JPS63210234A - Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding - Google Patents

Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding

Info

Publication number
JPS63210234A
JPS63210234A JP4315687A JP4315687A JPS63210234A JP S63210234 A JPS63210234 A JP S63210234A JP 4315687 A JP4315687 A JP 4315687A JP 4315687 A JP4315687 A JP 4315687A JP S63210234 A JPS63210234 A JP S63210234A
Authority
JP
Japan
Prior art keywords
less
rolled
phase
steel
softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4315687A
Other languages
Japanese (ja)
Other versions
JP2826819B2 (en
Inventor
Teruo Tanaka
照夫 田中
Noriyuki Nakajiyou
敬之 中乗
Takashi Igawa
井川 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP62043156A priority Critical patent/JP2826819B2/en
Publication of JPS63210234A publication Critical patent/JPS63210234A/en
Application granted granted Critical
Publication of JP2826819B2 publication Critical patent/JP2826819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Abstract

PURPOSE:To manufacture a high-strength stainless steel stock excellent in workability and free from softening in a weld zone, by subjecting a hot-rolled, cold-rolled, or annealed stock of a steel in which composition and Ni equivalent value are specified to heat treatment under specific conditions. CONSTITUTION:A steel which has a composition consisting of <=0.10% C, <=4.5% Si, <=5.0% Mn, <=0.060% P, <=0.030% S, 10.0-17.0% Cr, 3.0-10.0% Ni, <=0.10% N, and the balance Fe with inevitable impurities and in which the value of Nieq defined by an equation is regulated to 13.0-17.5 is cast. Any of the hot- rolled, cold-rolled, and annealed stocks of the steel with the above composition is subjected to heat treatment at 575-750 deg.C for <60min. In this way, the stainless steel stock composed of a martensitic single phase or a composite structure of martensitic single phase and fine austenitic phase and excellent in workability and resistance to softening by welding can be obtained. In necessary, proper amounts of one or more elements among Cu, Mo, W, and Co and one or more elements among Ti, Nb, V, Zr, Al, B, and Ta are incorporated into the above steel composition.

Description

【発明の詳細な説明】 く技術分野〉 本発明は加工性に優れ溶接軟化抵抗を有する高強度ステ
ンレスfIJm材に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a high-strength stainless fIJm material that has excellent workability and weld softening resistance.

〈従来技術とその問題点〉 既存の高強度ステンレス鋼は、(1)マルテンサイト系
ステンレス鋼、(2)加工硬化型オーステナイト系ステ
ンレス鋼、(3)析出硬化型ステンレス鋼に大別される
<Prior art and its problems> Existing high-strength stainless steels are broadly classified into (1) martensitic stainless steels, (2) work-hardening austenitic stainless steels, and (3) precipitation-hardening stainless steels.

マルテンサイト系ステンレス鋼は主にF e−Cr−c
 カ9.2す、焼入し温度(900〜1100°cであ
るが、Cr、Cの含有量によって変る)領域では実質的
にオーステナイト単相であるが、マルテンサイト変態開
始点(M s点)が室温以上にあって、いわゆる「焼の
入る」鋼である。
Martensitic stainless steel is mainly Fe-Cr-c
F9.2. In the quenching temperature range (900 to 1100°C, but varies depending on the content of Cr and C), it is essentially austenitic single phase, but at the martensitic transformation starting point (M s point) ) is above room temperature, making it a so-called "hardenable" steel.

この系の鋼は焼入れ状態あるいは焼入れ焼戻し状態では
硬くて加工性に乏しい。そのため、通常は焼なまし状態
で、曲げ、切削、切断などの加工が加えられ、所望の形
状がAれた後に焼入れ焼戻し等の熱処理が施されて高強
度が賦与される。
This type of steel is hard and has poor workability in the hardened state or in the hardened and tempered state. Therefore, it is usually subjected to processing such as bending, cutting, cutting, etc. in the annealed state, and after the desired shape A is obtained, heat treatment such as quenching and tempering is performed to impart high strength.

しかし、大きな部材は熱処理が困難であり、また溶接に
際して溶接割れを起し易く、溶接後に溶接部に焼戻し熱
処理を施さねばならぬなどの欠点がある。
However, large members are difficult to heat-treat, and have disadvantages such as weld cracking during welding, and the welded part must be tempered after welding.

マルテンサイト系ステンレス鋼を構造部材として使用す
ることを考慮する場合、上記の欠点を補う手段として、
Cを低く抑えた組成で、焼入れ状態でラスマルテンサイ
ト相を呈する鋼が考えられる。例えば、特公昭51−3
5447号に示される鋼!±この一例である。この公報
の特許請求の範囲内の鋼の一例が「日新製鋼技報」 (
昭和50年12月発行No、 33)に紹介されており
、 その組成はC:0.032”A、 S i:0.7
5X、Mn:0.14X、N i+4.01%、Cr:
12.4%、T i:o、31% テあり、コ17)材
料は約108 kgf/mm2の引張り強さ、約6%の
伸びを有し、しかも溶接軟化が小さいことが示されてい
る。溶接軟化が小さいこと、引張り強さが高いことは溶
接構造材として好ましいが、 伸び率が小さいので、例
えば、軽度の加工でも割れが発生1.易く構造用加]−
材としては不満足なものである。
When considering the use of martensitic stainless steel as a structural member, as a means to compensate for the above drawbacks,
A steel that has a composition with a low C content and exhibits a lath martensite phase in the quenched state is considered. For example, Tokuko Sho 51-3
Steel shown in No. 5447! ±This is an example. An example of steel within the scope of the claims of this publication is "Nissin Steel Technical Report" (
It was introduced in December 1975 issue No. 33), and its composition is C: 0.032"A, Si: 0.7
5X, Mn: 0.14X, Ni+4.01%, Cr:
12.4%, Ti:o, 31% Te, ko17) The material has been shown to have a tensile strength of approximately 108 kgf/mm2, an elongation of approximately 6%, and low welding softening. . Small weld softening and high tensile strength are desirable as welded structural materials, but the low elongation rate causes cracks, for example, even during light processing.1. Easy structural addition]-
It is unsatisfactory as a material.

加工硬化型オーステナイト系ステンレス鋼は、5US3
01.201 、304 、202などの準安定オース
テナイト相を有するステンレス鋼で、冷間加工を施して
強化するものである。この強化法による機械的性質はJ
IS G 4307に規定されている。例えば、SUS
 301の1/2Hでは、耐カフ7kgf/mm2以上
、引張り強さ105 kgf/mm2.伸び10%以上
と規定されており、引張り強さ、伸びともに大きい値を
示している。しかしこの系の材料は溶接などの入熱があ
ると、その溶接部11軟化するという欠点がある。
Work-hardening austenitic stainless steel is 5US3
It is a stainless steel having a metastable austenite phase such as 01.201, 304, 202, etc., and is strengthened by cold working. The mechanical properties obtained by this strengthening method are J
Specified in IS G 4307. For example, SUS
301 1/2H has a cuff resistance of 7 kgf/mm2 or more and a tensile strength of 105 kgf/mm2. It is specified that the elongation is 10% or more, and both tensile strength and elongation show large values. However, this type of material has the disadvantage that the welded portion 11 softens when heat is input from welding or the like.

また場合によっては溶接熱影響部にCr炭化物の析出に
よるCr欠乏層が生じ、粒界応力腐食割れが発生するこ
とがある。
Further, in some cases, a Cr-depleted layer is formed in the weld heat-affected zone due to the precipitation of Cr carbides, and intergranular stress corrosion cracking may occur.

析出硬化型ステンレス鋼はマトリックスの組織によって
マルテンサイト系、フェライト系、オーステナイト系な
どに分類されるが、いずれも時効硬化に貢献するAl、
Ti、Nb、Cu、Mo、V 、Taなどの1種または
2種以上を含有し、過飽和状態の固溶体を時効処理する
ことにより、金属間化合物を析出させて強化するもので
ある。これらの錆はマトリックスの違い、時効硬化に寄
与する元素の含有量などによって、時効処理後の機械的
性質は異なるが、140〜190 kgf/+nm 2
の引張り強さ、2〜5zの伸びを有する。
Precipitation hardening stainless steels are classified into martensitic, ferritic, austenitic, etc. depending on the matrix structure, but all contain Al, which contributes to age hardening.
A supersaturated solid solution containing one or more of Ti, Nb, Cu, Mo, V, Ta, etc. is aged and strengthened by precipitation of intermetallic compounds. The mechanical properties of these rusts after aging differ depending on the matrix, the content of elements that contribute to age hardening, etc., but it is 140 to 190 kgf/+nm 2
It has a tensile strength of , and an elongation of 2 to 5z.

これらの鋼を構造用部材として使用することを考慮する
場合、時効処理前に加工や溶接を施すのが一般的である
が、大きな構造物では時効処理を施すのが困難である。
When considering the use of these steels as structural members, it is common to process or weld them before aging treatment, but aging treatment is difficult for large structures.

以上に述べたように、高強度ステンレス鋼として従来か
ら知られている鋼は、いずれも、強度、加工性、溶接軟
化抵抗のすべてを兼ね備えていない。
As described above, none of the steels conventionally known as high-strength stainless steels have all of strength, workability, and weld softening resistance.

く問題解決の手段〉 そのような欠点のない新規な高強度ステンレス鋼材を得
るための研究は既に行なわれ、本願出願人によって、一
つの方法が特願昭61−192107号として特許出願
されている。この方法は特定組成の鋼を550〜675
℃の温度に1〜30時間の熱処理を施すものであったが
、その後、種々実験検討を重ねた結果、熱処理温度を高
温側に移行することにより、製品に要求される特性を損
なうことなくゆ熱処理時間を短縮できることが可能であ
ることを知見して本発明を完成した。
Research to obtain a new high-strength stainless steel material free of such defects has already been carried out, and one method has been patented as Japanese Patent Application No. 1987-192107 by the applicant of the present application. . This method uses steel with a specific composition of 550 to 675
℃ for 1 to 30 hours, but as a result of various experiments and studies, it was found that by shifting the heat treatment temperature to a higher temperature, it was possible to achieve long-lasting results without sacrificing the properties required for the product. The present invention was completed based on the finding that it is possible to shorten the heat treatment time.

〈発明の構成〉 本発明は C:    0.10%以下 Si二   4.5%以下 Mn:    5.0%以下 P:    0.060%以下 S:    0.030%以下 Cr:   10.0〜17.0% Ni:    3.0〜10.0% N:    0.10%以下 を含み、 残部Feと不可避的不純物からなり、 NIBg−=  Ni+Mn+0.5Cr+0.3Si
+20(fL+N)で定義されるNi、yの値が13.
0〜17.5の範囲内にある鋼の熱延材、冷延材、焼鈍
材のいずれかを575〜750℃の温度範囲内で60分
未満の範囲内で熱処理を施すことからなる、マルテンサ
イト単相またはマルテンサイト相と微細なオーステナイ
ト相の複相組織よりなる、加工性に優れた溶接軟化のな
い高強度ステンレス鋼材の製造方法を提供する。
<Structure of the Invention> The present invention includes C: 0.10% or less Si2 4.5% or less Mn: 5.0% or less P: 0.060% or less S: 0.030% or less Cr: 10.0 to 17 .0% Ni: 3.0-10.0% N: Contains 0.10% or less, the balance consists of Fe and inevitable impurities, NIBg-=Ni+Mn+0.5Cr+0.3Si
Ni defined as +20(fL+N), the value of y is 13.
Marten is produced by heat-treating hot-rolled, cold-rolled, or annealed steel in the temperature range of 575 to 750°C for less than 60 minutes. Provided is a method for manufacturing a high-strength stainless steel material that has a single-phase site structure or a multi-phase structure of a martensitic phase and a fine austenite phase, has excellent workability, and is free from welding softening.

本発明はまた、前記の組成に加えて、合計で4%以下(
1) Cu、Ma、W 、 Ca (1) 1種以上、
および/または合計で1%以下ノTi、Nb、V 、 
Z r、A I。
In addition to the above composition, the present invention also provides a total of 4% or less (
1) One or more of Cu, Ma, W, Ca (1),
and/or 1% or less Ti, Nb, V in total,
Z r, A I.

B、Taの1種以上を含有する鋼を素材とする同様の鋼
材の製造方法が提供される。その場合N1e4の定義は
成分に応じて修正される。Cu、Mo、W。
A method for manufacturing a similar steel material made of steel containing one or more of B and Ta is provided. In that case, the definition of N1e4 is modified depending on the component. Cu, Mo, W.

COの1種以上を含む場合は、 Nieg =  Ni+Mn+0.5Cr+0.3Si
+20(C+N)+Cu+Mo+W十〇、2C:。
If one or more types of CO are included, Nieg = Ni+Mn+0.5Cr+0.3Si
+20(C+N)+Cu+Mo+W 10, 2C:.

となり、Ti、Nb、V 、 Zr、Al、B 、 T
aの1種以上を含有する場合は、 N1(H=  Ni+Mn+0.5Cr+0.3Siと
なり、Cu 、Mo 、W、Co (1)1種以上、お
よびTi 、 Nb、 V、Zr、 AI 、B、 T
a01種以上を含有する場合は、 Ni、4  =  Ni+Mn+0.5Cr+0.3S
i+Cu+Mo+W+0.2Coとなる。
So, Ti, Nb, V, Zr, Al, B, T
When containing one or more types of a, N1 (H = Ni + Mn + 0.5Cr + 0.3Si, Cu, Mo, W, Co (1) one or more types, and Ti, Nb, V, Zr, AI, B, T
When containing 1 or more types of a0, Ni, 4 = Ni + Mn + 0.5Cr + 0.3S
i+Cu+Mo+W+0.2Co.

本発明の鋼材の鋼は、その組成を上記の範囲内とし、か
つ、上記のように定義するN1clが上記のような数値
になるように組成を調整することにより、熱延のままの
状態、冷延のままの状態、焼鈍状態のいずれにおいても
実質的にマルテンサイト相よりなる組織を呈する。
The steel of the present invention has a composition within the above-mentioned range, and by adjusting the composition so that N1cl defined as above becomes the above-mentioned value, the steel can be produced in the as-hot-rolled state. Both in the as-cold-rolled state and in the annealed state, it exhibits a structure consisting essentially of a martensitic phase.

本発明方法は熱延のままの材料も、冷江のままの材料も
、冷延後に焼鈍した材料も、575℃〜750℃で60
分未満の熱処理によって、オーステナイト逆変態を起し
、これを安定化できるという新規な知見に基づいている
。目下のところそのような変態の機構、理由については
よく分らないが、この変化が再現性を以って生起するこ
とは確認されている。そして、このような処理によって
マルテンサイト組織のステンレス鋼を改質尖るという試
みは為されたことがない。
The method of the present invention can be applied to materials as hot-rolled, materials as cold-rolled, and materials annealed after cold-rolling at 575°C to 750°C.
This is based on the novel finding that reverse austenite transformation can be caused and stabilized by heat treatment for less than a minute. At present, the mechanism and reason for such metamorphosis are not well understood, but it has been confirmed that this change occurs with reproducibility. No attempt has ever been made to modify and sharpen martensitic stainless steel by such a treatment.

本発明の鋼材は100kgf/mm2程度の強度レベル
を有し、約20%の伸びを示し、かつ′lal軟接がな
い。
The steel material of the present invention has a strength level of about 100 kgf/mm2, exhibits an elongation of about 20%, and has no 'lal soft weld.

本発明方法の素材鋼における組成限定の理由は次の通り
である。
The reason for limiting the composition of the raw material steel in the method of the present invention is as follows.

C:Cはオーステナイト形成元素であり、高温でのオー
ステナイト相形成に有効であり、熱処理後の逆変態オー
ステナイト相およびマルテンサイト相の強化に有効であ
るが、多すぎると伸び率を低下させ、また、溶接部の耐
食性を劣化させるので、0.10%を限度とする。
C: C is an austenite-forming element and is effective in forming an austenite phase at high temperatures and is effective in strengthening the reversely transformed austenite phase and martensite phase after heat treatment, but if it is too large, it will reduce the elongation rate and , since it deteriorates the corrosion resistance of the welded part, the limit is set at 0.10%.

NUNはCと同様にオーステナイト形成元素であり、高
温でのオーステナイト相形成に有効であり、熱処理後の
逆変態オーステナイト相の強度を上げ、強化に有効であ
るか、多すぎると伸び率を低下させるので0.1%を上
限とする。
Like C, NUN is an austenite-forming element, and is effective in forming an austenite phase at high temperatures, increasing the strength of the reverse-transformed austenite phase after heat treatment, and is effective in strengthening, or if too much, it reduces the elongation rate. Therefore, the upper limit is set at 0.1%.

Si:  Siは熱処理後の逆変態オーステナイト相の
強化に有効であり、かつ、熱処理時の温度の許容範囲を
広くするので有効な元素であるが、多すぎると、凝固時
や溶接時の凝固割れを促進するので4.5%を上限とす
る。
Si: Si is an effective element because it strengthens the reversely transformed austenite phase after heat treatment and widens the temperature tolerance range during heat treatment, but if it is too large, it may cause solidification cracking during solidification or welding. Therefore, the upper limit is set at 4.5%.

Mn:  Mnはオーステナイト形成元素であり、Ms
点の調整に必要な元素であるが、多すきると製鋼時に弊
害となるので、5%を上限とする。
Mn: Mn is an austenite-forming element, and Ms
It is an element necessary for adjusting the point, but if too much is used, it will be harmful during steel manufacturing, so the upper limit is set at 5%.

Cr:  Crは耐食性を賦与する基本的成分であり、
10%未満ではその効果がなく一方17%を越えると、
高温でオーステナイト単相とするのにオーステナイト形
成元素を多量に必要とし、その結果、常温に持ち来たら
せられる時、所望の組織が得られないので17%を上限
とする。
Cr: Cr is a basic component that imparts corrosion resistance,
If it is less than 10%, there is no effect, while if it exceeds 17%,
A large amount of austenite-forming elements is required to form a single austenite phase at high temperatures, and as a result, the desired structure cannot be obtained when brought to room temperature, so the upper limit is set at 17%.

Ni:  Niはオーステナイト形成元素であり、高温
でのオーステナイト単相化およびMs点の調整に必要な
元素である。他の元素の含有量によって必要なNiの含
有量は異なってくる。高温でのオーステナイト単相化と
Ms点調整のためには少なくとも約3%を必要とするが
、他の成分の量が低減しても、Niが約10%を越える
と所望の組織が得られなくなる。
Ni: Ni is an austenite-forming element and is an element necessary for forming austenite into a single phase at high temperatures and adjusting the Ms point. The necessary Ni content varies depending on the content of other elements. At least about 3% Ni is required to make the austenite single phase and adjust the Ms point at high temperatures, but even if the amounts of other components are reduced, if the Ni content exceeds about 10%, the desired structure cannot be obtained. It disappears.

P:  Pは溶製時に原料、副原料から混入してくる不
可避的不純物であるが、多く含まれると、鋼を脆くする
ので、0.06%を上限とする。
P: P is an unavoidable impurity that is mixed in from raw materials and auxiliary raw materials during melting, but if it is included in a large amount, it will make the steel brittle, so the upper limit is set at 0.06%.

S:  Sも溶製時に原料、;EU原料から混入してく
る不可避的不純物であるが、多く含まれると、鋼を脆く
するので、0.03%を上限とする。
S: S is also an unavoidable impurity that gets mixed in from the EU raw material during melting, but if it is included in a large amount, it will make the steel brittle, so the upper limit is set at 0.03%.

Cu:  Cuは元来耐食性を向上させるのに有効な元
素であるが、本願発明においてはMs点を低下させるの
に有効である。約4%を越えると、熱間加工性を著しく
害するので4%を上限とする。
Cu: Cu is originally an effective element for improving corrosion resistance, but in the present invention it is effective for lowering the Ms point. If it exceeds about 4%, hot workability will be significantly impaired, so the upper limit is set at 4%.

Mo:  Moも耐食性を向上させ、逆変態オーステナ
イトの強度を上昇させ、Ms点を低下させるのに有効で
あるが、高価な材料であり多すぎると鋼材の価格を上昇
させるので4%に限定される。
Mo: Mo is also effective in improving corrosion resistance, increasing the strength of reverse-transformed austenite, and lowering the Ms point, but it is an expensive material and too much will increase the price of the steel material, so it is limited to 4%. Ru.

W: Wは耐食性、強度を向上させるのに有効な元素で
あり、Ms点を低下させるのに有効であるが、多すぎる
と材料の価格を上昇させるので4%に限定される。
W: W is an element effective in improving corrosion resistance and strength, and is effective in lowering the Ms point, but too much W increases the price of the material, so it is limited to 4%.

Co:  Coは高温域でのオーステナイト化作用が大
きく、Ms点を低下させる(オーステナイト化作用が大
きい割にMs点を過度には低下させない)。Cr含有量
の大きい系の組成調整に非常に有効な元素であるが、多
すぎると、鋼の価格を上昇させるので4%に限定される
Co: Co has a large austenitizing effect in a high temperature range and lowers the Ms point (despite its large austenitizing effect, it does not excessively lower the Ms point). Although it is a very effective element for adjusting the composition of systems with a large Cr content, if it is present too much, the price of steel will increase, so it is limited to 4%.

以」二の4元素は共通して耐食性を向上させながら、マ
ルテンサイト形成能力を他の成分との関係において調整
するのに有効である。この意味において均等物である。
The following four elements are commonly effective in improving corrosion resistance while adjusting the ability to form martensite in relation to other components. Equivalent in this sense.

Ti:  Tiは炭化物形成元素であり、溶接時のCr
炭化物の析出によるCr欠乏層発生の抑制や逆変態オー
ステナイト相の結晶粒成長の抑制に有効な元素であるが
、多すぎると表面疵の原因となったり、溶接時にスカム
形成の原因となるので1%を上限とする。
Ti: Ti is a carbide forming element, and Cr during welding
This element is effective in suppressing the formation of a Cr-depleted layer due to the precipitation of carbides and the growth of grains in the reversely transformed austenite phase, but too much of it can cause surface defects and scum formation during welding. The upper limit is %.

Nb:  Nbは溶接時のCr炭化物の析出によるCr
欠乏層の発生の抑制や逆変態オーステナイト相の結晶粒
成長の抑制に有効な元素であるが、多すぎると鋳造時や
溶接時の凝固割れを促進するばかりでなく、材料の延性
をも害するので1%を上限とする。
Nb: Nb is Cr due to precipitation of Cr carbide during welding.
It is an element that is effective in suppressing the formation of a depleted layer and the growth of grains in the reversely transformed austenite phase, but if it is present in too much, it not only promotes solidification cracking during casting and welding, but also impairs the ductility of the material. The upper limit is 1%.

v: Vは溶接時のCr炭化物析出によるCr欠乏層の
抑制や逆変態オーステナイト相の結晶粒成長の抑制に有
効であるが、多すぎると材料の延性を害するので1%を
上限とする。
v: V is effective in suppressing the formation of a Cr-depleted layer due to Cr carbide precipitation during welding and the growth of grains in the reversely transformed austenite phase, but too much V impairs the ductility of the material, so the upper limit is set at 1%.

Zr:  Zrは溶接時のCr、f化物の析出によるC
r欠乏層の発生の抑制や逆変態オーステナイト相の結晶
粒成長の抑制に有効な元素であるが、多すぎると、鋳造
時や溶接時に酸化物系の非金属介在物を形成し、鋼の延
性や表面性状を害するので1%を上限とする。
Zr: Zr is Cr due to precipitation of Cr and f oxides during welding.
This element is effective in suppressing the formation of r-depleted layers and the growth of grains in the reversely transformed austenite phase, but if it is present in too much, it may form oxide-based nonmetallic inclusions during casting or welding, which may reduce the ductility of the steel. The upper limit is set at 1% as it may damage the surface properties.

Al:  Alは鋼中のNを固定し、逆変態オーステナ
イト相の結晶粒成長を抑制する効果が著しいが、多すぎ
ると溶接時の漏流れが悪くなり、溶接作業が困難となる
ので1%を上限とする。
Al: Al has a remarkable effect of fixing N in the steel and suppressing the grain growth of the reversely transformed austenite phase, but if it is too large, leakage flow during welding will be poor and welding work will be difficult, so it should be kept at 1%. Upper limit.

B: Bは逆変態オーステナイト相の結晶粒成長の抑制
や熱間加工性の改善に有効であるが、多すぎると鋼の延
性を害するので1zを上限とする。
B: B is effective in suppressing grain growth of the reversely transformed austenite phase and improving hot workability, but too much B impairs the ductility of the steel, so the upper limit is set at 1z.

Ta:  Taは溶接時のCr炭化物の析出によるCr
欠乏相の発生の抑制や逆変態オーステナイト相の結晶粒
成長の抑制に有効な元素であるが、多すぎると鋳造時や
溶接時の凝固割れを促進するばかりでなく、材料の延性
をも害するので1%を上限とする。
Ta: Ta is Cr due to precipitation of Cr carbide during welding.
It is an element that is effective in suppressing the occurrence of deficient phases and grain growth of the reversely transformed austenite phase, but if it is present in too much, it not only promotes solidification cracking during casting and welding, but also impairs the ductility of the material. The upper limit is 1%.

以J−,の7元素は、炭化物、窒化物形成元素であって
、いずれも逆変態オーステナイトの結晶粒の成長を抑制
し、その効果が著しい。その意味で均等物である。
The following seven elements are carbide- and nitride-forming elements, and all of them suppress the growth of crystal grains of reversely transformed austenite, and have a remarkable effect. In that sense, they are equivalent.

ニッケル当量値(Nlel)限定の理由は次の通りであ
る。本発明方法の素材鋼において、マルテンサイト変態
終了温度は室温(150〜−10℃)近くでなければな
らない。本発明方法の素材鋼は熱間圧延時、焼鈍時ある
いは溶接時にさらされるような高温領域では、オーステ
ナイト単相または、少量の(大略10%)のδフェライ
ト相を含むオーステナイト相であるが、この状態から、
室温に持ち来たらされた時には実質的にマルテンサイト
組織でなければならない。「実質的に」とは、少量(l
[25%)のオーステナイトおよび少量(大略10%)
のフェライトが存在していてもよいことを意味する。そ
のような残留オーステナイトおよびδ−フェライ上の量
を余り厳密に考慮する必要はない。
The reason for limiting the nickel equivalent value (Nle1) is as follows. In the steel material used in the method of the present invention, the martensitic transformation completion temperature must be close to room temperature (150 to -10°C). The material steel used in the method of the present invention has a single austenite phase or an austenite phase containing a small amount (approximately 10%) of a δ-ferrite phase in high-temperature regions such as those exposed during hot rolling, annealing, or welding. From the condition
When brought to room temperature, it should have a substantially martensitic structure. “Substantially” means a small amount (l
[25%) of austenite and a small amount (approximately 10%)
This means that ferrite may be present. It is not necessary to consider the amount of retained austenite and δ-ferrite too strictly.

本発明の素材鋼において、種々の元素が合金化されてい
るが、木発明者らは、その組成が先に示した成分表と定
義されたニッケル当量(N icg−)の限定に従う限
り、室温で実質的にマルテンサイ)・組織であり、冒頭
に記した本発明の目的を達成できることを発見した。
Although various elements are alloyed in the steel material of the present invention, the inventors believe that as long as the composition complies with the composition table shown above and the defined nickel equivalent (Nicg-) limit, It has been discovered that the present invention can achieve the object of the present invention described at the beginning.

即ち、前掲の組成範囲内にあっても、それぞれ定義した
ニッケル当量値が13未満の鋼はMs点が高過ぎて、本
発明で規定する熱処理を施しても所望の高い伸びを達成
できない。また、この値が17.5より大きい鋼は溶接
のような熱履歴を受けると溶接部が軟化し、目的とする
高強度部材が得られな國Nle#の式について今さら解
説する必要もないが、各成分元素の変態に対する寄与度
を考慮してN1のオーステナイト形成能を基準として係
数を定めてNi量に換算したものである。
That is, even if the steel is within the above-mentioned composition range, the Ms point is too high for steels with a defined nickel equivalent value of less than 13, and the desired high elongation cannot be achieved even if the steel is subjected to the heat treatment specified in the present invention. In addition, if steel with a value greater than 17.5 is subjected to thermal history such as welding, the welded part will soften and the desired high-strength member cannot be obtained.There is no need to explain the formula for Nle# now. , a coefficient is determined based on the austenite forming ability of N1 in consideration of the degree of contribution of each component element to the transformation, and the coefficient is converted into the amount of Ni.

Ti以下の7元素は、上記の性質に関して中立的であり
、かつC,Hのオーステナイト形成能を打ち消すので、
これらを含む組成では、これらの元素およびC,Nは考
慮に入れない。
The seven elements below Ti are neutral with respect to the above properties and cancel the austenite forming ability of C and H, so
In compositions containing these elements, these elements and C and N are not taken into consideration.

本発明方法における熱処理条件の限定の理由はン欠の通
りである。
The reasons for limiting the heat treatment conditions in the method of the present invention are as follows.

焼鈍状態でマルテンサイト(ラスマルテンサイト)組織
である鋼は100 kgf/mm2程度の引張り強さを
有するが、伸び率は高々6%前後で、満足な加工性を有
するとは言い難い。575〜750℃の温度範囲で60
分未満保持してマルテンサイトの一部をオーステナイト
相に逆変態させる。この逆変態オーステナイトは組織的
に多少とも安定で、その後の冷却によって必ずしも全量
がマルテンサイトに戻らず、オーステナイトのまま留ま
ることもある。いずれにしても、この熱処理で強度(耐
力)を著しく低下させることなく、大きな延性がもたら
される。575℃未満ではこの延性をもたらす効果が少
なく、750℃より高い温度では耐力が低下するととも
に延性も低下する。
Steel that has a martensite (lath martensite) structure in an annealed state has a tensile strength of about 100 kgf/mm2, but its elongation rate is about 6% at most, and it cannot be said that it has satisfactory workability. 60 in the temperature range of 575-750℃
Hold for less than a minute to reverse transform some of the martensite to the austenite phase. This reverse-transformed austenite is structurally more or less stable, and the entire amount does not necessarily return to martensite upon subsequent cooling, and may remain as austenite. In any case, this heat treatment provides large ductility without significantly reducing strength (proof stress). If the temperature is lower than 575°C, the effect of providing this ductility is small, and if the temperature is higher than 750°C, the yield strength decreases and the ductility also decreases.

時間は被処理材の大きさなどに従って適宜に選択される
が、生産性および製品に要求される特性等を考慮、すれ
ば、60分未満で十分であることが判明した。材料か所
定の温度に達すれば、均熱時間を取らない場合でも、延
性の若干の低下が認められるものの1本発明において意
図する十分な機械的性質を有する材料が144られるこ
とが@′認されている。
Although the time is appropriately selected according to the size of the material to be treated, etc., it has been found that less than 60 minutes is sufficient if productivity and characteristics required for the product are taken into consideration. It is recognized that once the material reaches a predetermined temperature, even if no soaking time is taken, the material has sufficient mechanical properties as intended in the present invention, although a slight decrease in ductility is observed. ing.

また、本発明の熱処理方法においては、要求される表面
特性によって雰囲気が選択される。すなわち、光輝表面
が必要な場合は、水素、水素と窒素、水素と不活性ガス
等の雰囲気が選択される。
Furthermore, in the heat treatment method of the present invention, the atmosphere is selected depending on the required surface characteristics. That is, when a bright surface is required, an atmosphere of hydrogen, hydrogen and nitrogen, hydrogen and an inert gas, etc. is selected.

一方、本発明の熱処理を行なった後に、酸洗によるスケ
ール除去を経る場合は、重油、灯油、軽油などの可燃性
油やプロパン等の可燃性ガスの燃焼雰囲気および大気、
窒素、不活性ガス等の雰囲気が選択されるが、これらの
雰囲気で本発明の熱処理が実施された場合、熱処理後の
機械的性質には何ら影響がないことが確認されている。
On the other hand, if scale removal is performed by pickling after the heat treatment of the present invention, the combustion atmosphere of flammable oils such as heavy oil, kerosene, and light oil and combustible gases such as propane, and the atmosphere,
Although an atmosphere such as nitrogen or an inert gas is selected, it has been confirmed that when the heat treatment of the present invention is carried out in these atmospheres, there is no effect on the mechanical properties after the heat treatment.

また熱処理設備については、ベル型焼鈍炉等のバッチ炉
、および連続光輝焼鈍ライン、連続焼鈍酸洗ライン等の
連続熱処理設備を用いることが回部である。
Regarding the heat treatment equipment, it is recommended to use a batch furnace such as a bell-type annealing furnace, and continuous heat treatment equipment such as a continuous bright annealing line and a continuous annealing pickling line.

以下、図面を参照して実施例によって本発明を具体的に
例示する。
Hereinafter, the present invention will be specifically illustrated by examples with reference to the drawings.

試料鋼は30kg真空高真空炉で常法により溶製し、底
面 110mm角、上面120mm角、高さ 280m
IIlの鋳塊とし、1250℃で鍛造して厚さ35)、
幅155mmの板にした後、切削して30mmx 15
0mmの板とし。
The sample steel was melted using a conventional method in a 30 kg high-vacuum furnace, and had a bottom surface of 110 mm square, a top surface of 120 mm square, and a height of 280 m.
IIl ingot, forged at 1250°C to a thickness of 35),
After making a board with a width of 155mm, cut it to 30mm x 15
Use a 0mm plate.

1250℃で3時間均熱処理し、厚さ6mmまで熱間圧
延し、その一部は熱延材(a)として試験に供した。他
の部分は1030℃で10分間焼鈍し、酸洗後、冷間圧
延して一部は厚さ1+nmの板とし83%圧下の冷延材
(b)として試験に供し、他は厚さ2Hの板となし、さ
らに中間焼鈍酸洗を挟んでざらに冷間圧延して厚さ11
の板とし50%圧下の冷延材(C)として試験に供し、
残りはさらに1030℃で1.5分の焼鈍を施し、酸洗
して焼鈍材(d)として試験に供した。試料作成の操作
は第1図に図解されている。
The material was soaked at 1250° C. for 3 hours, hot rolled to a thickness of 6 mm, and a portion thereof was subjected to a test as a hot rolled material (a). The other parts were annealed at 1030°C for 10 minutes, pickled, and then cold rolled. Some parts were made into plates with a thickness of 1+nm and were subjected to tests as cold-rolled materials (b) with a reduction of 83%, and the others with a thickness of 2H. A plate with a thickness of 11 mm is then roughly cold rolled with intermediate annealing and pickling in between.
The plate was subjected to a test as a cold-rolled material (C) with a reduction of 50%,
The remaining material was further annealed at 1030° C. for 1.5 minutes, pickled, and used as an annealed material (d) for testing. The procedure for preparing the sample is illustrated in FIG.

本発明試料および比較試料の組成は第1表に示しである
。試料No、 1〜33は本発明方法の素材鋼である。
The compositions of the inventive sample and the comparative sample are shown in Table 1. Samples Nos. 1 to 33 are steel materials used in the method of the present invention.

No、A−Fは比較例の素材鋼で、その組成は規定され
た組成範囲内にあるが、ニッケル当量値かA−Dでは1
3未満であり、 E−Fでは17.5を越える。
No., A-F are steel materials of comparative examples, and their compositions are within the specified composition range, but the nickel equivalent value or A-D is 1.
It is less than 3, and exceeds 17.5 in E-F.

機械的性質の試験は、1ISZ2201に規定されてい
る5号および13B号試片によって行なった。
Mechanical property tests were conducted using No. 5 and No. 13B specimens specified in 1ISZ2201.

マルテンサイト量は試料振動型磁力計によって測定した
The amount of martensite was measured using a sample vibrating magnetometer.

大気雰囲気で熱処理した試片の機械的性質およびマルテ
ンサイト量は第2表にまとめて示しである。第2表にお
いて従来法と称するのは、本発明による熱処理を施さな
いものである。
The mechanical properties and martensite content of the specimens heat-treated in the air atmosphere are summarized in Table 2. In Table 2, the conventional method refers to the method in which the heat treatment according to the present invention is not performed.

第2表によれば、本発明による熱処理を施さない焼鈍状
態で実質的にラスマルテンサイト組織を有する鋼は耐力
で73〜118 kgf/+n+n2.引張り強さで9
8〜127 kgf/m+n2の高強度レベルを有する
が、伸び率は高々7%で、20%冷延鋼板である試料E
、Fのそれに比して著しく低い。本発明の熱処理を施し
た試料でも、比較素材鋼は伸びは若干向上するものの、
高々8%である。本発明方法の試料は若干耐力が低下す
るものもあるが一1概して耐力を維持しながら著しい伸
びの上昇を示している。
According to Table 2, the steel having a substantially lath martensite structure in the annealed state without the heat treatment according to the present invention has a yield strength of 73 to 118 kgf/+n+n2. 9 in tensile strength
Sample E has a high strength level of 8 to 127 kgf/m+n2, but the elongation is at most 7% and is a 20% cold rolled steel plate.
, significantly lower than that of F. Even with the heat-treated samples of the present invention, the elongation of the comparative steel material was slightly improved, but
It is 8% at most. Although some of the samples obtained by the method of the present invention have a slight decrease in yield strength, they generally show a significant increase in elongation while maintaining yield strength.

83%冷延材(b)を条件を変えて熱処理した場合の機
械的性質とマルテンサイト量を第3表に示す。第3表に
おける比較例とは熱処理温度が本発明方法の上限値を越
えているものである。第3表によれば、熱処理の上限温
度が750℃付近に臨界があることがわかる。
Table 3 shows the mechanical properties and the amount of martensite when the 83% cold rolled material (b) was heat treated under different conditions. The comparative examples in Table 3 are those in which the heat treatment temperature exceeds the upper limit of the method of the present invention. According to Table 3, it can be seen that the upper limit temperature of heat treatment is critical around 750°C.

$4表は雰囲気を種々に変えて675℃で2分間本発明
の熱処理を施した場合の機械的性質を示す。第4表に見
られるように、本発明の熱処理は雰囲気を変えても有効
であることがわかる。
Table 4 shows the mechanical properties when the heat treatment of the present invention was performed at 675° C. for 2 minutes under various atmospheres. As seen in Table 4, it can be seen that the heat treatment of the present invention is effective even when the atmosphere is changed.

溶接軟化試験は厚さ1+++mの板上にTIG溶接で、
電流13OA、速度400 m+n/minでビードを
置いて行った。結果は第2図に示す。図はビー1!の中
心からの硬度分布を示す。本発明試料(13,17)は
50%冷延材(c)に650’C!で】0分間の熱処理
を施したものであり、比較試料は(E、F)は20%冷
延材である。図に見られるように本発明試料は明らかに
溶接部の軟化かない。
The welding softening test was performed by TIG welding on a plate with a thickness of 1+++m.
The beads were placed at a current of 13 OA and a speed of 400 m+n/min. The results are shown in Figure 2. The figure is B1! The hardness distribution from the center is shown. Inventive samples (13, 17) are 50% cold-rolled material (c) at 650'C! The comparative samples (E, F) are 20% cold-rolled materials. As can be seen in the figure, there is clearly no softening of the weld zone in the sample of the present invention.

〈発明の効果〉 以上の実施例で説明したように、本発明の方法によれば
、従来存在しなかった材料、すなわち、100 kgf
/mm2程度の強度レベルと約20%の伸びを有し、溶
接部強度低下のないステンレス鋼を製造することが可能
となり、1)溶接施行後、伸び変形で矯正加工されるス
チールベルト材、2)曲げ加工や引張り矯正加工、およ
びそれらの加工後に部品を溶接加工し、熱歪による変形
を矯正するための矯正加工が要求される車両台枠材、3
)高強度と耐溶接軟化性が要求されるコンテナ材、4)
刃物材、5)その他、高強度、加工性、耐溶接軟化性が
要求される構造部材等の分野へ、本発明がもたらした効
果は極めて大きなものがある。
<Effects of the Invention> As explained in the above examples, according to the method of the present invention, a material that has not existed in the past, that is, 100 kgf
It is now possible to manufacture stainless steel with a strength level of about /mm2 and an elongation of about 20%, and without a decrease in strength at the welded part.1) Steel belt material that is straightened by elongation deformation after welding, ) Vehicle underframe materials that require bending, tensile straightening, welding of parts after these processes, and straightening to correct deformation due to thermal distortion, 3
) Container materials that require high strength and welding softening resistance, 4)
The present invention has brought extremely great effects to the fields of cutlery materials, 5) and other structural members that require high strength, workability, and weld softening resistance.

特開口aG3−210234  (11)Special opening aG3-210234 (11)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における試料の作製法を示す系統図であ
る。 第2図は本発明試料および比較試料の溶接部の軟化を示
すグラフである。
FIG. 1 is a system diagram showing the method for preparing a sample in the present invention. FIG. 2 is a graph showing the softening of the welds of the inventive sample and the comparative sample.

Claims (1)

【特許請求の範囲】 1、C:0.10%以下 Si:4.5%以下 Mn:5.0%以下 P:0.060%以下 S:0.030%以下 Cr:10.0〜17.0% Ni:3.0〜10.0% N:0.10%以下 を含み、 残部Feと不可避的不純物からなり、 Ni_e_q=Ni+Mn+0.5Cr+0.3Si+
20(C+N)で定義されるNi_e_qの値が13.
0〜17.5の範囲内にある鋼の熱延材、冷延材、焼鈍
材のいずれかを575〜750℃の温度範囲内で60分
未満の範囲内で熱処理を施すことからなる、マルテンサ
イト単相またはマルテンサイト相と微細なオーステナイ
ト相の複相組織よりなる、加工性に優れた溶接軟化のな
い高強度ステンレス鋼材の製造方法。 2、C:0.10%以下 Si:4.5%以下 Mn:5.0%以下 P:0.060%以下 S:0.030%以下 Cr:10.0〜17.0% Ni:3.0〜10.0% N:0.10%以下 Cu、Mo、W、Coの1種以上合計で 4.0%以下 を含み、 残部Feと不可避的不純物からなり、 Ni_e_q=Ni+Mn+0.5Cr+0.3Si+
20(C+N)+Cu+Mo+W+0.2Co で定義されるNi_e_qの値が13.0〜17.5の
範囲内にある鋼の熱延材、冷延材、焼鈍材のいずれかを
575〜750℃の温度範囲内で60分未満の範囲内で
熱処理を施すことからなる、マルテンサイト単相または
マルテンサイト相と微細なオーステナイト相の複相組織
よりなる、加工性に優れた溶接軟化のない高強度ステン
レス鋼材の製造方法。 3、C:0.10%以下 Si:4.5%以下 Mn:5.0%以下 P:0.060%以下 S:0.030%以下 Cr:10.0〜17.0% Ni:3.0〜10.0% N:0.10%以下 Ti、Nb、V、Zr、Al、B、Taの1種以上合計
で1.0%以下 を含み、 残部Feと不可避的不純物からなり、 Ni_e_q=Ni+Mn+0.5Cr+0.3Siで
定義されるNi_e_qの値が13.0〜17.5の範
囲内にある鋼の熱延材、冷延材、焼鈍材のいずれかを5
75〜750℃の温度範囲内で60分未満の範囲内で熱
処理を施すことからなる、マルテンサイト単相またはマ
ルテンサイト相と微細なオーステナイト相の複相組織よ
りなる、加工性に優れた溶接軟化のない高強度ステンレ
ス鋼材の製造方法。 4、C:0.10%以下 Si:4.5%以下 Mn:5.0%以下 P:0.060%以下 S:0.030%以下 Cr:10.0〜17.0% Ni:3.0〜10.0% N:0.10%以下 Cu、Mo、W、Coの1種以上合計で 4.0%以下 Ti、Nb、V、Zr、Al、B、Taの1種以上合計
で1.0%以下 を含み、 残部Feと不可避的不純物からなり、 Ni_e_q=Ni+Mn+0.5Cr+0.3Si+
Cu+Mo+W+0.2Coで定義されるNi_e_q
の値が13.0〜17.5の範囲内にある鋼の熱延材、
冷延材、焼鈍材のいずれかを575〜750℃の温度範
囲内で60分未満の範囲内で熱処理を施すことからなる
、マルテンサイト単相またはマルテンサイト相と微細な
オーステナイト相の複相組織よりなる、加工性に優れた
溶接軟化のない高強度ステンレス鋼材の製造方法。
[Claims] 1. C: 0.10% or less Si: 4.5% or less Mn: 5.0% or less P: 0.060% or less S: 0.030% or less Cr: 10.0 to 17 .0% Ni: 3.0 to 10.0% N: Contains 0.10% or less, the balance consists of Fe and unavoidable impurities, Ni_e_q=Ni+Mn+0.5Cr+0.3Si+
If the value of Ni_e_q defined by 20(C+N) is 13.
Marten is produced by heat-treating hot-rolled, cold-rolled, or annealed steel in the temperature range of 575 to 750°C for less than 60 minutes. A method for manufacturing high-strength stainless steel materials with excellent workability and no welding softening, consisting of a single phase structure or a multi-phase structure of a martensitic phase and a fine austenite phase. 2, C: 0.10% or less Si: 4.5% or less Mn: 5.0% or less P: 0.060% or less S: 0.030% or less Cr: 10.0-17.0% Ni: 3 .0 to 10.0% N: 0.10% or less Contains at least 4.0% in total of one or more of Cu, Mo, W, and Co, with the balance consisting of Fe and unavoidable impurities, Ni_e_q=Ni+Mn+0.5Cr+0. 3Si+
20(C+N)+Cu+Mo+W+0.2Co A hot-rolled, cold-rolled, or annealed steel with a Ni_e_q value defined by 13.0-17.5 is heated in a temperature range of 575-750°C. A high-strength stainless steel material with excellent workability and no welding softening, consisting of a single martensite phase or a multi-phase structure of a martensite phase and a fine austenite phase, is heat treated for less than 60 minutes. Production method. 3. C: 0.10% or less Si: 4.5% or less Mn: 5.0% or less P: 0.060% or less S: 0.030% or less Cr: 10.0-17.0% Ni: 3 .0 to 10.0% N: 0.10% or less Contains at least 1.0% in total of one or more of Ti, Nb, V, Zr, Al, B, Ta, and the balance consists of Fe and inevitable impurities, The value of Ni_e_q defined by Ni_e_q=Ni+Mn+0.5Cr+0.3Si is within the range of 13.0 to 17.5.
Weld softening with excellent workability, consisting of a single martensite phase or a multi-phase structure of a martensite phase and a fine austenite phase, which is performed by heat treatment within a temperature range of 75 to 750°C for less than 60 minutes. A method for manufacturing high-strength stainless steel materials without 4, C: 0.10% or less Si: 4.5% or less Mn: 5.0% or less P: 0.060% or less S: 0.030% or less Cr: 10.0-17.0% Ni: 3 .0 to 10.0% N: 0.10% or less Cu, Mo, W, Co total 4.0% or less Ti, Nb, V, Zr, Al, B, Ta one or more total Ni_e_q=Ni+Mn+0.5Cr+0.3Si+
Ni_e_q defined by Cu+Mo+W+0.2Co
A hot-rolled steel material whose value is within the range of 13.0 to 17.5,
A single martensite phase or a multi-phase structure of a martensite phase and a fine austenite phase, which is obtained by heat-treating either a cold-rolled material or an annealed material within a temperature range of 575 to 750°C for less than 60 minutes. A method for producing high-strength stainless steel material with excellent workability and no welding softening.
JP62043156A 1987-02-27 1987-02-27 Method for producing high-strength stainless steel with excellent workability and no welding softening Expired - Fee Related JP2826819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043156A JP2826819B2 (en) 1987-02-27 1987-02-27 Method for producing high-strength stainless steel with excellent workability and no welding softening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043156A JP2826819B2 (en) 1987-02-27 1987-02-27 Method for producing high-strength stainless steel with excellent workability and no welding softening

Publications (2)

Publication Number Publication Date
JPS63210234A true JPS63210234A (en) 1988-08-31
JP2826819B2 JP2826819B2 (en) 1998-11-18

Family

ID=12655995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043156A Expired - Fee Related JP2826819B2 (en) 1987-02-27 1987-02-27 Method for producing high-strength stainless steel with excellent workability and no welding softening

Country Status (1)

Country Link
JP (1) JP2826819B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511287A (en) * 1991-10-07 1994-12-15 サンドビック アクティエボラーグ Precipitation hardening martensitic stainless steel
US20120114496A1 (en) * 2010-11-09 2012-05-10 Shinji Oikawa Precipitation Hardening Martensitic Stainless Steel and Steam Turbine Component Made Thereof
US20150191809A1 (en) * 2012-08-24 2015-07-09 Nkk Tubes Martensitic Stainless Steel with High Strength, High Toughness and High Corrosion Resistance
CN108368573A (en) * 2015-09-29 2018-08-03 日新制钢株式会社 The high-strength stainless steel sheet and its manufacturing method of excellent in fatigue characteristics
RU2687619C1 (en) * 2017-12-27 2019-05-15 Общество с ограниченной ответственностью "Хард-металл" (ООО "Хард-металл") High-strength corrosion-resistant steel
CN112955576A (en) * 2018-11-05 2021-06-11 杰富意钢铁株式会社 Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378367A (en) * 1959-06-24 1968-04-16 Bofors Ab Weldable, corrosion-resisting steel
JPS5716154A (en) * 1980-06-30 1982-01-27 Nippon Yakin Kogyo Co Ltd High strength martensite-containing stainless steel having excellent pitting resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378367A (en) * 1959-06-24 1968-04-16 Bofors Ab Weldable, corrosion-resisting steel
JPS5716154A (en) * 1980-06-30 1982-01-27 Nippon Yakin Kogyo Co Ltd High strength martensite-containing stainless steel having excellent pitting resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511287A (en) * 1991-10-07 1994-12-15 サンドビック アクティエボラーグ Precipitation hardening martensitic stainless steel
US20120114496A1 (en) * 2010-11-09 2012-05-10 Shinji Oikawa Precipitation Hardening Martensitic Stainless Steel and Steam Turbine Component Made Thereof
JP2012102638A (en) * 2010-11-09 2012-05-31 Hitachi Ltd Precipitation hardening martensite based stainless steel and steam turbine member using the same
US9873930B2 (en) 2010-11-09 2018-01-23 Mitsubishi Hitachi Power Systems, Ltd. Precipitation hardening martensitic stainless steel and steam turbine component made thereof
US20150191809A1 (en) * 2012-08-24 2015-07-09 Nkk Tubes Martensitic Stainless Steel with High Strength, High Toughness and High Corrosion Resistance
CN108368573A (en) * 2015-09-29 2018-08-03 日新制钢株式会社 The high-strength stainless steel sheet and its manufacturing method of excellent in fatigue characteristics
CN108368573B (en) * 2015-09-29 2020-12-29 日铁不锈钢株式会社 High-strength stainless steel sheet having excellent fatigue characteristics and method for producing same
RU2687619C1 (en) * 2017-12-27 2019-05-15 Общество с ограниченной ответственностью "Хард-металл" (ООО "Хард-металл") High-strength corrosion-resistant steel
CN112955576A (en) * 2018-11-05 2021-06-11 杰富意钢铁株式会社 Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing same

Also Published As

Publication number Publication date
JP2826819B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
KR20040075981A (en) Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH0941088A (en) Production of high toughness steel plate for low temperature use
JPH01184226A (en) Production of steel sheet having high-ductility high-strength multiple structure
JPS63213619A (en) Manufacture of high strength stainless steel material having superior workability and causing no softening due to welding
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JP2001140041A (en) Chromium stainless steel with double layer structure for spring and producing method therefor
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
US4851054A (en) Method of producing rolled steel having excellent resistance to sulfide stress corrosion cracking
JPS6137334B2 (en)
JPH06287635A (en) Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JPH05195054A (en) Production of high strength stainless steel material for structural use excellent in workability
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPS63210242A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
WO2019039339A1 (en) Method for production of ni-containing steel sheet
KR102523533B1 (en) Ferritic stainless steel with improved grain boundary erosion and its manufacturing method
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees