR) Dl=(5×〔%C〕+3)×(1+0.64×〔%S
i〕)×(1+4.10×〔%Mn〕)×(1+2.8
3×〔%P〕)×(1−0.62×〔%S〕)×(1+
2.33×〔%Cr〕)×(1+0.52×〔%N
i〕)×(1+3.14×〔%Mo〕) (単位:m
m、〔%X〕:元素Xの重量%) CR:鋼材の冷却速度(単位:℃/sec )4. C: 0.15 to 0.50% by weight, S
i ≦ 2.0%, Mn ≦ 0.6%, P ≦ 0.015%, S
≦ 0.02%, Cr: 0.1-3.0%, Mo: 0.2
-1.2%, Ni≤2.0%, Al: 0.005-1.
0%, N ≦ 0.03%, V: 0.20%
More than 0.50%, Ti: more than 0.05%, 0.50%
Hereinafter, Nb: hot-rolled steel containing one or more of 0.05% or more and 0.50% or less, and the balance consisting of Fe and unavoidable impurities, with a rolling finish temperature of 650 to 900 ° C. After rolling, Kl defined by the following equation:
After cooling under conditions satisfying ≦ 130, and then performing spheroidizing annealing, forming into a predetermined shape by cold working, and then performing quenching / tempering treatment, tempering at 400 ° C.
125 kgf / m, which is performed in the above temperature range
A method for producing a steel for machine structural use having a tensile strength of at least m 2 and excellent resistance to delayed fracture. Kl = Dl + 260 × 1 log 10 (CR) Dl = (5 × [% C] +3) × (1 + 0.64 × [% S
i]) × (1 + 4.10 × [% Mn]) × (1 + 2.8
3 x [% P]) x (1-0.62 x [% S]) x (1+
2.33 × [% Cr]) × (1 + 0.52 × [% N
i]) × (1 + 3.14 × [% Mo]) (unit: m
m, [% X]: weight% of element X) CR: cooling rate of steel material (unit: ° C / sec)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12780192A JP3218442B2 (en) | 1992-05-20 | 1992-05-20 | Manufacturing method of mechanical structural steel with excellent delayed fracture resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12780192A JP3218442B2 (en) | 1992-05-20 | 1992-05-20 | Manufacturing method of mechanical structural steel with excellent delayed fracture resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0625745A JPH0625745A (en) | 1994-02-01 |
JP3218442B2 true JP3218442B2 (en) | 2001-10-15 |
Family
ID=14969017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12780192A Expired - Fee Related JP3218442B2 (en) | 1992-05-20 | 1992-05-20 | Manufacturing method of mechanical structural steel with excellent delayed fracture resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3218442B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102443740A (en) * | 2010-10-14 | 2012-05-09 | 宝山钢铁股份有限公司 | Alloy steel nitride and manufacture method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100514800B1 (en) * | 2002-06-12 | 2005-09-14 | 주식회사 포스코 | Method for manufacturing wire rods having excellent cold formability |
US8459213B2 (en) | 2008-04-16 | 2013-06-11 | Donald E. Moriarty | Partially self-refueling low emissions vehicle and stationary power system |
JP5282451B2 (en) * | 2008-06-06 | 2013-09-04 | 新日鐵住金株式会社 | Steel for high strength bolts |
CN115572917A (en) * | 2021-06-21 | 2023-01-06 | 宝山钢铁股份有限公司 | Economical steel for fastener and manufacturing method thereof |
CN115852241B (en) * | 2021-09-24 | 2024-06-04 | 宝山钢铁股份有限公司 | Steel and bar for high-homogeneity high-hardenability wind power bolt and manufacturing method thereof |
-
1992
- 1992-05-20 JP JP12780192A patent/JP3218442B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102443740A (en) * | 2010-10-14 | 2012-05-09 | 宝山钢铁股份有限公司 | Alloy steel nitride and manufacture method thereof |
CN102443740B (en) * | 2010-10-14 | 2013-10-09 | 宝山钢铁股份有限公司 | Alloy steel nitride and manufacture method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0625745A (en) | 1994-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11140582A (en) | High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production | |
JP7524357B2 (en) | 780MPa-class cold-rolled annealed dual-phase steel and its manufacturing method | |
KR20080034958A (en) | Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof | |
JPH08295982A (en) | Thick steel plate excellent in toughness at low temperature and its production | |
JP2876968B2 (en) | High-strength steel sheet having high ductility and method for producing the same | |
JPS6160892B2 (en) | ||
JPH10306316A (en) | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness | |
JP3218442B2 (en) | Manufacturing method of mechanical structural steel with excellent delayed fracture resistance | |
JP3572993B2 (en) | Steel wire, steel wire, and method of manufacturing the same | |
JP3733229B2 (en) | Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance | |
JP3422864B2 (en) | Stainless steel with excellent workability and method for producing the same | |
JPH06128631A (en) | Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness | |
JPS6159379B2 (en) | ||
JPH05255738A (en) | Production of steel for machine structural use excellent in delayed fracture resistance | |
JP3635803B2 (en) | Method for producing high-tensile steel with excellent toughness | |
JP4300049B2 (en) | Manufacturing method of high-strength steel pipe for building structure with low yield ratio | |
WO1994028187A1 (en) | High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same | |
JPH07150245A (en) | Production of thick-walled steel tube having high toughness and low yield ratio | |
JP3528676B2 (en) | Steel wire rod, steel wire and manufacturing method thereof | |
JPH0688129A (en) | Production of high strength steel pipe as welded low in residual stress | |
KR100431848B1 (en) | Method for manufacturing high carbon wire rod containing high silicon without low temperature structure | |
JP3033459B2 (en) | Manufacturing method of non-heat treated high strength steel | |
JP2919642B2 (en) | Manufacturing method of high carbon steel for tempering with excellent toughness and fatigue resistance | |
JPS6196030A (en) | Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking | |
JPH06340924A (en) | Production of low yield ratio high tensile strength steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010619 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |