JP2995524B2 - High strength martensitic stainless steel and its manufacturing method - Google Patents

High strength martensitic stainless steel and its manufacturing method

Info

Publication number
JP2995524B2
JP2995524B2 JP5103335A JP10333593A JP2995524B2 JP 2995524 B2 JP2995524 B2 JP 2995524B2 JP 5103335 A JP5103335 A JP 5103335A JP 10333593 A JP10333593 A JP 10333593A JP 2995524 B2 JP2995524 B2 JP 2995524B2
Authority
JP
Japan
Prior art keywords
less
steel
nieq
creq
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5103335A
Other languages
Japanese (ja)
Other versions
JPH06306551A (en
Inventor
雅之 天藤
裕 田所
雄一 佐藤
章夫 山本
鉄也 島田
和広 末次
英夫 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14351292&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2995524(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5103335A priority Critical patent/JP2995524B2/en
Publication of JPH06306551A publication Critical patent/JPH06306551A/en
Application granted granted Critical
Publication of JP2995524B2 publication Critical patent/JP2995524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は溶接構造物用、例えば建
築構造物あるいは船舶構造物など溶接を必要とする部位
に使用できる溶接性に優れた高強度マルテンサイトステ
ンレス鋼とその製造方法に関するものである。特に大型
構造物に適用できる厚肉の高強度鋼材を供給することを
目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength martensitic stainless steel excellent in weldability and applicable to welded structures, such as architectural structures and marine structures, which can be used for parts requiring welding. It is. In particular, it is an object of the present invention to supply a thick high-strength steel material applicable to a large structure.

【0002】[0002]

【従来の技術】マルテンサイトステンレス鋼は焼入れ熱
処理によって容易に強度を上げることができるため刃物
やバネ材として広く使用されている。しかしこれらマル
テンサイトステンレス鋼は靱性が他のステンレス鋼に比
べると低く、また溶接性も極めて悪いため溶接構造用と
しては使用できなかった。近年、CおよびN含有量を低
減し、さらにNiを添加することにより靱性および溶接
性を向上させた鋼材が特公昭51−13463号公報お
よび特開昭61−136661号公報などに提案されて
いる。
2. Description of the Related Art Martensitic stainless steel is widely used as a cutting tool or a spring material because its strength can be easily increased by quenching heat treatment. However, these martensitic stainless steels cannot be used for welding structures because their toughness is lower than other stainless steels and their weldability is extremely poor. In recent years, steel materials in which the contents of C and N are reduced and the toughness and weldability are improved by further adding Ni are proposed in Japanese Patent Publication No. 51-13463 and Japanese Patent Application Laid-Open No. 61-136661. .

【0003】[0003]

【発明が解決しようとする課題】厚肉のマルテンサイト
ステンレス鋼を溶接構造物に適用する場合、母材ならび
に溶接熱影響部の靱性が問題となる。靱性が不十分であ
ると構造体としての信頼性が低下するだけでなく、熱処
理後の冷却過程あるいは溶接時に低温割れを起こす。母
材の靱性、延性を確保し、溶接低温割れを防止するため
には、単にCおよびN含有量の低減とNiの添加だけで
は不十分である。すなわち靱性に影響をおよぼすデルタ
・フェライト相および介在物を制御し、鋼中に含まれる
水素含有量を一定値以下に抑制する必要がある。デルタ
・フェライト相、クラスター状の介在物、一定値以上の
鋼中水素のいずれも厚肉マルテンサイトステンレス鋼の
靱性、溶接性を著しく劣化させる。
When a thick martensitic stainless steel is applied to a welded structure, the toughness of the base metal and the weld heat affected zone becomes a problem. Insufficient toughness not only lowers the reliability of the structure, but also causes low-temperature cracking during the cooling process after heat treatment or during welding. In order to ensure the toughness and ductility of the base material and to prevent low-temperature cracking in the weld, merely reducing the contents of C and N and adding Ni is not sufficient. That is, it is necessary to control the delta-ferrite phase and inclusions that affect toughness, and to suppress the hydrogen content in steel to a certain value or less. The delta-ferrite phase, the cluster-like inclusions, and the hydrogen in the steel above a certain value all significantly deteriorate the toughness and weldability of the thick martensitic stainless steel.

【0004】本発明は、このデルタ・フェライト相およ
び介在物を制御し、鋼中に含まれる水素量を一定値以下
にすることによって、大型溶接構造物に適用できる厚肉
の高強度マルテンサイトステンレス鋼とその製造方法を
提供することを目的とするものである。
The present invention provides a thick high-strength martensitic stainless steel applicable to a large welded structure by controlling the delta-ferrite phase and inclusions to reduce the amount of hydrogen contained in the steel to a certain value or less. An object of the present invention is to provide steel and a method for producing the steel.

【0005】[0005]

【課題を解決するための手段】本発明は、上記従来技術
の問題点を克服し、溶接熱影響部の靱性に優れ、かつ溶
接性に優れた高強度マルテンサイトステンレス鋼を実現
させるための成分、特に水素含有量の限定を行い、さら
に本発明成分系での水素含有量を必要な範囲以内に制御
する有効な製造方法を見出したものである。
SUMMARY OF THE INVENTION The present invention overcomes the above-mentioned problems of the prior art and provides a component for realizing a high-strength martensitic stainless steel excellent in toughness of a heat affected zone and excellent in weldability. In particular, the present invention has found an effective production method for limiting the hydrogen content and controlling the hydrogen content in the component system of the present invention within a necessary range.

【0006】つまり請求項1および2の発明は、重量%
でC:0.03%以下、Si:1.0%以下、Mn:
2.0%以下、Cr:11〜17%、Ni:3.5〜
7.0%、N:0.02%以下、H:0.0005%以
下と、Al:0.001〜0.05%、Ca:0.00
05〜0.005%のうち1種または2種を含有し、さ
らに必要に応じてMo:0.1〜4.0%またはNb:
0.01〜0.5%のうち1種または2種を含有し、さ
らに下記(1)式で表されるNieqと(2)式で表さ
れるCreqが、(3)式ならびに(4)式を満足する
ことにより、その金属組織がフェライト相を含まないマ
ルテンサイト相からなることを特徴とする高強度マルテ
ンサイトステンレス鋼を要旨とするものである。
That is, the invention of claims 1 and 2 is based on
C: 0.03% or less, Si: 1.0% or less, Mn:
2.0% or less, Cr: 11 to 17%, Ni: 3.5 to
7.0%, N: 0.02% or less, H: 0.0005% or less, Al: 0.001 to 0.05%, Ca: 0.00
0.05 to 0.005%, and if necessary, Mo: 0.1 to 4.0% or Nb:
It contains one or two of 0.01 to 0.5%, and further, Nieq represented by the following formula (1) and Creq represented by the following formula (2) are obtained by formulas (3) and (4). By satisfying the formula, the gist of the invention is a high-strength martensitic stainless steel characterized in that its metal structure is composed of a martensite phase containing no ferrite phase.

【0007】 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) (3)式は靱性に有害なデルタ・フェライト相を熱間圧
延後の金属組織中に残留させないための条件式であり、
(4)式は焼入れ熱処理によって組織をマルテンサイト
相に変態させ、高強度を実現させるための条件式であ
る。鋼中に不可避的に含有されるHは、強度の高い本発
明成分系の鋼の延性および靱性を著しく劣化させるばか
りでなく、溶接部の低温割れや遅れ破壊の原因となる。
このHによる材質劣化は厚肉材で顕著である。Hによる
上記問題点を解決するためには、その含有量を一定値以
下に抑制する必要がある。本発明鋼は強度が高いため、
H含有量は0.0005%以下に厳しく制限する必要が
ある。さらに、Al、Caは靱性に有害なS、Oを安定
的に低減し、非金属介在物の形状制御に効果を有する。
これらの元素を添加しないと、粗大な介在物が鋼中に残
留し、鋼材の延性および靱性を劣化させる。特に、板厚
方向の靱性を著しく低下させる。上記成分範囲を満足す
ることにより、引張強度で90kg/mm2 以上を有
し、延性、靱性が高く、さらに溶接時の耐低温割れ特性
あるいは耐遅れ破壊特性に優れた高強度マルテンサイト
ステンレス鋼が実現する。
Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq−Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) (3) The formula is a conditional expression to prevent the delta ferrite phase harmful to toughness from remaining in the metal structure after hot rolling,
Expression (4) is a conditional expression for transforming the structure into a martensite phase by quenching heat treatment and realizing high strength. H unavoidably contained in the steel not only significantly deteriorates the ductility and toughness of the steel of the component system of the present invention having high strength, but also causes low-temperature cracking and delayed fracture of the welded portion.
This material deterioration due to H is remarkable in a thick material. In order to solve the above-mentioned problems caused by H, it is necessary to suppress the content to a certain value or less. Because the steel of the present invention has high strength,
The H content must be strictly limited to 0.0005% or less. Furthermore, Al and Ca stably reduce S and O, which are harmful to toughness, and are effective in controlling the shape of nonmetallic inclusions.
If these elements are not added, coarse inclusions remain in the steel, deteriorating the ductility and toughness of the steel material. In particular, the toughness in the thickness direction is significantly reduced. By satisfying the above component range, a high-strength martensitic stainless steel having a tensile strength of at least 90 kg / mm 2 , high ductility and toughness, and excellent low-temperature cracking resistance or delayed fracture resistance during welding can be obtained. Realize.

【0008】請求項3および4の発明は、前記成分に限
定された鋼材を熱間圧延あるいは焼入れ熱処理終了後、
200℃以下まで冷却し、その組織をオーステナイト相
からマルテンサイト相に大部分変態させ、さらにその後
400〜650℃の温度範囲に(5)式で示されるHt
時間保持する脱水素熱処理を施すことによって、鋼中に
不可避的に含有するHを0.0005%以下にすること
を特徴とする高強度マルテンサイトステンレス鋼の製造
方法を要旨とするものである。
The invention according to claims 3 and 4 is characterized in that after the steel material limited to the above components is subjected to hot rolling or quenching heat treatment,
After cooling to 200 ° C. or less, the structure is mostly transformed from the austenite phase to the martensite phase, and then Ht represented by the formula (5) is brought to a temperature range of 400 to 650 ° C.
A gist of the present invention is a method for producing a high-strength martensitic stainless steel, characterized in that H, which is inevitably contained in steel, is reduced to 0.0005% or less by performing a dehydrogenation heat treatment for a period of time.

【0009】[0009]

【作用】本発明の成分限定理由を詳細に説明する。 C:マルテンサイト相を硬くして、強度を上昇させるの
に有効な元素であるが、靱性および溶接性を著しく劣化
させ、鋼中の水素に対する感受性が高くなるため、その
含有量を0.03%以下とした。
The reasons for limiting the components of the present invention will be described in detail. C: an element effective for increasing the strength by hardening the martensite phase, but significantly deteriorates the toughness and weldability and increases the sensitivity to hydrogen in the steel. % Or less.

【0010】Si:脱酸元素として鋼中に不可避的に含
有されるが、過剰に添加されると靱性および溶接性を劣
化させるため、その含有量を1.0%以下とした。 Mn:デルタ・フェライト相を抑制し、また鋼中のSを
固定する効果も有するが、過剰に添加すると靱性が低下
するため、その含有量を2.0%以下とした。 Cr:ステンレス鋼の基本元素であり、優れた耐食性を
得るためには少なくとも11%以上の含有量が必要であ
る。しかし17%を超えて添加するとマルテンサイト相
中にデルタ・フェライト相が残存し、靱性および溶接性
を劣化させる。
Si: Inevitably contained in steel as a deoxidizing element, but if added excessively, it deteriorates toughness and weldability, so its content was made 1.0% or less. Mn: Suppresses the delta ferrite phase and also has the effect of fixing S in the steel. However, if added excessively, the toughness is reduced, so the content is set to 2.0% or less. Cr: a basic element of stainless steel, a content of at least 11% or more is required to obtain excellent corrosion resistance. However, if it exceeds 17%, a delta ferrite phase remains in the martensite phase, deteriorating toughness and weldability.

【0011】Ni:マルテンサイト相の靱性を向上さ
せ、溶接性を改善する重要な添加元素である。十分な靱
性を確保し、厚肉材の溶接性を良好に維持するためには
3.5%以上の含有量が必要である。しかし7.0%を
超えて添加すると残留オーステナイト相が急激に増加
し、強度が低下する。 Mo:耐食性を向上させるとともに、焼戻し後の強度、
靱性を改善させるのに有効な添加元素である。0.1%
以上添加するとその効果は十分発揮されるが、過剰に添
加するとNiを上記成分範囲の上限まで添加してもフェ
ライト相が消失しにくくなるため、4.0%まで添加す
ることができる。
Ni: An important additive element for improving the toughness of the martensite phase and improving the weldability. In order to ensure sufficient toughness and maintain good weldability of thick-walled materials, a content of 3.5% or more is required. However, when added in excess of 7.0%, the retained austenite phase sharply increases and the strength decreases. Mo: While improving corrosion resistance, strength after tempering,
It is an effective additive element for improving toughness. 0.1%
The effect is sufficiently exhibited when the above addition is performed. However, when the addition is excessive, the ferrite phase hardly disappears even when Ni is added to the upper limit of the above-mentioned component range, so that it can be added to 4.0%.

【0012】Nb:焼戻し処理での耐食性の低下と強度
低下を抑制し、溶接熱影響部の耐粒界腐食性を改善する
のに適宜添加することができる。その効果を発揮させる
ためには0.01%以上の含有量が必要であるが、0.
5%を超えて添加すると溶接時あるいは熱間圧延時に割
れが生じやすくなる。 N:Cと同様にマルテンサイト相を硬くして、強度を上
昇させるのに有効な元素であるが、靱性および溶接性を
著しく劣化させ、鋼中の水素に対する感受性が高くなる
ため、その含有量を0.02%以下とした。
Nb: It can be added as appropriate to suppress the reduction of corrosion resistance and strength during tempering and to improve the intergranular corrosion resistance of the heat affected zone by welding. In order to exert the effect, the content is required to be 0.01% or more.
If added in excess of 5%, cracks tend to occur during welding or hot rolling. N: Similar to C, it is an element effective for hardening the martensite phase and increasing the strength, but significantly deteriorates the toughness and weldability and increases the sensitivity to hydrogen in steel. Was set to 0.02% or less.

【0013】H:鋼中に不可避的に存在するが、高強度
のマルテンサイトステンレス鋼の延性、靱性、溶接性を
害する有害な元素である。また、H含有量が高いと、熱
処理あるいは溶接後の冷却時に発生する熱応力によって
遅れ破壊を生じることもある。H含有量は本発明の成分
範囲内で上記問題が生じない量、すなわち0.0005
%以下に厳しく制限する必要がある。本発明鋼は、高温
側で水素固溶量の大きいオーステナイト相であり、マル
テンサイト相に変態する温度も300℃前後と低温であ
るため、鋼中に水素が残留しやすい。従って、H含有量
を安定的に0.0005%以下に維持するためには、溶
製段階で耐火物等からHが侵入するのを抑制するととも
に、熱間圧延あるいは焼入れ熱処理後に200℃まで冷
却し、組織を大部分マルテンサイト相とした後にオース
テナイト相に逆変態しない温度域にて脱水素熱処理を実
施しなければならない。
H: A harmful element that is inevitably present in steel, but impairs the ductility, toughness, and weldability of high-strength martensitic stainless steel. When the H content is high, delayed fracture may occur due to thermal stress generated during heat treatment or cooling after welding. The H content is such that the above problem does not occur within the component range of the present invention, that is, 0.0005.
It must be strictly limited to below%. The steel of the present invention is an austenite phase having a large amount of hydrogen solid solution at a high temperature side, and has a low temperature of transformation to a martensite phase of about 300 ° C., so that hydrogen easily remains in the steel. Therefore, in order to stably maintain the H content at 0.0005% or less, it is necessary to suppress the intrusion of H from a refractory or the like at the melting stage and to cool to 200 ° C. after hot rolling or quenching heat treatment. Then, after the structure is mostly changed to the martensite phase, the dehydrogenation heat treatment must be performed in a temperature range that does not reversely transform into the austenite phase.

【0014】Al、Ca:靱性に有害なS、Oを溶鋼段
階で低減し、また鋼中に残留するOを介在物として固定
する。ただし、過度に添加すると粗大な介在物が生じ、
逆に靱性を劣化させたり、製造性を悪化させる。従っ
て、その添加量はAlで0.001〜0.05%、Ca
で0.0005〜0.005%とする。その他の元素と
してCuは、焼戻し処理後の強度を上昇させる効果を有
するが過剰に添加すると溶接熱影響部が著しく硬くなり
溶接割れが発生しやすくなるため、その上限は2%とす
ることが望ましい。鋼中に不可避的に含有されるP、
S、Oは鋼材の靱性を低下させ溶接性を劣化させるた
め、その含有量は各々で0.003%以下、0.005
%以下、0.01%以下とすることが望ましい。La、
Ceなどのランタノイド系希土類元素の添加もSおよび
Oの固定に有効であるが、その酸化物あるいは硫化物は
比重が大きく、精錬中に浮上しにくいため鋼中に残存し
やすい。従って、その添加量は0.05%以下に抑える
ことが望ましい。
Al, Ca: S and O, which are harmful to toughness, are reduced in the molten steel stage, and O remaining in the steel is fixed as inclusions. However, excessive addition will cause coarse inclusions,
Conversely, it deteriorates toughness and deteriorates manufacturability. Therefore, the addition amount of Al is 0.001 to 0.05%,
To 0.0005% to 0.005%. Cu as another element has the effect of increasing the strength after tempering, but if added excessively, the heat-affected zone becomes significantly harder and weld cracks are more likely to occur, so the upper limit is preferably 2%. . P inevitably contained in steel,
Since S and O decrease the toughness of the steel material and deteriorate the weldability, their contents are 0.003% or less and 0.005% or less, respectively.
% Or less, preferably 0.01% or less. La,
Addition of a lanthanoid-based rare earth element such as Ce is also effective for fixing S and O, but its oxide or sulfide has a large specific gravity and is difficult to float during refining, so that it tends to remain in steel. Therefore, it is desirable that the amount of addition be suppressed to 0.05% or less.

【0015】次に上記のH含有量を満足する製造方法を
説明する。まず、溶製段階でHの混入を極力抑制するこ
とが必要である。そのためには、炉材、湯道等を十分乾
燥させ、水分を除去することが有効である。この段階で
Hが多量に混入すると、後述する脱水素熱処理で長時間
を要し、工業的に不利となる。
Next, a production method satisfying the above H content will be described. First, it is necessary to minimize the mixing of H in the smelting stage. For that purpose, it is effective to sufficiently dry the furnace material, the runner and the like to remove moisture. If a large amount of H is mixed at this stage, a long time is required for dehydrogenation heat treatment described later, which is industrially disadvantageous.

【0016】次に熱間圧延あるいは焼入れ熱処理後に2
00℃以下まで冷却し、金属組織の大部分をマルテンサ
イト相に変態させなければならない。この冷却が不十分
で、オーステナイト相が多量に残留するとその後の脱水
素熱処理で長時間かけても水素含有量は減少しない。こ
れはオーステナイト相の水素固溶量が大きいからであ
る。すなわち、冷却を200℃以下まで実施し、金属組
織の大部分を水素固溶量の小さいマルテンサイト相と
し、鋼中から水素が放出しやすい状態にするのである。
Next, after hot rolling or quenching heat treatment, 2
It must be cooled to below 00 ° C. to transform most of the metal structure into a martensitic phase. If this cooling is insufficient and a large amount of the austenite phase remains, the hydrogen content does not decrease over a long period of time in the subsequent dehydrogenation heat treatment. This is because the amount of solid solution of hydrogen in the austenite phase is large. That is, cooling is performed to 200 ° C. or lower to make most of the metal structure into a martensite phase having a small hydrogen solid solution amount, so that hydrogen is easily released from steel.

【0017】その後、水素の拡散を促進するために、マ
ルテンサイト相がオーステナイト相に逆変態しない温度
範囲まで加熱しなければならない。その温度範囲は、4
00℃〜650℃である。400℃未満では、水素の拡
散速度が遅く、水素放出に長時間を要する。650℃を
超えて加熱するとマルテンサイト相がオーステナイト相
に逆変態し、水素の固溶量が増加し、水素含有量の減少
は起こらない。
Thereafter, in order to promote the diffusion of hydrogen, it is necessary to heat to a temperature range in which the martensite phase does not reversely transform into the austenite phase. Its temperature range is 4
00 ° C to 650 ° C. If the temperature is lower than 400 ° C., the diffusion rate of hydrogen is low, and it takes a long time to release hydrogen. When heated above 650 ° C., the martensite phase undergoes a reverse transformation to the austenite phase, the amount of solid solution of hydrogen increases, and the hydrogen content does not decrease.

【0018】この温度域で、脱水素に必要な保持時間
は、鋼材の厚みに関係し、(5)式で示すHt時間を満
足する時間でなければならない。この保持時間の条件を
満足しないと、水素放出が不十分で、0.0005%以
下の水素含有量に至らない。この脱水素熱処理は、機械
的性質を調整するための焼戻し熱処理と兼用できる。ま
た、溶接施工中に水素が混入する場合は、溶接熱処理後
も上記条件で脱水素熱処理を実施することも有効であ
る。
In this temperature range, the holding time required for dehydrogenation is related to the thickness of the steel material, and must be a time that satisfies the Ht time shown in equation (5). If the condition of the retention time is not satisfied, the hydrogen release is insufficient and the hydrogen content does not reach 0.0005% or less. This dehydrogenation heat treatment can also be used as a tempering heat treatment for adjusting mechanical properties. When hydrogen is mixed during welding, it is also effective to perform dehydrogenation heat treatment under the above conditions even after welding heat treatment.

【0019】本発明では、靱性および溶接性を向上させ
るためにフェライト相を生成しない成分の限定、製造条
件の限定を行っているが、溶製・凝固時の成分偏析によ
り部分的にフェライト相が生成する場合は、熱間圧延前
あるいは熱間圧延後に均質化焼鈍することが望ましい。
また、焼入れ熱処理はフェライト相の生成しない120
0℃以下とすることが望ましい。
In the present invention, in order to improve toughness and weldability, the components that do not form a ferrite phase are limited and the production conditions are limited. However, the ferrite phase is partially formed due to segregation of components during melting and solidification. When it is formed, it is desirable to perform homogenization annealing before or after hot rolling.
The quenching heat treatment does not produce a ferrite phase.
It is desirable that the temperature be 0 ° C. or lower.

【0020】[0020]

【実施例】表1に供試鋼の化学成分を示す。EXAMPLES Table 1 shows the chemical components of the test steel.

【0021】[0021]

【表1】 [Table 1]

【0022】表中の記号A〜Kの供試鋼は実験室で溶製
後、40mmまで熱間圧延したものである。供試鋼は、
熱間圧延後直ちに900℃で1時間保持した後に室温ま
で空冷した。そして母材中央部から圧延方向と直角にシ
ャルピー試験片および引張試験片を切り出し、その機械
的性質を調べた。さらに、同じ鋼板からH形狭開先(幅
15mm)の溶接試験片を切り出し、溶接割れ感受性を
調べた。溶接はTIG溶接で、供試鋼Cから製作した溶
接棒を使用し、溶接電流250A、溶接速度は毎分5c
mで片側10層ずつとした。予熱は行わなかった。溶接
完了24時間後に5箇所断面を切り出し溶接割れ発生の
有無を確認した。0.2%耐力、引張強度、破断伸び、
0℃でのシャルピー吸収エネルギーおよび上記溶接試験
で割れの発生した断面の数を表2に示す。
The test steels denoted by the symbols A to K in the table were prepared by melting in a laboratory and then hot rolling to 40 mm. The test steel is
Immediately after the hot rolling, it was kept at 900 ° C. for 1 hour and then air-cooled to room temperature. Then, Charpy test pieces and tensile test pieces were cut out from the central part of the base material at right angles to the rolling direction, and the mechanical properties thereof were examined. Further, a weld test piece having an H-shaped narrow groove (15 mm in width) was cut out from the same steel sheet, and weld cracking susceptibility was examined. The welding is TIG welding, using a welding rod made from test steel C, welding current 250A, welding speed 5c / min.
m and 10 layers per side. No preheating was performed. Twenty-four hours after the completion of welding, five sections were cut out to check for the occurrence of weld cracks. 0.2% proof stress, tensile strength, elongation at break,
Table 2 shows the Charpy absorbed energy at 0 ° C. and the number of cross sections where cracks occurred in the above welding test.

【0023】[0023]

【表2】 [Table 2]

【0024】次に、表3に示す化学成分の供試鋼Lを大
型電気炉で溶製後インゴットに鋳造し、分塊圧延で20
0mm厚さのスラブを製造し、その後に40mmまで熱
間圧延した。表3に示す水素含有量は、熱間圧延終了後
にサンプルを採取して測定した値である。上記鋼板を9
50℃で1時間の焼入れ熱処理をした後、表4に示す温
度まで冷却し、保持温度および保持時間を変えて脱水素
熱処理を実施した。その後、上述と同様にシャルピー試
験片および引張試験片を切り出し、母材の機械的性質を
調べるとともに上記と同条件で溶接試験を行い、割れ発
生の有無を確認した。それらの結果と脱水素熱処理後の
残留水素含有量を表4に併せて示す。
Next, a test steel L having the chemical composition shown in Table 3 was melted in a large electric furnace and cast into an ingot.
A slab with a thickness of 0 mm was produced and subsequently hot rolled to 40 mm. The hydrogen content shown in Table 3 is a value measured by collecting a sample after hot rolling. 9
After performing a quenching heat treatment at 50 ° C. for 1 hour, it was cooled to the temperature shown in Table 4, and a dehydrogenation heat treatment was performed while changing the holding temperature and the holding time. Thereafter, a Charpy test piece and a tensile test piece were cut out in the same manner as described above, and the mechanical properties of the base material were examined, and a welding test was performed under the same conditions as above to confirm whether or not cracking occurred. Table 4 shows the results and the residual hydrogen content after the dehydrogenation heat treatment.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】以上の実施例から本発明鋼は強度が高く、
靱性も優れており、厚肉材での溶接においても割れが生
じないことがわかる。また前記本発明鋼は、強度、靱性
の他に耐食性、疲労特性にも優れ、応力比0.1、繰り
返し数5×106 回の疲労試験で、大気中および海水中
いずれにおいても40kg/mm2 以上の疲労強度が得
られた。
From the above examples, the steel of the present invention has high strength,
The toughness is also excellent, and it can be seen that cracking does not occur even when welding with a thick material. Further, the steel of the present invention has excellent corrosion resistance and fatigue properties in addition to strength and toughness, and has a stress ratio of 0.1 and a repetition rate of 5 × 10 6 in a fatigue test. Two or more fatigue strengths were obtained.

【0028】[0028]

【発明の効果】本発明の高強度マルテンサイトステンレ
ス鋼は靱性に優れ、厚肉材においても優れた溶接性を示
すことから、強度を要する溶接構造物に最適であり、産
業上寄与するところは極めて大である。
The high-strength martensitic stainless steel of the present invention is excellent in toughness and exhibits excellent weldability even in thick-walled materials. Very large.

フロントページの続き (72)発明者 山本 章夫 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 島田 鉄也 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (72)発明者 末次 和広 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (72)発明者 桜井 英夫 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開 平5−156409(JP,A) 特開 平1−162750(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/58 C21D 3/06 - 8/00 Continued on the front page (72) Inventor Akio Yamamoto 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Tetsuya Shimada 1-1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works (72) Inventor Kazuhiro Kazuhiro 1-1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Yawata Works (72) Inventor Hideo Sakurai Shintomi, Futtsu-shi, Chiba 20-1 Inside the Technology Development Division of Nippon Steel Corporation (56) References JP-A-5-156409 (JP, A) JP-A-1-162750 (JP, A) (58) Fields studied (Int. Cl. 6 , DB name) C22C 38/00-38/58 C21D 3/06-8/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%でC:0.03%以下、Si:
1.0%以下、Mn:2.0%以下、Cr:11〜17
%、Ni:3.5〜7.0%、N:0.02%以下、
H:0.0005%以下と、Al:0.001〜0.0
5%、Ca:0.0005〜0.005%のうち1種ま
たは2種を含有し、残部はFeならびに不可避的不純物
元素からなり、さらに下記(1)式で表されるNieq
と(2)式で表されるCreqが、(3)式ならびに
(4)式を満足することにより、その金属組織にフェラ
イト相を含まないマルテンサイト相からなることを特徴
とする高強度マルテンサイトステンレス鋼。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお、式中の[]は、各成分の鋼中含有量(重量%)を
示す。
1. C: 0.03% or less by weight, Si:
1.0% or less, Mn: 2.0% or less, Cr: 11 to 17
%, Ni: 3.5 to 7.0%, N: 0.02% or less,
H: 0.0005% or less, Al: 0.001 to 0.0
5%, Ca: 0.0005 to 0.005%, containing one or two kinds, the balance being Fe and unavoidable impurity elements, and Nieq represented by the following formula (1).
And the high-strength martensite characterized in that Creq represented by the formula (2) satisfies the formulas (3) and (4), whereby the metal structure is composed of a martensite phase containing no ferrite phase. Stainless steel. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq−Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) ] Indicates the content (% by weight) of each component in steel.
【請求項2】 Mo:0.1〜4.0%、Nb:0.0
1〜0.5%のうち1種または2種を含有することを特
徴とする請求項1記載の高強度マルテンサイトステンレ
ス鋼。
2. Mo: 0.1 to 4.0%, Nb: 0.0
The high-strength martensitic stainless steel according to claim 1, wherein one or two kinds are contained in 1 to 0.5%.
【請求項3】 重量%でC:0.03%以下、Si:
1.0%以下、Mn:2.0%以下、Cr:11〜17
%、Ni:3.5〜7.0%、N:0.02%以下と、
Al:0.001〜0.05%、Ca:0.0005〜
0.005%のうち1種または2種を含有し、残部はF
eならびに不可避的不純物元素からなり、さらに下記
(1)式で表されるNieqと(2)式で表されるCr
eqが、(3)式ならびに(4)式を満足することによ
り、その金属組織にフェライト相を含まない鋼材を、熱
間圧延あるいは焼入れ熱処理終了後、200℃以下まで
冷却し、その後400〜650℃の温度範囲に(5)式
に示すHt時間保持することによって、鋼中のHを0.
0005%以下とすることを特徴とする高強度マルテン
サイトステンレス鋼の製造方法。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[]は、各成分の鋼中含有量(重量%)を示
す。 Ht≧t2 /1000 (5) 式中のtは鋼材の厚さ(mm)、Htは保持時間(時
間)を示す。
3. C: 0.03% or less by weight, Si:
1.0% or less, Mn: 2.0% or less, Cr: 11 to 17
%, Ni: 3.5 to 7.0%, N: 0.02% or less,
Al: 0.001-0.05%, Ca: 0.0005-
One or two of 0.005% is contained, and the balance is F
e and unavoidable impurity elements, and furthermore, Nieq represented by the following formula (1) and Cr represented by the following formula (2).
When the eq satisfies the formulas (3) and (4), the steel material having no ferrite phase in its metal structure is cooled to 200 ° C. or less after hot rolling or quenching heat treatment, and then 400 to 650. By maintaining the Ht time in the temperature range of equation (5) in the temperature range of formula (5), H in the steel is reduced to 0.
A method for producing high-strength martensitic stainless steel, characterized by being at most 0005%. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq−Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the expression Indicates the content (% by weight) of each component in steel. Ht ≧ t 2/1000 (5 ) t is the steel thickness of formula (mm), Ht denotes the retention time (hours).
【請求項4】 重量%でC:0.03%以下、Si:
1.0%以下、Mn:2.0%以下、Cr:11〜17
%、Ni:3.5〜7.0%、N:0.02%以下と、
Al:0.001〜0.05%、Ca:0.0005〜
0.005%のうち1種または2種を含有し、さらにM
o:0.1〜4.0%、Nb:0.01〜0.5%のう
ちの1種または2種を含有し、残部はFeならびに不可
避的不純物元素からなり、さらに下記(1)式で表され
るNieqと(2)式で表されるCreqが、(3)式
ならびに(4)式を満足することにより、その金属組織
にフェライト相を含まない鋼材を、熱間圧延あるいは焼
入れ熱処理終了後、200℃以下まで冷却し、その後4
00〜650℃の温度範囲に(5)式に示すHt時間保
持することによって、鋼中のHを0.0005%以下と
することを特徴とする高強度マルテンサイトステンレス
鋼の製造方法。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[]は、各成分の鋼中含有量(重量%)を示
す。 Ht≧t2 /1000 (5) 式中のtは鋼材の厚さ(mm)、Htは保持時間(時
間)を示す。
4. C: 0.03% or less by weight, Si:
1.0% or less, Mn: 2.0% or less, Cr: 11 to 17
%, Ni: 3.5 to 7.0%, N: 0.02% or less,
Al: 0.001-0.05%, Ca: 0.0005-
One or two of 0.005%,
o: 0.1 to 4.0%, Nb: one or two of 0.01% to 0.5%, the balance being Fe and unavoidable impurity elements, and the following formula (1) When Nieq represented by the formula and Creq represented by the formula (2) satisfy the formulas (3) and (4), the steel material having no ferrite phase in its metal structure is subjected to hot rolling or quenching heat treatment. After completion, cool to below 200 ° C,
A method for producing a high-strength martensitic stainless steel, wherein the H in the steel is reduced to 0.0005% or less by maintaining the temperature in the temperature range of 00 to 650 ° C. for the Ht time shown in equation (5). Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq−Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the expression Indicates the content (% by weight) of each component in steel. Ht ≧ t 2/1000 (5 ) t is the steel thickness of formula (mm), Ht denotes the retention time (hours).
JP5103335A 1993-04-28 1993-04-28 High strength martensitic stainless steel and its manufacturing method Expired - Lifetime JP2995524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103335A JP2995524B2 (en) 1993-04-28 1993-04-28 High strength martensitic stainless steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103335A JP2995524B2 (en) 1993-04-28 1993-04-28 High strength martensitic stainless steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH06306551A JPH06306551A (en) 1994-11-01
JP2995524B2 true JP2995524B2 (en) 1999-12-27

Family

ID=14351292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103335A Expired - Lifetime JP2995524B2 (en) 1993-04-28 1993-04-28 High strength martensitic stainless steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2995524B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204447A (en) * 1999-01-08 2000-07-25 Hitachi Ltd High strength martensitic steel, turbine disk for gas turbine using the same, gas turbine for power generation and combined power generating system
JP2001303203A (en) * 2000-04-20 2001-10-31 Sumitomo Metal Ind Ltd High strength martensitic stainless steel and oil well pipe using the same
KR100545090B1 (en) * 2001-12-18 2006-01-24 주식회사 포스코 method for controlling the delta-ferrite of the stainless steel
KR100566142B1 (en) * 2002-05-08 2006-03-30 신닛뽄세이테쯔 카부시키카이샤 High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof
JP4173976B2 (en) * 2002-06-20 2008-10-29 本田技研工業株式会社 Manufacturing method of hoop for automatic transmission of automobile
US7686897B2 (en) 2002-07-15 2010-03-30 Sumitomo Metal Industries, Ltd. Martensitic stainless steel seamless pipe and a manufacturing method thereof
JP6656992B2 (en) * 2016-03-31 2020-03-04 三菱日立パワーシステムズ株式会社 Turbine blade dehydrogenation method

Also Published As

Publication number Publication date
JPH06306551A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
KR101312211B1 (en) Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
EP2434027B1 (en) Steel material for high heat input welding
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
EP3128033A1 (en) High-tensile-strength steel plate and process for producing same
JP2008303424A (en) Method for producing high-tension steel excellent in weld-cracking resistance
JP2995524B2 (en) High strength martensitic stainless steel and its manufacturing method
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP2008208406A (en) Steel material having small material anisotropy and excellent fatigue crack propagation properties, and producing method therefor
JPS6145697B2 (en)
EP3128024B1 (en) Welded joint
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JPS647138B2 (en)
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPS59226151A (en) Austenitic high-alloy stainless steel with superior weldability and hot workability
JPH05156408A (en) High-strength martensite stainless steel having excellent weldability and production thereof
JP2023045253A (en) Steel plate and method for producing the same
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
EP2801638B1 (en) Steel material for high-heat-input welding
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JP3099155B2 (en) High strength martensitic stainless steel with excellent weldability and its manufacturing method
JP3439062B2 (en) High Mn stainless steel with excellent hot workability and cryogenic toughness
JPH022925B2 (en)
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831