JPS63203721A - Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance - Google Patents
Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistanceInfo
- Publication number
- JPS63203721A JPS63203721A JP3672287A JP3672287A JPS63203721A JP S63203721 A JPS63203721 A JP S63203721A JP 3672287 A JP3672287 A JP 3672287A JP 3672287 A JP3672287 A JP 3672287A JP S63203721 A JPS63203721 A JP S63203721A
- Authority
- JP
- Japan
- Prior art keywords
- cracking resistance
- steel sheet
- rolled steel
- hot rolled
- induced cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 52
- 239000010959 steel Substances 0.000 title claims abstract description 52
- 238000005336 cracking Methods 0.000 title claims abstract description 47
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 31
- 239000001257 hydrogen Substances 0.000 title claims abstract description 31
- 230000007797 corrosion Effects 0.000 title claims abstract description 18
- 238000005260 corrosion Methods 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000001816 cooling Methods 0.000 claims abstract description 17
- 238000005096 rolling process Methods 0.000 claims abstract description 15
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 15
- 238000005098 hot rolling Methods 0.000 claims abstract description 9
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims abstract 3
- 238000004804 winding Methods 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 229910052758 niobium Inorganic materials 0.000 abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract 2
- 238000000034 method Methods 0.000 description 16
- 229910001566 austenite Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000009466 transformation Effects 0.000 description 7
- 238000005204 segregation Methods 0.000 description 6
- 229910001563 bainite Inorganic materials 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101000933542 Homo sapiens Transcription factor BTF3 Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 102100026043 Transcription factor BTF3 Human genes 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
産呈上■剋亙立団
本発明は耐水素誘起割れ性及び耐応力腐食割れ性にすぐ
れる非調質熱延鋼板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a non-tempered hot rolled steel sheet having excellent resistance to hydrogen-induced cracking and stress corrosion cracking.
従米坐且歪
近年、鋼板には高強度、高靭性に加えて、耐水素誘起割
れ性や耐応力腐食割れ性にすぐれた高品質鋼板が要求さ
れるに至っている。In recent years, there has been a demand for high-quality steel plates that have high strength and toughness, as well as excellent resistance to hydrogen-induced cracking and stress corrosion cracking.
鋼板のこのような腐食割れに最も大きく影響する因子は
、既によく知られているように、鋼中のマクロ及びミク
ロ偏析と、非金属介在物の伸長である。そこで、従来、
例えば、極低S及び極低P化した清浄鋼に更にCaを添
加して、非金属介在物の形態制御を十分に行なって、上
記したような高品質鋼板を製造する方法が一部で実用化
されている。しかし、この方法によるときは、製造費用
が極めて高価とならざるを得す、しがも、M n Sを
完全に球状化することは、技術的に殆ど不可能であるの
で、球状化されずに、圧延方向に延伸された2μm以下
の長さのA系のMflSが鋼板中に残存し、水素誘起割
れの起点となる。As is already well known, the factors that most significantly affect such corrosion cracking of steel sheets are macro and micro segregation in the steel and elongation of nonmetallic inclusions. Therefore, conventionally,
For example, some methods of manufacturing high-quality steel sheets such as those described above are in practical use by adding Ca to clean steel with extremely low S and extremely low P to sufficiently control the morphology of nonmetallic inclusions. has been made into However, when using this method, the manufacturing cost is extremely high, and it is technically almost impossible to completely spheroidize M n S, so it is difficult to spheroidize M n S. In addition, A-based MflS with a length of 2 μm or less stretched in the rolling direction remains in the steel sheet and becomes the starting point of hydrogen-induced cracking.
別の方法として、CやMn量を低減すると共に、拡散均
熱による鋳造時のミクロ偏析を軽減させる方法も知られ
ているが、この方法は、高温での長時間の加熱を要し、
生産性が低く、また、得られる鋼板が伸びや靭性等の機
械的特性に劣る。更に、鋼中への水素の浸入と拡散を抑
制するために、CuやGoを添加する方法も提案されて
いるが、鋼製造費用が高いほか、厳しい酸性腐食環境に
おいては、水素誘起割れが何ら防止されない。Another known method is to reduce the amount of C and Mn and to reduce micro-segregation during casting by diffusion soaking, but this method requires long-term heating at high temperatures;
Productivity is low, and the resulting steel sheets have poor mechanical properties such as elongation and toughness. Furthermore, methods of adding Cu or Go have been proposed in order to suppress the infiltration and diffusion of hydrogen into steel, but in addition to the high cost of steel production, hydrogen-induced cracking is unlikely to occur in severe acidic corrosion environments. Not prevented.
他方、金属組織の観点からは、仕上圧延後、制御冷却を
鋼板に施して、均一なベイナイト組織又は均一微細なフ
ェライト−ベイナイト組織とする方法も提案されている
が、冷却操作が容易でないと共に、マルテンサイトのよ
うな耐水素誘起割れ性に有害な低温変態生成物相が生成
する場合があり、水素誘起割れの伝播を抑制するには効
果的であっても、水素誘起割れの発生を抑制することは
困難である。On the other hand, from the viewpoint of metallographic structure, a method has been proposed in which the steel sheet is subjected to controlled cooling after finishing rolling to obtain a uniform bainite structure or a uniform fine ferrite-bainite structure, but the cooling operation is not easy and Low-temperature transformation product phases, such as martensite, which are harmful to hydrogen-induced cracking resistance, may be generated, and even though they are effective in suppressing the propagation of hydrogen-induced cracking, it is difficult to suppress the occurrence of hydrogen-induced cracking. That is difficult.
しかも、上述したいずれの方法も、過酷な腐食環境であ
るNACB @食条件下には、水素誘起割れの発生を避
けることができない、特に、材料強度が高い場合、水素
誘起割れの発生を防止することは極めて困難である。Moreover, none of the above methods can avoid the occurrence of hydrogen-induced cracking under NACB@corrosion conditions, which is a severe corrosive environment.Especially, when the material strength is high, hydrogen-induced cracking cannot be prevented. This is extremely difficult.
が ゛ しようとする 占
本発明者らは、上記した問題を解決するために、鋼板の
水素誘起割れ及び応力腐食割れを詳細且つ広範囲にわた
って研究した結果、所定量のNbほか、合金成分を添加
してなる鋼片をその熱間圧延において、850℃以上の
オーステナイト再結晶−未再結晶の遷移温度領域にて仕
上圧延して、所定の混粒組織とすることによって、耐水
素誘起割れ性及び耐応力腐食割れ性に共にすぐれる非調
質熱延鋼板を低廉に得ることができることを見出して、
本発明に至ったものである。In order to solve the above-mentioned problem, the inventors conducted detailed and extensive research on hydrogen-induced cracking and stress corrosion cracking in steel sheets. During hot rolling, the steel slab is finish-rolled in the austenite recrystallization-non-recrystallization transition temperature range of 850°C or higher to form a predetermined mixed grain structure, thereby improving hydrogen-induced cracking resistance and resistance. We discovered that it is possible to obtain non-heat-treated hot-rolled steel sheets with excellent stress corrosion cracking resistance at low cost.
This led to the present invention.
5 占を ゛するための
本発明による耐水素誘起割れ性及び耐応力腐食割れ性に
すぐれる熱延鋼板の製造方法は、重量%で
C0.01〜0.4%、
Si0.01〜0.5%、
Mn 0.01〜2.0%、
AJo、01〜0.1%、
Nb0.01〜0.1%、
P 011%以下、
S 0.03%以下、
残部鉄及び不可避的不純物よりなる鋼片を熱間圧延する
に際して、850℃以上の温度にて仕上圧延した後、9
50〜700℃の温度域から冷却速度5〜b
℃で巻取ることで、粒径5μm以上のフェライト粒の占
める面積率10〜50%の混粒組織とすることを特徴と
する。5. The method for producing a hot rolled steel sheet with excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance according to the present invention for achieving a high carbon content of 0.01-0.4% by weight and 0.01-0.01% Si by weight. 5%, Mn 0.01-2.0%, AJo 01-0.1%, Nb 0.01-0.1%, P 0.11% or less, S 0.03% or less, balance from iron and unavoidable impurities. When hot rolling a steel billet, after finish rolling at a temperature of 850°C or higher, 9
By winding at a cooling rate of 5 to b°C from a temperature range of 50 to 700°C, a mixed grain structure is formed with an area ratio of 10 to 50% occupied by ferrite grains with a grain size of 5 μm or more.
先ず、本発明の方法において用いる鋼における化学成分
の限定理由について説明する。First, the reason for limiting the chemical composition of the steel used in the method of the present invention will be explained.
Cは、鋼に所要の強度を付与するために必須の元素であ
り、本発明においては少な(とも0.01%を添加する
必要がある。しかし、過多に添加するときは、鋼の靭性
と溶接性とを阻害し、また、連続鋳造材の場合には中心
偏析の異常発生の原因ともなり、更には、腐食環境下に
カソード反応の促進効果を助長するため、その添加量の
上限を0゜4%とする。C is an essential element for imparting the required strength to steel, and in the present invention, it is necessary to add a small amount (0.01%. However, when adding too much, it may affect the toughness of the steel. It impairs weldability, and in the case of continuously cast materials, it also causes abnormal center segregation, and furthermore, it promotes the cathode reaction in a corrosive environment, so the upper limit of its addition amount should be set at 0.゜4%.
Stは、強力な脱酸剤として添加され、また、素地中に
固容して、鋼の伸びや延性を著しく改善する効果を有す
る。かかる効果を有効に発現させるためには、少なくと
も0.01%の添加を必要とするが、しかし、過多に添
加するときは、溶接性の劣化、清浄度の悪化、表面スケ
ールの発生等の好ましくない問題を生じるため、その添
加量の上限を0.5%とする。St is added as a strong deoxidizing agent, and when solidified in the matrix, it has the effect of significantly improving the elongation and ductility of steel. In order to effectively exhibit this effect, it is necessary to add at least 0.01%, but if too much is added, undesirable effects such as deterioration of weldability, deterioration of cleanliness, and generation of surface scale may occur. Therefore, the upper limit of its addition amount is set at 0.5%.
Mnは、鋼の強度と靭性を改善するのに顕著な効果を有
し、かかる効果を有効に得るためには、少なくとも0.
01%を添加することが必要である。Mn has a remarkable effect on improving the strength and toughness of steel, and in order to effectively obtain such an effect, Mn must be added at least 0.
It is necessary to add 0.01%.
しかし、過多に添加する場合は、ミクロ偏析が顕著とな
って異常組織及び層状組織が生成し、耐水素誘起割れ性
や靭性を劣化させ、更には溶接性をも劣化させるので、
その上限を2.0%とする。However, if too much is added, micro-segregation becomes noticeable and abnormal structures and layered structures are formed, deteriorating hydrogen-induced cracking resistance and toughness, and furthermore, weldability.
The upper limit is set at 2.0%.
A1は、Siと同様に脱酸剤として必要な元素であり、
少なくとも0.01%を添加するが、過多に添加すると
きは、靭性を劣化させ、また、鋳造欠陥も顕著となるた
め、上限を0.1%とする。A1 is an element necessary as a deoxidizing agent like Si,
At least 0.01% is added, but if added in excess, the toughness deteriorates and casting defects become noticeable, so the upper limit is set to 0.1%.
Nbは、オーステナイトの再結晶を遅延させるのに有用
であると共に、鋼の強度を向上させるのに有用である。Nb is useful in retarding austenite recrystallization and is useful in improving the strength of steel.
かかる効果を有効に得るには、0゜01%以上を添加す
ることが必要である。しかし、過多に添加しても、上記
効果が飽和し、鋼製造の経済性からも好ましくないので
、添加量の上限を0.1%とする。しかも、特に、Ar
、変態点以上の仕上圧延温度領域、即ち、約800〜1
000℃においては、添加量が0.01%よりも少ない
ときは、加工されたオーステナイトが冷却されるまでに
すべて再結晶し、他方、0.1%を越えるときは、再結
晶オーステナイトを得にくい、従って、Nb量が0.O
1〜0.1%の範囲にないときは、仕上圧延後、冷却さ
れるまでに、オーステナイトの再結晶−未再結晶の混合
状態を得ることができない。In order to effectively obtain such effects, it is necessary to add 0.01% or more. However, even if it is added in an excessive amount, the above effect will be saturated and it is not preferable from the economical point of view of steel manufacturing. Therefore, the upper limit of the amount added is set at 0.1%. Moreover, especially Ar
, finish rolling temperature range above the transformation point, i.e. about 800-1
At 000℃, when the amount added is less than 0.01%, all of the processed austenite recrystallizes before cooling, while when it exceeds 0.1%, it is difficult to obtain recrystallized austenite. , Therefore, if the amount of Nb is 0. O
If it is not in the range of 1 to 0.1%, a mixed state of recrystallized and unrecrystallized austenite cannot be obtained after finish rolling and before cooling.
Pは、鋼においてミクロ偏析を助長し、鋼塊中央部に異
常組織の発生を促進し、耐水素誘起割れ性に有害である
ので、本発明においては、その含有量は0.1%以下と
する。P promotes micro-segregation in steel, promotes the generation of abnormal structures in the center of the steel ingot, and is harmful to hydrogen-induced cracking resistance. Therefore, in the present invention, its content is set to 0.1% or less. do.
また、Sは、Mnと結合してA系介在物を形成し、水素
誘起割れ発生の起点となる有害な元素である。鋼にCa
を添加しても、MnSを完全になくすことは不可能であ
るので、その含有量は極力低く抑えるのが有利であり、
本発明においては、鋼中のS含有量を0.003%以下
とする。Further, S is a harmful element that combines with Mn to form A-based inclusions and becomes a starting point for hydrogen-induced cracking. Ca on steel
Even if MnS is added, it is impossible to completely eliminate MnS, so it is advantageous to keep its content as low as possible.
In the present invention, the S content in the steel is 0.003% or less.
本発明においては、鋼板に更に強度や耐食性を付与する
ために、必要に応じてV、TI及びCrよりなる群から
選ばれる少なくとも1種の元素を添加することができる
。In the present invention, in order to further impart strength and corrosion resistance to the steel sheet, at least one element selected from the group consisting of V, TI, and Cr may be added as necessary.
これらの元素は、鋼板の強度を上昇させると共に、その
靭性を改善するために添加されるが、過多に加えても上
記効果が飽和し、更に、鋼製造の経済性を損なうので、
添加量の上限をVについては0.1%、Tiについては
0.1%、Crについては1.0%とする。また、これ
らの元素は、それぞれ添加量が0.01%よりも少ない
ときは、上述した効果を得ることができないので、下限
を0.01%とする。These elements are added to increase the strength of the steel plate and improve its toughness, but if they are added in excess, the above effects will be saturated, and furthermore, this will impair the economic efficiency of steel manufacturing.
The upper limit of the amount added is 0.1% for V, 0.1% for Ti, and 1.0% for Cr. Moreover, since the above-mentioned effects cannot be obtained when the amount of each of these elements added is less than 0.01%, the lower limit is set to 0.01%.
更に、本発明においては、鋼にCaを添加することもで
きる。Caは鋼中の硫化物系介在物の形態と組成を制御
し、特に、Ca / S≧2を満足する場合に効果が大
きく、耐水素誘起割れ性を向上させることができる。し
かし、過多に添加するときは、クラスター状となって、
鋼板品質を劣化させるので、上限を0.01%とする。Furthermore, in the present invention, Ca can also be added to the steel. Ca controls the morphology and composition of sulfide-based inclusions in steel, and is particularly effective when satisfying Ca/S≧2, and can improve hydrogen-induced cracking resistance. However, when added in excess, it forms clusters,
Since it deteriorates the quality of the steel sheet, the upper limit is set at 0.01%.
添加効果を得るためには、0.001%の添加が必要で
あるので、下限をo、oot%とする。In order to obtain the effect of addition, it is necessary to add 0.001%, so the lower limit is set to o, oot%.
本発明の方法によれば、上記のような化学成分を有する
鋼片を熱間圧延するに際して、850℃以上の温度にて
仕上圧延した後950〜700℃の温度域から、冷却速
度5〜b
して、650〜350℃で巻取ることで、粒径5μm以
上のフェライト粒の占める面積率が10〜50%である
混粒組織とするものである。According to the method of the present invention, when hot rolling a steel billet having the above-mentioned chemical composition, after finishing rolling at a temperature of 850°C or higher, the cooling rate is set at 5 to 70°C from a temperature range of 950 to 700°C. By winding it up at 650 to 350°C, a mixed grain structure is obtained in which the area ratio of ferrite grains having a grain size of 5 μm or more is 10 to 50%.
先ず、本発明の方法においては、鋼片の熱間圧延におい
て、850℃以上の温度にて仕上圧延する。仕上圧延温
度が850℃よりも低いときは、オーステナイトが未再
結晶ままであるので、オーステナイト変態後に比較的均
一な細粒組織となり、後述するように、目的とする混粒
組織を得ることができず、適量の粗大なフェライトと微
細なフェライト又はベイナイトとが混在する耐水素誘起
割れ性の改善に有効な組織を得ることができない。First, in the method of the present invention, in hot rolling a steel billet, finish rolling is performed at a temperature of 850° C. or higher. When the finish rolling temperature is lower than 850°C, austenite remains unrecrystallized, so it becomes a relatively uniform fine grain structure after austenite transformation, and as described later, the desired mixed grain structure cannot be obtained. First, it is impossible to obtain a structure in which an appropriate amount of coarse ferrite and fine ferrite or bainite coexist, which is effective in improving hydrogen-induced cracking resistance.
次に、かかる熱間圧延に引き続く冷却過程においては、
950〜700℃の温度域から、5〜bがこの温度域か
らはずれるときは、所望の組織を得ることができない。Next, in the cooling process following such hot rolling,
When 5 to b deviate from the temperature range of 950 to 700°C, the desired structure cannot be obtained.
また、冷却速度が5℃/秒よりも小さいときは、パーラ
イト又は低温変態生成物相の体積が増大し、この低温変
態生成物相は、耐水素誘起割れ性にとって有害であると
共に、粗大フェライト粒の面積率が50%以上となる。Furthermore, when the cooling rate is lower than 5°C/sec, the volume of pearlite or low-temperature transformation product phase increases, and this low-temperature transformation product phase is harmful to hydrogen-induced cracking resistance and coarse ferrite grains. The area ratio of is 50% or more.
他方、冷却速度が40℃/秒よりも大きい場合は、鋼板
の冷却停止や巻取の温度制御が困難となるほか、ミクロ
偏析部においてマルテンサイト等の低温変態生成物相が
出現しやすい、更に、粒径5μm以上のフェライト粒の
占める面積率が10%よりも小さくなり、適当な混粒組
織を得ることができない結果、水素誘起割れ性が増大す
る0巻取温度が350℃より低いときは、耐水素誘起割
れ性に有害な低温変態生成相が顕著に生じる。他方、6
50℃を越えるときは、組織が全体的に粗粒となる。On the other hand, if the cooling rate is higher than 40°C/sec, it becomes difficult to stop the cooling of the steel sheet and control the coiling temperature, and low-temperature transformation product phases such as martensite are likely to appear in the micro-segregation areas. When the zero winding temperature is lower than 350°C, the area ratio occupied by ferrite grains with a grain size of 5 μm or more becomes less than 10%, making it impossible to obtain a suitable mixed grain structure, resulting in increased hydrogen-induced cracking. , a low-temperature transformation phase that is harmful to hydrogen-induced cracking resistance is significantly generated. On the other hand, 6
When the temperature exceeds 50°C, the entire structure becomes coarse grained.
本発明の方法による熱延鋼板は、組織的には、粒径5μ
m以上のフェライト粒の占める面積率が10〜50%の
混粒組織を有することが必要である。このフェライト粒
の占める面積率が10%よりも少ない場合は、水素誘起
割れの起点が生じやすく、他方、50%を越える場合は
、大きいフェライト粒の整粒組織を形成し、水素誘起割
れの伝播が容易となる。また、強度も低下する。The hot-rolled steel sheet produced by the method of the present invention has a grain size of 5μ microstructure.
It is necessary to have a mixed grain structure in which the area ratio occupied by ferrite grains of m or more is 10 to 50%. If the area ratio occupied by these ferrite grains is less than 10%, the starting point of hydrogen-induced cracking is likely to occur.On the other hand, if it exceeds 50%, an ordered structure of large ferrite grains is formed, and hydrogen-induced cracking propagates. becomes easier. In addition, the strength also decreases.
本発明の方法によれば、オーステナイトの再結晶−未再
結晶遷移領域での仕上圧延及びその後の所定の条件での
冷却が重要な技術的手段である。According to the method of the present invention, finish rolling in the recrystallized-unrecrystallized transition region of austenite and subsequent cooling under predetermined conditions are important technical means.
即ち、かかる手段によって、非金属介在物を起点として
優先的に再結晶した再結晶オーステナイトが比較的大き
いフェライト粒に変換される結果、割れの起点となる微
細な介在物が水素誘起割れや応力腐食割れ発生の抑制効
果の強いフェライト中に存在する確率が高くなり、且つ
、その周囲にHIC伝播抵抗の高い微細ベイナイト組織
となるので、水素誘起割れや応力腐食割れが抑制される
のであろう。In other words, as a result of this method, recrystallized austenite preferentially recrystallized starting from nonmetallic inclusions is converted into relatively large ferrite grains, and as a result, fine inclusions that serve as starting points for cracking are reduced to hydrogen-induced cracking and stress corrosion. Hydrogen-induced cracking and stress corrosion cracking are likely to be suppressed because it has a high probability of being present in ferrite, which has a strong cracking suppressing effect, and a fine bainite structure with high HIC propagation resistance is formed around it.
又里皇羞呆
以上のように、本発明の方法によれば、所定のNbほか
、合金成分を添加してなる鋼片をその熱間圧延において
、850℃以上の温度オーステナイト再結晶−未再結晶
の遷移温度領域にて仕上圧延することによって、耐水素
誘起割れ性及び耐応力腐食割れ性のいずれにもすぐれる
非11質熱延鋼板を得ることができ、かかる鋼板は、N
ACEIli食環境下においても、何らの割れも生じな
い。As mentioned above, according to the method of the present invention, a steel billet to which a predetermined amount of Nb and other alloying components have been added is hot-rolled to form austenite recrystallization at a temperature of 850°C or higher. By finishing rolling in the crystal transition temperature region, it is possible to obtain a non-11 quality hot rolled steel sheet that is excellent in both hydrogen-induced cracking resistance and stress corrosion cracking resistance.
Even under the ACEIli food environment, no cracking occurs.
大旌五
以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。EXAMPLES The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.
第1表に示す化学成分を有する鋼片を熱間圧延するに際
して、第2表に示す条件にて仕上圧延し、冷却して、熱
延鋼板を製造した。この熱延鋼板から長さ100fi、
幅20m及び厚さ1(Inの試験片を採取し、全面を上
仕上した。When hot rolling the steel slabs having the chemical components shown in Table 1, they were finish rolled under the conditions shown in Table 2 and cooled to produce hot rolled steel sheets. From this hot rolled steel plate, the length is 100fi,
A test piece with a width of 20 m and a thickness of 1 (In) was taken, and the entire surface was finished.
これら試験片をNACE (食塩5%と酢酸0.5%
を含み、硫化水素を飽和させた水溶液)に96時間浸漬
した後、それぞれの試験片について、6断面の検鏡観察
と超音波探傷器によって、水素誘起割れ(HI G)を
調べた。また、各試験片に降伏強さの70%応力を付加
した条件下で、上記と同じ方法にて応力腐食割れ(SC
C)を調べた。These test pieces were subjected to NACE (5% common salt and 0.5% acetic acid)
After being immersed for 96 hours in an aqueous solution containing hydrogen sulfide and saturated with hydrogen sulfide, each specimen was examined for hydrogen-induced cracking (HIG) by microscopic observation of six cross sections and an ultrasonic flaw detector. In addition, stress corrosion cracking (SC) was performed using the same method as above under conditions where a stress of 70% of the yield strength was applied to each test piece.
C) was investigated.
耐HIC性及び耐SCC性の結果を第2表に示す、尚、
表において、耐HIC性の評価は、○:割れなし、68
割れ長さ率が3%未満、×:割れ長さ率が3%以上を示
し、ここに、割れ長さ率とは、Wを板幅、aを亀裂長さ
耐SCC性の評価は、08割れなし、62割れが一部に
認められるが、試験片を貫通していない、×:割れが試
験片を貫通しており、試験片が折れていることを示す。The results of HIC resistance and SCC resistance are shown in Table 2.
In the table, the evaluation of HIC resistance is: ○: No cracking, 68
Crack length ratio is less than 3%, ×: Crack length ratio is 3% or more, where W is the plate width and a is the crack length Evaluation of SCC resistance is 08 No cracks, 62 Cracks are observed in some parts but do not penetrate the test piece, ×: Cracks pass through the test piece and the test piece is broken.
更に、第2表には、得られた鋼板の混粒の状態も併せて
示す。Furthermore, Table 2 also shows the state of mixed grains in the obtained steel sheets.
第1図は、Nb添加量及び仕上圧延終了温度と再結晶オ
ーステナイト−未再結晶オーステナイト遷移領域との関
係を示すグラフ、第2図は、仕上圧延後の冷却速度と粒
径5μm以上のフェライト面積率との関係を示すグラフ
である。
特許出願人 株式会社、神戸製鋼所
代理人 弁理士 牧 野 逸 部
第1図
Nb−1<*1旬
第2図
清却速度C′111!#)Figure 1 is a graph showing the relationship between the amount of Nb added, finish rolling end temperature, and recrystallized austenite-unrecrystallized austenite transition region. Figure 2 is a graph showing the relationship between the cooling rate after finish rolling and the area of ferrite with a grain size of 5 μm or more. It is a graph showing the relationship with the rate. Patent Applicant: Kobe Steel, Ltd., Representative Patent Attorney: Ittsu Makino Department Figure 1 Nb-1<*1 Figure 2 Clearing Speed C'111! #)
Claims (2)
に際して、850℃以上の温度にて仕上圧延した後、9
50〜700℃の温度域から冷却速度5〜40℃/秒に
て冷却して、650〜350℃で巻取ることで、粒径5
μm以上のフェライト粒の占める面積率10〜50%の
混粒組織とすることを特徴とする耐水素誘起割れ性及び
耐応力腐食割れ性にすぐれる熱延鋼板の製造方法。(1) C0.01-0.4% by weight, Si0.01-0.5%, Mn0.01-2.0%, Al0.01-0.1%, Nb0.01-0.1% , P 0.1% or less, S 0.03% or less, When hot rolling a steel billet consisting of the balance iron and unavoidable impurities, after finish rolling at a temperature of 850°C or higher, 9
By cooling at a cooling rate of 5 to 40°C/sec from a temperature range of 50 to 700°C and winding at 650 to 350°C, the particle size is 5.
A method for producing a hot-rolled steel sheet having excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance, characterized by forming a mixed grain structure with an area ratio of 10 to 50% occupied by ferrite grains of μm or more.
、 残部鉄及び不可避的不純物よりなる鋼片を熱間圧延する
に際して、850℃以上の温度にて仕上圧延した後、9
50〜700℃の温度域から冷却速度5〜40℃/秒に
て冷却して、650〜350℃で巻取ることで、粒径5
μm以上のフェライト粒の占める面積率10〜50%の
混粒組織とすることを特徴とする耐水素誘起割れ性及び
耐応力腐食割れ性にすぐれる熱延鋼板の製造方法。(2) In weight% (a) C0.01-0.4%, Si0.01-0.5%, Mn0.01-2.0%, Al0.01-0.1%, Nb0.01-0 .1%, P0.1% or less, S0.03% or less, and (b) Ca0.001-0.01%, V0.01-0.1%, Ti0.01-0.1% , Cr0.01 to 1.0%, and finishing at a temperature of 850°C or higher when hot rolling a steel billet containing at least one element selected from the group consisting of: After rolling, 9
By cooling at a cooling rate of 5 to 40°C/sec from a temperature range of 50 to 700°C and winding at 650 to 350°C, the particle size is 5.
A method for producing a hot-rolled steel sheet having excellent hydrogen-induced cracking resistance and stress corrosion cracking resistance, characterized by forming a mixed grain structure with an area ratio of 10 to 50% occupied by ferrite grains of μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3672287A JPS63203721A (en) | 1987-02-18 | 1987-02-18 | Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3672287A JPS63203721A (en) | 1987-02-18 | 1987-02-18 | Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63203721A true JPS63203721A (en) | 1988-08-23 |
Family
ID=12477638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3672287A Pending JPS63203721A (en) | 1987-02-18 | 1987-02-18 | Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63203721A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04210117A (en) * | 1990-11-30 | 1992-07-31 | Toyota Motor Corp | Combination of shaft for internal combustion engine with bearing |
WO1995004166A1 (en) * | 1993-07-28 | 1995-02-09 | Nippon Steel Corporation | Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same |
KR20030096892A (en) * | 2002-06-18 | 2003-12-31 | 현대자동차주식회사 | The Manufacturing method for high strength connecting rod of large commercial vehicle |
JP2009242826A (en) * | 2008-03-28 | 2009-10-22 | Kobe Steel Ltd | High-strength steel sheet excellent in resistance to stress-relief annealing and in low-temperature joint toughness |
KR100957938B1 (en) | 2002-12-28 | 2010-05-13 | 주식회사 포스코 | Steel materials having excellent resistance of hydrogen induced crack and sulfide stress crack, and method for manufacturing the same |
KR100957979B1 (en) * | 2007-12-18 | 2010-05-17 | 주식회사 포스코 | Steel Plate for Pressure Vessel with High SOHIC Resistance |
-
1987
- 1987-02-18 JP JP3672287A patent/JPS63203721A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04210117A (en) * | 1990-11-30 | 1992-07-31 | Toyota Motor Corp | Combination of shaft for internal combustion engine with bearing |
WO1995004166A1 (en) * | 1993-07-28 | 1995-02-09 | Nippon Steel Corporation | Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same |
CN1043904C (en) * | 1993-07-28 | 1999-06-30 | 新日本制铁株式会社 | Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same |
KR20030096892A (en) * | 2002-06-18 | 2003-12-31 | 현대자동차주식회사 | The Manufacturing method for high strength connecting rod of large commercial vehicle |
KR100957938B1 (en) | 2002-12-28 | 2010-05-13 | 주식회사 포스코 | Steel materials having excellent resistance of hydrogen induced crack and sulfide stress crack, and method for manufacturing the same |
KR100957979B1 (en) * | 2007-12-18 | 2010-05-17 | 주식회사 포스코 | Steel Plate for Pressure Vessel with High SOHIC Resistance |
JP2009242826A (en) * | 2008-03-28 | 2009-10-22 | Kobe Steel Ltd | High-strength steel sheet excellent in resistance to stress-relief annealing and in low-temperature joint toughness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4022958B2 (en) | High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same | |
JP5893768B2 (en) | Manufacturing method of 700MPa class high strength weathering steel by strip casting method | |
JP5846445B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP6610749B2 (en) | High strength cold rolled steel sheet | |
JPH08295982A (en) | Thick steel plate excellent in toughness at low temperature and its production | |
JPH10298645A (en) | Manufacture of hot rolled high tensile strength steel plate | |
JPS63203721A (en) | Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance | |
JP2008013812A (en) | High toughness and high tensile strength thick steel plate and its production method | |
JPH03202421A (en) | Production of cold-rolled steel sheet having high ductility and high strength and reduced in anisotropy | |
JP4010131B2 (en) | Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof | |
JPS6137334B2 (en) | ||
JPH06240355A (en) | Production of high toughness thick tmcp steel plate | |
JPH03170618A (en) | Highly efficient production of cold-rolled steel sheet extremely excellent in workability | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JPS63241120A (en) | Manufacture of high ductility and high strength steel sheet having composite structure | |
JPH05222484A (en) | Hot rolled steel strip with low yield ratio for construction use excellent in refractoriness and toughness and its production | |
JP3085253B2 (en) | Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment | |
JP4848651B2 (en) | High strength thin steel sheet with excellent torsional rigidity and method for producing the same | |
JP3870840B2 (en) | Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same | |
JPS63210234A (en) | Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding | |
KR100241016B1 (en) | High mn-steel having high toughness and its hot-rolling method | |
JPH07268467A (en) | Production of hot coil for steel tube having high toughness and sour resistance | |
JP2003034825A (en) | Method for manufacturing high strength cold-rolled steel sheet | |
JPS6410565B2 (en) | ||
JPH05255738A (en) | Production of steel for machine structural use excellent in delayed fracture resistance |