JP3543200B2 - Manufacturing method of steel sheet for metal saw substrate - Google Patents

Manufacturing method of steel sheet for metal saw substrate Download PDF

Info

Publication number
JP3543200B2
JP3543200B2 JP17480894A JP17480894A JP3543200B2 JP 3543200 B2 JP3543200 B2 JP 3543200B2 JP 17480894 A JP17480894 A JP 17480894A JP 17480894 A JP17480894 A JP 17480894A JP 3543200 B2 JP3543200 B2 JP 3543200B2
Authority
JP
Japan
Prior art keywords
steel
hot
metal saw
rolling
saw substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17480894A
Other languages
Japanese (ja)
Other versions
JPH0813030A (en
Inventor
勝之 飯原
利郎 山田
知明 諌山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP17480894A priority Critical patent/JP3543200B2/en
Publication of JPH0813030A publication Critical patent/JPH0813030A/en
Application granted granted Critical
Publication of JP3543200B2 publication Critical patent/JP3543200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は,メタルソー基板に適用される高強度・高靱性の鋼板の製造方法に関する。
【0002】
【従来の技術】
高速度鋼の刃部を別鋼種の基板に溶接してなるメタルソー(帯鋸や丸鋸等)は高価な高速度鋼の使用量を低減できることのほか,基板での強度・靭性の付与によってブレード自体の耐用性を向上させることができるので,特にメタルバンドソー分野に多用されている。
【0003】
かようなメタルソー基板には,十分な強度と靭性を具備することのほか,多量の合金元素を含有する高速度鋼との溶接性が良好でまた高速度鋼との熱処理性の整合性も要求されることになる。このような要求を満たすべく,従来より種々のメタルソー基板材料が提案されており,例えば特開昭49−88713号公報,特開昭54−76414号公報,特公昭55−32778号公報には,各種の合金鋼が記載されており,これらをメタルソー基板とすると,刀部高速度鋼との溶接部の特性劣化が少なく,また刀部との同一温度域での熱処理によっても十分な強度と靭性が保たれるとされている。
【0004】
とくに特開昭49−88713号公報および特開昭54−76414号に記載の成分系の材料では,溶接時の溶融メタル中での刃材側と基板側との炭素活量の差に基づく基板側から刃材側に炭素が拡散する現象(刃材側では浸炭,基板材側では脱炭の現象)が起きにくく,また焼戻し軟化抵抗が大きいため刃部と同一の高温焼入焼戻し熱処理によっても十分な強度と靱性が保たれるので,メタルバンドソーの基板材として好適であり,実用化されているものもある。
【0005】
【発明が解決しようとする課題】
メタルソー基板には,前記のように各種の特性が要求されるが,このような特性が要求される特殊鋼をどのようにして製造するか,前記の公報には全く示されていない。とくに最近の鉄鋼製造の趨勢である大ロットの連続鋳造−熱間圧延工程での製造方法については一切開示されていない。
【0006】
すなわち,通常の鋼を対象とした連続鋳造工程−熱間圧延工程−連続酸洗工程−冷間圧延工程を経る鋼帯の製造ラインで,メタルソー基板のような特殊材料が製造できるか否かは全く不明であった。本発明者らの経験によると,ホットストリップミルを経たこの系統の熱延鋼帯を連続酸洗ラインに通板すると,ライン内の種々の半径のロール群で曲げ応力を受けながら案内される過程で破断する事故が発生しやすく,このような鋼帯を安定して製造することは困難である。
【0007】
本発明の目的は,メタルソー基板に要求される諸性質を具備した高強度高靭性の鋼板を大ロットの連続鋳造−熱間圧延工程を経て安価に製造する点にある。
【0008】
【課題を解決するための手段】
本発明によれば,重量%で,
C:0.30〜0.60%,
Si:0.40%以下(好ましくは0.10〜0.40%),
Mn:0.60%以下(好ましくは0.20〜0.60%),
Cr:1.00〜3.00%,
Mo:0.40〜1.00%,
V:0.20〜0.40%,
P:0.010%以下,
S:0.006%以下,
Al:酸可溶Alとして0.010〜0.10%
を含有し,残部がFeおよび不可避的不純物からなるメタルソー基板用の鋼板を少なくとも連続鋳造工程,熱間圧延工程および連続酸洗工程を経る鋼帯製造ラインで製造する方法であって,前記の熱間圧延工程を
スラブ加熱温度:1200℃〜1350℃,
仕上温度:800℃〜900℃,
巻取温度:400℃〜600℃,
粗圧延〜仕上圧延での総圧下率:98%以上
の条件で実施してベイナイト単相組織の熱延鋼帯とすることを特徴とするメタルソー基板用鋼板の製造方法を提供する。
【0009】
【作用】
本発明によると,メタルソー基板に要求される諸特性を具備した鋼板が,鋼の連続鋳造設備および熱間圧延設備を用いて大ロットで生産が可能となり,高品質で安価なメタルソー基板を提供することができる。特に熱間圧延によってベイナイト単相組織の熱延鋼帯とするので,これを連続酸洗工程に通板しても,破断トラブルなく良好に酸洗ができるようになり,この材料の大ロット生産が可能となった。
【0010】
以下に本発明で規定する鋼成分とその含有量並びに製造条件の意味するところを作用と共に個別に説明する。
【0011】
〔鋼の成分組成について〕
C:鋼の強度と靱性を決定する基本的な元素である。メタルソー基板材として必要な強度を確保するためにはC量は0.30%以上が必要である。鋼の強度はC量が多いほど増加はするが,他方メタルソー基板材として必要な靱性はC量が0.60%を超えると逆に低下してしまう。このためC量は0.30〜0.60%とした。
【0012】
Si:鋼の脱酸元素として必要かつ有効であり,またフェライトの固溶強化元素としても有効に作用する元素であるが,熱延や焼鈍さらには熱処理において表面直下に内部酸化を生じる原因にもなる元素である。種々の工程における内部酸化を防止するためにはSi量を0.40%以下とすることが必要であるので,その上限を0.40%とした。好ましいSi量は0.10〜0.40%である。なお
鋼の脱酸は他の元素例えばMnやAlで補うことができるが,この場合にはSiは無添加でも構わない。
【0013】
Mn:鋼の脱酸元素として必要かつ有効であり,オーステナイトの焼入性を高める元素であるが,Siと同様に,熱延や焼鈍さらには熱処理において表面直下に内部酸化を生じる原因となる元素でもある。種々の工程において内部酸化を防止するためには,Mn量を0.60%以下とすることが必要であるので,その上限を0.60%とした。好ましいMn量は0.20〜0.60%である。なお鋼の脱酸は他の元素例えばSiやAlで補うことができるが,この場合にはMnは無添加でも構わない。
【0014】
Cr:鋼の焼入性,強度,靱性を向上させる元素として,またCの拡散を抑制する元素として必須である。本発明材料と高速度鋼との溶接時に溶接部の浸炭または脱炭(刃材側の浸炭,基板材側の脱炭)を防止し,また,刃部と同一の高温焼入焼戻し熱処理によっても十分な強度と靱性を保つためには,Cr量は1.00%以上が必要である。しかしCrを3.00%を超えて含有させても前記の溶接部の浸炭・脱炭の防止効果や,強度と靱性を増加させるは効果はともに飽和するうえ,中間製品の製造性が著しく低下してしまうので,その上限を3.00%とした。
【0015】
Mo:鋼の焼入性,強度,靱性を向上させる元素として,またCの拡散を抑制する元素として,Crと同様に必須である。また高速度鋼との溶接部の浸炭または脱炭を防止し且つ刃部と同一の高温焼入焼戻し熱処理によっても十分な強度と靱性を保つためには,Mo量は0.40%以上が必要である。しかし,Mo量が1.00%を超えると,高速度鋼との溶接部での浸炭・脱炭防止効果や,強度と靱性を増加させるは効果はともに飽和し,中間製品の製造性が著しく低下してしまうので,その上限を1.00%とした。
【0016】
V:オーステナイト結晶粒径を微細にする作用により鋼の強度と靱性を向上させる元素として,またCの拡散を抑制する元素として有効に作用する。高速度鋼との溶接部における浸炭・脱炭を防止し,また刃部と同一の高温焼入焼戻し熱処理によっても十分な強度と靱性を保つためには,V量は0.20%以上が必要である。しかしVを0.40%を超えて含有しても,高速度鋼との溶接部の浸炭・脱炭防止効果や,強度と靱性を増加させるは効果はともに飽和し,中間製品の製造性が著しく低下してしまうので,その上限を0.40%とした。
【0017】
P:結晶粒界に偏析し焼入焼戻し後の靱性を低下させるので,P量は低いほど好ましい。メタルソー基板材として必要な靱性はP量を0.010%以下とすることにより達成できるので,その上限を0.010%とした。
【0018】
S:主としてMnSなる非金属介在物を形成し,鋼の加工性,強度,靱性に悪影響を及ぼす。とくに,圧延材においては,MnSが圧延方向に展伸するため,鋼の加工性,強度,靱性の面内異方性が大きく現れてしまう。このようなSの悪影響を防止するためには,S量を0.006%以下とする必要があるので,その上限を0.006%とした。
【0019】
Al:鋼の脱酸元素として必要かつ有効な元素であり,さらに鋼中のNと結合してAlNを形成し,熱処理におけるオーステナイト結晶粒の異常成長を抑制する元素として有効である。これらのAlの作用は,酸可溶Alとして0.010%以上含有することによって発揮されるので,その下限を0.010%とした。これらのAlの作用は,酸可溶Alとして0.10%までの量で十分であり,それ以上のAlを添加しても,いたずらに製造コストの上昇を招くのみならずAlに起因する表面疵等の増加をも招き得策ではないので,その上限を0.10%とした。
【0020】
〔製造条件〕
以上のように成分組成を有する特殊鋼のメタルソー基板を製造するにあたり,本発明では当該鋼を,転炉あるいは電気炉にて溶製した後真空脱ガス装置を経て成分調整し,鋼の連続鋳造設備によって連鋳スラブとし,このスラブを熱間圧延工程,連続酸洗工程,冷間圧延工程(必要に応じて焼鈍を挟んで圧下を行なう)を経て,普通鋼と同様の冷延コイルに製造しようとするものであるが,かような特殊鋼であっても,熱間圧延条件を適正にしてこの鋼の組織を制御すれば酸洗ラインで破断なく製造できることがわかった。以下に本発明で採用する熱間圧延条件について説明する。
【0021】
連続鋳造設備で製造した室温まで冷却された当該鋼のスラブまたは連続鋳造後の高温のスラブを用いて熱延を行う場合,連続鋳造ままのスラブでは偏析が著しく,当該鋼の本来の性能を発揮させるためには,熱延の段階で偏析を可能な限り軽減することが肝要となる。このためには,スラブ加熱温度は1200℃以上とする必要がある。しかし,1350℃を超える温度に加熱しても偏析を軽減する効果は飽和し,かえってスケール損が大きくなり,かつ所要エネルギーがいたずらに増加するのみであるので,スラブ加熱温度の上限は1350℃する。
【0022】
他方,熱間圧延工程を経てコイル状に巻き取られた熱延鋼帯は,焼鈍と冷延を繰り返す冷延工程に移る前に,連続酸洗工程にて熱延板の表面に生じた酸化スケールを除去しなければならない。この酸洗ラインでは,種々の半径のロール群で通板経路が構成されているので,ここを通過する鋼帯は,破断することなく通過できる延性と靱性を具備しなければならない。しかし,前記の成分組成をもつ当該鋼はその変態特性からフェライトおよびパーライト変態は遅いので,その熱延鋼帯は過冷変態を起こした組織となり,いきおい高強度を示す(例えば1000N/mm以上)ので,酸洗ラインで破断するおそれがある。
【0023】
本発明者らはこの問題を解決すべく試験を重ねたが,前記の温度に加熱したスラブを熱延するさいに,熱延仕上温度を800℃〜900℃,巻取温度を400℃〜600℃,そして粗圧延から仕上圧延での総圧下率を98%以上として熱延すれば,フエライトを実質上含まない微細なベイナイト単相組織を有する熱延鋼帯となり,前記の問題が解消できることがわかった。
【0024】
これら熱延条件の意味するところを説明すると,仕上温度を900℃以下としかつ粗圧延〜仕上圧延における総圧下率を98%以上にすると,仕上圧延終了直後のオーステナイトは未再結晶状態でかつ結晶粒が微細化する。このため,以後の冷却過程で微細なベイナイト組織が得られる。
【0025】
これに対して,仕上温度を900℃を超える高温とするか,または粗圧延〜仕上圧延における総圧下率を98%未満にすると,仕上圧延終了段階のオーステナイト結晶粒が粗大となり,また再結晶が進行してしまい,最終的に微細なベイナイト組織が得られない。
【0026】
他方,仕上温度を800℃未満の低温にすると,フェライト変態が促進されてベイナイトとフェライトの混合組織が生成した熱延鋼帯となる。この場合には,酸洗ライン通板時において,軟質なフェライト組織部分に歪が集中して板破断を起こし易くなる。加えて,熱延段階でもオーステナイトの変形抵抗が増加して圧延負荷が増大し,いたずらに製造コストがかさむことにもなる。
【0027】
巻取温度については,巻取温度を400℃未満ではベイナイト変態が十分に進行せずにマルテンサイトが生成し,熱延鋼帯の材質が硬質化して酸洗ライン通板中に板破断が起きやすくなってしまう。また巻取温度を600℃を超える温度とすると,フェライトとパーライトが生成してベイナイト単相組織とはならない。したがって,本発明鋼の熱延巻取温度は400〜600℃の範囲とする必要がある。
【0028】
【実施例】
〔実施例1〕
表1に示した化学成分値の鋼を転炉で溶製し,厚さ200mmのスラブに連続鋳造した。このスラブを1250℃に加熱し,熱延仕上温度850℃,巻取温度550℃で通常のホットストリップミルで熱間圧延し,板厚2.8mmの熱延鋼帯を製造した。
【0029】
各熱延鋼帯から供試材を切出し,酸洗後球状化焼鈍し,さらに焼入れ焼戻し処理を施した。焼入れは1260℃で3分間保持後70℃の油浴中で冷却した。焼戻しは560℃で60分間保持を3回繰り返した。各熱処理材の硬さと衝撃値を測定しまた表層の内部酸化の有無を調べた。その結果を表1に併記した。
【0030】
【表1】

Figure 0003543200
【0031】
表1の結果から次のことがわかる。C含有量が本発明で規定するより低い比較鋼Bは焼入れ・焼戻し後の硬さが低く,メタルソー基板として要求される強度が得られないうえに,酸化物を作りやすいMnの含有量が高いので,表層に内部酸化も認められた。
【0032】
本発明で規定するよりもC含有量が高い比較鋼Cは強度は充分であるものの靱性が低く,また酸化物を作りやすいSiの含有量が高いため内部酸化を生じている。したがってメタルソー基板としての使用に耐えない。
【0033】
比較鋼Eは,Cr,Mo,Vなどの炭化物形成元素の含有量が少ないため,焼入れ・焼戻し後の強度が確保できない。他方,比較鋼Fはこれら炭化物形成元素の含有量が本発明で規定するよりも多く含有するものであるが,本発明鋼と比べて強度・靱性ともに大きな特性の向上は認められず,これらの元素を過剰に添加しても製造性を損なうばかりか経済的にも不利となることがわかる。
【0034】
これに対して,本発明鋼A,DおよびGはいずれも焼入れ焼戻し後にメタルソー基板として必要な強度と靱性を同時に具備しており,また表層の内部酸化も認められない。
【0035】
〔実施例2〕
表1のA鋼を転炉で溶製し,厚さ100〜200mmのスラブ6本に連続鋳造した。これらのスラブを,表2に示すように加熱温度1200〜1300℃,仕上温度770〜920℃,巻取温度380〜630℃,総圧下率96.6〜98.5の各種条件のもとで通常のホットストリップミルで熱間圧延し,板厚3.0〜3.6mmの熱延鋼帯を製造した。
【0036】
得られた各熱延鋼帯から供試材を切出し,鋼の熱延金属組織を調べ,また各熱延材の曲げ試験を行うことによって酸洗ラインの通板性を調べた。その結果を表2に併記した。曲げ試験は半径30mmのポンチによる突曲げを20回繰り返し行った時の破断の有無によって評価した。この試験による破断の有無は,連続酸洗工程に通板する際に必要な延性および靱性を判定する目安となり,破断しないものは十分に通板可能である。
【0037】
【表2】
Figure 0003543200
【0038】
表2の結果から次のことがわかる。
【0039】
比較例cは,厚さ200mmのスラブに連続鋳造した後,板厚3.4mmまで熱延したものであるが,仕上温度が低いので熱延材の金属組織はフェライトとベイナイトの2層となり,曲げ試験では軟質なこのフェライト部に歪が集中して破断に至った。
【0040】
比較例dは,厚さ100mmのスラブから板厚3.4mmまで熱延したものであるが,仕上温度が高く総圧下率が低いため組織は粗大なベイナイトとなり,曲げ特性が低下している。
【0041】
比較例eとfは,それぞれ厚さ200mmのスラブから板厚3.0mmと3.6mmまで熱延したものであるが,比較例eでは巻取温度が低いのでベイナイトのほかにマルテンサイトが生じた組織となり,材料の延性が低下して曲げ試験にて破断した。また比較例fは巻取温度が高いのでフェライトとパーライトが生成した組織となり,曲げ試験では局部的に歪が集中して破断した。
【0042】
これに対して,本発明例aとbでは,それぞれ厚さ200mmのスラブから板厚3.0mmと3.6mmまで熱延したものであり,本発明で規定する範囲の条
件で熱延されているので,いずれも微細なベイナイト単相組織となり,曲げ試験でも破断に至らず優れた延靱性を示している。
【0043】
このように,本発明の方法に従う熱延鋼帯は酸洗ラインに安定して通板可能となり,大ロット生産が可能となった。なお酸洗された熱間圧延は次工程の焼鈍と冷延によって必要厚みの冷延鋼帯とされ,メタルソー基板用途に供される。
【0044】
【発明の効果】
以上説明したように,本発明によれば,メタルソー基板に必要な特性を満足する高強度・高靭性の鋼板を通常の大ロット式鋼帯製造ラインで製造可能となり,安価で高品質のメタルソー基板用素材を提供できる。[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a high-strength and high-toughness steel plate applied to a metal saw substrate.
[0002]
[Prior art]
Metal saws (band saws, circular saws, etc.) made by welding the high-speed steel blade to another steel type substrate can reduce the amount of expensive high-speed steel used, and the strength and toughness of the substrate itself contributes to the blade itself. Since it can improve the durability of the metal band saw, it is widely used especially in the metal band saw field.
[0003]
Such metal saw substrates must have sufficient strength and toughness, good weldability with high-speed steel containing a large amount of alloying elements, and compatibility with heat treatment with high-speed steel. Will be done. In order to satisfy such demands, various metal saw substrate materials have been conventionally proposed. For example, JP-A-49-88713, JP-A-54-76414, and JP-B-55-32778 disclose such materials. Various alloy steels are described. If these are used as metal saw substrates, there is little deterioration in the characteristics of the welded part with the high-speed steel at the sword section, and sufficient strength and toughness can be obtained by heat treatment with the sword section at the same temperature range. Is to be kept.
[0004]
In particular, in the case of the component-based materials described in JP-A-49-88713 and JP-A-54-76414, the substrate based on the difference in the carbon activity between the blade material side and the substrate side in the molten metal during welding. The phenomenon of carbon diffusion from the side to the blade material side (carburization on the blade material side, decarburization on the substrate material side) is unlikely to occur, and since the tempering softening resistance is large, the same high-temperature quenching and tempering heat treatment as the blade part can be performed. Since sufficient strength and toughness are maintained, it is suitable as a substrate material for metal band saws, and some of them have been put to practical use.
[0005]
[Problems to be solved by the invention]
The metal saw substrate is required to have various characteristics as described above, but the above-mentioned publication does not show how to manufacture special steel requiring such characteristics. In particular, there is no disclosure of a production method in a continuous casting-hot rolling process of a large lot, which is a recent trend in steel production.
[0006]
In other words, whether or not a special material such as a metal saw substrate can be manufactured in a steel strip manufacturing line that goes through a continuous casting process, a hot rolling process, a continuous pickling process, and a cold rolling process for ordinary steel. It was completely unknown. According to the experience of the present inventors, when a hot-rolled steel strip of this system passed through a hot strip mill is passed through a continuous pickling line, it is guided by a group of rolls of various radii in the line under bending stress. It is difficult to manufacture such a steel strip stably because of the fact that it is easy for the steel strip to break.
[0007]
An object of the present invention is to manufacture a high-strength and tough steel plate having various properties required for a metal saw substrate at low cost through a continuous casting-hot rolling process of a large lot.
[0008]
[Means for Solving the Problems]
According to the invention, in weight%:
C: 0.30 to 0.60%,
Si: 0.40% or less (preferably 0.10 to 0.40%),
Mn: 0.60% or less (preferably 0.20 to 0.60%),
Cr: 1.00 to 3.00%,
Mo: 0.40-1.00%,
V: 0.20 to 0.40%,
P: 0.010% or less,
S: 0.006% or less,
Al: 0.010 to 0.10% as acid-soluble Al
The method for producing a steel sheet for a metal saw substrate comprising Fe and the balance consisting of Fe and unavoidable impurities in a steel strip production line through at least a continuous casting step, a hot rolling step and a continuous pickling step. The slab heating temperature is 1200 ° C to 1350 ° C
Finishing temperature: 800 to 900 ° C,
Winding temperature: 400 to 600 ° C,
Provided is a method for producing a steel sheet for a metal saw substrate, which is performed under conditions of a total rolling reduction in rough rolling to finish rolling: 98% or more to obtain a hot-rolled steel strip having a bainite single-phase structure.
[0009]
[Action]
Advantageous Effects of Invention According to the present invention, a steel sheet having various characteristics required for a metal saw substrate can be produced in a large lot using continuous casting equipment and hot rolling equipment for steel, and a high quality and low cost metal saw substrate is provided. be able to. In particular, since hot-rolled steel strip with a bainite single-phase structure is formed by hot rolling, it can be pickled satisfactorily without breaking even if it is passed through a continuous pickling process. Became possible.
[0010]
Hereinafter, the meanings of the steel components and the contents thereof and the production conditions specified in the present invention will be individually described together with the operation.
[0011]
[Steel composition]
C: A basic element that determines the strength and toughness of steel. In order to secure the required strength as a metal saw substrate material, the C content needs to be 0.30% or more. Although the strength of steel increases as the C content increases, the toughness required as a metal saw substrate material, on the other hand, decreases when the C content exceeds 0.60%. Therefore, the C content is set to 0.30 to 0.60%.
[0012]
Si: An element that is necessary and effective as a deoxidizing element for steel, and also functions effectively as a solid solution strengthening element for ferrite, but also causes internal oxidation immediately below the surface in hot rolling, annealing, and heat treatment. Element. In order to prevent internal oxidation in various processes, the amount of Si needs to be 0.40% or less, so the upper limit was set to 0.40%. The preferred amount of Si is 0.10 to 0.40%. The deoxidation of the steel can be supplemented with another element, for example, Mn or Al. In this case, Si may be added without addition.
[0013]
Mn: An element that is necessary and effective as a deoxidizing element for steel and enhances the hardenability of austenite, but, like Si, an element that causes internal oxidation just below the surface during hot rolling, annealing, and heat treatment. But also. In order to prevent internal oxidation in various steps, the Mn content needs to be 0.60% or less, so the upper limit was set to 0.60%. The preferred amount of Mn is 0.20 to 0.60%. Note that deoxidation of steel can be supplemented by another element, for example, Si or Al. In this case, Mn may not be added.
[0014]
Cr: Indispensable as an element for improving the hardenability, strength and toughness of steel and as an element for suppressing the diffusion of C. Prevents carburizing or decarburization of the welded part (carburizing on the blade side, decarburizing on the substrate side) during welding of the material of the present invention and high-speed steel, and also by the same high-temperature quenching and tempering heat treatment as the blade part In order to maintain sufficient strength and toughness, the Cr content needs to be 1.00% or more. However, even if Cr is contained in an amount exceeding 3.00%, the effect of preventing carburization and decarburization of the above-mentioned welds and the effect of increasing strength and toughness are both saturated, and the productivity of intermediate products is significantly reduced. Therefore, the upper limit was set to 3.00%.
[0015]
Mo: As an element for improving the hardenability, strength and toughness of steel, and as an element for suppressing the diffusion of C, it is indispensable like Cr. Mo content must be 0.40% or more to prevent carburization or decarburization of the weld with high-speed steel and maintain sufficient strength and toughness even with the same high-temperature quenching and tempering heat treatment as the blade. It is. However, when the Mo content exceeds 1.00%, both the effects of preventing carburization and decarburization at the weld with high-speed steel and the effects of increasing strength and toughness are saturated, and the productivity of intermediate products is markedly reduced. Therefore, the upper limit was set to 1.00%.
[0016]
V: Effectively acts as an element for improving the strength and toughness of steel by the action of reducing the austenite crystal grain size, and as an element for suppressing the diffusion of C. In order to prevent carburization and decarburization in the weld with high-speed steel, and to maintain sufficient strength and toughness even with the same high-temperature quenching and tempering heat treatment as the blade, the V content must be 0.20% or more. It is. However, even if V is contained in excess of 0.40%, the effect of preventing carburization and decarburization of the weld with high-speed steel and the effect of increasing strength and toughness are both saturated, and the productivity of intermediate products is reduced. Since it is significantly reduced, the upper limit is set to 0.40%.
[0017]
P: The P content is preferably as low as possible because it segregates at the crystal grain boundaries and decreases the toughness after quenching and tempering. Since the toughness required as a metal saw substrate material can be achieved by setting the P content to 0.010% or less, the upper limit is set to 0.010%.
[0018]
S: Nonmetallic inclusions mainly composed of MnS are formed, which adversely affect the workability, strength and toughness of steel. In particular, in a rolled material, MnS expands in the rolling direction, so that in-plane anisotropy of workability, strength, and toughness of the steel appears significantly. In order to prevent such an adverse effect of S, the amount of S must be made 0.006% or less, so the upper limit is made 0.006%.
[0019]
Al: A necessary and effective element as a deoxidizing element of steel, it is also effective as an element that combines with N in steel to form AlN and suppresses abnormal growth of austenite crystal grains during heat treatment. Since the effect of these Al is exhibited by containing 0.010% or more as acid-soluble Al, the lower limit is set to 0.010%. The action of these Al is sufficient in the amount up to 0.10% as the acid-soluble Al. Even if more Al is added, not only the production cost is increased unnecessarily but also the surface caused by Al is increased. Since the increase of flaws and the like is not a good measure, the upper limit is set to 0.10%.
[0020]
(Manufacturing conditions)
In the production of a special steel metal saw substrate having a composition as described above, the present invention melts the steel in a converter or an electric furnace, adjusts the composition through a vacuum degasser, and continuously casts the steel. Continuously cast slab is produced by the equipment, and this slab is manufactured into a cold rolled coil similar to ordinary steel through a hot rolling process, a continuous pickling process, and a cold rolling process (depressing with annealing, if necessary). However, it has been found that even such a special steel can be manufactured in an acid pickling line without breakage by controlling the structure of the steel under appropriate hot rolling conditions. Hereinafter, the hot rolling conditions employed in the present invention will be described.
[0021]
When hot rolling is performed using a slab of the steel cooled to room temperature or a high-temperature slab after the continuous casting manufactured by the continuous casting facility, segregation is remarkable in the slab as it is continuously cast, and the original performance of the steel is exhibited. In order to achieve this, it is important to reduce segregation as much as possible at the stage of hot rolling. For this purpose, the slab heating temperature must be 1200 ° C. or higher. However, even when heating to a temperature exceeding 1350 ° C, the effect of reducing segregation saturates, and instead the scale loss increases and the required energy only increases unnecessarily, so the upper limit of the slab heating temperature is 1350 ° C. .
[0022]
On the other hand, the hot-rolled steel strip wound into a coil through the hot-rolling process is oxidized on the surface of the hot-rolled sheet in the continuous pickling process before moving to the cold-rolling process where annealing and cold rolling are repeated. The scale must be removed. In this pickling line, since a threading path is constituted by rolls of various radii, a steel strip passing therethrough must have ductility and toughness that can pass without breaking. However, since the steel having the above-mentioned composition has a slow transformation of ferrite and pearlite due to its transformation characteristics, the hot-rolled steel strip has a supercooled transformation structure and exhibits a very high strength (for example, 1000 N / mm 2 or more). ), It may be broken in the pickling line.
[0023]
The present inventors have repeated tests to solve this problem, but when hot-rolling the slab heated to the above-mentioned temperature, the hot-rolling finishing temperature was set to 800 ° C to 900 ° C and the winding temperature was set to 400 ° C to 600 ° C. If hot rolling is carried out at a temperature of ℃ and a total draft of 98% or more from rough rolling to finish rolling, it becomes a hot-rolled steel strip having a fine bainite single phase structure substantially containing no ferrite, and the above-mentioned problems can be solved. all right.
[0024]
Explaining the meaning of these hot rolling conditions, when the finishing temperature is set to 900 ° C. or less and the total rolling reduction in the rough rolling to the finish rolling is set to 98% or more, the austenite immediately after the finish rolling is in an unrecrystallized state and crystallized. The grains become finer. Therefore, a fine bainite structure is obtained in the subsequent cooling process.
[0025]
On the other hand, when the finishing temperature is set to a high temperature exceeding 900 ° C., or when the total reduction in the rough rolling to the finish rolling is set to less than 98%, the austenite crystal grains at the stage of finishing the finishing rolling become coarse and recrystallization occurs. It proceeds and a fine bainite structure cannot be finally obtained.
[0026]
On the other hand, when the finishing temperature is set to a low temperature of less than 800 ° C., the ferrite transformation is promoted, and a hot-rolled steel strip in which a mixed structure of bainite and ferrite is formed is obtained. In this case, when passing through the pickling line, the strain is concentrated on the soft ferrite structure, and the sheet is easily broken. In addition, the deformation resistance of austenite also increases in the hot rolling stage, and the rolling load increases, which unnecessarily increases the production cost.
[0027]
With regard to the winding temperature, when the winding temperature is lower than 400 ° C, bainite transformation does not proceed sufficiently, martensite is formed, the material of the hot-rolled steel strip becomes hard, and a sheet break occurs during the passing of the pickling line. It will be easier. If the winding temperature is higher than 600 ° C., ferrite and pearlite are formed, and a bainite single phase structure is not formed. Therefore, the hot-rolling winding temperature of the steel of the present invention needs to be in the range of 400 to 600 ° C.
[0028]
【Example】
[Example 1]
Steel having the chemical composition values shown in Table 1 was melted in a converter and continuously cast into a 200 mm thick slab. This slab was heated to 1250 ° C., and hot-rolled at a hot-rolling finish temperature of 850 ° C. and a winding temperature of 550 ° C. using a normal hot strip mill to produce a hot-rolled steel strip having a sheet thickness of 2.8 mm.
[0029]
A test material was cut out from each hot-rolled steel strip, pickled, spheroidized, and further quenched and tempered. The quenching was performed by holding at 1260 ° C. for 3 minutes and then cooling in an oil bath at 70 ° C. Tempering was repeated three times at 560 ° C. for 60 minutes. The hardness and impact value of each heat-treated material were measured, and the presence or absence of internal oxidation of the surface layer was examined. The results are shown in Table 1.
[0030]
[Table 1]
Figure 0003543200
[0031]
The following can be seen from the results in Table 1. Comparative steel B having a lower C content than specified in the present invention has a low hardness after quenching and tempering, does not provide the strength required for a metal saw substrate, and has a high Mn content that easily forms oxides. Therefore, internal oxidation was also observed on the surface layer.
[0032]
Comparative steel C, which has a higher C content than specified in the present invention, has sufficient strength but low toughness, and has an internal oxidation due to a high Si content that easily forms an oxide. Therefore, it cannot be used as a metal saw substrate.
[0033]
Since the comparative steel E has a low content of carbide forming elements such as Cr, Mo, and V, the strength after quenching and tempering cannot be secured. On the other hand, Comparative Steel F contains more of these carbide-forming elements than specified in the present invention, but does not show significant improvement in properties in both strength and toughness as compared with the steel of the present invention. It can be seen that excessive addition of elements not only impairs productivity but also is economically disadvantageous.
[0034]
On the other hand, all of the steels A, D and G of the present invention have the necessary strength and toughness as a metal saw substrate after quenching and tempering, and no internal oxidation of the surface layer is observed.
[0035]
[Example 2]
Steel A in Table 1 was melted in a converter and continuously cast into six slabs having a thickness of 100 to 200 mm. As shown in Table 2, these slabs were heated at 1200 to 1300 ° C., finished at 770 to 920 ° C., wound at 380 to 630 ° C., and reduced at a total reduction of 96.6 to 98.5. Hot rolling was performed by a normal hot strip mill to produce a hot-rolled steel strip having a thickness of 3.0 to 3.6 mm.
[0036]
Specimens were cut out from each of the obtained hot-rolled steel strips, and the hot-rolled metallographic structure of the steel was examined. The results are shown in Table 2. The bending test was evaluated based on the presence or absence of breakage when projecting and bending with a punch having a radius of 30 mm was repeated 20 times. The presence or absence of breakage in this test is a measure of the ductility and toughness required for passing through a continuous pickling process, and those that do not break can be passed sufficiently.
[0037]
[Table 2]
Figure 0003543200
[0038]
The following can be seen from the results in Table 2.
[0039]
In Comparative Example c, continuous casting was performed on a slab having a thickness of 200 mm, and then hot-rolled to a thickness of 3.4 mm. However, since the finishing temperature was low, the metal structure of the hot-rolled material was two layers of ferrite and bainite. In the bending test, the strain was concentrated on the soft ferrite portion, which led to fracture.
[0040]
In Comparative Example d, hot rolling was performed from a slab having a thickness of 100 mm to a plate thickness of 3.4 mm. However, since the finishing temperature was high and the total rolling reduction was low, the structure was coarse bainite, and the bending characteristics were reduced.
[0041]
Comparative Examples e and f were hot rolled from a 200 mm thick slab to a sheet thickness of 3.0 mm and 3.6 mm, respectively. In Comparative Example e, since the winding temperature was low, martensite was formed in addition to bainite. The structure became fractured, and the ductility of the material decreased, and it broke in the bending test. In Comparative Example f, since the winding temperature was high, the structure was such that ferrite and pearlite were formed.
[0042]
On the other hand, in Examples a and b of the present invention, the slab having a thickness of 200 mm was hot-rolled to a thickness of 3.0 mm and 3.6 mm, respectively, and was hot-rolled under the conditions specified in the present invention. Therefore, each of them has a fine bainite single-phase structure and shows excellent ductility without breaking even in a bending test.
[0043]
Thus, the hot-rolled steel strip according to the method of the present invention can be stably passed through the pickling line, and large-lot production has become possible. The pickled hot-rolled steel sheet is formed into a cold-rolled steel strip having a required thickness by annealing and cold rolling in the next step, and is used for a metal saw substrate.
[0044]
【The invention's effect】
As described above, according to the present invention, a high-strength and high-toughness steel plate satisfying the characteristics required for a metal saw substrate can be manufactured on a normal large-lot-type steel strip manufacturing line, and a low-cost, high-quality metal saw substrate can be manufactured. Material can be provided.

Claims (3)

重量%で,
C:0.30〜0.60%,
Si:0.40%以下,
Mn:0.60%以下,
Cr:1.00〜3.00%,
Mo:0.40〜1.00%,
V:0.20〜0.40%,
P:0.010%以下,
S:0.006%以下,
Al:酸可溶Alとして0.010〜0.10%
を含有し,残部がFeおよび不可避的不純物からなるメタルソー基板用の鋼板を少なくとも連続鋳造工程,熱間圧延工程および連続酸洗工程を経る鋼帯製造ラインで製造する方法であって,前記の熱間圧延工程を
スラブ加熱温度:1200℃〜1350℃,
仕上温度:800℃〜900℃,
巻取温度:400℃〜600℃,
粗圧延〜仕上圧延での総圧下率:98%以上
の条件で実施してベイナイト単相組織の熱延鋼帯とすることを特徴とするメタルソー基板用鋼板の製造方法。
In weight percent,
C: 0.30 to 0.60%,
Si: 0.40% or less,
Mn: 0.60% or less,
Cr: 1.00 to 3.00%,
Mo: 0.40-1.00%,
V: 0.20 to 0.40%,
P: 0.010% or less,
S: 0.006% or less,
Al: 0.010 to 0.10% as acid-soluble Al
The method for producing a steel sheet for a metal saw substrate comprising Fe and the balance consisting of Fe and unavoidable impurities in a steel strip production line through at least a continuous casting step, a hot rolling step and a continuous pickling step. The slab heating temperature is 1200 ° C to 1350 ° C
Finishing temperature: 800 to 900 ° C,
Winding temperature: 400 to 600 ° C,
A method for producing a steel sheet for a metal saw substrate, which is performed under the condition of a total rolling reduction in rough rolling to finish rolling: 98% or more to obtain a hot-rolled steel strip having a bainite single-phase structure.
Si:0.10〜0.40%である請求項1に記載のメタルソー基板用鋼板の製造方法。The method for producing a steel sheet for a metal saw substrate according to claim 1, wherein Si: 0.10 to 0.40%. Mn:0.20〜0.60%である請求項1または2に記載のメタルソー基板用鋼板の製造方法。The method for producing a steel sheet for a metal saw substrate according to claim 1 or 2, wherein Mn is 0.20 to 0.60%.
JP17480894A 1994-07-04 1994-07-04 Manufacturing method of steel sheet for metal saw substrate Expired - Fee Related JP3543200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17480894A JP3543200B2 (en) 1994-07-04 1994-07-04 Manufacturing method of steel sheet for metal saw substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17480894A JP3543200B2 (en) 1994-07-04 1994-07-04 Manufacturing method of steel sheet for metal saw substrate

Publications (2)

Publication Number Publication Date
JPH0813030A JPH0813030A (en) 1996-01-16
JP3543200B2 true JP3543200B2 (en) 2004-07-14

Family

ID=15985033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17480894A Expired - Fee Related JP3543200B2 (en) 1994-07-04 1994-07-04 Manufacturing method of steel sheet for metal saw substrate

Country Status (1)

Country Link
JP (1) JP3543200B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388041B1 (en) * 1999-07-29 2003-06-18 주식회사 포스코 A Method for Manufacturing Hot-rolled Steels Having High Hardness
JP6354259B2 (en) * 2014-03-28 2018-07-11 愛知製鋼株式会社 Steel sheet with excellent fatigue strength and method for producing the same
CN111057962B (en) * 2019-12-31 2021-02-26 河钢股份有限公司承德分公司 Medium-high carbon steel 75Cr hot-rolled pickled plate and production method thereof
CN111088458B (en) * 2019-12-31 2021-08-17 河钢股份有限公司承德分公司 Medium-high carbon steel 65Mn hot-rolled pickled plate and production method thereof

Also Published As

Publication number Publication date
JPH0813030A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
CN110088326B (en) Hot-rolled flat steel product and method for the production thereof
JP4782243B2 (en) Boron-added steel sheet with excellent hardenability and manufacturing method
JP5064525B2 (en) High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP3578435B2 (en) Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
RU2341565C2 (en) Method of candy manufacturing from low-alloy steel
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
TW202030343A (en) Carbon alloy steel sheet and method for producing carbon alloy steel sheet
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process
JP3440960B2 (en) Steel plate for metal saw substrate excellent in weldability and method for producing the same
KR20010060758A (en) Method for manufacturing medium carbon wire rod containing high silicon without low tempreature structure
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
JPH0321611B2 (en)
JP2732885B2 (en) High strength hot rolled steel sheet excellent in cold workability and surface quality and method for producing the same
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet
JPH08143969A (en) Production of cold rolled steel sheet excellent in workability
JPS6338518A (en) Production of steel plate having excellent hydrogen induced cracking resistance
JPS63210242A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees