KR20010060758A - Method for manufacturing medium carbon wire rod containing high silicon without low tempreature structure - Google Patents

Method for manufacturing medium carbon wire rod containing high silicon without low tempreature structure Download PDF

Info

Publication number
KR20010060758A
KR20010060758A KR1019990063185A KR19990063185A KR20010060758A KR 20010060758 A KR20010060758 A KR 20010060758A KR 1019990063185 A KR1019990063185 A KR 1019990063185A KR 19990063185 A KR19990063185 A KR 19990063185A KR 20010060758 A KR20010060758 A KR 20010060758A
Authority
KR
South Korea
Prior art keywords
cooling
temperature
strips
less
silicon
Prior art date
Application number
KR1019990063185A
Other languages
Korean (ko)
Other versions
KR100431849B1 (en
Inventor
최해창
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0063185A priority Critical patent/KR100431849B1/en
Publication of KR20010060758A publication Critical patent/KR20010060758A/en
Application granted granted Critical
Publication of KR100431849B1 publication Critical patent/KR100431849B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A manufacturing method for a medium-carbon steel strip added with high-silicon having no low temperature organization is provided to cool the steel strips in a general cooling equipment under control without employing any EDC(Easy Drawing conveyor) equipments or control rolling equipments, for restraining the producing of a low temperature organization, thereby guaranteeing fine ferrite+pearlite organization with a uniform quality. CONSTITUTION: A manufacturing method for a medium-carbon steel strip added with high-silicon having no low temperature organization includes the steps of heating a billet consisting of carbon 0.40-0.60wt%, silicon 2.0-4.0wt%, manganese 0.1-0.8wt%, chrome 0.1-0.8wt%, phosphorus 0.01wt% or less, sulfur 0.01wt% or less, nitrogen 0.005-0.01wt%, oxygen 0.005wt% or less, one or two selected from a group consisting of nickel 0.3-2.0wt%, boron 0.001-0.003wt%, vanadium 0.01-0.5wt%, niobium 0.01-0.5wt%, molybdenum 0.01-0.5wt%, titanium 0.01-0.2wt%, tungsten 0.01-0.5wt%, and copper 0.01-0.2wt%, Fe and other impurities at a temperature of 950-1150°C for carrying out hot rolling of strips, rapidly cooling the rolled strips by water-spraying to a temperature of 760-790°C to wind, air-cooling the strips at a cooling speed of 1.4±0.4°C/sec to a temperature of 670±30°C, slowly cooling the strips at a cooling speed of 0.6±0.3°C/sec to a temperature of 595±65°C, and air-cooling the strips.

Description

저온조직이 없는 고실리콘 첨가 중탄소강 선재의 제조방법{Method for manufacturing medium carbon wire rod containing high silicon without low tempreature structure }Method for manufacturing medium carbon wire rod containing high silicon without low tempreature structure}

본 발명은 볼트 등으로 가공되어 사용되는 선재의 제조방법에 관한 것으로, 보다 상세하게는 실리콘 첨가량이 높음에 따른 열간선재압연후의 냉각과정에서 발생하는 저온조직이 없는 고실리콘 첨가 중탄소강 선재의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing wire rods processed by bolts and the like, and more particularly, to a method for manufacturing high-silicon-added medium-carbon steel wire rods without low-temperature structure occurring during cooling after hot wire rolling due to high amount of silicon addition. It is about.

선재는 일정형상으로 가공되어 다양한 기계부품류에 이용되는데, 그 예로는 볼트, 너트, 스프링 등이 있다. 이러한 기계부품류의 경량화와 고성능화를 위해 선재의 고강도화에 대한 요구는 계속 높아지고 있다. 고강도 소재는 일정하중이 지속적으로 가해지면 수소에 의해 균열이 진전되는 지연파괴가 발생할 수 있다.Wire rod is processed to a certain shape and used for various mechanical parts, for example, bolts, nuts, springs and the like. In order to reduce the weight and performance of such mechanical parts, demand for increasing the strength of wire rods continues to increase. High-strength materials can cause delayed fracture, in which cracks are propagated by hydrogen under constant load.

일례로, 볼트는 지연파괴저항성이 열화되는 문제점으로 현재, 인장강도 130kg/mm2급이상 사용하는 것이 불가능하여 그 사용용도 및 범위가 제한되고 있는 실정이다. 지연파괴저항성이 우수하면서 고강도화가 가능한 볼트용 강을 개발할 경우 기대되는 잇점은 다음과 같다. 즉, 강구조물 측면에서 볼트체결은 용접 접합에 비해 숙련된 기술이 요구되지 않고 취약한 용접부를 대체하는 잇점 등을 고려할 때, 첫째, 볼트체결력 강화에 따른 강구조물의 안정성을 높일 수 있으며 둘째, 볼트체결 갯수의 감소에 의해 강재 사용량을 줄일 수 있다. 또한, 자동차 부품 측면에서는 셋째, 부품의 경량화에 기여하며 넷째, 부품 경량화에 따른 자동차 조립장치의 설계 다양화 및 컴팩트화(compact)가 가능한 잇점이 있다. 따라서, 소재의 지연파괴저항성의 저하없이 고강도화를 달성할 수 있다면, 사용상의 잇점과 산업계에 미치는 영향을 고려할 때 그 파급도는 상당히 클 것으로 예견되고 있다.For example, the bolt is a problem that the delayed fracture resistance deteriorates, it is currently impossible to use more than 130kg / mm 2 grade tensile strength is the situation that the use and range is limited. The followings are the benefits of developing high strength steels with excellent delayed fracture resistance and high strength. That is, in terms of steel structure, bolt fastening does not require skilled skills compared to welding joint, and considering the advantages of replacing weak welds. By reducing the amount of steel used can be reduced. In addition, in terms of automobile parts, third, it contributes to the lightening of parts. Fourth, there is an advantage that the design diversification and compactness of the automobile assembly apparatus according to the lighter parts are possible. Therefore, if the high strength can be achieved without deteriorating the delayed fracture resistance of the material, the spreading degree is expected to be considerably large considering the advantages in use and the effect on the industry.

고강도 소재의 지연파괴저항성은 결정입계에 석출분포하고 있는 석출물이 수소의 트랩 사이트(trapped site)로 작용하여 입계의 강도를 열화시키기 때문에 저하되는 것으로 알려져 있으며, 고강도화를 달성하기 위해서는 열처리후 결정입계에 분포하게 되는 Fe계 석출물들의 분포를 최대한으로 억제시키는 것이 가장 중요하다. 이에 본 발명자는 결정입계에 Fe계 석출물의 석출 가능성이 전혀 없어 지연파괴저항성이 우수한 고강도의 고실리콘 첨가 중탄소강을 개발하였다.The delayed fracture resistance of high-strength materials is known to be lowered because the precipitates distributed at the grain boundaries act as trapped sites of hydrogen and degrade the strength of the grain boundaries. It is most important to suppress the distribution of Fe-based precipitates to be distributed to the maximum. Accordingly, the present inventors have developed a high-strength, high-silicon-added medium-carbon steel excellent in delayed fracture resistance because there is no possibility of precipitation of Fe-based precipitates at grain boundaries.

그러나, 고실리콘 첨가 중탄소강은 Ac1및 Acm변태점이 저실리콘 첨가강 대비 Si성분범위에 따라 차이는 있지만 개략적으로 50~200℃ 이상 높은 관계로 선재 냉각시 쉽게 저온조직(베이나이트 또는 마르텐사이트)이 생성되는 특성이 있다. 선재에 저온조직이 존재하면, 볼트용 선재의 선경조정을 위한 신선가공시 저온조직주위에 응력이 집중되어 단선의 주원인이 되어 신선성의 저하를 초래하고, 이에 따라 소둔 열처리를 하지 않으면 신선가공이 어려운점이 있다. 또한, 냉간성형을 위한 구상화열처리시 구상화조직의 불균질화를 초래할 수 있어 냉간성형에 요구되어지는 적정 표면경도의 확보가 어렵다는 문제가 있다. 따라서, 고실리콘 첨가 중탄소강을 선재로 제조하기 위해서는 선재압연공정에서 저온조직의 발생없이 선재를 제조하여야 신선가공성을 확보할 수 있는 것이다.However, the high-silicon-added medium carbon steel has Ac 1 and Acm transformation points depending on the Si component range compared to the low-silicon-added steel, but it is roughly 50 ~ 200 ℃ or more, so it is easy to cool the wire structure (bainite or martensite). There is a characteristic that is generated. If the low temperature structure exists in the wire rod, stress is concentrated around the low temperature structure during wire drawing for wire diameter adjustment of the bolt wire rod, which is the main cause of disconnection, which leads to the deterioration of the freshness. There is a point. In addition, there is a problem that it is difficult to secure the proper surface hardness required for cold forming because the spheroidization heat treatment for cold forming can lead to heterogeneous homogenization of the globular structure. Therefore, in order to manufacture high-silicon-added heavy carbon steel as a wire rod, wire rods must be manufactured without the occurrence of low-temperature structure in the wire rod rolling process to ensure fresh workability.

통상적으로, 선재는 고속열간압연한 후에 스텔모아설비에서 이송되면서 냉각되는데, 이때에는 물분사에 의해 880℃까지 급속냉각을 실시한 후 코일형태로 권취하여 평균 냉각속도 0.8℃/sec로 평균냉각 마무리온도인 720℃부근까지 서냉하여 공냉시킨다. 이러한 종래의 열간선재압연공정에서의 냉각제어기술(냉각온도 및 냉각속도)로는 저온조직이 없는 페라이트+퍼얼라이트 조직을 확보하기가 매우 어려울 뿐만 아니라, 저온조직(베이나이트+마르텐사이트)을 완전히 억제하기가 거의 불가능하다. 이는 스텔모아 설비능력에 기인하는 것으로 스테모아설비에서 선재는 오스테나이트에서 페라이트+퍼얼라이트로 변태할 때 변태 마무리시간의 부족으로 인해 미변태 잔류오스테나이트가 선재 공냉시 저온조직(베이나이트+마르텐사이트)으로 변태하게 되기 때문이다. 물론, 스텔모아(Stelmor)방식 이외의 냉각속도가 아주 느린 EDC(easy drawing conveyor)설비 등을 이용하거나 제어압연설비를 갖춘 압연기에서 제어냉각하여 오스테나이트 입자 미세화로 저온조직의 발생을 억제시킬 수는 있으나, 이는 기존의 스텔모아설비를 완전히 교체해야 가능하다는 단점이 있다.Typically, the wire is cooled while being transferred from the Stelmore facility after high-speed hot rolling, in this case, after the rapid cooling to 880 ℃ by water spraying and winding in the form of a coil, the average cooling finish temperature 0.8 ℃ / sec average cooling finish temperature It cools slowly to near 720 degreeC and air-cools. In the conventional hot wire rolling process, the cooling control technology (cooling temperature and cooling rate) is not only very difficult to secure ferrite + perlite structure without low temperature structure, but also completely suppresses low temperature structure (bainite + martensite). It is almost impossible to do. This is due to the ability of the Stelmoir facility. In the Steamoir facility, when the wire rod is transformed from austenite to ferrite + perlite, the low-temperature structure of the unmodified residual austenite is cooled when the wire rod is air-cooled (bainite + martensite). This is because it is transformed into). Of course, the use of an EDC (easy drawing conveyor) facility, which has a very slow cooling rate other than the Stelmor method, or controlled cooling in a rolling mill equipped with a control rolling facility, can suppress the formation of low temperature tissue by miniaturizing austenite particles. However, this has the disadvantage that it is possible to completely replace the existing Stallmore equipment.

본 발명은 EDC설비 또는 제어압연설비 등의 새로운 설비의 도입 없이 통상의 냉각설비에서 저온조직(베이나이트+마르텐사이트)의 생성을 억제시켜 균질하고 미세한 페라이트+퍼얼라이트 조직으로 확보할 수 있는 고실리콘 첨가 중탄소강 선재의 제조방법을 제공하는데, 그 목적이 있다.The present invention is to suppress the formation of low-temperature structure (bainite + martensite) in a conventional cooling system without introducing new equipment such as EDC equipment or controlled rolling equipment, high silicon that can be secured as a homogeneous and fine ferrite + pearlite structure It is an object of the present invention to provide a method for producing an added medium carbon steel wire rod.

상기 목적을 달성하기 위한 본 발명의 선재제조방법은, 중량%로 탄소 0.40-0.60%, 실리콘 2.0-4.0%, 망간 0.1-0.8%, 크롬 0.1-0.8%, 인 0.01%이하, 황 0.01% 이하, 질소 0.005-0.01%, 산소 0.005% 이하, 여기에 니켈 0.3-2.0%, 보론 0.001-0.003%, 바나듐: 0.01-0.5%, 니오븀:0.01-0.5%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%로 이루어진 그룹에서 선택된 1종 또는 2종 이상, 나머지 Fe 및 기타 불순물로 조성되는 빌레트를 950∼1150℃에서 가열하여 열간선재압연하고, 압연직후 물분사에 의해 760-790℃까지 급속 냉각하여 권취한 다음, 670±30℃까지는 1.4±0.4℃/sec의 냉각속도로 공냉하고, 595±65℃까지는 0.6±0.3℃/sec의 냉각속도로 서냉한 후 공냉하여 페라이트+퍼얼라이트 조직으로 확보하는 것을 포함하여 구성된다.Wire rod manufacturing method of the present invention for achieving the above object, by weight% carbon 0.40-0.60%, silicon 2.0-4.0%, manganese 0.1-0.8%, chromium 0.1-0.8%, phosphorus 0.01% or less, sulfur 0.01% or less , Nitrogen 0.005-0.01%, oxygen 0.005% or less, nickel 0.3-2.0%, boron 0.001-0.003%, vanadium: 0.01-0.5%, niobium: 0.01-0.5%, molybdenum 0.01-0.5%, titanium 0.01-0.2 %, Tungsten 0.01-0.5%, copper 0.01-0.2% selected from the group consisting of one or more selected from the group consisting of the remaining Fe and other impurities, heated at 950 ~ 1150 ℃ hot-rolled re-rolling, water immediately after rolling Rapid cooling by winding to 760-790 ° C, followed by air cooling at 1.4 ± 0.4 ° C / sec up to 670 ± 30 ° C and slow cooling at 0.6 ± 0.3 ° C / sec up to 595 ± 65 ° C. It is then configured to include cooling to the ferrite + perlite structure by air cooling.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 고실리콘 첨가 중탄소강을 선재압연과정에서 제어냉각에 의해 저온조직의 발생없이 선재로 제조한다는데, 그 특징이 있다. 이러한 본 발명의 대상강종인 고실리콘 첨가 중탄소강의 강성분계를 먼저, 설명한 다음에 이 강을 선재압연하는 방법을 설명한다.The present invention is characterized in that the high-silicon-added medium carbon steel is manufactured from wire rods without the occurrence of low-temperature structure by controlled cooling in the wire rod rolling process. The steel component system of the high silicon-added medium carbon steel which is the target steel grade of this invention is demonstrated first, and then the method of wire-rolling this steel is demonstrated.

[고실리콘 첨가 중탄소강][High-silicon added medium carbon steel]

탄소(C)의 함량은 0.40-0.60%으로 제한 것이 바람직하다. 탄소의 함량이 0.40%미만에서는 페라이트+잔류오스테나이트 복합조직강 제조를 위한 열처리후 페라이트+ 잔류오스테나이트 복합조직내의 총 잔류 오스테나이트양과 잔류 오스테나이트의 형상 및 크기, 그리고 기계적 및 열적 안정성의 확보가 어렵고, 또한 고강도 볼트용강으로서의 충분한 인장강도와 항복강도를 확보하기 어렵기 때문이다. 0.60% 초과하는 경우에는 이상역 페라이트가 생성되기 어렵고, 열처리후 적정 단면감소율, 연신율 및 충격인성 등의 저하되며, 또한 선재제조시 편석및 표면흠 발생, 가열로 장입시 표면탈탄 심화, 볼트 체결시 영구변형성 및 정적 피로특성과 미세복합 조직의 형상 및 크기, 페라이트+잔류오스테나이트 복합조직을 확보하기 위한 변태 소요시간, 잔류 오스테나이트내의 탄소농도 및 계면농도구배등에 영향을 미치기 때문이다.The content of carbon (C) is preferably limited to 0.40-0.60%. If the carbon content is less than 0.40%, the total amount of retained austenite, the shape and size of the retained austenite, and the mechanical and thermal stability in the ferritic + residual austenite composite tissue for the production of ferritic + residual austenite composite steel This is because it is difficult to secure sufficient tensile strength and yield strength as high strength bolt steel. If it exceeds 0.60%, abnormal region ferrite is hardly generated, and after heat treatment, proper cross-sectional reduction rate, elongation rate and impact toughness deteriorate, and segregation and surface flaws occur in wire rod manufacturing, deep decarburization when charging furnace, and bolting It affects permanent deformation and static fatigue characteristics, shape and size of microcomposite, transformation time to secure ferrite + residual austenite complex, carbon concentration in residual austenite, and interfacial tool distribution.

실리콘(Si)의 함량은 2.0-4.0%로 한정하는 것이 바람직하다. 실리콘이 2.0%미만에서는 페라이트 변태후 잔류 오스테나이트의 기계적 및 열적 안정성이 저하되어 페라이트+잔류오스테나이트 복합조직의 확보와 적정 잔류 오스테나이트양을 확보하기가 어려우며 또한 페라이트의 고용강화 효과가 미흡하여 강도확보에 어려움이 있고, 또한 지연파괴저항성, 표면 부식특성, 충격인성, 베이나이트 조직 구성, 볼트체결시 영구변형성등에 영향을 미치기 때문이고, 또한 선재 탈탄제어를 위한 선재가열로내에서의 표면 페라이트 탈탄층의 균일성 및 적정두께를 확보하기가 어려워 탈탄이 심화되고, 선재냉각시 소입성 증가로 표면 스케일 특성의 제어가 어려운 단점이 있기 때문이다. 4.0%초과의 경우에는 상기 언급한 효과가 포화되고 소입성, 베이나이트 조직 구성, 충격인성, 피로특성 등에 영향을 미치기 때문에 바람직하지 않으며, 선재제조를 위한 부룸(bloom) 또는 빌레트(billet) 제조시 실리콘 편석에 의한 미세조직의 불균질화를 초래하여 최종 제품에서의 품질특성이 저하되기 때문이며, 또한 열처리시 표면 페라이트층의 두께가 증가하여 균질 표면 탈탄제어가 어렵기 때문이다.The content of silicon (Si) is preferably limited to 2.0-4.0%. If the silicon is less than 2.0%, the mechanical and thermal stability of the retained austenite after ferrite transformation decreases, making it difficult to secure the ferrite + residual austenite complex structure and to obtain an adequate amount of retained austenite. It is difficult to secure, and also affects delayed fracture resistance, surface corrosion characteristics, impact toughness, bainite structure, permanent deformation during bolting, and surface ferrite decarburization in wire furnace for controlling wire decarburization. This is because decarburization is intensified due to difficulty in securing the uniformity and proper thickness of the layer, and it is difficult to control the surface scale characteristics due to the increase in the hardenability during the wire cooling. In the case of more than 4.0%, the above-mentioned effect is not preferable because it saturates and affects hardenability, bainite structure, impact toughness, fatigue characteristics, etc., and it is not preferable for the production of bloom or billet for wire rod manufacturing. This is because the quality characteristics in the final product are lowered due to the inhomogeneity of the microstructure due to the segregation of silicon, and the thickness of the surface ferrite layer is increased during heat treatment, which makes it difficult to control the homogeneous surface decarburization.

망간(Mn)은 기지조직내에 치환형 고용체를 형성하여 고용강화하는 원소로 고장력 볼트 특성에 매우 유용하므로 모재의 강도, 열처리시 소입성, 응력이완성, 편석대생성에 따른 유해한 영향 등을 고려하여 0.1-0.8%로 하는 것이 바람직하다. 망간의 함량이 0.8%를 초과할 경우 고용강화 효과 보다는 주조시 망간편석으로 인한 국부소입성이 증대하고 편석대의 형성으로 조직이방성이 심화되어 조직이 불균질하게 되어 볼트 특성에 더 유해한 영향을 미치기 때문이다. 즉, 강의 응고시 편석기구에 따라 거시편서과 미시편석이 일어나기 용이한데, 망간편석은 타원소에 비해 상대적으로 낮은 확산계수로 인해 편석대를 조장하고 이로 인한 경화능 향상은 선재제조시 중심부 저온조직(core martensite)를 생성하는 주원인이 된다. 또한, 망간이 0.1%미만의 경우 망간편석에 의한 편석대의 형성은 거의 없으나 고용강화효과의 미흡으로 응력이완 개선효과는 기대하기 어렵다.Manganese (Mn) is an element that forms a solid solution to form a solid solution to strengthen the solid solution, and is very useful for high-strength bolt characteristics. Therefore, considering the strength of the base material, hardenability during heat treatment, stress relaxation, and harmful effects of segregation generation, It is preferable to set it as 0.1-0.8%. When the content of manganese exceeds 0.8%, local quenchability due to manganese segregation is increased rather than solid solution strengthening effect, and the anisotropy of tissue is intensified by the formation of segregation zone. Because it's crazy. That is, macro sedimentation and micro segregation are easy to occur depending on the segregation mechanism during steel solidification. Manganese segregation promotes segregation due to relatively low diffusion coefficient compared to other elements, and the improvement of hardenability is due to core martensite). In addition, when manganese is less than 0.1%, the formation of segregation zones due to manganese segregation is hardly achieved, but the effect of stress relaxation is not expected due to the lack of solid solution strengthening effect.

크롬(Cr)의 함량은 0.1-0.8%로 하는 것이 바람직하다. 크롬의 함량이 0.1%미만에서는 고실리콘 첨가강의 열처리시 표면 탈탄제어를 위한 표면 페라이트층의 형성이 어려워 탈탄억제 효과가 거의 없으며, 소입성 개선을 기대하기 어렵기 때문이다. 또한, 0.8%를 초과하면 등온열처리시 페라이트+잔류 오스테나이트 복합조직의 변태 소요시간이 길어지기 때문에 바람직하지 않으며, 선재 탈탄층 제어를 위한 선재 가열로 장입시 표면 적정 페라이트층의 생성이 어려워 균질 탈탄제어에 영향을 미치기 때문이다.The content of chromium (Cr) is preferably 0.1-0.8%. If the content of chromium is less than 0.1%, it is difficult to form a surface ferrite layer for surface decarburization control during heat treatment of high silicon-added steel, so that there is almost no decarburization inhibitory effect, and hardenability improvement is difficult to expect. In addition, if it exceeds 0.8%, it is not preferable because the transformation time of the ferrite + residual austenite composite structure becomes long during isothermal heat treatment, and it is difficult to generate a surface titration ferrite layer when charging the wire rod for controlling the wire decarburization layer. This affects control.

인(P) 및 황(S)의 함량은 0.01%이하로 하는 것이 바람직하다. 인은 결정입계에 편석되어 인성을 저하시키므로 그 상한을 0.01%로 제한하는 것이며, 황은 저융점 원소로 입계 편석되어 인성을 저하시키고 유화물을 형성시켜 지연파괴저항성 및 응력이완특성에 유해한 영향을 미치므로 그 상한을 0.01%로 제한하는 것이 바람직하다.The content of phosphorus (P) and sulfur (S) is preferably 0.01% or less. Phosphorus segregates at grain boundaries and lowers its toughness, limiting its upper limit to 0.01%. Sulfur is a low melting point element that segregates grains to reduce toughness and form an emulsion, which has a detrimental effect on delayed fracture resistance and stress relaxation characteristics. It is preferable to limit the upper limit to 0.01%.

질소(N)의 함량은 0.005-0.01%로 하는 것이 바람직한데, 이는 0.005%마만에서는 비확산성 수도 트랩 사이트로 작용하는 바나듐 및 니요븀계 질화물의 형성이어렵기 때문이며, 0.01%를 초과할 경우에는 그 효과가 포화되기 때문이다.The content of nitrogen (N) is preferably 0.005-0.01%, because it is difficult to form vanadium and niobium-based nitrides that act as non-diffusing water trap sites at 0.005%, and when it exceeds 0.01%, This is because the effect is saturated.

산소(O)의 함량은 0.005%이하로 하는 것이 바람직한데, 이는 산소함량이 0.005%미만에서는 조대한 산화물계 비금속개재물이 용이하게 형성되어 피로수명이 저하되기 때문이다.The content of oxygen (O) is preferably less than 0.005%, because when the oxygen content is less than 0.005% coarse oxide-based non-metallic inclusions are easily formed and fatigue life is reduced.

니켈(Ni)은 열처리시 표면에 니켈 농화층을 형성하여 외부수소의 투과(permeation)를 억제하여 지연파괴저항성을 개선하는 원소로, 그 함량은 0.3-2.0%로 하는 것이 바람직하다. 니켈의 함량이 0.3%미만에서는 표면 농화층 형성이 불완전하여 지연파괴정항성의 개선효과를 기대하기 어려우며, 또한 탈탄제어, 인성 및 냉간성형성 향상을 위한 구상화 또는 흑연화처리시 열처리시간이 길어지며, 볼트 성형시의 냉간성형성의 개선효과가 없기 때문이다. 니켈의 함량이 2.0%를 초과할 경우에는 그 효과가 포화되고 잔류 오스테나이트량의 적정한 양, 크기 및 형상 등에 영향을 미치기 때문이다.Nickel (Ni) is an element that improves the delayed fracture resistance by forming a nickel thickened layer on the surface during heat treatment to suppress permeation of external hydrogen, and the content thereof is preferably 0.3-2.0%. If the nickel content is less than 0.3%, it is difficult to expect the effect of improving the delayed fracture stability due to the incomplete formation of the surface thickening layer, and the heat treatment time is increased during the spheroidization or graphitization treatment to improve decarburization control, toughness and cold formability. This is because there is no improvement effect of cold forming during bolt forming. This is because when the content of nickel exceeds 2.0%, the effect is saturated and affects the appropriate amount, size and shape of the amount of residual austenite.

붕소(보론,B)는 본 발명에서 소입성 및 지연파괴저항성 개선을 위한 입계강화 원소로, 그 함량은 0.001-0.003%로 하는 것이 바람직하다. 붕소의 함량이 0.001%미만에서는 열처리시 보론원자들의 입계편석이 미흡하여 입계강도개선이 크지 않으며, 또한 냉간성형성 개선을 위한 흑연화 처리시 흑연화 촉진 효과가 미흡하기 때문이다. 또한, 붕소의 함량이 0.003%를 초과할 경우에는 그 효과가 포화되고 오히려 입계에 보론계 질화물의 석출로 입계강도의 저하를 초래하기 때문이다.Boron (boron, B) is a grain boundary strengthening element for improving the hardenability and delayed fracture resistance in the present invention, the content is preferably 0.001-0.003%. If the boron content is less than 0.001%, the grain boundary segregation of boron atoms is insufficient during heat treatment, so the grain boundary strength improvement is not large, and the graphitization promoting effect is insufficient during the graphitization treatment for the improvement of cold formability. In addition, when the content of boron exceeds 0.003%, the effect is saturated, and rather, precipitation of boron nitride at the grain boundary causes a drop in grain boundary strength.

바나듐(V) 또는 니요븀(Nb)은 지연파괴저항성 및 응력이완성 개선원소로, 그 함량은 0.01-0.5%로 하는 것이 바람직하다. 이들의 함량이 0.01%미만에서는 모재내 바나듐 또는 니요븀계 석출물들의 분포가 적어짐에 따라 비확산성 수소 트랩사이트(trap site)로의 역할이 미흡하여 지연파괴저항성 개선효과를 기대하기 어려우며, 또한 석출강화를 기대하기 어려워 응력이완저항성에 대한 개선효과가 충분하지 못하며, 오스테나이트 결정립 미세화를 기대하기 어려워 페라이트+잔류 오스테나이트 복합조직의 구성시 조직 미세화에 영향을 미치기 때문이다. 또한, 0.5%를 초과할 경우에는 V 또는 Nb계 석출물들에 의한 지연파괴저항성 및 응력이완저항성에 대한 개선 효과가 포화하고 오스테나이트 열처리시 모재에 용해되지 않은 조대한 합금 탄화물양이 증가하여 비금속 개재물과 같은 작용을 하기 때문에 피로특성의 저하를 초래하기 때문이다.Vanadium (V) or niobium (Nb) is an element that improves delayed fracture resistance and stress relaxation resistance, and its content is preferably 0.01-0.5%. If the content is less than 0.01%, the distribution of vanadium or niobium-based precipitates in the base material decreases, and thus the role of the non-diffusible hydrogen trap site is insufficient. Therefore, it is difficult to expect the effect of improving the delayed fracture resistance and the precipitation strengthening is expected. This is because it is difficult to improve the stress relaxation resistance is not sufficient, and it is difficult to expect attenuation of austenite grains, which affects the microstructure of the ferrite + residual austenite composite. In addition, when it exceeds 0.5%, the improvement effect on delayed fracture resistance and stress relaxation resistance by V or Nb-based precipitates is saturated, and the amount of coarse alloy carbide which is not dissolved in the base metal during austenite heat treatment increases, thereby increasing the amount of nonmetallic inclusions. This is because it causes a decrease in fatigue characteristics.

몰리브덴(Mo) 및 텅스텐(W)의 함량은 0.01-0.5%로 하는 것이 바람직하다. 이들의 함량이 0.01%미만에서는 페라이트와 잔류 오스테나이트의 입계강화 효과가 미흡하고 또한 열처리시 소입성, 페라이트의 고용강화, Mo 및 W계 석출강화 효과가 미흡하기 때문이다. 0.5%를 초과할 경우에는 그 효과가 포화되고, 소입성의 증가로 선재제조시 저온조직(마르텐사이트+베이나이트)의 생성이 용이하고 냉간성형성 개선을 위한 구상화 또는 흑연화처리시 열처리 시간이 길어지는 단점이 있어 바람직하기 않다.The content of molybdenum (Mo) and tungsten (W) is preferably 0.01-0.5%. If the content is less than 0.01%, the grain boundary strengthening effect of the ferrite and the retained austenite is insufficient, and the hardenability during the heat treatment, the solid solution strengthening of the ferrite, and the Mo and W system precipitation strengthening effects are insufficient. If it exceeds 0.5%, the effect is saturated, and as the hardenability is increased, it is easy to form low-temperature structure (martensite + bainite) during wire rod manufacturing, and the heat treatment time during spheroidization or graphitization treatment to improve cold formability It is not desirable because it has a long length.

티타늄(Ti)의 함량은 0.01-0.2%로 하는 것이 바람직하다. 티타늄의 함량이 0.01%미만에서는 오스테나이트 결정입자 미세화 효과가 미흡하며, 지연파괴저항성에 유효한 결정입계내의 티타늄계 탄,질화물의 석출분포가 미흡하여 그 개선효과를 기대하기 어렵기 때문이다. 또한, 0.2%초과할 경우에는 그 효과가 포화되고 조대한 티타늄계 탄, 질화물을 형성하여 기계적 성질에 영향을 미치기 때문이다.The content of titanium (Ti) is preferably made 0.01-0.2%. If the titanium content is less than 0.01%, the effect of refining austenite grains is insufficient, and the precipitation distribution of titanium-based carbon and nitrides in the grain boundaries effective for delayed fracture resistance is insufficient. In addition, when it exceeds 0.2%, the effect is saturated, and coarse titanium-based carbon and nitride are formed to affect the mechanical properties.

구리(Cu)의 함량은 0.01-0.2%로 하는 것이 바람직한데, 이는 구리의 함량이 0.01%미만에서는 부식저항에 대한 개선효과가 미흡하며, 0.2%이상에서는 그 개선효과가 포화되고 입계 편석시 녹는점(melting point)이 낮아져 선재압연을 위한 가열로 장입시 결정입계 취화에 따른 표면흠 발생 가능성이 높고, 최종 제품에서의 충격인성이 저하되기 때문이다.The content of copper (Cu) is preferably 0.01-0.2%. When the copper content is less than 0.01%, the improvement effect on the corrosion resistance is insufficient. When the content of the copper is more than 0.2%, the improvement effect is saturated and melted at the grain boundary segregation. This is because the melting point is lowered, so the surface flaw is more likely to occur due to grain boundary embrittlement when charging the furnace for wire rod rolling, and the impact toughness in the final product is lowered.

[선재의 제조방법][Manufacturing method of wire rod]

상기와 같이 조성되는 강편(billet)을 선재압연하는데, 이때의 가열온도는 950~1150C로 하는 것이 바람직하다. 이는 선재제조후 최종제품상의 표면품질(탈탄)을 제어하기 위한 것으로, 선재가열로의 가열온도가 950℃미만에서는 탈탄제어를 위한 빌레트 표면 페라이트층 적정두께 제어에 문제점이 있으며, 빌레트 제조시 조대하게 석출된 바나듐계 또는 니요븀계 석출물들의 재고용이 용이하지 않은 것과, 열간변형저항성의 증가로 압연시 과부하로 인해 작업성이 열악해지기 때문이며, 1150℃ 초과할 경우에는 탈탄제어를 위한 균일한 페라이트층을 표면에 석출시킬 수 없기 때문이다. 즉, 탄소 고용도가 매우 낮은 표면 페라이트층을 석출시켜 탈탄반응을 급격히 감소시키기 위해서는 가열 유지온도에서 표면 페라이트층이 잔존하여야 가능하나 가열온도가 1150℃ 초과할 경우에는 표면의 페라이트층이 오스테나이트로 변태하기 때문에 탈탄속도가 급격히 증가하며 이로 인해 표면탈탄이 심화되기 때문이다. 이때의 가열시간은 1∼3시간이 바람직하다.The steel sheet (billet) formed as described above is wire-rolled, the heating temperature at this time is preferably set to 950 ~ 1150C. This is to control the surface quality (decarburization) on the final product after wire rod manufacturing. If the heating temperature of wire rod is lower than 950 ℃, there is a problem in controlling the proper thickness of the billet surface ferrite layer for decarburization control. It is not easy to re-use the precipitated vanadium- or niobium-based precipitates, and the workability is poor due to the overload during rolling due to the increase in hot deformation resistance, and when it exceeds 1150 ° C, a uniform ferrite layer for decarburization control is provided. This is because it cannot be deposited on the surface. In other words, in order to precipitate the surface ferrite layer having a very low carbon solubility, the surface ferrite layer should remain at the heating and holding temperature, but if the heating temperature is higher than 1150 ° C, the ferrite layer on the surface will be austenite. Because of the metamorphosis, the decarburization rate increases rapidly, which intensifies the surface decarburization. As for the heating time at this time, 1-3 hours are preferable.

상기와 같이 가열하여 선재상태로 고속열간압연한 직후 물분사에 의해 760∼790℃까지 급속냉각하여 권취한다. 이때 선재의 선경은 지름 30mm이하로 하여 제조하는 것이 바람직하다. 상기 온도 범위는 오스테나이트 단상구역으로 미세한 오스테나이트 결정립을 유지할 수 있고 CCT(Continuous Cooling Transformation)곡선상으로 볼 때 변태개시 온도 및 시간이 통상 냉각개시온도 850℃ 대비 고온 및 단시간 방향 이동하기 때문에 소재의 경화능 저하에 따른 저온조직의 발생 가능성을 억제하는데 유리하다.Immediately after the high-speed hot rolling in the wire rod state as described above, it is rapidly cooled to 760 to 790 ° C by water spraying and wound up. At this time, the wire diameter of the wire rod is preferably manufactured to a diameter of 30mm or less. The temperature range of the austenite single phase zone can maintain a fine austenite grain and the transition start temperature and time in the continuous cooling Transformation (CCT) curve usually moves in a high temperature and a short time direction compared to the cooling start temperature of 850 ℃ It is advantageous to suppress the possibility of the low temperature tissue caused by the lowering of the curing ability.

상기와 같이 급속냉각하여 권취한 다음, 670±30℃ 까지는 1.4±0.4℃/sec의 냉각속도로 냉각한다. 여기서 냉각온도를 670℃기준으로 ±30℃로 하고 냉각속도를 1.4℃sec기준으로 ±0.4℃/sec의 범위로한 것은 선재가 코일형태로 권취 된 이후 컨베아위에서의 선재집적상태 즉, 겹침부와 비겹침부위의 냉각정도의 차이를 고려하여 설정한 것이다. 이러한 냉각온도 및 냉각속도의 조건은 신선성이 양호한 미세페라이트+퍼얼라이트조직을 확보하기 위한 것으로 CCT곡선상의 노이즈(nose)의 상향 위치에 해당된다. 그러나, 1.4±0.4℃/sec의 냉각속도로 670+30℃보다 높은 온도로 냉각이 될 경우 냉각대에서의 적정 변태소요시간이 불충분하게 되어 저온조직의 발생 가능성이 높으며 또한 670-30℃ 미만의 온도로 냉각이 될 경우에서도 저온조직의 발생가능성이 매우 높다.After rapid cooling and winding as described above, it is cooled to a cooling rate of 1.4 ± 0.4 ° C / sec up to 670 ± 30 ° C. Here, the cooling temperature is ± 30 ℃ based on 670 ℃ and the cooling rate is within ± 0.4 ℃ / sec based on 1.4 ℃ sec. It is set in consideration of the difference of cooling degree between and overlapping part. The conditions of the cooling temperature and the cooling rate are to secure the fine ferrite + perlite structure with good freshness and correspond to an upward position of noise on the CCT curve. However, when cooling to a temperature higher than 670 + 30 ℃ at a cooling rate of 1.4 ± 0.4 ℃ / sec, the appropriate transformation time in the cooling zone is insufficient, which is highly likely to cause low temperature tissue and also lower than 670-30 ℃. Even when cooled to temperature, the possibility of low temperature tissue is very high.

상기와 같이 냉각하고 이어 595±65℃까지는 0.6±0.3℃/sec의 냉각속도로 냉각하는 것이 바람직하다. 이는 냉각정지온도가 595+65℃를 초과할 경우 미변태 오스테나이트의 잔존으로 공냉시 저온조직의 발생할 가능성이 높으며, 냉각정지온도가 595-65℃ 미만의 경우에는 본 발명의 서냉 냉각속도인 0.6±0.3℃/sec를 벗어나는 냉각속도가 되기 때문에 적정조직인 페라이트+펄라이트조직의 확보가 불가능하다. 또한, 냉각정지온도인 595±65℃까지 의 냉각속도가 0.6+0.3℃/sec보다 빠른 경우에는 저온조직의 발생가능성이 높으며, 0.6-0.3℃/sec미만의 경우에는 서냉냉각설비의 한계로 인해 적정 냉각온도인 595±65℃ 범위를 확보하기가 어려워 저온조직이 생성하기 때문이다.Cooling as above and then to 595 ± 65 ℃ is preferably cooled at a cooling rate of 0.6 ± 0.3 ℃ / sec. If the cooling stop temperature is higher than 595 + 65 ℃, the possibility of low temperature structure during air cooling due to the presence of unaffected austenite is high, and if the cooling stop temperature is lower than 595-65 ℃ 0.6 slow cooling rate of the present invention It is impossible to secure the proper structure of ferrite + pearlite structure because the cooling rate is beyond ± 0.3 ° C / sec. In addition, if the cooling rate up to 595 ± 65 ℃, the cooling stop temperature is faster than 0.6 + 0.3 ℃ / sec, the possibility of low temperature structure is high, and if it is less than 0.6-0.3 ℃ / sec, it is due to the limitation of slow cooling equipment. This is because it is difficult to secure an appropriate cooling temperature range of 595 ± 65 ℃, resulting in low temperature tissue.

상기와 같이 595±65℃까지 서냉한 다음, 공냉하는데, 이는 변태가 완료된 상태로 냉각속도의 변화가 조직에 미치는 영향이 없기 때문이다.As described above, after cooling slowly to 595 ± 65 ° C., air cooling is performed because the change in cooling rate has no effect on the tissue in the state where the transformation is completed.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

아래 표 1의 조성을 갖는 빌레트(160×160mm)을 1100℃에서 2시간 유지한 후고속압연하여 지름 14 mm의 선재로 만들고, 발명재와 비교재의 냉각조건은 각각 달리하여 선재를 제조하였다.The billet (160 × 160mm) having the composition shown in Table 1 below was maintained at 1100 ° C. for 2 hours, and then rolled at high speed to make a wire having a diameter of 14 mm, and the wires were manufactured by different cooling conditions of the invention and the comparative material.

강종Steel grade CC SiSi MnMn CrCr VV NiNi MoMo TiTi WW BB PP SS N2 N 2 1One 0.450.45 3.033.03 0.290.29 0.580.58 0.050.05 -- -- -- -- -- 0.0050.005 0.0040.004 0.0080.008 22 0.400.40 3.423.42 0.310.31 0.790.79 0.20.2 -- -- 0.010.01 -- 0.00130.0013 0.0060.006 0.0050.005 0.0140.014 33 0.600.60 2.992.99 0.320.32 0.330.33 0.050.05 0.540.54 -- -- 0.020.02 -- 0.0070.007 0.0090.009 0.0070.007 44 0.450.45 2.02.0 0.770.77 0.510.51 0.110.11 -- 0.20.2 0.030.03 -- -- 0.0060.006 0.0080.008 0.0090.009 55 0.440.44 3.963.96 0.230.23 0.270.27 0.060.06 -- -- -- 0.20.2 0.00150.0015 0.0090.009 0.0080.008 0.0080.008 66 0.530.53 3.013.01 0.350.35 0.550.55 -- -- 0.050.05 0.050.05 0.070.07 0.00100.0010 0.0040.004 0.0090.009 0.0040.004 77 0.580.58 2.562.56 0.800.80 0.290.29 -- 1.101.10 0.130.13 0.100.10 -- -- 0.0050.005 0.0060.006 0.0050.005 강종1-7에는 O가 0.005%이하 함유됨.강종 7에는 Nb, Cu가 각각 0.01% 함유됨Grade 1-7 contains less than 0.005% O. Grade 7 contains 0.01% Nb and Cu, respectively.

표 2의 발명예(1-9)는 열간압연한후 760-900℃의 범위내로 물분사에 의해 급속 냉각하여 권취하고 620-700℃범위까지 1.0-1.8℃/sec 범위의 냉각속도로 냉각시키고 530-660℃범위까지 0.3-1.8℃/sec의 냉각속도 범위로 서냉한 후 상온까지 공냉한 것이다. 또한, 비교예(1-10)은 열간압연한 후 790-900℃범위내로 물분사에 의해 급속 냉각하여 권취하고 620-830℃범위까지 2.0-5.0℃/sec의 냉각속도 범위로 냉각시키고 530-730℃까지 0.3-2.0℃/sec로 서냉한 후 상온까지 공냉하였다. 상기와 같이 제조된 선재들의 저온조직 생성율은 화상분석기(image analyze)를 이용하여 측정하였으며, 이때 피검면은 300mm2를 기준으로 하였다.Inventive Example (1-9) of Table 2 is hot-rolled and rapidly cooled by water spraying in the range of 760-900 ° C, and then cooled at a cooling rate in the range of 1.0-1.8 ° C / sec to the range of 620-700 ° C. After cooling slowly to the cooling rate range of 0.3-1.8 ℃ / sec to 530-660 ℃, it is cooled to room temperature. In addition, Comparative Example (1-10) was hot rolled and rapidly cooled by water spraying in the range of 790-900 ° C, then cooled to a cooling rate range of 2.0-5.0 ° C / sec to 620-830 ° C, and 530- After cooling slowly to 0.3-2.0 degreeC / sec to 730 degreeC, it cooled to room temperature. The low temperature tissue generation rate of the wire rods prepared as described above was measured using an image analyzer, and the test surface was based on 300 mm 2 .

구분division 사용강종Steel grade used 냉각개시온도(권취온도, ℃)Cooling start temperature (winding temperature, ℃) 1차냉각온도(℃)Primary cooling temperature (℃) 1차냉각온도까지의 냉각속도(℃/sec)Cooling rate up to the first cooling temperature (℃ / sec) 2차냉각온도(℃)Secondary cooling temperature (℃) 2차냉각온도까지의 냉각속도(℃/sec)Cooling rate up to secondary cooling temperature (℃ / sec) 저온조직생성율Low temperature tissue formation rate 발명예1Inventive Example 1 강종1Steel grade 1 780780 700700 1.01.0 660660 0.30.3 00 발명예2Inventive Example 2 강종1Steel grade 1 780780 670670 1.41.4 595595 0.60.6 00 발명예3Inventive Example 3 강종1Steel grade 1 780780 640640 1.81.8 530530 0.90.9 00 발명예4Inventive Example 4 강종1Steel grade 1 760760 620620 1.61.6 560560 0.80.8 00 비교예1Comparative Example 1 강종1Steel grade 1 830830 781781 2.32.3 659659 1.01.0 2020 비교예2Comparative Example 2 강종1Steel grade 1 850850 817817 3.33.3 703703 0.60.6 1515 비교예3Comparative Example 3 강종1Steel grade 1 900900 830830 5.05.0 730730 1.31.3 3030 발명예5Inventive Example 5 강종2Steel grade 2 790790 700700 1.41.4 700700 0.40.4 00 발명예6Inventive Example 6 강종3Steel grade 3 760760 670670 1.81.8 640640 0.70.7 00 발명예7Inventive Example 7 강종4Steel grade 4 790790 640640 1.51.5 660660 0.70.7 00 발명예8Inventive Example 8 강종5Steel grade 5 760760 620620 1.71.7 680680 0.90.9 00 발명예9Inventive Example 9 강종7Steel grade 7 790790 761761 1.81.8 660660 0.60.6 00 비교예4Comparative Example 4 강종2Steel grade 2 780780 700700 3.03.0 640640 0.30.3 1515 비교예5Comparative Example 5 강종3Steel grade 3 780780 670670 5.05.0 540540 1.21.2 2020 비교예6Comparative Example 6 강종3Steel grade 3 780780 640640 2.02.0 530530 1.41.4 1010 비교예7Comparative Example 7 강종4Steel grade 4 760760 620620 2.62.6 560560 2.02.0 1818 비교예8Comparative Example 8 강종5Steel grade 5 790790 700700 2.92.9 650650 1.51.5 1515 비교예9Comparative Example 9 강종6Steel grade 6 790790 570570 2.52.5 600600 1.61.6 1010 비교예10Comparative Example 10 강종7Steel grade 7 790790 700700 2.22.2 660660 1.31.3 1010

표 2에 나타난 바와 같이, 본 발명의 방법들에 의해 제조된 본 발명예(1-9)의 경우 선재상태에서의 미세조직은 기지조직내에 저온조직(베이나이트 또는 마르텐사이트)이 없는 미세 페라이트+퍼얼라이트 조직을 확보할 수 있는 반면, 비교예(1-10)의 경우, 저온조직의 상분율이 10-30% 범위로 분포하는 것으로 볼 때, 본 발명의 선재냉각제어법에 저온조직이 매우 효과적으로 제어됨을 잘알 수 있었다.As shown in Table 2, in the inventive example (1-9) prepared by the methods of the present invention, the microstructure in the wire rod state was fine ferrite + having no low-temperature tissue (bainite or martensite) in the matrix. While it is possible to secure the pearlite structure, in the comparative example (1-10), when the phase fraction of the low temperature tissue is distributed in the range of 10-30%, the low temperature tissue is very effective in the wire cooling control method of the present invention. It was well understood that it was controlled.

상술한 바와 같이, 본 발명은 EDC법 또는 제어압연설비에서 오스테나이트입자 미세화법에 의하지 않고 통상의 냉각설비에서 단지 선재를 제어냉각시켜 줌으로서 저온조직(베이나이트+마르텐사이트)의 생성을 억제시켜 균질하고 미세한 페라이트+퍼얼라이트 조직으로 구성된 고실리콘 첨가 중탄소강 선재를 제공할 수 있는 것이다.As described above, the present invention suppresses the formation of low-temperature structure (bainite + martensite) by controlling and cooling only the wire rod in an ordinary cooling facility without using austenitic particle refining method in an EDC method or a controlled rolling facility. It is possible to provide a high silicon-added medium-carbon steel wire composed of a homogeneous and fine ferrite + perlite structure.

Claims (1)

중량%로 탄소 0.40-0.60%, 실리콘 2.0-4.0%, 망간 0.1-0.8%, 크롬 0.1-0.8%, 인 0.01%이하, 황 0.01% 이하, 질소 0.005-0.01%, 산소 0.005% 이하, 여기에 니켈 0.3-2.0%, 보론 0.001-0.003%, 바나듐: 0.01-0.5%, 니오븀:0.01-0.5%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%로 이루어진 그룹에서 선택된 1종 또는 2종 이상, 나머지 Fe 및 기타 불순물로 조성되는 빌레트를 950∼1150℃에서 가열하여 열간선재압연하고, 압연직후 물분사에 의해 760-790℃까지 급속 냉각하여 권취한 다음, 670±30℃까지는 1.4±0.4℃/sec의 냉각속도로 공냉하고, 595±65℃까지는 0.6±0.3℃/sec의 냉각속도로 서냉한 후 공냉하여 페라이트+퍼얼라이트 조직으로 확보하는 것을 포함하여 이루어지는 저온조직이 없는 고실리콘 첨가 중탄소강 선재의 제조방법.By weight% carbon 0.40-0.60%, silicon 2.0-4.0%, manganese 0.1-0.8%, chromium 0.1-0.8%, phosphorus 0.01% or less, sulfur 0.01% or less, nitrogen 0.005-0.01%, oxygen 0.005% or less, here Nickel 0.3-2.0%, Boron 0.001-0.003%, Vanadium: 0.01-0.5%, Niobium: 0.01-0.5%, Molybdenum 0.01-0.5%, Titanium 0.01-0.2%, Tungsten 0.01-0.5%, Copper 0.01-0.2% Billet composed of one or two or more selected from the group consisting of, the remaining Fe and other impurities are heated at 950 ~ 1150 ℃ hot-rolled re-rolling, immediately after rolling and wound by rapid cooling to 760-790 ℃ by water spraying Air cooling at 1.4 ± 0.4 ℃ / sec up to 670 ± 30 ℃ and slow cooling at 0.6 ± 0.3 ℃ / sec up to 595 ± 65 ℃, followed by air cooling to secure ferrite + perlite structure. A method for producing a high silicon-added medium-carbon steel wire without low temperature structure.
KR10-1999-0063185A 1999-12-28 1999-12-28 Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure KR100431849B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063185A KR100431849B1 (en) 1999-12-28 1999-12-28 Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063185A KR100431849B1 (en) 1999-12-28 1999-12-28 Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure

Publications (2)

Publication Number Publication Date
KR20010060758A true KR20010060758A (en) 2001-07-07
KR100431849B1 KR100431849B1 (en) 2004-05-20

Family

ID=19630558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063185A KR100431849B1 (en) 1999-12-28 1999-12-28 Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure

Country Status (1)

Country Link
KR (1) KR100431849B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544752B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Method of manufacturing high carbon wire rod having superior cold formability for bolt
KR100544644B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for manufacturing high carbon wire rod having superior strength
KR100544753B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Method of manufacturing medium carbon wire rod having superior cold formability for bolt
KR100891866B1 (en) * 2002-12-20 2009-04-08 주식회사 포스코 Method of manufacturing high Si added medium carbon wire rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290187B (en) * 2013-05-06 2014-10-29 河北钢铁股份有限公司承德分公司 Method for refining microstructure of low-carbon steel wire rods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133326A (en) * 1984-12-04 1986-06-20 Kawasaki Steel Corp Production of middle-and high-carbon steel material for directly heat treated wire
JPS63118013A (en) * 1986-11-04 1988-05-23 Kobe Steel Ltd Production of hot rolled wire rod of high-si steel
JP3733229B2 (en) * 1998-01-21 2006-01-11 Jfe条鋼株式会社 Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JPH11315349A (en) * 1998-04-30 1999-11-16 Kobe Steel Ltd High strength wire rod excellent in delayed fracture resistance, its production, and high strength bolt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544644B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for manufacturing high carbon wire rod having superior strength
KR100544752B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Method of manufacturing high carbon wire rod having superior cold formability for bolt
KR100544753B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Method of manufacturing medium carbon wire rod having superior cold formability for bolt
KR100891866B1 (en) * 2002-12-20 2009-04-08 주식회사 포스코 Method of manufacturing high Si added medium carbon wire rod

Also Published As

Publication number Publication date
KR100431849B1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
KR20140041929A (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
CN112011725A (en) Steel plate with excellent low-temperature toughness and manufacturing method thereof
RU2768842C1 (en) High-strength thick steel sheet for pipeline, having excellent low-temperature impact strength and ductility, as well as low ratio of yield strength to ultimate strength, and method of its production
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
KR20200066512A (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
JP2005213603A (en) High workability high strength cold rolled steel plate and its manufacturing method
CN113637925B (en) Steel for quenched and tempered continuous oil pipe, hot-rolled steel strip, steel pipe and manufacturing method thereof
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
KR20200076797A (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
JP2004011002A (en) Element wire for drawing and wire
KR100448623B1 (en) Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
KR100431847B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100900646B1 (en) Method of manufacturing high Si added high carbon wire rod
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
KR20030055516A (en) Method of manufacturing high carbon wire rod having superior cold formability for bolt
KR100380739B1 (en) High strength high elongation duplex steel with a good delayed fracture resistance and a method of manufacturing therefor
KR100363193B1 (en) A method for manufacturing bolts having high strength and elongation
KR970009089B1 (en) Method for manufacturing a hot rolled steel sheet
KR20040054987A (en) Method of manufacturing high Si added medium carbon wire rod
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130430

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee