KR20040054987A - Method of manufacturing high Si added medium carbon wire rod - Google Patents

Method of manufacturing high Si added medium carbon wire rod Download PDF

Info

Publication number
KR20040054987A
KR20040054987A KR1020020081546A KR20020081546A KR20040054987A KR 20040054987 A KR20040054987 A KR 20040054987A KR 1020020081546 A KR1020020081546 A KR 1020020081546A KR 20020081546 A KR20020081546 A KR 20020081546A KR 20040054987 A KR20040054987 A KR 20040054987A
Authority
KR
South Korea
Prior art keywords
wire rod
billet
heating
temperature
less
Prior art date
Application number
KR1020020081546A
Other languages
Korean (ko)
Other versions
KR100891866B1 (en
Inventor
최해창
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020081546A priority Critical patent/KR100891866B1/en
Publication of KR20040054987A publication Critical patent/KR20040054987A/en
Application granted granted Critical
Publication of KR100891866B1 publication Critical patent/KR100891866B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Abstract

PURPOSE: A manufacturing method of wire rod is provided which reduces surface decarburizing layer generated in high silicon steel and obtains low tensile strength required during cold forming due to high phase fraction of fine graphite powder by forming ferrite decarburizing layer having low carbon solubility in wire rod heating process. CONSTITUTION: The manufacturing method of high silicon added medium carbon wire rod with less surface decarburization comprises a step of obtaining a billet comprising 0.40 to 0.60 wt.% of carbon, 2.0 to 4.0 wt.% of silicon, 0.1 to 0.8 wt.% of manganese, 0.01 wt.% or less of phosphorus, 0.01 wt.% or less of sulfur, 0.004 to 0.013 wt.% of nitrogen, 0.005 wt.% or less of oxygen, 0.001 to 0.003 wt.% of boron, 0.005 to 0.03 wt.% of titanium, one or more elements selected from the group consisting of 0.3 to 2.0 wt.% of nickel, 0.01 to 0.5 wt.% of vanadium and 0.01 to 0.5 wt.% of niobium, and a balance of Fe and other impurities, wherein the titanium (Ti), nitrogen (N) and boron (B) satisfy the following relational expressions: 0.5<=Ti/N<=2.0, 2<=N/B<=8, and 1.0<=(Ti+5B)/N<=3.5; a step of heating the billet to a temperature of Ac1 transformation point at a heating rate of 20±5 deg.C/min, heating the billet at a heating rate of 9±4 deg.C/min in the temperature range of Ac1 transformation point to Ac3 transformation point, heating the billet to a temperature of 1,050±100 deg.C at a heating rate of 15±5 deg.C/min, maintaining the billet in the temperature range of 1,050±100 deg.C for 30 minutes or more, and wire rod rolling the heated billet; a step of coiling the wire rod at a temperature of 860 to 950 deg.C right after wire rod rolling the heated billet; and a step of obtaining a wire rod by air cooling the second cooled wire rod after first cooling the coiled wire rod to a temperature of 770±30 deg.C at a cooling rate of 1.8±0.5 deg.C/sec and second cooling the first cooled wire rod to a temperature of 620±50 deg.C at a cooling rate of 0.4±0.2 deg.C/sec.

Description

표면탈탄이 적은 고실리콘 첨가 중탄소 선재의 제조방법{Method of manufacturing high Si added medium carbon wire rod}Method of manufacturing high silicon-added medium carbon wire rod with low surface decarburization

본 발명은 볼트 등으로 가공되어 사용되는 선재의 제조방법에 관한 것으로, 보다 상세하게는 선재가열공정에서 탄소고용도가 낮은 페라이트 탈탄층을 형성함으로써 고실리콘강에서 발생하는 표면탈탄층을 저감하는 한편, 미세한 흑연립의 상분율이 높아 냉간성형시 요구되는 낮은 인장강도를 갖는 선재의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing wire rods processed by bolts and the like, and more particularly, by forming a ferrite decarburization layer having a low carbon utilization in the wire rod heating process to reduce the surface decarburization layer generated in high silicon steel. The present invention relates to a method for producing a wire rod having a low tensile strength required for cold forming due to a high phase fraction of fine graphite grains.

선재는 일정형상으로 가공되어 다양한 기계부품류에 이용되는데, 그 예로는 볼트, 너트, 스프링 등이 있다. 이러한 기계부품류의 경량화와 고성능화를 위해 선재의 고강도에 대한 요구는 계속 높아지고 있다.Wire rod is processed to a certain shape and used for various mechanical parts, for example, bolts, nuts, springs and the like. In order to reduce the weight and performance of such mechanical parts, demand for high strength of wire rods continues to increase.

고강도 소재는 일정하중이 지속적으로 가해지면 수소에 의해 균열이 진전되는 지연파괴가 발생할 수 있다. 일례로, 볼트는 인장강도가 130 kg/mm2급 이상 되는 경우에 지연파괴저항성의 문제가 발생하므로, 현재 사용용도 및 범위가 제한되고 있는 실정이다.High-strength materials can cause delayed fracture, in which cracks are propagated by hydrogen under constant load. For example, the bolt has a problem of delayed fracture resistance when the tensile strength is 130 kg / mm 2 or more, the current use and range is limited.

따라서, 지연파괴저항성이 우수하면서 고강도화가 가능한 볼트용 강을 개발할 경우 기대되어지는 이점으로는 다음과 같다. 즉, 강구조물 측면에서 볼트 체결은 용접 접합에 비해 숙련된 기술이 요구되지 않으며, 취약한 용접부를 대체하는 이점 등을 고려할 때 볼트 체결력 강화에 따른 강구조물의 안정성을 높일 뿐 아니라, 볼트 체결 개수의 감소에 의해 강재 사용량을 줄일 수 있다. 또한, 자동차 부품 측면에서는 부품의 경량화에 기여하며, 이에 따른 자동차 조립장치의 설계 다양화 및 컴팩트화(compact)가 가능하다는 이점이 있다. 따라서 소재의 지연파괴저항성 저하 없이 고강도화 되면 될수록 사용상의 이점과 산업계에 미치는 파급효과는 상당히 클 것으로 예측된다.Accordingly, the advantages expected when developing bolt steel with excellent delay fracture resistance and high strength are as follows. That is, in terms of steel structures, bolt fastening does not require more skilled techniques than welding joints, and considering the advantages of replacing weak welds, not only increases the stability of the steel structure by strengthening the bolt fastening force, but also decreases the number of bolt fastenings. Steel usage can be reduced. In addition, in terms of automobile parts, it contributes to the weight reduction of parts, and thus, there is an advantage in that design diversification and compactness of the vehicle assembly apparatus are possible. Therefore, the higher the strength without lowering the delayed fracture resistance of the material, it is expected that the advantages of use and the ripple effect on the industry will be considerably greater.

고강도 소재의 지연파괴저항성은 결정입계에 분포하고 있는 석출물이 수소의 트랩 사이트(trapped site)로 작용하여 입계의 강도를 열화시키기 때문에 저하되는 것으로 알려져 있다. 따라서, 선재의 열처리 후 결정립계에 분포하게 되는 Fe계 석출물들의 분포를 최대한으로 억제시키면 지연파괴저항성의 열화 없이 고강도화를 달성할 수 있는 것이다.The delayed fracture resistance of high strength materials is known to be lowered because precipitates distributed at grain boundaries act as trapped sites of hydrogen and degrade the strength of grain boundaries. Therefore, if the distribution of the Fe-based precipitates to be distributed to the grain boundary after the heat treatment of the wire to the maximum, it is possible to achieve high strength without deterioration of the delayed fracture resistance.

한편, 선재는 냉간성형공정을 통해 다양한 형상의 볼트로 성형되는데, 소재의 강도가 높으면 냉간성형전 반드시 소재의 연화열처리가 필요하다. 연화열처리를 통해냉간성형전 인장강도 60kg/mm2이하로 확보하는 것이 바람직하다. 이는 냉간성형시 다이스 마모율 증가를 최대한으로 억제하기 위한 것이다. 따라서 고강도 볼트소재를 사용하기 위해서는 우수한 지연파괴저항성 뿐만 아니라 볼트제조시 요구되어지는 냉간성형성을 동시에 확보하여야 한다.On the other hand, the wire rod is formed into a bolt of various shapes through the cold forming process, if the strength of the material is high, it is necessary to soften heat treatment of the material before cold forming. It is desirable to secure the tensile strength of 60kg / mm 2 or less before cold forming through softening heat treatment. This is to suppress the increase of the die wear rate during cold forming to the maximum. Therefore, in order to use high-strength bolted material, it is necessary to secure not only excellent delayed fracture resistance but also cold forming required for bolt manufacturing.

통상 볼트 냉간성형성 확보를 위한 연화열처리는 대부분 구상화 열처리법을 적용하고 있는데, 미세조직 구성이 페라이트+세멘타이트로 구성됨을 특징으로 한다. 그러나, 합금원소 첨가량이 증가할수록 구상화소재의 강도가 높아지는 문제점이 있어 이를 극복하는데 미세조직 구성상 한계가 있다.In general, softening heat treatment for securing bolt cold formability is applied to the spheroidizing heat treatment method, characterized in that the microstructure is composed of ferrite + cementite. However, there is a problem in that the strength of the spheroidized material increases as the amount of alloy element added increases, and thus there is a limit in microstructure configuration to overcome this problem.

본 발명자는 고강도 볼트를 냉간성형함에 있어 흑연화조직을 이용할 경우 냉간성형성이 개선된다는 사실을 밝혀내어 고실리콘 첨가 중탄소강을 제안한 바 있다. 이 강은 흑연화 촉진원소를 적절히 배합할 경우 볼트 냉간성형에 요구되어지는 선재 인장강도를 확보할 수 있으며, 결정립에 Fe계 석출물의 석출 가능성이 전혀 없는 미세 복합조직을 갖는다.The present inventors have found that the use of the graphitized structure in the cold forming of high-strength bolts improves cold forming, and has proposed a high silicon-added medium carbon steel. When the steel is properly blended with graphitization promoting elements, the steel can secure wire tensile strength required for bolt cold forming, and has a fine composite structure with no possibility of precipitation of Fe-based precipitates in crystal grains.

그러나, 고실리콘 첨가 중탄소강을 선재로 제조할 때, 선재압연공정에서 재가열시 실리콘이 소재내의 탄소의 활동도를 증가시키면서 탄소의 확산계수를 감소시키는데 큰 영향을 미친다. 이로 인해 선재압연공정에서 재가열시 탄소의 활동도증가로 표면에서는 탈탄속도가 증가하며, 반대로 중심부에서의 표면으로 확산계수의 감소로 표면으로 탄소공급이 원활하지 않아 표면에서의 탄소농도 구배심화를 조장하게 된다. 표면에서 탈탄층의 깊이가 깊어질수록 볼트에서는 체결력이 떨어지고 스프링에서는 피로특성이 열악해진다. 이와 같이, 고실리콘 첨가강의 표면탈탄은 저실리콘 첨가강 대비 표면탈탄속도가 매우 빠르기 때문인 것으로 잘 알려진 사실이다. 그래서, 고실리콘 첨가강 선재를 제조할 경우, 소재의 탈탄제어가 적절하지 못할 경우 사용상의 많은 문제점이 발생할 수 있다.However, when manufacturing high-silicon-added heavy carbon steel as a wire rod, silicon has a great influence on reducing the carbon diffusion coefficient while increasing the activity of carbon in the material during reheating in the wire rod rolling process. As a result, carbon activity increases during reheating in the wire rod rolling process, and the decarburization rate increases on the surface. On the contrary, the carbon supply is not smooth to the surface due to the reduction of diffusion coefficient from the center to the surface, thereby enhancing the concentration of carbon in the surface Done. As the depth of the decarburized layer deepens on the surface, the tightening force of the bolt decreases and the fatigue characteristics of the spring deteriorate. As such, it is well known that the surface decarburization of the high silicon-added steel is because the surface decarburization rate is very fast compared to the low silicon-added steel. Thus, when manufacturing a high silicon-added steel wire, many problems in use may occur when the decarburization control of the material is not appropriate.

지금까지 알려진 탈탄제어방법의 대표적인 예로는 대한민국 특허공보 92-24974호, 92-24163호, 92-24161호, 일본 특허공보 (평)2-301514호, (평)1-31960, (소)63-216591호 등이 있다. 이들 대부분은 실리콘의 함량을 낮추거나 납, 주석 등의 합금원소를 첨가하는 방법에 의해서 탈탄을 제어하는 방법이다. 그러나, 고강도화를 위해 고실리콘 첨가가 불가피한 강종에서 실리콘 함량을 낮출 수는 없으며, 또한, 납, 주석 등의 합금원소를 첨가하게 되면 충격인성 등의 기계적성질이 열악해지는 문제가 있다.Representative examples of decarburization control methods known so far include Korean Patent Nos. 92-24974, 92-24163, 92-24161, Japanese Patent Publications (Pyeong) 2-301514, (Pyeong) 1-31960, (Small) 63 And -216591. Most of these are methods of controlling decarburization by lowering silicon content or adding alloying elements such as lead and tin. However, it is not possible to lower the silicon content in the steel species in which high silicon addition is inevitable for high strength, and when alloying elements such as lead and tin are added, mechanical properties such as impact toughness are deteriorated.

본 발명은 고실리콘 첨가 중탄소강의 선재가열공정에서 표면에 탈탄층의 발생을 방지하기 위한 연구과정에서 안출된 것으로, 선재가열공정에서 빌레트의 표면에 탄소고용도가 낮은 페라이트 탈탄층을 형성하여 빌레트의 표면에 탈탄속도를 현저하게줄임으로써 표면탈탄층의 두께를 저감하는 한편, 미세한 흑연립의 상분율이 높아 냉간성형시 요구되는 낮은 인장강도를 갖는 선재의 제조방법을 제공함에 있다.The present invention was devised in the research process to prevent the generation of decarburized layer on the surface of the high-silicon-added medium carbon steel wire heating process, by forming a ferrite decarburized layer with low carbon utilization on the surface of the billet in the wire heating process The present invention provides a method for producing a wire rod having a low tensile strength, which is required for cold forming, while reducing the thickness of the surface decarburized layer by significantly reducing the decarburization rate on the surface thereof.

상기 목적을 달성하기 위한 본 발명의 선재제조방법은, 중량%로, 탄소 0.40-0.60%, 실리콘 2.0-4.0%, 망간 0.1-0.8%, 인 0.01%이하, 황 0.01%이하, 질소 0.004-0.013%, 산소 0.005% 이하, 보론 0.001-0.003%, 티타늄 0.005~0.03%를 함유하고, 여기에 니켈 0.3-2.0%, 바나듐:0.01∼0.5%, 니오븀:0.01∼0.5%으로 이루어진 그룹중에서 선택된 1종 또는 2종 이상, 나머지 Fe 및 기타 불순물로 조성되며, 상기 티타늄(Ti), 질소(N), 보론(B)이 다음의 관계, 0.5≤Ti/N≤2.0, 2≤N/B≤8, 1.0≤(Ti+5B)/N≤3.5를 만족하는 빌레트를 얻는 단계,Wire rod manufacturing method of the present invention for achieving the above object, by weight%, carbon 0.40-0.60%, silicon 2.0-4.0%, manganese 0.1-0.8%, phosphorus 0.01% or less, sulfur 0.01% or less, nitrogen 0.004-0.013 %, Oxygen 0.005% or less, boron 0.001-0.003%, titanium 0.005 to 0.03%, which is selected from the group consisting of nickel 0.3-2.0%, vanadium: 0.01 to 0.5%, niobium: 0.01 to 0.5% Or 2 or more, remaining Fe and other impurities, wherein the titanium (Ti), nitrogen (N), boron (B) is the following relationship, 0.5≤Ti / N≤2.0, 2≤N / B≤8, Obtaining a billet satisfying 1.0 ≦ (Ti + 5B) /N≦3.5,

상기 빌레트를 Ac1변태점까지 20±5℃/분의 가열속도로 가열하고 이상역 범위인 Ac1변태점에서 Ac3변태점까지는 9±4℃/분의 가열속도로 가열하고, 1050±100℃까지 15±5℃/분의 가열속도로 가열하여 이 온도구간에서 30분 이상 유지한 다음, 선재압연하는 단계,The billet is heated at a heating rate of 20 ± 5 ° C./min to Ac 1 transformation point, and is heated at a heating rate of 9 ± 4 ° C./min from Ac 1 transformation point to Ac 3 transformation point, which is an ideal range, and 15 to 1050 ± 100 ° C. Heating at a heating rate of ± 5 ° C / min, holding at least 30 minutes in this temperature range, and then rolling the wire;

선재압연한 직후 860-950℃에서 권취하는 단계 및,Winding at 860-950 ° C. immediately after the wire has been rolled, and

권취한 선재를 770±30℃까지는 1.8±0.5℃/sec의 냉각속도로 1차 냉각하고, 620±50℃까지는 0.4±0.2℃/sec의 냉각속도로 2차 냉각한 후 공냉하는 단계를 포함하여 구성된다.Firstly cooling the wound wire up to 770 ± 30 ℃ at a cooling rate of 1.8 ± 0.5 ℃ / sec, and second cooling at 620 ± 50 ℃ at a cooling rate of 0.4 ± 0.2 ℃ / sec and then air cooled It is composed.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자는 고실리콘 첨가 중탄소강 선재의 탈탄저감을 위해 다각도로 연구한 결과, 선재압연을 위한 빌레트 가열시(선재가열로 가열시) 이상역(Ac1변태점에서 Ac3변태점사이의 온도, 페라이트와 오스테나이트상이 혼재되어 평형상태를 유지하는 구간)을 통과하는 승온가열 속도를 제어하면, 빌레트 표면에 탄소 고용도가 매우 낮은 페라이트층을 균일하게 유도할 수 있다는 사실을 알게 되었다. 이러한 표면 페라이트층은 매우 낮은 탄소 고용도를 갖는 이유로 페라이트상의 석출직후 이 영역을 통과하는 탄소원자의 확산은 매우 늦어지기 때문에 이에 의해 탈탄반응 속도를 현저하게 감소시킬 수 있고 표면 페라이트 층은 산화정도에 따라 그 두께를 조정할 수 있어 선재가열로 추출시 빌레트 표면 탈탄층을 현저하게 개선할 수 있는 것이다.The present inventors temperature between the high (during heating of a wire heating) various angles as a result, billet during heating for the pre-existing rolling research for decarburization reduces the carbon steel wire rod of silicon was added over station (Ac 3 transformation point in the Ac 1 transformation point, ferrite and It was found that controlling the heating rate through the austenite phase in which the austenite phase is in equilibrium) can induce a ferrite layer with very low carbon solubility on the surface of the billet. Since the surface ferrite layer has a very low carbon solubility, the diffusion of carbon atoms through this region immediately after precipitation of the ferrite phase becomes very slow, thereby significantly reducing the rate of decarburization reaction and the surface ferrite layer depending on the degree of oxidation. Since the thickness can be adjusted, the billet surface decarburized layer can be remarkably improved during extraction by wire heating.

나아가, 빌레트의 합금원소에서 Ti, N, B의 비를 제어하면 선재제조시 미세한 흑연립의 상분율이 높아져서 인장강도가 낮은 선재를 제조할 수 있다는 사실도 밝혀내어 본 발명을 완성하게 된 것이다. 이러한 본 발명의 대상이 되는 고실리콘 첨가 중탄소 강의 성분계에 대해서 먼저 설명한 다음에 이 강을 선재로 제조하는 방법을 설명한다.Furthermore, by controlling the ratio of Ti, N, and B in the alloying elements of the billet, it has been found that wire rods having a low tensile strength can be manufactured by increasing the phase ratio of fine graphite grains during wire fabrication, thereby completing the present invention. The component system of the high silicon-added medium carbon steel which becomes the object of this invention is demonstrated first, and then the method of manufacturing this steel by wire is demonstrated.

[강 조성][River composition]

탄소(C)의 함량:0.40-0.60%Content of carbon (C): 0.40-0.60%

탄소의 함량이 0.40%미만에서는 지연파괴저항성에 유효한 미세 복합조직강 제조를 위한 열처리후 복합조직내에 적정한 잔류 오스테나이트 양, 형상 및 크기를 얻기가 곤란하다. 또한, 기계적, 열적 안정성과 고강도 볼트용 강으로서의 충분한 인장강도와 항복강도를 확보하기 어렵다.If the carbon content is less than 0.40%, it is difficult to obtain an adequate amount of retained austenite, shape and size in the composite structure after heat treatment for producing a fine composite steel which is effective for delayed fracture resistance. In addition, it is difficult to secure mechanical and thermal stability and sufficient tensile strength and yield strength as high strength bolt steels.

한편, 탄소의 함량이 0.60% 보다 많아지면 열처리후 단면감소율, 연신율과 충격인성 등의 특성이 저하된다. 또한, 선재제조시 편석 및 표면흠이 발생하며, 가열로 장입시 표면탈탄이 심화되고, 볼트 체결시 영구변형성 및 정적 피로특성이 열화한다. 이외에도 미세복합 조직의 적절한 형상과 크기 그리고, 복합조직을 확보하기 위한 변태 소요시간이 길어지며, 잔류 오스테나이트내의 탄소농도 및 계면농도구배 등에 좋지 않은 영향을 미친다.On the other hand, when the carbon content is more than 0.60%, characteristics such as cross-sectional reduction rate, elongation and impact toughness after heat treatment are lowered. In addition, segregation and surface flaws occur in wire rod manufacturing, surface decarburization intensifies during charging, and permanent deformation and static fatigue characteristics deteriorate when bolts are tightened. In addition, the proper shape and size of the microcomposite, and the time required for transformation to secure the complex structure, adversely affect the carbon concentration and interfacial concentration of residual austenite.

실리콘(Si)의 함량:2.0-4.0%Silicon (Si) content: 2.0-4.0%

실리콘이 2.0%미만에서는 냉간성형성 개선을 위한 흑연화 열처리시간이 길어지는 단점이 있다. 또한, 페라이트 변태후 잔류 오스테나이트의 기계적, 열적 안정성이 저하되어 페라이트+잔류오스테나이트 복합조직과 적정 잔류 오스테나이트양을 확보하기 어렵다. 또한, 페라이트의 고용강화 효과가 미흡하여 강도확보에 어려움이 있고, 지연파괴저항성, 표면 부식특성, 충격인성, 볼트 체결시 영구변형성 등에 영향을 미친다. 또한 선재 탈탄제어를 위한 선재가열로내에서의 표면 페라이트 탈탄층의 균일성 및 적정두께를 확보하기가 어려워 탈탄이 심화되고, 선재냉각시 소입성 증가로 표면 스케일 특성의 제어가 어려운 단점이 있다.If the silicon is less than 2.0%, the graphitization heat treatment time for improving the cold forming property is long. In addition, the mechanical and thermal stability of the retained austenite after the ferrite transformation is lowered, it is difficult to secure the ferrite + residual austenite composite structure and the appropriate amount of retained austenite. In addition, it is difficult to secure the strength due to the insufficient solid-solution strengthening effect of ferrite, it affects the delayed fracture resistance, surface corrosion characteristics, impact toughness, permanent deformation during bolting. In addition, it is difficult to secure uniformity and proper thickness of the surface ferrite decarburization layer in the wire heating furnace for controlling the decarburization of wires, which leads to intensification of decarburization, and it is difficult to control the surface scale characteristics by increasing the hardenability during wire cooling.

한편, 실리콘이 4.0%를 초과하는 경우에는 상기 언급한 효과가 포화되고 소입성, 복합조직강의 구성, 충격인성, 피로특성 등에 좋지 않은 영향을 미친다. 또한, 선재제조를 위한 부룸(bloom) 또는 빌레트(billet)제조시 실리콘 편석에 의한 미세조직의 불균질화를 초래하여 최종 제품에서의 품질특성이 저하된다. 또한 열처리시 표면 페라이트층의 두께가 증가하여 균질 표면 탈탄제어가 어렵다.On the other hand, when the silicon exceeds 4.0%, the above-mentioned effect is saturated and adversely affects the hardenability, the composition of the composite tissue steel, the impact toughness, the fatigue characteristics. In addition, in the production of blooms or billets for wire rods, the microstructures become inhomogeneous due to silicon segregation, thereby degrading quality characteristics in the final product. In addition, it is difficult to control the homogeneous surface decarburization as the thickness of the surface ferrite layer increases during the heat treatment.

본 발명에서의 보다 바람직한 실리콘 성분범위는 2.8-3.3%이다. 이는 베이나이트조직(페라이트+잔류 오스테나이트)을 제조하기 위한 등온 열처리시간 그리고, 잔류 오스테나이트 분율, 크기, 형상 또한, 페라이트+잔류 오스테나이트 복합조직의 고강도화와 고인성화, 이외에 지연파괴저항성(확산성 수소량, 입계석출물의 석출제어), 표면 탈탄, 볼트체결후 응력이완성(stress relaxation) 또는 영구변형저항성, 동적 및 정적 피로특성 등을 고려하여 매우 효과적으로 개선할 수 있기 때문이다.More preferred silicone component range in the present invention is 2.8-3.3%. This is because isothermal heat treatment time for producing bainite structure (ferrite + residual austenite), residual austenite fraction, size and shape, and high strength and high toughness of ferrite + residual austenite composite, as well as delayed fracture resistance (diffusion) This is because the amount of hydrogen, precipitation control of grain boundary precipitates, surface decarburization, stress relaxation after bolting or permanent deformation resistance, dynamic and static fatigue characteristics can be improved effectively.

망간(Mn)의 함량: 0.1-0.8%Manganese (Mn) content: 0.1-0.8%

망간은 기지조직내에 치환형 고형체를 형성하여 고용강화하는 원소로 고장력볼트 특성에 매우 유용하므로 0.1%이상 첨가하는 것이 바람직하다. 망간의 함량이 0.8%를 초과할 경우 고용강화 효과보다는 주조시 망간편석으로 인한 국부소입성이 증대하고 편석대의 형성으로 조직이방성이 심화되어 조직이 불균질하게 되어 볼트 특성에 더 유해한 영향을 미친다.Manganese is an element that forms a solid solution to form a solid to form a solid solution, so that it is very useful for high-strength bolt characteristics. When the content of manganese exceeds 0.8%, local quenchability due to manganese segregation is increased rather than solid solution strengthening effect. Crazy

인(P) 및 황(S)의 함량:각각 0.01%이하Content of phosphorus (P) and sulfur (S): 0.01% or less each

인은 결정입계에 편석되어 인성을 저하시키므로 그 상한을 0.01%로 제한하는 것이 바람직하다.Phosphorus segregates at grain boundaries and degrades toughness, so the upper limit is preferably limited to 0.01%.

황은 저융점 원소로 입계 편석되어 인성을 저하시키고 유화물을 형성시켜 지연파괴저항성 및 응력이완특성에 유해한 영향을 미치므로 그 상한을 0.01%로 제한하는 것이 바람직하다.Sulfur is a low-melting point element segregated to lower the toughness and form an emulsion, which has a detrimental effect on the delayed fracture resistance and stress relaxation characteristics, it is preferable to limit the upper limit to 0.01%.

질소(N)의 함량: 0.004-0.013%Nitrogen (N) content: 0.004-0.013%

질소의 함량이 0.004%미만에서는 비확산성 수소 트랩 사이트로 작용하는 바나듐 및 니요븀계 질화물의 형성이 어려워진다. 또한, 질소의 함량이 0.013%를 초과하는 경우에는 그 효과가 포화된다.If the nitrogen content is less than 0.004%, it becomes difficult to form vanadium and niobium-based nitrides that act as non-diffuse hydrogen trap sites. In addition, when the content of nitrogen exceeds 0.013%, the effect is saturated.

산소(O)의 함량:0.0050%이하Oxygen (O) content: 0.0050% or less

산소의 함량이 0.0050%를 초과하면 조대한 산화물계 비금속개재물이 용이하게 형성되어 피로수명이 저하된다.When the oxygen content exceeds 0.0050%, coarse oxide-based nonmetallic inclusions are easily formed, and fatigue life is reduced.

보론(붕소,B)의 함량:0.001~0.003%Boron (B, B) content: 0.001 to 0.003%

보론은 흑연화 촉진원소이면서 소입성 및 지연파괴저항성 개선을 위한 입계강화원소이다. 보론의 함량이 0.0010%미만에서는 열처리시 보론원자들의 입계편석에 의한 입계강화에 따른 입계강도 개선효과가 미흡하고, 또한 냉간성형성 개선을 위한 흑연화 처리시 흑연화 촉진 효과가 미흡하다. 보론의 함량이 0.003%를 초과할 경우에는 그 효과가 포화되고 오히려 입계에 보론계 질화물의 석출로 입계강도의 저하를 초래한다.Boron is a graphitization promoting element and grain boundary strengthening element for improving quenching and delayed fracture resistance. If the boron content is less than 0.0010%, the effect of improving grain boundary strength due to grain boundary strengthening of boron atoms due to grain boundary segregation during heat treatment is insufficient, and the graphitization promoting effect is not sufficient during graphitization treatment for improving cold forming. If the boron content exceeds 0.003%, the effect is saturated, but the precipitation of boron nitride at the grain boundary causes a decrease in grain boundary strength.

티타늄(Ti)의 함량:0.005-0.03%Titanium (Ti) content: 0.005-0.03%

티타늄의 함량이 0.005%미만에서는 흑연화 촉진 및 오스테나이트 결정입자 미세화 효과가 미흡하며, 지연파괴저항성에 유효한 결정입계내의 티타늄계 탄,질화물의 석출분포가 미흡하여 그 개선효과를 기대하기 어렵다. 한편, 티타늄의 하량이 0.03%를 초과할 경우에는 그 첨가 효과가 포화되고 조대한 티타늄계 탄, 질화물을 형성하여 기계적 성질에 영향을 미친다.If the content of titanium is less than 0.005%, the effect of promoting graphitization and miniaturization of austenite grains is insufficient, and the precipitation distribution of titanium-based carbon and nitride in the grain boundary effective for delayed fracture resistance is insufficient. On the other hand, when the loading of titanium exceeds 0.03%, the addition effect is saturated, and coarse titanium-based carbon and nitride are formed to affect mechanical properties.

상기 합금원소중에서 Ti, N, B의 함량이 다음의 관계, 0.5≤Ti/N≤2.0, 2.0≤N/B≤8.0, 1.0≤(Ti+5B)/N≤3.5 를 만족하는 것이 바람직하다. 이 관계는 볼트 성형전 냉간성형성에 요구되는 인장강도(통상 60kg/mm2이하)를 선재제조시 흑연화에 의해 달성하고 또한 선재 흑연화에 요구되는 시간을 현저하게 단축하기 위한 것으로, 그 구체적인 이유는 다음과 같다.The content of Ti, N, and B in the alloy element preferably satisfies the following relationship: 0.5 ≦ Ti / N ≦ 2.0, 2.0 ≦ N / B ≦ 8.0, 1.0 ≦ (Ti + 5B) /N≦3.5. This relationship is to achieve the tensile strength (typically 60kg / mm 2 or less) required for cold forming before bolt forming by graphitization during wire rod manufacture and to significantly shorten the time required for wire rod graphitization. Is as follows.

Ti/N:0.5~2.0Ti / N: 0.5 to 2.0

Ti/N비가 0.5미만에서는 흑연립의 핵생성 자리 감소로 흑연립 생성속도가 저하되며, Ti/N비가 2.0초과의 경우 흑연립이 조대화되는 경향을 보이기 때문에 바람직하지 않다.If the Ti / N ratio is less than 0.5, the graphene grain formation rate is lowered due to a decrease in nucleation sites of the graphite grains, and when the Ti / N ratio is greater than 2.0, the graphite grains tend to coarsen.

N/B비:2.0~8.0N / B ratio: 2.0-8.0

N/B비가 2.0미만의 경우는 흑연립 핵생성에 필요한 BN석출물수가 부족하여 흑연화 속도가 저하되며, N/B비가 8.0초과의 경우 흑연립 핵생성에 필요한 BN석출물수가 포화되며 모재에 고용되는 질소량이 증가하여 흑연화률이 오히려 저하된다.If the N / B ratio is less than 2.0, the number of BN precipitates required for graphite nucleation is insufficient, and the graphitization rate is lowered. The amount of nitrogen increases and the graphitization rate is rather lowered.

(Ti+5B)/N비: 1.0~3.5(Ti + 5B) / N ratio: 1.0 to 3.5

(Ti+5B)/N비가 1.0미만의 경우 흑연립의 핵생성에 기여하는 TiN 및 BN석출물의 개수가 부족해지며, (Ti+5B)/N비가 3.5초과의 경우 흑연립 핵생성에 필요한 TiN 및 BN석출물 개수가 포화되며 모재에 고용되는 질소량이 증가하여 오히려 흑연화 속도에 악영향을 미친다.If the (Ti + 5B) / N ratio is less than 1.0, the number of TiN and BN precipitates that contribute to the nucleation of graphite grains is insufficient, and if the (Ti + 5B) / N ratio is greater than 3.5, the TiN and The number of BN precipitates is saturated and the amount of nitrogen dissolved in the base metal increases, which adversely affects the graphitization rate.

상기 성분외에 니켈, 바나듐, 니오븀의 1종 또는 2종이상을 첨가한다.In addition to the above components, one or two or more of nickel, vanadium and niobium are added.

니켈(Ni)의 함량:0.3~2.0%Nickel (Ni) content: 0.3 ~ 2.0%

니켈은 흑연화 촉진원소이며, 열처리시 표면에 니켈 농화층을 형성하여 외부수소의 투과(permeation)를 억제하여 지연파괴저항성을 개선하는 원소이다. 니켈의 함량이 0.3%미만에서는 표면농화층 형성이 불완전하여 지연파괴저항성의 개선효과를 기대하기 어렵다. 또한 탈탄제어, 인성 및 냉간성형성 향상을 위한 구상화 또는 흑연화처리시 열처리시간이 길어지며, 볼트성형시의 냉간성형성의 개선효과가 없다. 한편, 니켈의 함량이 2.0%를 초과하는 경우에는 그 효과가 포화되고 잔류 오스테나이트량의 적정한 양과 크기 및 형상 등에 부정적인 영향을 미칠 수 있다.Nickel is an element for promoting graphitization, and is an element that forms a nickel enrichment layer on the surface during heat treatment to suppress permeation of external hydrogen and thereby improve delayed fracture resistance. If the nickel content is less than 0.3%, it is difficult to expect the effect of improving the delayed fracture resistance due to the incomplete formation of the surface thickening layer. In addition, the heat treatment time is increased during spheroidization or graphitization treatment to improve decarburization control, toughness and cold formability, and there is no effect of improving cold formability during bolt forming. On the other hand, when the nickel content exceeds 2.0%, the effect is saturated and may adversely affect the proper amount, size and shape of the residual austenite amount.

바나듐(V) 또는 니요븀(Nb)의 함량: 각각 0.01~0.5%Vanadium (V) or niobium (Nb) content: 0.01 to 0.5% each

바나듐과 니오븀은 지연파괴저항성 및 응력이완성 개선원소이다. 이들의 함량이 각각 0.01%미만에서는 모재내 바나듐 또는 니요븀계 석출물들의 분포가 적어짐에 따라 비확산성 수소 트랩사이트(trap site)로의 역할이 미흡하여 지연파괴저항성 개선효과를 기대하기 어렵다. 또한 석출강화를 기대하기 어려워 응력이완저항성에 대한 개선효과가 충분하지 못하며, 오스테나이트 결정립 미세화를 기대하기 어려워 페라이트+잔류 오스테나이트 복합조직의 구성시 조직 미세화에 영향을 미친다. 한편, 바나듐과 니요븀의 함량이 0.5%를 초과하면 흑연화열처리 시간이 길어지는 단점이 있으며 V 또는 Nb계 석출물들에 의한 지연파괴저항성 및 응력이완저항성에 대한 개선 효과가 포화한다. 오스테나이트 열처리시 모재에 용해되지 않은 조대한 합금 탄화물양이 증가하여 비금속 개재물과 같은 작용을 하므로 피로특성의 저하를 초래한다.Vanadium and niobium are elements that improve delayed fracture resistance and stress relaxation. If the content of these compounds is less than 0.01%, the distribution of vanadium or niobium-based precipitates in the base material decreases, and thus the role of the non-diffusible hydrogen trap site is insufficient. Therefore, it is difficult to expect the effect of improving the delayed fracture resistance. In addition, it is difficult to expect the precipitation strengthening effect is not enough improvement effect on the stress relaxation resistance, and it is difficult to expect the austenite grain refining, which affects the microstructure of the structure of the ferrite + residual austenite composite structure. On the other hand, if the content of vanadium and niobium exceeds 0.5%, the graphitization heat treatment time is long, and the improvement effect on the delayed fracture resistance and the stress relaxation resistance by the V or Nb-based precipitates is saturated. During the heat treatment of austenite, the amount of coarse alloy carbide that is not dissolved in the base metal increases, which acts like a non-metallic inclusion, leading to a decrease in fatigue characteristics.

[선재의 제조방법][Manufacturing method of wire rod]

상기와 같이 조성되는 강은 선재로 제조하기 위한 가열공정에서 표면에 탈탄층이발생하는데, 이를 방지하기 위해서는 빌레트를 선재압연하기 위한 가열공정에서 가열조건을 적절히 조절하여 빌레트의 표면에 페라이트 탈탄층을 형성하는 것이 중요하다.In the steel formed as described above, a decarburized layer is formed on the surface in the heating process for manufacturing the wire rod. In order to prevent this, the ferrite decarburized layer is formed on the surface of the billet by appropriately adjusting the heating conditions in the heating process for rolling the billet. It is important to form.

[선재압연공정][Wire Rolling Process]

먼저, 본 발명에 따라 빌레트를 Ac1변태점까지 가열속도 20±5℃/분 범위로 가열한다. 가열속도가 15℃ 미만의 경우 전체 가열로 장입시간이 너무 길어지며, 25℃초과의 경우 빌레트 표면과 내부의 온도차이가 발생하여 Ac1변태시기가 상이해져 이때 빌레트가 휘어질 수 있다.First, according to the present invention, the billet is heated to a heating rate of 20 ± 5 ° C./min to Ac 1 transformation point. If the heating rate is less than 15 ℃, the charging time is too long for the entire heating, if the temperature exceeds 25 ℃ occurs the temperature difference between the surface and the inside of the billet, Ac 1 transformation time is different, this time billet can be bent.

이어, 이상역 범위인 Ac1변태점에서 Ac3변태점까지는 9±4℃/분의 가열속도로 가열한다. 이때의 가열속도가 5℃/min미만에서는 선재가열로에서의 빌레트 표면에 이상역 페라이트층의 두께가 필요 이상으로 증가(≥0.5mm)하여 오히려 탈탄개선 효과를 얻기 어려우며, 또한 가열로 재로시간(장입시간)이 길어지는 단점이 있다. 또한, 승온속도 13℃/min를 초과할 경우에는 탈탄반응 억제에 필요한 빌레트의 적정 표면 페라이트층(0.05-0.5mm)을 형성시키기가 어렵다. 보다 바람직하게는 9±2℃/분의 가열속도로 가열하는 것이다. 본 발명에서 빌레트 표면의 페라이트 탈탄층의 깊이는 0.05~0.5mm가 바람직하다.Subsequently, heating is performed at a heating rate of 9 ± 4 ° C./minute from the Ac 1 transformation point in the ideal range to the Ac 3 transformation point. At this time, if the heating rate is less than 5 ℃ / min, the thickness of the abnormal region ferrite layer on the billet surface of the wire heating furnace is increased more than necessary (≥0.5mm), so it is difficult to obtain the decarburization improvement effect. Charge time) is long. In addition, when the temperature increase rate exceeds 13 ° C./min, it is difficult to form an appropriate surface ferrite layer (0.05-0.5 mm) of billet necessary for suppressing decarburization reaction. More preferably, it heats at the heating rate of 9 +/- 2 degree-C / min. In the present invention, the depth of the ferrite decarburized layer on the surface of the billet is preferably 0.05 to 0.5 mm.

이어서, 1050±100℃까지 15±5℃/분의 가열속도로 가열하여 이 온도구간에서 30분 이상 유지한 다음 선재압연한다. 상기 이상역 종료온도 이후에서는 모재의 미세조직은 이상조직(페라이트+오스테나이트)에서 오스테나이트 단상조직으로 변태하게 되는데, 이때 가열유지온도까지 승온속도가 10℃/min미만에서는 재로시간이 증가하고, 20℃/min를 초과할 경우에는 빌레트 내외부의 온도편차 심화로 빌레트 휘어짐이 발생하기 쉽고 열간압연에 적합한 빌레트의 내외부 온도제어가 어렵기 때문이다. 보다 바람직하게는 15±2℃/분의 가열속도로 가열하는 것이다.Subsequently, heating is performed at a heating rate of 15 ± 5 ° C / min to 1050 ± 100 ° C, held for at least 30 minutes at this temperature range, and then rolled. After the abnormal zone end temperature, the microstructure of the base material is transformed from the abnormal structure (ferrite + austenite) to the austenite single phase structure. At this time, when the temperature increase rate up to the heating maintenance temperature is less than 10 ℃ / min, This is because when the temperature exceeds 20 ° C / min, the billet warpage is likely to occur due to the deep temperature deviation inside and outside the billet, and it is difficult to control the inside and outside temperature of the billet suitable for hot rolling. More preferably, it is heated at a heating rate of 15 ± 2 ℃ / min.

또한, 이때의 선재가열로의 가열온도가 950℃미만에서는 탈탄제어를 위한 빌레트 표면 페라이트층 적정두께 제어에 문제점이 있다. 또한, 빌레트 제조시 조대하게 석출된 바나듐계 또는 니요븀계 석출물들의 재고용이 용이하지 않으며, 열간변형저항성의 증가로 압연시 과부하로 인해 작업성이 열악해진다. 또한, 가열유지온도가 1150℃ 초과할 경우에는 탈탄제어를 위한 균일한 페라이트층을 표면에 석출시킬 수 없다. 즉 탄소 고용도가 매우 낮은 표면 페라이트층을 석출시켜 탈탄반응을 급격히 감소시키기 위해서는 가열 유지온도에서 표면 페라이트층이 잔존하여야 가능하나 가열온도가 1150℃ 초과할 경우에는 표면의 페라이트층이 오스테나이트로 변태하기 때문에 탈탄속도가 급격히 증가하며 이로 인해 표면탈탄이 심화되기 때문이다. 가열유지시간이 30분미만에서는 선재압연을 위한 빌레트 외내부의 균일한 온도 분포를 확보하기 어렵기 때문이다.In addition, when the heating temperature of the wire heating furnace at this time is less than 950 ℃, there is a problem in controlling the proper thickness of the billet surface ferrite layer for decarburization control. In addition, it is not easy to re-use coarse precipitated vanadium-based or niobium-based precipitates during the production of billet, and the workability is poor due to the overload during rolling due to the increase in hot deformation resistance. In addition, when the heating holding temperature exceeds 1150 ° C., a uniform ferrite layer for decarburization control cannot be deposited on the surface. In other words, in order to precipitate the surface ferrite layer having a very low carbon solubility, the surface ferrite layer must remain at the heating and maintaining temperature, but when the heating temperature is higher than 1150 ℃, the surface ferrite layer is transformed into austenite. This is because the decarburization rate increases sharply, which causes deep surface decarburization. If the heating holding time is less than 30 minutes, it is difficult to secure a uniform temperature distribution inside the billet for wire rod rolling.

상기와 같이 빌레트를 가열하여 선재압연하는데, 이때 가열로에서 추출되는 빌레트의 탈탄면적은 선재압연후에 선재의 탈탄면적과 동일하기 때문에 선경이 클수록 탈탄층이 증가하게 된다. 따라서, 본 발명에서는 이러한 점을 고려하여 지름 30mm이하로 선재압연하는 것이 바람직하다.As described above, the billet is heated to roll the wire. At this time, the decarburization area of the billet extracted from the heating furnace is the same as the decarburization area of the wire after the wire rolling. Therefore, in the present invention, in consideration of this point, it is preferable to roll the wire to a diameter of 30 mm or less.

[권취공정][Winding process]

다음으로 선재를 권취하는데, 이때의 권취온도는 860-950℃로 하는 것이 바람직하다. 권취온도는 선재압연직후 냉각수분사에 의해 확보한다. 권취온도가 860℃미만의 경우에는 흑연화에 요구되는 시간이 부족해지기 때문이며, 권취온도가 950℃초과의 경우에는 고온권취에 따른 권취불량이 발생할 가능성이 높기 때문이다.Next, the wire is wound, but the winding temperature at this time is preferably 860-950 ℃. The coiling temperature is secured by cooling water spraying immediately after the wire is rolled. This is because the time required for graphitization is insufficient when the coiling temperature is less than 860 ° C., and when the coiling temperature is higher than 950 ° C., the winding failure due to high temperature winding is likely to occur.

[냉각공정][Cooling process]

권취한 선재를 냉각하는데, 먼저 770±30℃까지 1.8±0.5℃/sec로 1차 냉각시킨다. 냉각온도와 냉각속도의 조건설정은 선재집적상태 즉 겹침부, 비겹침부위의 냉각정도의 차이를 고려한 것이다. 즉, 1.8±0.5℃/sec의 냉각속도에서 냉각온도가 800℃ 보다 높을 경우 냉각대에서의 적정 흑연화 변태소요시간이 불충분하게 되어 흑연화율이 감소한다. 또한, 냉각온도가 740℃ 미만의 경우에는 흑연화조직보다는 페라이트 또는 퍼얼라이트 변태가 일어날 가능성이 매우 높다.The wound wire is cooled, first cooling to 1.8 ± 0.5 ° C / sec to 770 ± 30 ° C. The conditions of cooling temperature and cooling rate are taken into account the difference in the degree of cooling of wire rod integrated state, ie overlapping part and non-overlapping part. That is, if the cooling temperature is higher than 800 ℃ at a cooling rate of 1.8 ± 0.5 ℃ / sec, the appropriate graphitization transformation time in the cooling zone is insufficient, the graphitization rate is reduced. In addition, when the cooling temperature is less than 740 ° C, ferrite or perlite transformation is more likely to occur than graphitized tissue.

다음으로, 620±50℃까지 0.4±0.2℃/sec로 2차 냉각한다.Next, secondary cooling is performed at 0.4 ± 0.2 ° C / sec to 620 ± 50 ° C.

냉각온도가 670℃ 보다 높은 경우에는 선재 흑연화가 진행되며, 570℃미만의 경우에는 흑연화율이 감소한다. 또한, 냉각속도가 0.6℃/sec 보다 빠를 경우 흑연화율이 감소할 수 있으며, 0.2℃/sec 보다 느릴 경우 냉각설비의 한계로 인해 적정냉각온도인 620±50℃범위를 확보하기가 어려워 선재 흑연화율이 감소한다.If the cooling temperature is higher than 670 ℃ the wire graphitization proceeds, if less than 570 ℃ graphitization rate decreases. In addition, if the cooling rate is faster than 0.6 ℃ / sec, the graphitization rate can be reduced, and if it is slower than 0.2 ℃ / sec, it is difficult to secure the proper cooling temperature range of 620 ± 50 ℃ due to the limitation of the cooling equipment, the wire graphitization rate This decreases.

다음으로 공냉하는데, 이는 변태가 완료된 상태로 냉각속도의 변화가 조직에 미치는 영향이 없기 때문이다Next, air-cooling, because the transformation is complete and the cooling rate does not affect the tissue.

냉각하여 얻은 선재에서 흑연립 크기는 50㎛이하이고, 그 상분율은 0.1%이상이 바람직하다. 흑연립 크기가 50㎛초과일 경우에는 냉간성형성 개선 효과 보다는 오히려 표면흠이 유발할 가능성이 있다. 또한, 흑연립 상분율이 0.1%미만에서는 냉간성형성 개선을 위한 조직 연화효과가 없다.In the wire rod obtained by cooling, the graphite grain size is 50 µm or less, and the phase fraction is preferably 0.1% or more. If the graphite grain size is greater than 50 μm, surface defects may be caused rather than the effect of improving cold forming property. In addition, when the graphite grain phase fraction is less than 0.1%, there is no tissue softening effect for improving cold forming.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

아래 표 1과 같은 발명강 및 비교강의 성분계를 갖는 고실리콘 첨가 중탄소강 빌레트를 표 3의 조건으로 고속선재압연하여 16mm의 선재로 제조하고, 선재압연직후 표 4의 조건으로 권취 및 냉각하고 공냉하였다. 상기와 같이 제조된 선재의 표면 탈탄층 깊이는 KS규격(KD D 0216)에 의하여 측정하였다. 이 규격에 의하면 광학 현미경 관찰법과 미소경도 측정법등이 제안되고 있는데, 여기서는 미소경도 측정법을 이용하였다. 측정된 탈탄층 깊이는 표 3에 나타내었다. 측정위치는 선재단면을 8등분한 위치에서 측정하였으며 측정값은 평균값을 기준으로 하였다. 또한, 제조된 선재들의 흑연화 조직 상분율은 화상분석기(image analyze)를 이용하여 측정하였으며, 이때 피검면은 300mm2를 기준으로 하였다.The high-silicon-added medium-carbon steel billet having the component system of the invention steel and the comparative steel as shown in Table 1 below was manufactured by 16 mm wire rod by high-speed wire rolling under the conditions of Table 3, and wound and cooled and air-cooled under the conditions of Table 4 immediately after the wire rolling. . The surface decarburized layer depth of the wire rod manufactured as described above was measured by the KS standard (KD D 0216). According to this standard, an optical microscope observation method and a microhardness measuring method are proposed, but the microhardness measuring method was used here. The measured decarburized bed depths are shown in Table 3. The measurement position was measured at 8 equal sections of wire rod section, and the measured value was based on the average value. In addition, the graphitized tissue phase fraction of the wire rods prepared was measured using an image analyzer, wherein the test surface was based on 300 mm 2 .

구분division 화학성분Chemical composition CC SiSi MnMn PP SS NN OO NiNi BB VV NbNb TiTi 발명강Invention steel 1One 0.440.44 3.033.03 0.630.63 0.0080.008 0.0090.009 0.00900.0090 0.00130.0013 -- 0.00150.0015 0.050.05 0.020.02 0.0160.016 22 0.430.43 3.243.24 0.620.62 0.0080.008 0.0080.008 0.01150.0115 0.00140.0014 -- 0.00240.0024 0.060.06 0.010.01 0.0230.023 33 0.560.56 3.233.23 0.680.68 0.0090.009 0.0090.009 0.00480.0048 0.00150.0015 0.700.70 0.00180.0018 0.070.07 -- 0.0070.007 44 0.420.42 2.352.35 0.680.68 0.0070.007 0.0090.009 0.00910.0091 0.00160.0016 -- 0.00390.0039 0.010.01 0.050.05 0.0110.011 55 0.450.45 3.993.99 0.750.75 0.0080.008 0.0090.009 0.00860.0086 0.00170.0017 -- 0.00250.0025 0.040.04 0.030.03 0.0170.017 66 0.580.58 3.123.12 0.740.74 0.0090.009 0.0080.008 0.00710.0071 0.00170.0017 -- 0.00130.0013 -- -- 0.0130.013 77 0.570.57 2.372.37 0.800.80 0.0090.009 0.0080.008 0.00560.0056 0.00180.0018 1.101.10 0.00200.0020 -- 0.050.05 0.0090.009 비교강Comparative steel 1One 0.440.44 3.033.03 0.630.63 0.0080.008 0.0090.009 0.00900.0090 0.00130.0013 -- -- 0.050.05 0.020.02 -- 22 0.440.44 3.033.03 0.630.63 0.0080.008 0.0090.009 0.00900.0090 0.00130.0013 -- 0.00050.0005 0.050.05 0.020.02 0.0260.026 33 0.440.44 3.033.03 0.630.63 0.0080.008 0.0090.009 0.00900.0090 0.00130.0013 -- 0.00550.0055 0.050.05 0.020.02 0.0070.007

구분division Ti/NTi / N N/BN / B (Ti+5B)/N(Ti + 5B) / N 발명강1Inventive Steel 1 1.81.8 6.06.0 2.62.6 발명강2Inventive Steel 2 2.02.0 4.84.8 3.03.0 발명강3Invention Steel 3 1.51.5 2.72.7 3.33.3 발명강4Inventive Steel 4 1.21.2 2.32.3 3.43.4 발명강5Inventive Steel 5 2.02.0 3.43.4 3.43.4 발명강6Inventive Steel 6 1.81.8 5.55.5 2.72.7 발명강7Inventive Steel 7 1.61.6 2.82.8 3.43.4 비교강1Comparative Steel 1 -- -- -- 비교강2Comparative Steel 2 2.82.8 18.018.0 3.23.2 비교강3Comparative Steel 3 0.80.8 2.02.0 3.83.8

사용강종Steel grade used Ac1까지 승온속도(℃/min)Temperature increase rate up to Ac 1 (℃ / min) 이상역까지의 승온속도(℃/min)Temperature rise rate to the ideal station (℃ / min) Ac3이후 가열유지온도까지 승온속도(℃/min)Heating rate up to the heating maintenance temperature after Ac 3 (℃ / min) 가열유지온도(℃)Heating holding temperature (℃) 가열유지시간(min)Heating holding time (min) 지름 16mm 선재 전탈탄깊이(mm)Wire stripping depth of 16mm in diameter (mm) 발명재1Invention 1 발명강1Inventive Steel 1 2020 55 1515 10001000 4040 0.030.03 발명재2Invention 2 발명강1Inventive Steel 1 2020 99 1515 10501050 3030 0.040.04 발명재3Invention 3 발명강1Inventive Steel 1 2020 1313 1515 10501050 3030 0.030.03 발명재4Invention 4 발명강1Inventive Steel 1 2020 99 1010 10501050 3030 0.020.02 발명재5Invention 5 발명강1Inventive Steel 1 2020 99 1515 10501050 3030 0.040.04 발명재6Invention 6 발명강1Inventive Steel 1 2020 99 2020 10501050 3030 0.050.05 발명재7Invention 7 발명강1Inventive Steel 1 2020 99 1515 950950 4040 0.030.03 발명재8Invention Material 8 발명강1Inventive Steel 1 2020 99 1515 11001100 3030 0.020.02 발명재9Invention 9 발명강2Inventive Steel 2 2020 99 1515 10501050 3030 0.040.04 발명재10Invention 10 발명강3Invention Steel 3 2020 99 1515 10501050 3030 0.020.02 발명재11Invention 11 발명강4Inventive Steel 4 2020 99 1515 10501050 3030 0.030.03 발명재12Invention Material12 발명강5Inventive Steel 5 2020 99 1515 10501050 3030 0.040.04 발명재13Invention Material 13 발명강6Inventive Steel 6 2020 99 1515 10501050 3030 0.030.03 발명재14Invention 14 발명강7Inventive Steel 7 2020 99 1515 10501050 3030 0.050.05 비교재1Comparative Material 1 발명강1Inventive Steel 1 2020 33 1515 10501050 3030 0.130.13 비교재2Comparative Material 2 발명강1Inventive Steel 1 2020 1717 1515 10501050 3030 0.120.12 비교재3Comparative Material 3 발명강1Inventive Steel 1 2020 1717 55 10501050 3030 0.160.16 비교재4Comparative Material 4 발명강1Inventive Steel 1 2020 1717 2525 10501050 3030 0.190.19 비교재5Comparative Material 5 발명강1Inventive Steel 1 2020 1717 2525 12001200 3030 0.200.20 비교재6Comparative Material 6 비교강1Comparative Steel 1 2020 1313 1515 10501050 3030 0.030.03 비교재7Comparative Material7 비교강2Comparative Steel 2 2020 1313 1515 10501050 3030 0.030.03 비교재8Comparative Material 8 비교강3Comparative Steel 3 2020 1313 1515 10501050 3030 0.030.03

강종Steel grade 권취온도(℃)Winding temperature (℃) 1차냉각온도(℃)Primary cooling temperature (℃) 1차 냉각온도까지 냉각속도(℃/sec)Cooling rate up to the first cooling temperature (℃ / sec) 2차냉각온도(℃)Secondary cooling temperature (℃) 2차 냉각온도까지 냉각속도(℃/sec)Cooling rate up to secondary cooling temperature (℃ / sec) 흑연립 상분율(%)Graphite Grain Percentage (%) 흑연립 평균크기(㎛)Graphite Grain Average Size (㎛) 선재인장강도(kg/mm2)(16mm기준)Wire tensile strength (kg / mm 2 ) (based on 16mm) 발명강1Inventive Steel 1 900900 740740 1.31.3 670670 0.60.6 1.81.8 1313 5454 발명강2Inventive Steel 2 860860 740740 1.81.8 670670 0.40.4 2.02.0 88 5555 발명강3Invention Steel 3 900900 740740 1.81.8 640640 0.60.6 1.71.7 1515 5353 발명강4Inventive Steel 4 950950 800800 1.81.8 660660 0.60.6 2.22.2 88 5151 발명강5Inventive Steel 5 900900 740740 1.81.8 670670 0.60.6 1.81.8 1010 5858 발명강6Inventive Steel 6 900900 800800 2.32.3 570570 0.40.4 2.02.0 1212 5454 발명강7Inventive Steel 7 950950 770770 1.81.8 660660 0.60.6 1.91.9 1111 5656 비교강1Comparative Steel 1 900900 740740 1.31.3 670670 0.60.6 00 00 101101 비교강2Comparative Steel 2 900900 740740 1.31.3 670670 0.60.6 0.30.3 1212 9292 비교강3Comparative Steel 3 900900 740740 1.31.3 670670 0.60.6 0.40.4 1111 9191

표 4에 나타난 바와 같이, 비교강(1~3)들은 흑연립 상분율이 0~0.4%, 선재인장강도가 91~101kg/mm2범위를 보이는 반면, 발명강(1-7)들은 선재냉각후 선재 미세조직상의 흑연립 상분율이 1.7~2.2% 및 흑연립 크기분포가 8~15㎛ 보이면서 선재인장강도가 51~58kg/mm2범위로 직접 볼트 냉간성형이 가능한 선재로 제조되었음을 알 수 있었다. 따라서, 본 발명의 합금성분계로 구성된 소재를 이용해서 선재를 냉각제어할 경우 볼트 냉간성형성시 요구되어지는 인장강도를 현저히 낮추는데 매우 효과적임을 잘 알 수 있다.As shown in Table 4, the comparative steels (1 to 3) exhibited graphite granular phase ratios of 0 to 0.4% and wire tensile strengths of 91 to 101 kg / mm 2 , while inventive steels (1-7) were wire-cooled. After showing the graphite grain phase ratio of 1.7 ~ 2.2% and graphite grain size distribution of 8 ~ 15㎛, the wire tensile strength was 51 ~ 58kg / mm 2 . . Therefore, it can be seen that the cooling control of the wire using the material composed of the alloy component system of the present invention is very effective in significantly lowering the tensile strength required for forming the bolt cold forming.

상술한 바와 같이, 본 발명은 선재가열로 가열시 이상역 통과 승온속도를 낯추어 빌레트 표면에 균일하고 얇은 페라이트층을 석출시킴으로서 가열시 탈탄반응을 억제시키고, 선재냉각시 흑연화된 선재를 제공할 수 있다.As described above, the present invention suppresses the decarburization reaction during heating by providing a uniform and thin ferrite layer on the surface of the billet by reducing the temperature rise rate of the reverse pass when heating the wire rod, thereby providing a graphitized wire rod during wire cooling. Can be.

Claims (5)

중량%로, 탄소 0.40-0.60%, 실리콘 2.0-4.0%, 망간 0.1-0.8%, 인 0.01%이하, 황 0.01%이하, 질소 0.004-0.013%, 산소 0.005% 이하, 보론 0.001-0.003%, 티타늄 0.005~0.03%를 함유하고, 여기에 니켈 0.3-2.0%, 바나듐:0.01∼0.5%, 니오븀:0.01∼0.5%으로 이루어진 그룹중에서 선택된 1종 또는 2종 이상, 나머지 Fe 및 기타 불순물로 조성되며, 상기 티타늄(Ti), 질소(N), 보론(B)이 다음의 관계, 0.5≤Ti/N≤2.0, 2≤N/B≤8, 1.0≤(Ti+5B)/N≤3.5를 만족하는 빌레트를 얻는 단계,By weight%, carbon 0.40-0.60%, silicon 2.0-4.0%, manganese 0.1-0.8%, phosphorus 0.01% or less, sulfur 0.01% or less, nitrogen 0.004-0.013%, oxygen 0.005% or less, boron 0.001-0.003%, titanium 0.005% to 0.03%, and it is composed of one or two or more selected from the group consisting of 0.3-2.0% nickel, 0.01% to 0.5% vanadium, 0.01% to 0.5% niobium, remaining Fe and other impurities, The titanium (Ti), nitrogen (N), boron (B) satisfies the following relationship, 0.5≤Ti / N≤2.0, 2≤N / B≤8, 1.0≤ (Ti + 5B) /N≤3.5 Getting a billet, 상기 빌레트를 Ac1변태점까지 20±5℃/분의 가열속도로 가열하고 이상역 범위인 Ac1변태점에서 Ac3변태점까지는 9±4℃/분의 가열속도로 가열하고, 1050±100℃까지 15±5℃/분의 가열속도로 가열하여 이 온도구간에서 30분 이상 유지한 다음, 선재압연하는 단계,The billet is heated at a heating rate of 20 ± 5 ° C./min to Ac 1 transformation point, and is heated at a heating rate of 9 ± 4 ° C./min from Ac 1 transformation point to Ac 3 transformation point, which is an ideal range, and 15 to 1050 ± 100 ° C. Heating at a heating rate of ± 5 ° C / min, holding at least 30 minutes in this temperature range, and then rolling the wire; 선재압연한 직후 860-950℃에서 권취하는 단계 및,Winding at 860-950 ° C. immediately after the wire has been rolled, and 권취한 선재를 770±30℃까지는 1.8±0.5℃/sec의 냉각속도로 1차 냉각하고, 620±50℃까지는 0.4±0.2℃/sec의 냉각속도로 2차 냉각한 후 공냉하여 선재를 얻는 단계를 포함하여 이루어지는 표면탈탄이 적은 고실리콘 첨가 중탄소 선재의 제조방법.Firstly, the wound wire is cooled to 1.8 ± 0.5 ℃ / sec up to 770 ± 30 ℃ and secondly cooled to 0.4 ± 0.2 ℃ / sec up to 620 ± 50 ℃, followed by air cooling to obtain wire. Method for producing a high silicon-added medium-carbon wire rod with a low surface decarburization comprising a. 제 1항에 있어서, 상기 빌레트를 Ac1변태점에서 Ac3변태점까지의 가열속도를 9±2℃/분 범위로 하는 것을 특징으로 하는 표면탈탄이 적은 고실리콘 첨가 중탄소 선재의 제조방법.The method of claim 1, wherein the billet has a heating rate from the Ac 1 transformation point to the Ac 3 transformation point in a range of 9 ± 2 ° C./min. 제 1항에 있어서, 상기 빌레트를 Ac3변태점에서 1050±50℃까지 가열속도는 15±2℃/분의 범위를 갖는 것을 특징으로 하는 표면탈탄이 적은 고실리콘 첨가 중탄소 선재의 제조방법.The method of claim 1, wherein the heating rate of the billet from the Ac 3 transformation point to 1050 ± 50 ° C has a range of 15 ± 2 ° C / min. 제 1항 또는 제 2항에 있어서, 상기와 같이 가열한 빌레트의 표면에는 0.05∼0.5mm 두께의 페라이트 탈탄층이 형성됨을 특징으로 하는 표면탈탄이 적은 고실리콘 첨가 중탄소 선재의 제조방법.The method for producing a high-silicon-added medium-carbon wire rod having low surface decarburization according to claim 1 or 2, wherein a ferrite decarburization layer having a thickness of 0.05 to 0.5 mm is formed on the surface of the heated billet as described above. 제 1항에 있어서, 상기 선재는 흑연립 크기가 50㎛이하, 흑연립 상분율이 0.1%이상임을 특징으로 하는 표면탈탄이 적은 고실리콘 첨가 중탄소 선재의 제조방법.The method of claim 1, wherein the wire rod has a graphite grain size of 50 μm or less and a graphite grain phase fraction of 0.1% or more.
KR1020020081546A 2002-12-20 2002-12-20 Method of manufacturing high Si added medium carbon wire rod KR100891866B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020081546A KR100891866B1 (en) 2002-12-20 2002-12-20 Method of manufacturing high Si added medium carbon wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020081546A KR100891866B1 (en) 2002-12-20 2002-12-20 Method of manufacturing high Si added medium carbon wire rod

Publications (2)

Publication Number Publication Date
KR20040054987A true KR20040054987A (en) 2004-06-26
KR100891866B1 KR100891866B1 (en) 2009-04-08

Family

ID=37347727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020081546A KR100891866B1 (en) 2002-12-20 2002-12-20 Method of manufacturing high Si added medium carbon wire rod

Country Status (1)

Country Link
KR (1) KR100891866B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605722B1 (en) * 2004-11-24 2006-08-01 주식회사 포스코 Method of manufacturing graphite steel rod for machine structural use having excellent free cutting characteristics and cold forging characteristics
KR100627484B1 (en) * 2004-11-24 2006-09-25 주식회사 포스코 Method of manufacturing graphite steel rod for machine structural use having lower decarburized surface property
KR101125894B1 (en) * 2004-09-30 2012-03-21 주식회사 포스코 Method of manufacturing Graphite Steel Rod for machine structural use having lower decarburized surface property
WO2018110850A1 (en) * 2016-12-13 2018-06-21 주식회사 포스코 High-strength wire rod having superior impact toughness and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118013A (en) 1986-11-04 1988-05-23 Kobe Steel Ltd Production of hot rolled wire rod of high-si steel
KR100431849B1 (en) * 1999-12-28 2004-05-20 주식회사 포스코 Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
KR100448623B1 (en) * 1999-12-28 2004-09-13 주식회사 포스코 Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
KR100544720B1 (en) 2001-12-24 2006-01-24 주식회사 포스코 High strength steel having superior cold formability and delayed fracture resistance and method for manufacturing working product using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101125894B1 (en) * 2004-09-30 2012-03-21 주식회사 포스코 Method of manufacturing Graphite Steel Rod for machine structural use having lower decarburized surface property
KR100605722B1 (en) * 2004-11-24 2006-08-01 주식회사 포스코 Method of manufacturing graphite steel rod for machine structural use having excellent free cutting characteristics and cold forging characteristics
KR100627484B1 (en) * 2004-11-24 2006-09-25 주식회사 포스코 Method of manufacturing graphite steel rod for machine structural use having lower decarburized surface property
WO2018110850A1 (en) * 2016-12-13 2018-06-21 주식회사 포스코 High-strength wire rod having superior impact toughness and manufacturing method therefor

Also Published As

Publication number Publication date
KR100891866B1 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
KR102020385B1 (en) Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
KR20100076073A (en) Steel sheets and process for manufacturing the same
KR100900646B1 (en) Method of manufacturing high Si added high carbon wire rod
KR100544752B1 (en) Method of manufacturing high carbon wire rod having superior cold formability for bolt
KR100891866B1 (en) Method of manufacturing high Si added medium carbon wire rod
KR100448623B1 (en) Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
KR100415673B1 (en) High strength ferritic duplex steel having a superior delayed fracture resistance and enlongation percentage and bolt made the steel and method for manufacturing working product by using the steel
KR100431847B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
KR100891867B1 (en) Method for manufacturing high Si added medium carbon wire rod free from low temperature annealing
KR100554751B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100544744B1 (en) Method for manufacturing high Si added high carbon wire rod by forming decarburinized ferritic layer
KR100920567B1 (en) Method of manufacturing high Si added high carbon wire rod
KR100516518B1 (en) Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
KR100544753B1 (en) Method of manufacturing medium carbon wire rod having superior cold formability for bolt
KR100345714B1 (en) Manufacturing method of bainite steel for high strength bolts with resistance ratio
KR100544743B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburinized ferritic layer
KR100345715B1 (en) Manufacturing method of composite tissue steel for high strength bolts with resistance ratio
KR100363193B1 (en) A method for manufacturing bolts having high strength and elongation
KR100946130B1 (en) Method of manufacturing high carbon Working product having superior delayed fracture resistance
KR100516520B1 (en) Method for manufacturing high strength working product having low yield ratio

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140327

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150317

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160322

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170309

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180314

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190322

Year of fee payment: 11