JP3709794B2 - Manufacturing method of high strength and high toughness steel sheet - Google Patents

Manufacturing method of high strength and high toughness steel sheet Download PDF

Info

Publication number
JP3709794B2
JP3709794B2 JP2001026526A JP2001026526A JP3709794B2 JP 3709794 B2 JP3709794 B2 JP 3709794B2 JP 2001026526 A JP2001026526 A JP 2001026526A JP 2001026526 A JP2001026526 A JP 2001026526A JP 3709794 B2 JP3709794 B2 JP 3709794B2
Authority
JP
Japan
Prior art keywords
less
strength
cut
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001026526A
Other languages
Japanese (ja)
Other versions
JP2002226916A (en
Inventor
隆二 村岡
信行 石川
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001026526A priority Critical patent/JP3709794B2/en
Publication of JP2002226916A publication Critical patent/JP2002226916A/en
Application granted granted Critical
Publication of JP3709794B2 publication Critical patent/JP3709794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械構造用、建築土木用等に用いられる鋼板であって、剪断機で切断してもその切断面に割れが生じない、引張強度が600N/mm2以上の優れた耐切断割れ性を有する高強度高靭性鋼板の製造方法に関する。
【0002】
【従来の技術】
熱間圧延により所定の板厚に圧延された厚鋼板は、冷却床で冷却されてから採寸作業が行われ、採寸された厚鋼板は所定の寸法の幅及び長さに切断される。この切断は、剪断機による切断又はガス切断により行われる。通常、板厚が50mm程度よりも薄い厚鋼板は剪断機により切断され、それを超える場合にはガス切断が行われる。
【0003】
剪断機には、厚鋼板のトップ部及びボトム部を切断するクロップシャー、耳部を切断するサイドシャー、厚鋼板の幅方向を2分割するスリッター、長さ方向を所定の寸法に切断するエンドシャー等があり、これらの剪断機で構成される切断ラインを通過することにより、所定の寸法の厚鋼板に切断される。
【0004】
剪断機による切断面の不良には、タレ、カエリ、機械割れ、切込み、段付き等があり、これらが発生した場合、そのままでは成品として使用できず、グラインダー研削等の手入れ若しくは再切断等が必要となり、歩留りの低下や製造コストの上昇を招く。これら切断面不良の対策として様々な提案がなされている。
【0005】
例えば、鉄鋼便覧第3巻(1)圧延基礎・鋼板(日本鉄鋼協会編、第3版、285頁)には、これら切断面不良は剪断機の設備的な条件で決まる度合が大きいとして、剪断機の設備条件を適正値に管理することが提案されている。また、特開平6-190627号公報には、タレを少なくする方法として、切断線を含むクロップ部を予熱してから剪断機により切断する方法が提案されている。
【0006】
しかし、機械構造用、建築土木用等に用いられる、引張強度が600N/mm2以上の高強度鋼板では、剪断機の設備条件を適正値に管理しても、発生頻度は少ないものの、切断面には板厚中心部に沿った割れ(以下、「切断割れ」と記す)が発生する場合がある。このような切断割れが発生すると、割れ部を除去する必要が生じるため、歩留りが低下する。更に、切断割れを防止するためには、ガス切断機を用いる必要があり、大幅な生産性の低下を招いていた。
【0007】
このような剪断機による切断割れの防止、即ち耐切断割れ性の改善を目的として、特開2000-309845号公報には、化学成分を規定した高靭性高強度厚鋼板が提案されている。この技術によると、C含有量、P含有量、S含有量、Pcm値を低く抑え、またCaを添加することにより、剪断機による切断性が大幅に改善されている。
【0008】
【発明が解決しようとする課題】
しかし、これらの従来技術には次の問題点がある。例えば、特開平6-190627号公報記載の技術では、剪断機により切断する前にクロップ部を予熱する必要があり、剪断作業の効率を低下させるという問題がある。また、特開2000-309845号公報記載の技術では、P,Sの極低化やCaの添加が必要であり、製鋼プロセスの長時間化を招き、製造能率を低下させる。また、Pcm値の限定により化学成分が限定されるため、幅広い用途の鋼材に適用することが困難であり、更に素材コストの上昇を招くという問題がある。
【0009】
本発明は上記事情に鑑みなされたもので、引張強度が600N/mm2以上の高強度鋼板において、剪断機にて切断しても、その切断面に切断割れが発生しない、優れた耐切断割れ性を有する高強度高靭性鋼板の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の課題は次の発明により解決される。その発明は、化学成分として、質量%で、C:0.02〜0.12%、Si:0.5%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.005%以下、Al:0.05%以下、残部 Fe 及び不可避的不純物からなる鋼を、圧延終了温度650℃以上で圧延し、5℃/秒以上の冷却速度で500℃以下の温度まで加速冷却し、その後、鋼板温度が150℃未満の温度まで冷却される前に、450℃以上550℃未満の温度に加熱して10〜600秒間の保持を行うことを特徴とする耐切断割れ性を有する高強度高靭性鋼板の製造方法である。
【0011】
ここで更に、上記の化学成分を含有すると共に、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、V:0.1%以下、Ti:0.05%以下の内1種以上を含有し、残部 Fe 及び不可避的不純物からなる鋼としたことを特徴とする耐切断割れ性を有する高強度高靭性鋼板の製造方法とすることもできる。
【0012】
これらの発明は、剪断機による切断割れについて鋭意研究を行った結果、切断割れの原因となる鋼中の拡散性水素が、鋼中の各種の欠陥に固着されないようにするための方法を検討する中で得られた。その結果、熱間圧延後の冷却過程で、鋼板温度が所定の温度以下に低下する前に再度加熱することにより、拡散性水素の各種の欠陥への固着を防止し、かつ除去できるという知見が得られ、それに基づきなされた発明である。以下に本発明の構成要件とその限定理由について説明する。
【0013】
まず、本発明の化学成分の限定理由について述べる。
【0014】
C: 0.02〜0.12%
Cは、鋼の強度を確保するため必要な元素であり、0.02%未満では、600N/mm2以上の引張強度が得ることが困難となる。しかし、C含有量が0.12%を超えると、靭性が劣化し、また溶接性の観点からも好ましくない。従って、C量を0.02〜0.12とする。
【0015】
Si: 0.5%以下
Siは、脱酸に有効な元素であるが、0.5%を超えて添加すると靭性ならびに溶接性が劣化する。従って、Si量を0.5%以下とする。
【0016】
Mn: 1.5〜2.5%
Mnは、強度ならびに靭性の向上に有効な元素であるが、1.5%未満ではその効果が小さい。一方、2.5%を超えて添加すると、靭性、溶接性が劣化する。従って、Mn量を1.5〜2.5%とする。
【0017】
P: 0.05%以下
Pは、不純物元素であり、少ない方がよいが、過度の脱Pはコスト上昇を招く。Pの含有量は0.05%が許容できる限度である。従って、Pを0.05%以下とする。
【0018】
S: 0.005%以下
Sは、不純物元素であり、少ない方がよいが、過度の脱S はコスト上昇を招く。Sの含有量は0.005%が許容できる限度である。従って、S を0.005%以下とする。
【0019】
Al: 0.05%以下
Alは、脱酸剤として添加するが、0.05%を超えて添加すると靭性を劣化させる。従って、Al量を0.05%以下とする。
【0020】
本発明では、強度特性に応じて更に次の元素の内1種以上を含有することもできる。以下、それらの添加元素の限定理由について述べる。
【0021】
Cu: 0.5%以下
Cuは、強度上昇に有効な元素の1つであるが、0.5%を超えると溶接性を阻害する。従って、Cuを添加する場合は0.5%以下とする。
【0022】
Ni: 0.5%以下
Niは、靱性改善と強度上昇に有効な元素であるが、0.5%を超えるとその効果が飽和し、また、合金コストが上昇する。従って、Niを添加する場合は0.5%以下とする。
【0023】
Cr: 0.5%以下
Crは、Mnと共に、C含有量が低い場合に十分な強度を得るために有効な元素であるが、0.5%を超えると溶接性に悪影響を及ぼす。従って、Crを添加する場合は0. 5%以下とする。
【0024】
Mo: 0.5%以下
Moは、靱性の改善と強度の上昇に有効な元素であるが、0.5%を超えるとその効果が飽和すると共に、かえって靭性の劣化を招き、更に溶接性を阻害する。従って、Moを添加する場合は0.5%以下とする。
【0025】
Nb: 0.05%以下
Nbは、ミクロ組織を微細化して、十分な強度と靭性を得るために有効な元素であるが、0.05%を超えるとその効果が飽和すると共に、かえって靭性を劣化させる。従って、Nbを添加する場合は0.05%以下とする。
【0026】
V: 0.1%以下
Vは、強度上昇に有効な元素の1つであるが、0.1%を超えると靭性の劣化を招く。従って、Vを添加する場合は0.1%以下とする。
【0027】
Ti: 0.05%以下
Tiは、ミクロ組織の微細化をもたらし、靭性を改善する効果があるが、0.05%を超えるとかえって靭性の劣化を引き起こす。従って、Tiを添加する場合は0.05%以下とする。
【0028】
なおこれらの元素の残部については実質的に鉄であり、本発明の作用効果を損なわない限り、不可避的不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれていてもよい。
【0029】
次に製造条件について説明する。
【0030】
圧延終了温度: 650℃以上
圧延終了温度が低温であるほど、組織が微細化するので靭性が向上する。しかし、圧延終了温度が650℃未満となると、フェライト変態が進行して、圧延後の加速冷却あるいは焼入れの効果が発揮できなくなる。更に、フェライトが加工されるため著しい加工硬化ならびに過度の転位導入により、靭性および耐切断割れ性が劣化する。従って、圧延終了温度を650℃以上とする。
【0031】
圧延後の冷却速度: 5℃/秒以上
圧延後の鋼板は、変態強化や組織の微細化を目的として加速冷却を行う。その際の冷却速度が5℃/秒未満では、このような加速冷却の効果が得られない。従って、圧延後の冷却速度を5℃/秒以上とする。
【0032】
冷却終了温度: 500℃以下
冷却終了温度、即ち加速冷却の終了温度は、低温であるほど変態強化により強度が上昇するので、強度レベルに応じて適宜選択することができる。しかし、冷却終了温度が500℃を超える高温の場合、変態の進行が十分でないため高強度が得られなくなる。従って、冷却終了温度を500℃以下とする。
【0033】
冷却後の加熱開始温度: 150℃以上
加速冷却の終了後の鋼板は、放冷等によりさらに冷却されるが、その際、鋼板温度が150℃未満に冷却される前に加熱(再加熱)を開始する。これは、鋼板が150℃未満に冷却されると、鋼中の拡散性水素が、転位や点欠陥又は結晶粒界等の各種の欠陥に固着されるため、加熱処理において除去されにくくなるためである。従って、冷却後の加熱開始温度を150℃以上とする。
【0034】
冷却後の加熱条件: 450℃以上550℃未満、10〜600秒保持
冷却後の鋼板は、加熱により拡散性水素を除去する。再加熱温度が450℃未満もしくは保持時間が10秒未満の場合は、拡散性水素の除去が不十分であり、剪断機で切断した場合に切断割れを生じやすくなる。一方、再加熱温度が550℃以上もしくは保持時間が600秒以上の場合は、拡散性水素は十分に除去され、切断割れを生じることはなくなるが、過度の焼戻しによる強度の低下量が大きくなりすぎ、十分な強度が得られない。従って、再加熱の温度を450℃以上550℃未満とし、保持時間を10〜600秒とする。
【0035】
上記の発明に基づく加熱方法の発明としては、加速冷却後の加熱の際、誘導加熱装置を用いて加熱することを特徴とする鋼板の製造方法とすることもできる。
【0036】
この発明では、加熱方法として特に誘導加熱装置を用いることにより、鋼板の急速加熱が可能となるので、鋼中の拡散性水素が欠陥等に固着される前に、迅速に加熱除去を行うことができる。
【0037】
さらにこれらの発明において、加速冷却後の鋼板を加熱する際、圧延設備又は冷却設備の内1つ以上の設備と同一のライン上に加熱装置を設置して、鋼板を加熱することを特徴とする鋼板の製造方法とすることもできる。
【0038】
この発明では、誘導加熱炉あるいはその他の加熱装置を、圧延設備又は冷却設備と同一ライン上に設置することにより、圧延、冷却終了後、迅速に再加熱処理を行うことができるので、圧延冷却後の鋼板温度の低下を防ぐことができる。その結果、拡散性水素の加熱除去を容易に行うことができ、剪断後の切断割れを大幅に低減することができる。
【0039】
【発明の実施の形態】
発明の実施に当たっては、転炉や電気炉等により溶製された溶鋼を、造塊法や連続鋳造法により凝固させてスラブを得る。その後、熱間圧延により鋼板に加工する。鋼板の熱処理条件が本発明を満たす限り、剪断機による切断性には影響を及ぼさない。従って、熱間圧延までは、種々の鋼板製造条件で製造することができる。
【0040】
圧延後の冷却については、圧延後直ちにあるいは設備的に不可避な空冷を挟んで、加速冷却あるいは焼入れを行うことが望ましい。冷却によりベイナイト等の低温変態相を生成させ、鋼板の変態強化を図る。
【0041】
本発明の熱処理により拡散性水素の加熱除去が容易となるメカニズムについては、研究の結果に基づき次のように考えられる。剪断機による切断は、冷間で鋼材を剪断変形させるため、切断面には残留応力が発生する。この残留応力は、高強度材ほど高い値となる。一般に鋼材には微量の水素が含有されており、残留応力の応力場により切断面近傍にに水素が集積することで、切断面に割れが生じる。
【0042】
このような鋼中の水素は、鋼材を加熱処理することで除去できるが、切断割れの原因となる水素は拡散性水素と呼ばれ、転位や点欠陥又は結晶粒界等の各種の欠陥に固着される。鋼中の水素は、一旦このような各種の欠陥に固着されると、通常の焼戻し程度の低温加熱では十分に除去できなくなる。
【0043】
この拡散性水素の固着は低温になると顕著となり、その温度の下限は研究の結果150℃であった。そこでこの発明では、急冷後、鋼板温度が150℃未満に低下する前に再加熱することにより、拡散性水素の鋼中の欠陥への固着を防止している。これより、加速冷却の冷却終了温度についても、その下限温度を150℃とする必要があるが、それ以上であれば目標とする強度レベルに応じて任意に設定できる。
【0044】
次いで、鋼板の加熱においては、温度範囲を比較的狭い範囲に限定することにより、強度を低下させずに鋼中の水素を除去することができる。その結果、加速冷却又は焼入れされた高強度鋼板においても、剪断機により切断した際に切断割れの発生しない鋼板を製造することが可能となる。
【0045】
加速冷却後の再加熱の手段としては、通常のガス燃焼炉等、冷却後に迅速に加熱することができればよい。特に、誘導加熱炉は、冷却設備に比較的近接して設置することが可能であり、冷却後の鋼板を迅速に加熱する上で好ましい。
【0046】
【実施例】
以下、本発明の実施例を示す。表1に供試鋼の化学成分を示す。これらの鋼は、転炉とRH真空脱ガス装置との組合せにより溶製し、連続鋳造法にてスラブ鋳片とした。この鋳片を熱間圧延にて板厚12〜50mmの鋼板に圧延後、水冷型の加速冷却設備を用いて冷却を行った。
【0047】
【表1】

Figure 0003709794
【0048】
この時の圧延終了温度及び冷却停止温度を表2に示す。その後、ガス燃焼炉、誘導加熱炉、あるいは冷却設備と同一ライン上に設置した誘導加熱炉(インライン型誘導加熱炉)を用いて、再加熱を行った。これらの再加熱条件を表2に併せて示す。ここで、加熱温度は、ガス燃焼炉の場合は炉内の設定温度、誘導加熱炉の場合は再加熱終了直後の鋼板表面温度である。また、加熱時間は、いずれの場合も、鋼板が加熱炉に装入されてから加熱を終了するまでの在炉時間である。
【0049】
【表2】
Figure 0003709794
【0050】
得られた鋼板の機械的性質ならびに耐切断割れ性を表2に併記する。引張強度は、全厚試験片を用いた引張試験により測定し、引張強度600N/mm2以上を良好とした。靭性は、板厚中央部から採取したサンプルによるシャルピー衝撃試験により評価し、-20℃における吸収エネルギー(vE-20)が100J以上を良好とした。
【0051】
また、耐切断割れ性については、再加熱後の鋼板温度が100℃以下まで冷却されてから、剪断機により各鋼板を20箇所切断して試験を行った。試験では、鋼板切断端面を磁粉探傷により調査し、切断割れが認められた切断部(端面)の数を求めた。ここで、1つの端面内に複数の割れが確認できた場合でも、端面としては1つなので、切断割れの発生件数は1とし、すべての切断箇所において切断割れが認められない場合(切断割れ発生数0)を良好とした。
【0052】
本発明例である鋼板A〜Kは、化学成分、製造条件とも本発明範囲内で製造されており、十分な強度、靭性を有し、かつ、切断端面で割れの発生は認められず耐切断割れ性に優れていることが確認された。これに対し、比較例である鋼板L〜Yは、化学成分、製造条件のいずれか又は双方とも本発明範囲を外れて製造されており、強度、靭性、耐切断割れ性のいずれかの特性が劣っていることが分かる。
【0053】
【発明の効果】
本発明は、圧延後の鋼板の加速冷却後、鋼板温度が所定の温度以下に低下する前に再加熱することにより、鋼中の水素を欠陥に固着させることなく十分に除去することを可能としている。その結果、切断面近傍に水素が集積しないので、割れの発生を防止することができる。
【0054】
本発明により、剪断機で切断してもその切断面に切断割れが発生しない、引張強度600N/mm2以上の高強度高靭性鋼板を、安定して製造することが可能となり、歩留り向上、製造コスト削減等の工業上有益な効果がもたらされる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a steel plate used for mechanical structures, architectural civil engineering, etc., and does not cause cracks on the cut surface even when cut with a shearing machine, and has excellent tensile cracking resistance of 600 N / mm 2 or more. The present invention relates to a method for producing a high-strength, high-toughness steel sheet having properties.
[0002]
[Prior art]
A thick steel plate rolled to a predetermined thickness by hot rolling is cooled in a cooling bed and then a measuring operation is performed. The measured thick steel plate is cut into a predetermined width and length. This cutting is performed by cutting with a shearing machine or gas cutting. Usually, a thick steel plate having a thickness less than about 50 mm is cut by a shearing machine, and if it exceeds that, gas cutting is performed.
[0003]
The shearing machine includes a crop shear that cuts the top and bottom portions of the thick steel plate, a side shear that cuts the ear portion, a slitter that divides the width direction of the thick steel plate into two, and an end shear that cuts the length direction into a predetermined dimension. By passing through a cutting line constituted by these shearing machines, the steel sheet is cut into a thick steel plate having a predetermined size.
[0004]
Defects on the cut surface by a shearing machine include sagging, burrs, mechanical cracks, cutting, stepping, etc. If these occur, they cannot be used as they are, and require maintenance such as grinder grinding or recutting. Thus, the yield is reduced and the manufacturing cost is increased. Various proposals have been made as countermeasures for these cut surface defects.
[0005]
For example, in Steel Handbook Vol. 3 (1) Rolled Foundation / Steel (Edited by the Japan Iron and Steel Institute, 3rd edition, page 285), these cut surface defects are largely determined by the equipment conditions of the shearing machine. It has been proposed to manage the machine equipment conditions to appropriate values. Japanese Laid-Open Patent Publication No. 6-19627 proposes a method of pre-heating a crop portion including a cutting line and then cutting with a shearing machine as a method of reducing sagging.
[0006]
However, high strength steel sheets with a tensile strength of 600 N / mm 2 or more used for mechanical structures and construction civil engineering, etc., although the frequency of occurrence is low, even if the shearing machine equipment conditions are controlled to an appropriate value, the cut surface In some cases, cracks along the center of the plate thickness (hereinafter referred to as “cut cracks”) may occur. When such a cut crack occurs, it is necessary to remove the cracked portion, resulting in a decrease in yield. Furthermore, in order to prevent cutting cracks, it is necessary to use a gas cutter, leading to a significant reduction in productivity.
[0007]
JP 2000-309845 A proposes a high-toughness, high-strength thick steel plate that defines chemical components, for the purpose of preventing cut cracks by such a shearing machine, that is, improving cut crack resistance. According to this technique, the C content, the P content, the S content, and the Pcm value are kept low, and the cutting property by a shearing machine is greatly improved by adding Ca.
[0008]
[Problems to be solved by the invention]
However, these conventional techniques have the following problems. For example, the technique described in Japanese Patent Application Laid-Open No. 6-19627 has a problem that the crop part needs to be preheated before being cut by a shearing machine, which reduces the efficiency of the shearing work. Further, in the technique described in Japanese Patent Application Laid-Open No. 2000-309845, it is necessary to extremely reduce P and S and to add Ca, which causes a long time for the steelmaking process and decreases the production efficiency. In addition, since the chemical components are limited due to the limitation of the Pcm value, it is difficult to apply to a wide range of steel materials, and further, there is a problem that the material cost is increased.
[0009]
The present invention has been made in view of the above circumstances, and in a high strength steel plate having a tensile strength of 600 N / mm 2 or more, even if it is cut by a shearing machine, no cut cracks are generated on the cut surface, and excellent cut crack resistance. It aims at providing the manufacturing method of the high intensity | strength high toughness steel plate which has the property.
[0010]
[Means for Solving the Problems]
The above problems are solved by the following invention. The invention is, as a chemical component, in mass%, C: 0.02 to 0.12%, Si: 0.5% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.005% or less, Al: 0.05% or less , The steel composed of the remaining Fe and inevitable impurities is rolled at a rolling end temperature of 650 ° C or higher, accelerated to a temperature of 500 ° C or lower at a cooling rate of 5 ° C / second or higher, and then the steel plate temperature is lower than 150 ° C. It is a method for producing a high-strength, high-toughness steel sheet having cut cracking resistance, which is heated to a temperature of 450 ° C. or higher and lower than 550 ° C. and held for 10 to 600 seconds before being cooled down .
[0011]
Further, it contains the above chemical components, and in mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, V: 0.1 % Or less, Ti: 0.05% or less of one or more of the following, steel made of the balance Fe and inevitable impurities , characterized in that it is a method for producing a high-strength, high-toughness steel sheet having cut cracking resistance You can also.
[0012]
As a result of diligent research on cutting cracks by a shearing machine, these inventions examine methods for preventing diffusible hydrogen in steel, which causes cutting cracks, from being fixed to various defects in steel. Obtained in. As a result, in the cooling process after hot rolling, the knowledge that the diffusible hydrogen can be prevented from sticking to various defects and removed by heating again before the steel plate temperature falls below a predetermined temperature. It is an invention obtained and made based on it. The constituent requirements of the present invention and the reasons for limitation will be described below.
[0013]
First, the reasons for limiting the chemical components of the present invention will be described.
[0014]
C: 0.02-0.12%
C is an element necessary for ensuring the strength of steel. If it is less than 0.02%, it is difficult to obtain a tensile strength of 600 N / mm 2 or more. However, if the C content exceeds 0.12%, the toughness deteriorates and it is not preferable from the viewpoint of weldability. Therefore, the C amount is set to 0.02 to 0.12.
[0015]
Si: 0.5% or less
Si is an effective element for deoxidation, but if added over 0.5%, toughness and weldability deteriorate. Therefore, the Si content is 0.5% or less.
[0016]
Mn: 1.5-2.5%
Mn is an element effective for improving strength and toughness, but its effect is small when it is less than 1.5%. On the other hand, if added over 2.5%, toughness and weldability deteriorate. Therefore, the Mn content is 1.5 to 2.5%.
[0017]
P: 0.05% or less
P is an impurity element and should be less, but excessive de-P causes an increase in cost. The P content is acceptable at 0.05%. Therefore, P is made 0.05% or less.
[0018]
S: 0.005% or less
S is an impurity element and should be less, but excessive desulfurization causes an increase in cost. 0.005% is the acceptable limit for the S content. Therefore, S is made 0.005% or less.
[0019]
Al: 0.05% or less
Al is added as a deoxidizer, but if added over 0.05%, the toughness deteriorates. Therefore, the Al content is 0.05% or less.
[0020]
In the present invention, one or more of the following elements may be further contained depending on the strength characteristics. Hereinafter, the reasons for limiting those additive elements will be described.
[0021]
Cu: 0.5% or less
Cu is one of the elements effective in increasing the strength, but if it exceeds 0.5%, weldability is impaired. Therefore, when adding Cu, it is 0.5% or less.
[0022]
Ni: 0.5% or less
Ni is an element effective for improving toughness and increasing strength, but when it exceeds 0.5%, the effect is saturated and the alloy cost increases. Therefore, when adding Ni, it is 0.5% or less.
[0023]
Cr: 0.5% or less
Cr, together with Mn, is an element effective for obtaining sufficient strength when the C content is low, but if it exceeds 0.5%, it adversely affects weldability. Therefore, when adding Cr, it is 0.5% or less.
[0024]
Mo: 0.5% or less
Mo is an element effective for improving toughness and increasing strength, but when it exceeds 0.5%, the effect is saturated, and on the other hand, toughness is deteriorated and weldability is further inhibited. Therefore, when adding Mo, it is 0.5% or less.
[0025]
Nb: 0.05% or less
Nb is an element effective for refining the microstructure and obtaining sufficient strength and toughness, but when it exceeds 0.05%, the effect is saturated and the toughness is deteriorated. Therefore, when Nb is added, the content is made 0.05% or less.
[0026]
V: 0.1% or less
V is one of the elements effective for increasing the strength, but if it exceeds 0.1%, the toughness is deteriorated. Therefore, when adding V, it is made 0.1% or less.
[0027]
Ti: 0.05% or less
Ti has the effect of reducing the microstructure and improving toughness, but if it exceeds 0.05%, it causes deterioration of toughness. Therefore, when adding Ti, it is made 0.05% or less.
[0028]
Note that the balance of these elements is substantially iron, so long as the effects of the present invention are not impaired, inevitable impurities and other trace elements may be included in the scope of the present invention. Good.
[0029]
Next, manufacturing conditions will be described.
[0030]
Rolling end temperature: 650 ° C. or higher The lower the rolling end temperature, the finer the structure and the better the toughness. However, when the rolling end temperature is less than 650 ° C., the ferrite transformation proceeds and the effect of accelerated cooling or quenching after rolling cannot be exhibited. Furthermore, since the ferrite is processed, toughness and cut cracking resistance deteriorate due to significant work hardening and excessive dislocation introduction. Accordingly, the rolling end temperature is set to 650 ° C. or higher.
[0031]
Cooling rate after rolling: 5 ° C / second or more The steel sheet after rolling is subjected to accelerated cooling for the purpose of strengthening transformation and refining the structure. If the cooling rate at that time is less than 5 ° C./second, such an effect of accelerated cooling cannot be obtained. Therefore, the cooling rate after rolling is set to 5 ° C./second or more.
[0032]
Cooling end temperature: 500 ° C. or lower The cooling end temperature, that is, the end temperature of accelerated cooling, can be appropriately selected according to the strength level because the strength is increased by transformation strengthening as the temperature is lower. However, when the cooling end temperature is higher than 500 ° C., the progress of transformation is not sufficient, so that high strength cannot be obtained. Therefore, the cooling end temperature is set to 500 ° C. or lower.
[0033]
Heating start temperature after cooling: 150 ° C or more After the completion of accelerated cooling, the steel plate is further cooled by cooling, etc., but at that time, heating (reheating) is performed before the steel plate temperature is cooled below 150 ° C. Start. This is because when the steel sheet is cooled to less than 150 ° C., diffusible hydrogen in the steel is fixed to various defects such as dislocations, point defects, or grain boundaries, and is thus difficult to remove in the heat treatment. is there. Therefore, the heating start temperature after cooling is set to 150 ° C. or higher.
[0034]
Heating condition after cooling: 450 ° C. or higher and lower than 550 ° C., and holding and cooling for 10 to 600 seconds, the diffusible hydrogen is removed by heating. When the reheating temperature is less than 450 ° C. or the holding time is less than 10 seconds, the removal of diffusible hydrogen is insufficient, and cutting cracks are likely to occur when cut with a shearing machine. On the other hand, when the reheating temperature is 550 ° C or higher or the holding time is 600 seconds or longer, the diffusible hydrogen is sufficiently removed and no cracking occurs, but the amount of strength reduction due to excessive tempering becomes too large. A sufficient strength cannot be obtained. Therefore, the reheating temperature is set to 450 ° C. or higher and lower than 550 ° C., and the holding time is set to 10 to 600 seconds.
[0035]
The invention of the heating method based on the above invention may be a method for producing a steel sheet, characterized by heating using an induction heating device at the time of heating after accelerated cooling.
[0036]
In this invention, since the steel sheet can be rapidly heated by using an induction heating device in particular as a heating method, it is possible to quickly remove the heat before the diffusible hydrogen in the steel is fixed to a defect or the like. it can.
[0037]
Furthermore, in these inventions, when heating the steel plate after accelerated cooling, a heating device is installed on the same line as one or more of the rolling equipment or the cooling equipment to heat the steel plate. It can also be set as the manufacturing method of a steel plate.
[0038]
In this invention, by installing the induction heating furnace or other heating device on the same line as the rolling equipment or the cooling equipment, after the rolling and cooling, the reheating treatment can be performed quickly. The steel plate temperature can be prevented from decreasing. As a result, diffusible hydrogen can be easily removed by heating, and cutting cracks after shearing can be greatly reduced.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the invention, molten steel melted by a converter, an electric furnace or the like is solidified by an ingot-making method or a continuous casting method to obtain a slab. Then, it processes into a steel plate by hot rolling. As long as the heat treatment conditions of the steel sheet satisfy the present invention, it does not affect the cutting ability with a shearing machine. Therefore, it can manufacture on various steel plate manufacturing conditions until hot rolling.
[0040]
As for cooling after rolling, it is desirable to perform accelerated cooling or quenching immediately after rolling or with air cooling unavoidable in terms of equipment. By cooling, a low-temperature transformation phase such as bainite is generated to enhance transformation of the steel sheet.
[0041]
The mechanism that facilitates the heat removal of diffusible hydrogen by the heat treatment of the present invention is considered as follows based on the results of research. Cutting with a shearing machine causes the steel material to be sheared and deformed cold, so that residual stress is generated on the cut surface. This residual stress is higher as the strength of the material is higher. In general, steel materials contain a small amount of hydrogen, and cracks occur in the cut surface as hydrogen accumulates in the vicinity of the cut surface due to the stress field of residual stress.
[0042]
Such hydrogen in steel can be removed by heat-treating the steel, but hydrogen that causes breakage is called diffusible hydrogen, and it adheres to various defects such as dislocations, point defects, and grain boundaries. Is done. Once the hydrogen in the steel is fixed to such various defects, it cannot be removed sufficiently by low-temperature heating such as normal tempering.
[0043]
This sticking of diffusible hydrogen became remarkable at low temperatures, and the lower limit of the temperature was 150 ° C as a result of research. Therefore, in the present invention, after rapid cooling, reheating is performed before the steel sheet temperature falls below 150 ° C., thereby preventing diffusible hydrogen from sticking to defects in the steel. As a result, the cooling end temperature of accelerated cooling also needs to have a lower limit temperature of 150 ° C., but can be arbitrarily set according to the target strength level as long as it is higher.
[0044]
Next, in heating the steel plate, by limiting the temperature range to a relatively narrow range, hydrogen in the steel can be removed without reducing the strength. As a result, even a high-strength steel plate that has been accelerated or quenched and hardened, it is possible to produce a steel plate that does not cause cutting cracks when cut by a shearing machine.
[0045]
As a means for reheating after accelerated cooling, it is only necessary to be able to quickly heat after cooling, such as an ordinary gas combustion furnace. In particular, the induction heating furnace can be installed relatively close to the cooling facility, and is preferable for rapidly heating the cooled steel sheet.
[0046]
【Example】
Examples of the present invention will be described below. Table 1 shows the chemical composition of the test steel. These steels were melted by a combination of a converter and an RH vacuum degassing apparatus, and slab slabs were formed by a continuous casting method. The slab was rolled into a steel sheet having a thickness of 12 to 50 mm by hot rolling, and then cooled using a water-cooled accelerated cooling facility.
[0047]
[Table 1]
Figure 0003709794
[0048]
Table 2 shows the rolling end temperature and the cooling stop temperature at this time. Thereafter, reheating was performed using a gas combustion furnace, an induction heating furnace, or an induction heating furnace (in-line type induction heating furnace) installed on the same line as the cooling equipment. These reheating conditions are also shown in Table 2. Here, in the case of a gas combustion furnace, the heating temperature is a set temperature in the furnace, and in the case of an induction heating furnace, it is a steel sheet surface temperature immediately after the end of reheating. In any case, the heating time is the in-furnace time from when the steel plate is charged into the heating furnace until the heating is finished.
[0049]
[Table 2]
Figure 0003709794
[0050]
The mechanical properties and cut crack resistance of the obtained steel sheet are also shown in Table 2. The tensile strength was measured by a tensile test using a full-thickness test piece, and a tensile strength of 600 N / mm 2 or more was considered good. Toughness was evaluated by a Charpy impact test using a sample taken from the center of the plate thickness, and the absorbed energy (vE -20 ) at -20 ° C was 100 J or better.
[0051]
Further, with respect to cut cracking resistance, after the steel plate temperature after reheating was cooled to 100 ° C. or less, the test was performed by cutting each steel plate at 20 points with a shearing machine. In the test, the steel plate cut end face was investigated by magnetic particle flaw detection, and the number of cut portions (end face) where cut cracks were observed was determined. Here, even if multiple cracks can be confirmed in one end face, there is only one end face, so the number of occurrences of cut cracks is 1, and no cut cracks are observed at all cut points (cut crack occurrences) Number 0) was considered good.
[0052]
Steel plates A to K, which are examples of the present invention, are produced within the scope of the present invention with both chemical components and production conditions, have sufficient strength and toughness, and no cracks are observed at the cut end face, and are resistant to cutting. It was confirmed that it was excellent in crackability. In contrast, the steel plates L to Y, which are comparative examples, are manufactured out of the scope of the present invention, both of the chemical components and the manufacturing conditions, and have any of the characteristics of strength, toughness, and resistance to cut cracking. It turns out that it is inferior.
[0053]
【The invention's effect】
The present invention makes it possible to sufficiently remove hydrogen in the steel without fixing it to the defects by reheating before the steel plate temperature falls below a predetermined temperature after accelerated cooling of the steel plate after rolling. Yes. As a result, hydrogen does not accumulate in the vicinity of the cut surface, so that generation of cracks can be prevented.
[0054]
According to the present invention, it becomes possible to stably produce a high-strength, high-toughness steel plate with a tensile strength of 600 N / mm 2 or more, which does not generate a cut crack on its cut surface even when cut with a shearing machine, improving yield and manufacturing. Industrially beneficial effects such as cost reduction are brought about.

Claims (4)

化学成分として、質量%で、C:0.02〜0.12%、Si:0.5%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.005%以下、Al:0.05%以下、残部 Fe 及び不可避的不純物からなる鋼を、圧延終了温度650℃以上で圧延し、5℃/秒以上の冷却速度で500℃以下の温度まで加速冷却し、その後、鋼板温度が150℃未満の温度まで冷却される前に、450℃以上550℃未満の温度に加熱して10〜600秒間の保持を行うことを特徴とする耐切断割れ性を有する高強度高靭性鋼板の製造方法。As chemical components, in mass%, C: 0.02 to 0.12%, Si: 0.5% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.005% or less, Al: 0.05% or less , remaining Fe and inevitable Steel made of mechanical impurities is rolled at a rolling finish temperature of 650 ° C or higher, accelerated to a temperature of 500 ° C or lower at a cooling rate of 5 ° C / second or higher, and then the steel plate temperature is cooled to a temperature of less than 150 ° C. A method for producing a high-strength, high-toughness steel sheet having cut cracking resistance , characterized in that it is heated to a temperature of 450 ° C. or higher and lower than 550 ° C. and held for 10 to 600 seconds. 請求項1記載の耐切断割れ性を有する高強度高靭性鋼板の製造方法において、化学成分を、質量%で、C:0.02〜0.12%、Si:0.5%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.005%以下、Al:0.05%以下を含有すると共に、Cu:0.5%以下、Ni: 0.5%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、V:0.1%以下、Ti:0.05%以下の内1種以上を含有し、残部 Fe 及び不可避的不純物からなる鋼としたことを特徴とする耐切断割れ性を有する高強度高靭性鋼板の製造方法。The method for producing a high-strength, high-toughness steel sheet having cut crack resistance according to claim 1, wherein the chemical components are in mass%, C: 0.02 to 0.12%, Si: 0.5% or less, Mn: 1.5 to 2.5%, P : 0.05% or less, S: 0.005% or less, Al: 0.05% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less , V: 0.1% or less, Ti: 0.05% or less, one or more of the following, the production of a high-strength, high-toughness steel sheet having resistance to cracking , characterized by being made of the remainder Fe and inevitable impurities Method. 加速冷却後の加熱の際、誘導加熱装置を用いて加熱することを特徴とする請求項1又は請求項2記載の耐切断割れ性を有する高強度高靭性鋼板の製造方法。The method for producing a high-strength, high-toughness steel sheet having cut cracking resistance according to claim 1 or 2, wherein heating is performed using an induction heating device during heating after accelerated cooling. 加速冷却後の加熱の際、圧延設備又は冷却設備の内1つ以上の設備と同一のラインに加熱装置を設置して、鋼板を加熱することを特徴とする請求項1ないし3記載の耐切断割れ性を有する高強度高靭性鋼板の製造方法。4. The cut-resistant cut according to claim 1, wherein a heating device is installed in the same line as one or more of the rolling equipment or the cooling equipment when heating after the accelerated cooling to heat the steel plate. A method for producing a high-strength, high-toughness steel sheet having cracking properties .
JP2001026526A 2001-02-02 2001-02-02 Manufacturing method of high strength and high toughness steel sheet Expired - Fee Related JP3709794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026526A JP3709794B2 (en) 2001-02-02 2001-02-02 Manufacturing method of high strength and high toughness steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026526A JP3709794B2 (en) 2001-02-02 2001-02-02 Manufacturing method of high strength and high toughness steel sheet

Publications (2)

Publication Number Publication Date
JP2002226916A JP2002226916A (en) 2002-08-14
JP3709794B2 true JP3709794B2 (en) 2005-10-26

Family

ID=18891325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026526A Expired - Fee Related JP3709794B2 (en) 2001-02-02 2001-02-02 Manufacturing method of high strength and high toughness steel sheet

Country Status (1)

Country Link
JP (1) JP3709794B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320610A (en) * 2004-05-11 2005-11-17 Daido Steel Co Ltd Steel
JP5050537B2 (en) * 2007-01-29 2012-10-17 Jfeスチール株式会社 Thick steel plate cutting method

Also Published As

Publication number Publication date
JP2002226916A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5028760B2 (en) Method for producing high-tensile steel plate and high-tensile steel plate
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2009074123A (en) METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
JP5521931B2 (en) Soft medium carbon steel plate with excellent induction hardenability
JP6417977B2 (en) Steel plate blank
EP2258880B1 (en) Method of manufacturing high tensile strength thick steel plate
JP6589503B2 (en) H-section steel and its manufacturing method
JP2012041603A (en) Rolled raw steel and method for manufacturing rolled steel using the same
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet
JP2995524B2 (en) High strength martensitic stainless steel and its manufacturing method
CN115989327A (en) Thick steel plate and method for producing same
JP3945238B2 (en) Steel plate manufacturing method
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JP4300049B2 (en) Manufacturing method of high-strength steel pipe for building structure with low yield ratio
JP3991552B2 (en) Manufacturing method of rolled steel
JP7477052B2 (en) Continuously cast slab and its manufacturing method
JP4479092B2 (en) Hot rolled steel and method for producing the same
JP7508026B2 (en) Heavy steel plate and its manufacturing method
JPH07216498A (en) Production of oxide grain dispersed cast bloom and rolled shape steel with superior toughness, using this cast bloom as stock

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees