JPH0967624A - Production of high strength oil well steel pipe excellent in sscc resistance - Google Patents

Production of high strength oil well steel pipe excellent in sscc resistance

Info

Publication number
JPH0967624A
JPH0967624A JP24073695A JP24073695A JPH0967624A JP H0967624 A JPH0967624 A JP H0967624A JP 24073695 A JP24073695 A JP 24073695A JP 24073695 A JP24073695 A JP 24073695A JP H0967624 A JPH0967624 A JP H0967624A
Authority
JP
Japan
Prior art keywords
steel pipe
resistance
less
sscc resistance
sscc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24073695A
Other languages
Japanese (ja)
Inventor
Toshiharu Abe
俊治 阿部
Hideki Takabe
秀樹 高部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24073695A priority Critical patent/JPH0967624A/en
Publication of JPH0967624A publication Critical patent/JPH0967624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To industrially produce an oil well steel pipe having high strength and excellent sulfide stress corrosion cracking resistance (SSCC resistance) at a low cost by specifying a chemical composition and controlling the maximum grain size of nonmetallic inclusions in a product. SOLUTION: A steel pipe, having a composition consisting of, by weight, 0.15-0.30% C, 0.05-1.00% Si, 0.20-1.50% Mn, <=0.02% P, 0.3-1.5% Cr, 0.10-1.00% Mo, 0.01-0.07% Al, <=0.015% N, <=0.0015% S, 0.0002-0.0010% Ca, one or more kinds among 0.01-0.05% Nb, 0.01-0.05% Ti, 0.01-0.10% V, and 0.001-0.005% B, and the balance Fe, is prepared. This steel pipe is hardened from a temp. in the range not lower than the Ac3 transformation point and lower than the crystal coarsening initiating temp. and then tempered at a temp. not higher than the Ac1 transformation point. By this method, the maximum grain size of nonmetallic inclusions in a product can be controlled to <=20μm and nonmetallic inclusions can be finely dispersed, by which SSCC resistance can be remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高強度でかつ耐
硫化物応力腐食割れ性(以下耐SSCC性という)に優
れた油井およびガス井用として適した鋼管の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel pipe having high strength and excellent resistance to sulfide stress corrosion cracking (hereinafter referred to as SSCC resistance), which is suitable for oil wells and gas wells.

【0002】[0002]

【従来の技術】近年、石油の油井や天然ガスのガス井
は、近い将来に予想される石油資源の枯渇化を目前にし
て、従来は顧みられなかったような深層油田の発掘や、
開発が一旦放棄されたサワーガス田などに対する開発が
世界的規模で盛んに行われている。
2. Description of the Related Art In recent years, oil wells and natural gas gas wells have been excavated in deep oil fields that have not been neglected in the past, due to the depletion of petroleum resources expected in the near future,
Development is being actively conducted on a global scale in areas such as the sour gas field where development was once abandoned.

【0003】このような油井、ガス井は、一般に深度が
数千mと極めて深く、長い油井管、ガス井管(以下総称
して油井管という)を吊り下げる形となるため、地上付
近の油井管には大きな荷重がかかるので、高強度である
ことが要求されている。また、その油井、ガス井の雰囲
気は、H2S、CO2、Cl-等を含有する湿潤下の極め
て厳しい腐食環境の場合が多く、耐食性、特に耐SSC
C性に優れた油井管が要求される。このため、油井、ガ
ス井の掘削、および採油、採ガスなどの油井管として
は、高強度でかつ耐食性、特に耐SSCC性に対する要
求が以前にも増して厳しくなってきている。
[0003] Such oil wells and gas wells are generally extremely deep with a depth of several thousand meters, and have a shape in which long oil well pipes and gas well pipes (hereinafter collectively referred to as oil well pipes) are suspended. Since the pipe is heavily loaded, it is required to have high strength. Further, the atmosphere of the oil well and the gas well is often an extremely severe corrosive environment containing H 2 S, CO 2 , Cl −, etc. under a wet condition, and thus the corrosion resistance, particularly the SSC resistance
Oil well pipes with excellent C properties are required. Therefore, for oil well pipes for drilling oil wells and gas wells, and for oil collection, gas collection, etc., the requirements for high strength and corrosion resistance, particularly SSCC resistance, have become more severe than ever before.

【0004】このような観点から従来の油井管は、通常
Mn−Cr鋼またはCr−Mo鋼から製造した油井管
に、焼入れ、焼戻し処理を行って製造されている。すな
わち、油井管の焼入れ、焼戻し処理は、高強度化と高靭
性化に寄与し、焼戻しマルテンサイト組織は、耐SSC
C性に優れた性能を示す。しかしながら、耐SSCC性
と強度とは、相反する関係に有り、高強度になるほど高
い耐SSCC性が要求される。このため、従来は、耐S
SCC性確保の制約から、降伏強さ655〜758N/
mm2が限界とされていた。
From such a viewpoint, the conventional oil country tubular goods are usually manufactured by quenching and tempering an oil country tubular goods manufactured from Mn-Cr steel or Cr-Mo steel. That is, quenching and tempering of oil country tubular goods contribute to strengthening and toughness, and the tempered martensite structure is SSC resistant.
Shows excellent performance in C property. However, SSCC resistance and strength have a contradictory relationship, and higher strength requires higher SSCC resistance. For this reason, conventionally, S resistance
Yield strength of 655-758N /
The limit was mm 2 .

【0005】降伏強さ690N/mm2以上の油井管の
製造方法としては、C:0.15〜0.45%、Si:
0.1〜1.0%、Mn:0.3〜1.8%、sol.
Al:0.01%以下、Ti:を0.005〜0.1%
とZr:0.01〜0.2%の1種または2種以上、
N:{0.002+[Ti(%)+Zr(%)]/8}
%以下、AlN:0.005%以下を含み、残部実質的
にFeからなる低合金鋼管に対し、880〜980℃か
ら焼入れを行った後、600〜730℃で焼戻しを行う
と共に、600〜730℃の温度域において塑性加工を
全歪量が1〜20%となるよう1回または複数回行い、
しかる後に800〜950℃からの焼入れと600〜7
30℃での焼戻しとを行う方法(特開平1−28332
2号公報)、C:0.15〜0.50%、Si:0.1
0〜1.0%、Mn:0.3〜1.8%、Cr:0.0
4%以下、Mo:0.82〜3.0%、sol.Al:
0.005〜0.07%、N:0.01%以下を含み、
必要であれば、Nb:0.005〜0.10%、Ti:
0.005〜0.15%、B:0.0010〜0.00
50%、Zr:0.01〜0.2%の1種または2種以
上を含有し、残部Feおよび不可避的不純物からなる鋼
管に対し、840〜950℃で0.1〜2.0時間の加
熱から焼入れを行い、ついで600〜740℃で0.1
〜5.0時間の焼戻しを行う方法(特開平3−2044
3号公報)が提案されている。
As a method for producing an oil country tubular good having a yield strength of 690 N / mm 2 or more, C: 0.15 to 0.45%, Si:
0.1-1.0%, Mn: 0.3-1.8%, sol.
Al: 0.01% or less, Ti: 0.005-0.1%
And Zr: 0.01 to 0.2%, one or more,
N: {0.002+ [Ti (%) + Zr (%)] / 8}
% Or less, AlN: 0.005% or less, and the remainder is a low alloy steel pipe consisting essentially of Fe, after quenching from 880 to 980 ° C., then tempering at 600 to 730 ° C. and 600 to 730 In the temperature range of ℃, plastic working is performed once or multiple times so that the total strain amount becomes 1 to 20%,
After that, quenching from 800 to 950 ℃ and 600 to 7
A method of performing tempering at 30 ° C. (JP-A-1-28332)
No. 2), C: 0.15 to 0.50%, Si: 0.1
0-1.0%, Mn: 0.3-1.8%, Cr: 0.0
4% or less, Mo: 0.82 to 3.0%, sol. Al:
0.005 to 0.07%, including N: 0.01% or less,
If necessary, Nb: 0.005 to 0.10%, Ti:
0.005-0.15%, B: 0.0010-0.00
50%, Zr: 0.01 to 0.2% of one type or two or more types, and the balance of Fe and unavoidable impurities is applied to a steel pipe at 840 to 950 ° C. for 0.1 to 2.0 hours. From heating to quenching, then 0.1 at 600-740 ℃
A method of tempering for up to 5.0 hours (Japanese Patent Laid-Open No. 3-2044)
No. 3 gazette) is proposed.

【0006】また、C:0.15〜0.40%、Si:
0.1〜1.0%、Mn:0.3〜1.0%、Cr:
0.1〜1.5%、Mo:0.1〜1.0%、Al:
0.01〜0.10%、P:0.015以下、S:0.
005%以下、N:0.003〜0.015%を含有す
ると共に、必要に応じてさらに、Nb:0.01〜0.
10%、V:0.01〜0.10%、Ti:0.005
〜0.050%、B:0.0001〜0.0050%、
Ca:0.0005〜0.0100%、Cu:0.1〜
0.5%のうちの1種以上を含み、残部がFeおよび不
可避的不純物からなる成分組成の鋼を、Ac3変態点以
上結晶粒粗大化開始温度未満の温度域から焼入れし、続
いてこれを再びAc3変態点以上結晶粒粗大化開始温度
未満の温度域にまで加熱した後、該温度域から再度焼入
れし、その後Ac1変態点以下の温度で焼戻すか、ある
いはAc3変態点以上結晶粒粗大化開始温度未満の温度
域にまで加熱した後、(Ac1変態点−50℃)以下の
温度で焼戻し、続いてこれを再びAc3変態点以上結晶
粒粗大化開始温度未満の温度域にまで加熱した後、該温
度域から再度焼入れし、その後Ac1変態点以下の温度
で焼戻す方法(特開昭59−232220号公報)、
C:0.30%以下、Si:0.05〜1.00%、M
n:0.30〜1.00%、P:0.03%以下、S:
0.03%以下、Cr:0.30〜1.50%、Mo:
0.10〜2.00%、Al:0.01〜0.05%、
N:0.015%以下を含み、Nb:0.01〜0.0
4%、V:0.03〜0.10%、Ti:0.01〜
0.05%、B:0.0010〜0.0050%、C
a:0.0010〜0.0050%のうちの1種または
2種以上を含有し、残部がFeおよび不可避的不純物か
らなる鋼管に対し、焼入れ焼戻しを2回繰り返す高強度
耐食性鋼管の製造方法において、1回目の焼入れ焼戻し
後に冷間もしくは温間で完全な曲がり取りを行い、2回
目の焼入れ焼戻し後は温間で軽微な曲がり取りを行う
か、もしくは曲がり取りを行わない方法(特開平5−2
87381号公報)が提案されている。
C: 0.15 to 0.40%, Si:
0.1-1.0%, Mn: 0.3-1.0%, Cr:
0.1-1.5%, Mo: 0.1-1.0%, Al:
0.01 to 0.10%, P: 0.015 or less, S: 0.
005% or less, N: 0.003 to 0.015%, and if necessary, Nb: 0.01 to 0.
10%, V: 0.01 to 0.10%, Ti: 0.005
~ 0.050%, B: 0.0001-0.0050%,
Ca: 0.0005 to 0.0100%, Cu: 0.1
Steel containing 0.5% or more of 0.5% and the balance being Fe and inevitable impurities is quenched from a temperature range of Ac3 transformation point or more and less than the grain coarsening start temperature, and then this is quenched. After heating again to a temperature range of Ac3 transformation point or higher and lower than the crystal grain coarsening start temperature, quenching is performed again from that temperature range and then tempering at a temperature of Ac1 transformation point or lower, or crystal grain coarsening of Ac3 transformation point or higher. After heating to a temperature range lower than the starting temperature, tempering at a temperature of (Ac1 transformation point −50 ° C.) or lower, and then heating it again to a temperature range of Ac3 transformation point or higher and lower than the crystal grain coarsening start temperature. A method of quenching again from the temperature range and then tempering at a temperature below the Ac1 transformation point (Japanese Patent Laid-Open No. 59-232220),
C: 0.30% or less, Si: 0.05 to 1.00%, M
n: 0.30 to 1.00%, P: 0.03% or less, S:
0.03% or less, Cr: 0.30 to 1.50%, Mo:
0.10-2.00%, Al: 0.01-0.05%,
N: 0.015% or less is included, Nb: 0.01 to 0.0
4%, V: 0.03 to 0.10%, Ti: 0.01 to
0.05%, B: 0.0010 to 0.0050%, C
a: In a method for producing a high-strength corrosion-resistant steel pipe, which contains one or more of 0.0010 to 0.0050% and the balance is Fe and unavoidable impurities, and the quenching and tempering is repeated twice for the steel pipe. A method in which complete bending is performed in the cold or warm after the first quenching and tempering, and a slight bending is performed in the warm after the second quenching and tempering, or no bending is performed. Two
No. 87381) has been proposed.

【0007】[0007]

【発明が解決しようとする課題】上記特開平1−283
322号公報、特開平3−20443号公報に開示の方
法は、1回目の焼入れ焼戻し後塑性加工を実施し、再度
焼入れ焼戻しを行うため、多数の熱処理が必要であり、
製造コストが増加して高価となる。また、特開昭59−
232220号公報、特開平5−287381号公報に
開示の方法は、前記特開平1−283322号公報、特
開平3−20443号公報に開示の方法と同様に、2回
の焼入れ焼戻しを行うため、多数の熱処理が必要であ
り、製造コストが増加して高価となるという欠点を有し
ている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method disclosed in Japanese Laid-Open Patent Publication No. 322 and Japanese Unexamined Patent Publication No. 3-20443, a large number of heat treatments are required because the plastic working is performed after the first quenching and tempering and the quenching and tempering is performed again.
Manufacturing cost increases and becomes expensive. Also, Japanese Unexamined Patent Publication No.
The methods disclosed in Japanese Patent No. 232220 and Japanese Patent Application Laid-Open No. 5-287381 disclose quenching and tempering twice as in the methods disclosed in Japanese Patent Application Laid-Open Nos. 1-283322 and 3-20443. A large number of heat treatments are required, and there is a drawback that the manufacturing cost increases and becomes expensive.

【0008】上記のとおり、690N/mm2以上の高
強度と耐SSCC性の双方を満足させるためには、二次
加工によって細粒の焼戻しマルテンサイト組織を得る方
法が多数提案されているが、例えば、特開平5−287
381号公報の方法により製造された鋼管でも、耐SS
CC性試験の1種であるNACE定荷重試験(室温下、
2Sを飽和させた5%NaCl水溶液に0.5%CH3
COOHを添加した溶液中で、直径6.4mmの丸棒引
張試験片に定荷重を負荷し、720時間で破断しない限
界負荷応力により耐SSCC性を評価する試験)を行う
と、高降伏強さ材では、高負荷応力側で時々短時間で破
断する現象が起こることがあり、耐SSCC性の性能上
の問題を有している。
As described above, in order to satisfy both the high strength of 690 N / mm 2 or more and the SSCC resistance, many methods have been proposed to obtain a fine grain tempered martensite structure by secondary working. For example, Japanese Patent Laid-Open No. 5-287
Even steel pipes manufactured by the method of Japanese Patent No. 381 have SS resistance.
NACE constant load test (room temperature,
0.5% CH 3 was added to 5% NaCl aqueous solution saturated with H 2 S.
When a constant load is applied to a round bar tensile test piece with a diameter of 6.4 mm in a solution containing COOH, and SSCC resistance is evaluated by a limit load stress that does not break in 720 hours), a high yield strength is obtained. The material sometimes has a phenomenon of breaking on the high load stress side in a short time from time to time, and has a problem in SSCC resistance performance.

【0009】この発明の目的は、上記従来技術の欠点を
解消し、690N/mm2以上の高強度で、しかも、そ
の高強度に見合う優れた耐SSCC性を有する油井用に
適した鋼管を低コストで工業的に製造できる耐SSCC
性に優れた高強度油井用鋼管の製造方法を提供すること
にある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to reduce the steel pipe suitable for oil wells having a high strength of 690 N / mm 2 or more and excellent SSCC resistance commensurate with the high strength. SSCC resistant to be industrially manufactured at low cost
An object of the present invention is to provide a method for producing a high-strength steel pipe for oil wells having excellent properties.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく硫化物応力腐食割れ試験後の試験片を詳
細に調査した結果、硫化物応力腐食割れの発生は、Ca
−Al−O系の大型非金属介在物および伸延したMnS
系の非金属介在物が起点となっていることを解明した。
そこで、本発明者らは、耐SSCC性に及ぼす合金成分
の影響について種々調査を実施し、所定の化学成分範囲
に限定することによって製品での非金属介在物の最大粒
径を20μm以下に制御でき、非金属介在物を微小に分
散して耐SSCC性が大幅に向上できること、特にS、
Caの含有量を微少に限定することにより達成できるこ
とを究明し、この発明に到達した。
Means for Solving the Problems As a result of detailed investigation of the test piece after the sulfide stress corrosion cracking test in order to achieve the above object, the inventors found that the occurrence of sulfide stress corrosion cracking was Ca.
-Al-O based large non-metallic inclusions and extended MnS
It was clarified that the non-metallic inclusions in the system were the starting points.
Therefore, the present inventors conducted various investigations on the influence of alloy components on SSCC resistance, and controlled the maximum particle size of non-metallic inclusions in the product to 20 μm or less by limiting the range to a predetermined chemical component range. It is possible to disperse non-metallic inclusions minutely and significantly improve SSCC resistance, especially S,
It was clarified that this can be achieved by limiting the content of Ca to a minute amount, and the present invention was reached.

【0011】すなわちこの発明は、C:0.15〜0.
30%、Si:0.05〜1.00%、Mn:0.20
〜1.50%、P:0.02%以下、Cr:0.3〜
1.5%、Mo:0.10〜1.00%、Al:0.0
1〜0.07%、N:0.015%以下、S:0.00
15%以下、Ca:0.0002〜0.0010%を含
み、かつ、Nb:0.01〜0.05%、Ti:0.0
1〜0.05%、V:0.01〜0.10%、B:0.
001〜0.005%のうちの1種または2種以上を含
有し、残部がFeおよび不可避的不純物からなる鋼管に
対し、Ac3変態点以上、結晶粗大化開始温度未満の温
度から焼入れし、ついでAc1変態点以下の温度で焼戻
しを行うことを特徴とする耐SSCC性に優れた高強度
油井用鋼管の製造方法である。
That is, according to the present invention, C: 0.15 to 0.
30%, Si: 0.05 to 1.00%, Mn: 0.20
~ 1.50%, P: 0.02% or less, Cr: 0.3 ~
1.5%, Mo: 0.10 to 1.00%, Al: 0.0
1 to 0.07%, N: 0.015% or less, S: 0.00
15% or less, including Ca: 0.0002 to 0.0010%, and Nb: 0.01 to 0.05%, Ti: 0.0
1 to 0.05%, V: 0.01 to 0.10%, B: 0.
001 to 0.005% of 1 or 2 or more, the balance is Fe and unavoidable impurities to the steel pipe, quenching from a temperature of Ac 3 transformation point or more, less than the crystal coarsening start temperature, Then, it is a method for producing a high-strength steel pipe for oil wells having excellent SSCC resistance, which is characterized by performing tempering at a temperature not higher than the Ac 1 transformation point.

【0012】[0012]

【発明の実施の形態】以下にこの発明の油井用鋼管の化
学成分の限定理由を説明する。Cは鋼の強度、靭性を確
保するのに必要不可欠な元素であるが、0.15%未満
では十分でなく、0.30%を超えると焼入れ時に焼割
れが発生するので、0.15〜0.30%とした。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the chemical components of the oil well steel pipe of the present invention will be described below. C is an essential element for securing the strength and toughness of steel, but if it is less than 0.15%, it is not sufficient, and if it exceeds 0.30%, quench cracking occurs during quenching, so 0.15% It was set to 0.30%.

【0013】Siは脱酸および強度確保のために必要な
元素であるが、0.05%未満では脱酸が十分でなく、
1.00%を超えると靭性の劣化をきたすので、0.0
5〜1.00%とした。
Si is an element necessary for deoxidation and securing strength, but if less than 0.05%, deoxidation is not sufficient,
If it exceeds 1.00%, the toughness will deteriorate, so 0.0
It was set to 5 to 1.00%.

【0014】MnはSiと同様脱酸および強度確保のた
めに必要な元素であるが、0.20%未満では脱酸が十
分でなく、1.50%を超えると靭性の劣化をきたすの
で、0.20〜1.50%とした。
Mn is an element necessary for deoxidation and securing strength like Si, but if it is less than 0.20%, deoxidation is not sufficient, and if it exceeds 1.50%, toughness is deteriorated. It was set to 0.20 to 1.50%.

【0015】Pは鋼中に存在する不純物であり、鋼の清
浄性を損ない靭性ならびに延性を劣化させるので、少な
い方がよく、0.02%以下とした。
P is an impurity present in the steel and impairs the cleanliness of the steel and deteriorates the toughness and ductility.

【0016】Crは焼入れ性および耐食性を確保するの
に必要な元素であるが、0.3%未満ではその効果が十
分でなく、1.5%を超えると鋼中への水素侵入を助長
し、耐SSCC性を劣化させるので、0.3〜1.5%
とした。
Cr is an element necessary to secure hardenability and corrosion resistance, but if it is less than 0.3%, its effect is not sufficient, and if it exceeds 1.5%, hydrogen penetration into the steel is promoted. , Deteriorates SSCC resistance, so 0.3-1.5%
And

【0017】MoはCrと同様焼入れ性および耐食性を
向上させ、かつ焼戻し軟化抵抗を高め、高強度化であっ
ても高温焼戻しを可能にし、耐SSCC性を向上させる
元素であるが、0.10%未満ではその効果が十分でな
く、1.00%を超えるとその効果が飽和し、粗大な炭
化物を生成して逆に靭性と耐SSCC性を劣化させるの
で、0.10〜1.00%とした。
Mo is an element which, like Cr, improves hardenability and corrosion resistance, increases temper softening resistance, enables high temperature tempering even with high strength, and improves SSCC resistance. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 1.00%, the effect is saturated, and coarse carbides are generated, conversely degrading toughness and SSCC resistance, so 0.10 to 1.00% And

【0018】Alは脱酸および靭性確保に有効な元素で
あるが、0.01%未満ではその効果が十分でなく、
0.07%を超えるとアルミナ系のクラスター状介在物
を生成し、靭性を劣化させるので0.01〜0.07%
とした。
Al is an element effective in deoxidizing and ensuring toughness, but if it is less than 0.01%, its effect is not sufficient,
If it exceeds 0.07%, alumina-based cluster-like inclusions are generated and the toughness deteriorates, so 0.01 to 0.07%
And

【0019】Nは耐SSCC性を支配するAlN形成に
必要な元素であるが、0.015%を超えると耐食性、
靭性を劣化させるので、0.015%以下とした。
N is an element necessary for forming AlN that controls SSCC resistance, but if it exceeds 0.015%, corrosion resistance,
Since it deteriorates the toughness, it is set to 0.015% or less.

【0020】SはPと同様に鋼中に不可避的に存在する
不純物であり、鋼の清浄性を損ない靭性、延性を劣化さ
せるので少ないほどよく、かつ製品段階で伸延したMn
Sを形成し、耐SSCC性を著しく結果させるので、
0.0015%以下とした。
Similar to P, S is an impurity that is inevitably present in the steel and impairs the cleanliness of the steel and deteriorates the toughness and ductility. Therefore, the smaller the content, the better, and the Mn elongated in the product stage.
Since S is formed and the SSCC resistance is remarkably obtained,
It was set to 0.0015% or less.

【0021】Caは介在物の形態制御により靭性向上、
耐SSCC性向上に有効な元素であるが、0.0002
%未満ではその効果が十分でなく、0.0010%を超
えるとCa−Al−O系のクラスター状の非金属介在物
が局部的に散在することがあり、耐食性試験時に硫化物
応力腐食割れ発生の起点となるので、0.0002〜
0.0010%とした。
Ca improves toughness by controlling the morphology of inclusions,
It is an element effective in improving SSCC resistance, but 0.0002
%, The effect is not sufficient, and if it exceeds 0.0010%, Ca-Al-O system cluster-like non-metallic inclusions may be scattered locally, and sulfide stress corrosion cracking occurs during the corrosion resistance test. Since it is the starting point of 0.0002 ~
It was set to 0.0010%.

【0022】また、Ti、Nb、V、Bは、それぞれ耐
SSCC性の向上に有効な元素であり、これらを1種以
上添加することとした。
Further, Ti, Nb, V and B are elements effective for improving SSCC resistance, and it is decided to add one or more of them.

【0023】Ti、Nbはいずれも結晶粒を微細化し、
靭性ならびに耐SSCC性を向上させる元素であるが、
0.01%未満ではその効果が十分でなく、0.05%
を超えるとその効果が飽和すると共に、NbC析出物が
増加して耐SSCC性を劣化させるので、いずれも0.
01〜0.05%とした。
In both Ti and Nb, crystal grains are refined,
It is an element that improves toughness and SSCC resistance,
If less than 0.01%, the effect is not sufficient, 0.05%
When the value exceeds 1.0, the effect is saturated, and NbC precipitates increase to deteriorate the SSCC resistance.
It was set to 01 to 0.05%.

【0024】Vは焼戻し軟化抵抗を高める元素である
が、0.01%未満ではその効果が十分でなく、0.1
0%を超えると靭性が劣化するので、0.01〜0.1
0%とした。
V is an element that enhances the temper softening resistance, but if it is less than 0.01%, its effect is not sufficient and 0.1
If it exceeds 0%, the toughness deteriorates, so 0.01 to 0.1
0%.

【0025】Bは焼入れ性および耐SSCC性の向上に
有効な元素であるが、0.001%未満ではその効果が
十分でなく、0.005%を超えると靭性が劣化するの
で、0.001〜0.005%とした。
B is an element effective for improving the hardenability and the SSCC resistance, but if it is less than 0.001%, its effect is not sufficient, and if it exceeds 0.005%, the toughness deteriorates, so 0.001 Was made 0.005%.

【0026】この発明における鋼管の製造は、前記化学
成分の鋼を溶製し、脱ガスを十分に行ったのち、鋳込み
温度を制御して大型のクラスター状介在物の浮上分離を
十分にさせながら鋳込みを行い、耐SSCC性に優れた
高清浄性の鋼塊または連続鋳造によるブルームを製造す
る。次いで分塊圧延で所定径のビレットとした後、マン
ネスマン方式による熱間加工によって所定寸法の鋼管と
する。
In the production of the steel pipe according to the present invention, after the steel having the above-mentioned chemical composition is melted and sufficiently degassed, the casting temperature is controlled while the floating separation of the large cluster inclusions is sufficiently performed. Casting is performed to produce a highly clean steel ingot having excellent SSCC resistance or a bloom by continuous casting. Next, after slab rolling to form a billet having a predetermined diameter, a steel pipe having a predetermined dimension is formed by hot working by the Mannesmann method.

【0027】その後鋼管は、耐SSCC性に優れた炭化
物の微細分散した焼戻しマルテンサイト組織とするため
の焼入れ、焼戻し処理を実施し、炭化物の微細に分散し
た焼戻しマルテンサイト組織とする。この場合における
焼入れ温度は、Ac3変態点以上のオーステナイト温度
域であるが、850℃未満では前段の熱間加工の影響が
残存し、焼戻し後の強度のバラツキが発生する。一方、
焼入れ温度が950℃を超える結晶粒度が粗大化し、耐
SSCC性を低下させるので、好ましくは850〜95
0℃の範囲である。690N/mm2以上の強度とする
ための焼戻し温度は、600℃未満では強度が高くなり
すぎて耐食性が悪化し、750℃を超えると所望の強度
が得られないので、好ましくは600〜750℃の範囲
である。
Thereafter, the steel pipe is subjected to quenching and tempering treatment to obtain a tempered martensite structure in which carbides having excellent SSCC resistance are finely dispersed, to obtain a tempered martensite structure in which carbides are finely dispersed. The quenching temperature in this case is in the austenite temperature range above the Ac3 transformation point, but if it is less than 850 ° C., the effect of the hot working in the previous stage remains, and variations in strength occur after tempering. on the other hand,
Since the crystal grain size of which the quenching temperature exceeds 950 ° C. becomes coarse and the SSCC resistance is lowered, it is preferably 850 to 95.
It is in the range of 0 ° C. If the tempering temperature for obtaining a strength of 690 N / mm 2 or more is less than 600 ° C, the strength becomes too high and the corrosion resistance deteriorates, and if it exceeds 750 ° C, the desired strength cannot be obtained. Is the range.

【0028】[0028]

【実施例】表1に示す化学成分の鋼No.1〜8の鋼を
溶製し、脱ガスを十分に行ったのち、鋳込み温度を制御
して大型のクラスター状介在物の浮上分離を十分にさせ
ながら鋳込みを行って鋼塊または連続鋳造によるブルー
ムとなし、分塊圧延して丸ビレットとしたのち、各丸ビ
レットからマンネスマン方式による熱間圧延によって外
径250mm、肉厚15.0mmの継目無鋼管を製造し
た。次いで各継目無鋼管を920℃で20分加熱後、水
冷焼入れしたのち、焼戻し温度を変化させて熱処理を行
って強度の異なる供試材とした。各供試材は、清浄性を
評価するため、ミクロ研磨後、非金属介在物の大きさを
測定した。
EXAMPLES Steel No. with the chemical composition shown in Table 1 After melting steels 1 to 8 and performing sufficient degassing, casting is carried out while controlling the casting temperature to allow the floating separation of large cluster-like inclusions to be sufficiently carried out to form a steel ingot or a bloom by continuous casting. After that, slab rolling was carried out to obtain round billets, and hot rolling was carried out from each round billet by the Mannesmann method to produce a seamless steel pipe having an outer diameter of 250 mm and a wall thickness of 15.0 mm. Next, each seamless steel pipe was heated at 920 ° C. for 20 minutes, water-quenched, and then heat treated by changing the tempering temperature to obtain test materials having different strengths. In order to evaluate the cleanliness of each test material, the size of nonmetallic inclusions was measured after micropolishing.

【0029】また、各供試材は、引張試験を行い、降伏
点と引張強さを測定すると共に、直径6.4mm、平行
部25.4mmの丸棒引張試験片を肉厚中央部から採取
し、NACE TM−0177 Method−Aに規
定される耐SSCC試験を実施した。なお、耐SSCC
試験は、室温下、H2Sを飽和させた5%NaCl水溶
液に0.5%CH3COOHを添加した溶液中で、引張
試験片にその降伏応力の80%の荷重をかけて720時
間浸漬し、破断の有無により合否を評価した。その結果
を表2に示す。
Each test material was subjected to a tensile test to measure the yield point and the tensile strength, and a round bar tensile test piece having a diameter of 6.4 mm and a parallel portion of 25.4 mm was sampled from the center of the wall thickness. Then, the SSCC resistance test specified in NACE TM-0177 Method-A was carried out. In addition, SSCC resistance
The test was carried out by immersing the tensile test piece in a solution of 5% NaCl aqueous solution saturated with H 2 S and 0.5% CH 3 COOH at room temperature under a load of 80% of its yield stress for 720 hours. Then, the pass or fail was evaluated by the presence or absence of breakage. The results are shown in Table 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示すとおり、鋼No.1〜4から製
造した本発明鋼管は、非金属介在物の最大長さがいずれ
も20μm以下と大幅に減少し、耐SSCC性試験にお
いていずれも破断がなく合格している。これに対し鋼N
o.5〜8から製造した比較鋼管は、SまたはCaの不
純物が多量に含有する鋼No.6、7、8は、かえって
非金属介在物が生長し、また、Ca含有量の少ない鋼N
o.5は、非金属介在物の生長を抑制できず、非金属介
在物の最大長さがいずれも25μmを超えており、耐S
SCC性試験において最大62.5%が破断して不合格
となっている。
As shown in Table 2, steel No. The steel pipes of the present invention produced from Nos. 1 to 4 all passed the test without any breakage in the SSCC resistance test, in which the maximum length of non-metallic inclusions was significantly reduced to 20 μm or less. On the other hand, steel N
o. The comparative steel pipes manufactured from Nos. 5 to 8 are steel Nos. Containing a large amount of S or Ca impurities. On the contrary, Nos. 6, 7, and 8 are steels N in which non-metallic inclusions grow and the Ca content is low.
o. No. 5 could not suppress the growth of non-metallic inclusions, and the maximum length of all non-metallic inclusions exceeded 25 μm.
In the SCC property test, a maximum of 62.5% broke and failed.

【0033】[0033]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、化学成分を特定範囲に限定して非金属介在物の粒径
を小さくすることによって、1回の焼入れ焼戻しにより
耐SSCC性に優れた高強度油井用鋼管を得ることがで
き、比較的低コストで供給することができる。
As described above, according to the method of the present invention, the chemical composition is limited to a specific range to reduce the particle size of the non-metallic inclusions, so that the single quenching and tempering provides excellent SSCC resistance. It is possible to obtain a high-strength steel pipe for oil wells and to supply it at a relatively low cost.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C:0.15〜0.30%、Si:0.
05〜1.00%、Mn:0.20〜1.50%、P:
0.02%以下、Cr:0.3〜1.5%、Mo:0.
10〜1.00%、Al:0.01〜0.07%、N:
0.015%以下、S:0.0015%以下、Ca:
0.0002〜0.0010%を含み、かつ、Nb:
0.01〜0.05%、Ti:0.01〜0.05%、
V:0.01〜0.10%、B:0.001〜0.00
5%のうちの1種または2種以上を含有し、残部がFe
および不可避的不純物からなる鋼管に対し、Ac3変態
点以上、結晶粗大化開始温度未満の温度から焼入れし、
ついでAc1変態点以下の温度で焼戻しを行うことを特
徴とする耐SSCC性に優れた高強度油井用鋼管の製造
方法。
1. C: 0.15-0.30%, Si: 0.
05-1.00%, Mn: 0.20-1.50%, P:
0.02% or less, Cr: 0.3 to 1.5%, Mo: 0.
10-1.00%, Al: 0.01-0.07%, N:
0.015% or less, S: 0.0015% or less, Ca:
0.0002 to 0.0010%, and Nb:
0.01-0.05%, Ti: 0.01-0.05%,
V: 0.01 to 0.10%, B: 0.001 to 0.00
1% or more of 5% is contained, and the balance is Fe
And a steel pipe composed of unavoidable impurities are quenched from a temperature not lower than the Ac 3 transformation point and lower than the crystal coarsening start temperature,
Then, a method for producing a high-strength steel pipe for oil wells having excellent SSCC resistance, which is characterized by performing tempering at a temperature not higher than the Ac 1 transformation point.
JP24073695A 1995-08-25 1995-08-25 Production of high strength oil well steel pipe excellent in sscc resistance Pending JPH0967624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24073695A JPH0967624A (en) 1995-08-25 1995-08-25 Production of high strength oil well steel pipe excellent in sscc resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24073695A JPH0967624A (en) 1995-08-25 1995-08-25 Production of high strength oil well steel pipe excellent in sscc resistance

Publications (1)

Publication Number Publication Date
JPH0967624A true JPH0967624A (en) 1997-03-11

Family

ID=17063943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24073695A Pending JPH0967624A (en) 1995-08-25 1995-08-25 Production of high strength oil well steel pipe excellent in sscc resistance

Country Status (1)

Country Link
JP (1) JPH0967624A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068450A1 (en) * 1999-05-06 2000-11-16 Sumitomo Metal Industries, Ltd. Steel product for oil well having high strength and being excellent in resistance to sulfide stress cracking
KR100340545B1 (en) * 1997-11-25 2002-09-18 주식회사 포스코 A method of manufacturing hot rolled steel for applying 80kgf/mm2 steel pipe
WO2008123425A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low alloy steel for the pipe for oil well use and seamless steel pipe
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
EP2447386A1 (en) 2009-06-24 2012-05-02 JFE Steel Corporation High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
WO2013094179A1 (en) * 2011-12-22 2013-06-27 Jfeスチール株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
JP2013227611A (en) * 2012-04-25 2013-11-07 Jfe Steel Corp High strength steel excellent in ssc resistance and method of manufacturing the same
US8795450B2 (en) 2007-07-10 2014-08-05 Usui Kokusai Sangyo Kaisha Manufacturing method for a steel pipe for fuel injection pipe
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
EP2749664A4 (en) * 2011-08-22 2015-10-07 Nippon Steel & Sumitomo Metal Corp Steel oil well pipe having excellent sulfide stress cracking resistance
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
JP2016094649A (en) * 2014-11-14 2016-05-26 Jfeスチール株式会社 Seamless steel tube and production method therefor
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
CN107338396A (en) * 2017-06-28 2017-11-10 包头钢铁(集团)有限责任公司 High-hardenability gas storage seamless steel pipe and its production method
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
JPWO2020196019A1 (en) * 2019-03-22 2021-12-09 日本製鉄株式会社 Seamless steel pipe suitable for use in sour environments
CN115584435A (en) * 2022-08-30 2023-01-10 浙江钱富万向节有限公司 High-strength steel for cold extrusion molding of heavy cross shaft and preparation method thereof
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340545B1 (en) * 1997-11-25 2002-09-18 주식회사 포스코 A method of manufacturing hot rolled steel for applying 80kgf/mm2 steel pipe
WO2000068450A1 (en) * 1999-05-06 2000-11-16 Sumitomo Metal Industries, Ltd. Steel product for oil well having high strength and being excellent in resistance to sulfide stress cracking
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
WO2008123425A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low alloy steel for the pipe for oil well use and seamless steel pipe
EA012501B1 (en) * 2007-03-30 2009-10-30 Сумитомо Метал Индастриз, Лтд. Low alloy steel for the pipe for oil well use and seamless steel pipe
EP2133443A1 (en) * 2007-03-30 2009-12-16 Sumitomo Metal Industries, Ltd. Low alloy steel for the pipe for oil well use and seamless steel pipe
EP2133443A4 (en) * 2007-03-30 2010-05-05 Sumitomo Metal Ind Low alloy steel for the pipe for oil well use and seamless steel pipe
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8795450B2 (en) 2007-07-10 2014-08-05 Usui Kokusai Sangyo Kaisha Manufacturing method for a steel pipe for fuel injection pipe
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
EP2447386A1 (en) 2009-06-24 2012-05-02 JFE Steel Corporation High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
EP2447386A4 (en) * 2009-06-24 2016-06-15 Jfe Steel Corp High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
CN102459677A (en) * 2009-06-24 2012-05-16 杰富意钢铁株式会社 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
US9234254B2 (en) 2009-06-24 2016-01-12 Jfe Steel Corporation High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9777352B2 (en) 2011-08-22 2017-10-03 Nippon Steel & Sumitomo Metal Corporation Oil-well steel pipe having excellent sulfide stress cracking resistance
EP2749664A4 (en) * 2011-08-22 2015-10-07 Nippon Steel & Sumitomo Metal Corp Steel oil well pipe having excellent sulfide stress cracking resistance
CN104011251A (en) * 2011-12-22 2014-08-27 杰富意钢铁株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
WO2013094179A1 (en) * 2011-12-22 2013-06-27 Jfeスチール株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
US9708681B2 (en) 2011-12-22 2017-07-18 Jfe Steel Corporation High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking
JP2013129879A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp High-strength seamless steel tube for oil well with superior sulfide stress cracking resistance, and method for producing the same
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
JP2013227611A (en) * 2012-04-25 2013-11-07 Jfe Steel Corp High strength steel excellent in ssc resistance and method of manufacturing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
JP2016094649A (en) * 2014-11-14 2016-05-26 Jfeスチール株式会社 Seamless steel tube and production method therefor
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN107338396A (en) * 2017-06-28 2017-11-10 包头钢铁(集团)有限责任公司 High-hardenability gas storage seamless steel pipe and its production method
JPWO2020196019A1 (en) * 2019-03-22 2021-12-09 日本製鉄株式会社 Seamless steel pipe suitable for use in sour environments
CN115584435A (en) * 2022-08-30 2023-01-10 浙江钱富万向节有限公司 High-strength steel for cold extrusion molding of heavy cross shaft and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
US8617462B2 (en) Steel for oil well pipe excellent in sulfide stress cracking resistance
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
EP3173501B1 (en) Low alloy oil-well steel pipe
EP2824198B1 (en) Method for producing seamless steel pipe having high-strength and excellent sulfide stress cracking resistance
EP3208358B1 (en) Low alloy steel pipe for oil wells
US10988819B2 (en) High-strength steel material and production method therefor
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
JP6131890B2 (en) Manufacturing method and selection method of low-alloy high-strength seamless steel pipe for oil well with excellent resistance to sulfide stress corrosion cracking
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP6468302B2 (en) Material for steel pipe for high strength oil well and method for producing steel pipe for high strength oil well using the material
EP3330398B1 (en) Steel pipe for line pipe and method for manufacturing same
JP2004027334A (en) Steel for induction tempering and method of producing the same
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JP2019065343A (en) Steel pipe for oil well and manufacturing method therefor
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH05171361A (en) Production of martensitic stainless steel
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO
JP3238452B2 (en) Forged steel rolls for rolling metal
JP2001059136A (en) STEEL FOR Cr-CONTAINING OIL WELL PIPE EXCELLENT IN HYDROGEN SULFIDE CORROSION RESISTANCE AND CARBON DIOXIDE GAS CORROSION RESISTANCE
JPS6130650A (en) High-strength spring steel
JPH0366384B2 (en)
JPH0967642A (en) Steel material for machine structural use, excellent in cold workability, and its production