JP4479092B2 - Hot rolled steel and method for producing the same - Google Patents

Hot rolled steel and method for producing the same Download PDF

Info

Publication number
JP4479092B2
JP4479092B2 JP2000378836A JP2000378836A JP4479092B2 JP 4479092 B2 JP4479092 B2 JP 4479092B2 JP 2000378836 A JP2000378836 A JP 2000378836A JP 2000378836 A JP2000378836 A JP 2000378836A JP 4479092 B2 JP4479092 B2 JP 4479092B2
Authority
JP
Japan
Prior art keywords
hot
rolled steel
steel material
steel
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000378836A
Other languages
Japanese (ja)
Other versions
JP2002180192A (en
Inventor
正治 秦野
浩司 柴田
健太郎 朝倉
仁 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000378836A priority Critical patent/JP4479092B2/en
Publication of JP2002180192A publication Critical patent/JP2002180192A/en
Application granted granted Critical
Publication of JP4479092B2 publication Critical patent/JP4479092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、表面性状に優れた熱間圧延鋼材およびその製造方法に係り、特に、産業機械、建築あるいは自動車の構造用部材として使用される熱間圧延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
熱間圧延鋼材(以下、必要に応じ、熱延鋼材という)は、比較的安価であり、様々な構造材料として広く使用されている。熱延鋼材は、延性特性がよいなど加工性に優れていることが必要であるとともに、表面性状がよいことが求められる。
【0003】
ここで、「表面性状がよい」とは、一般に鋼材の表面に発生する表面疵や耳割れなどの欠陥がない、あるいは少ないことをいう。精錬が不十分なスラグを用いて、熱延鋼材を製造した場合、表面性状は悪化する。これは、トランプエレメントと呼ばれる銅(Cu)、錫(Sn)等の精錬除去が困難な元素が鋼材中に含まれるために、熱延鋼材の表面に、表面疵が発生するためである。そこで、このような表面疵の発生を防止するために、様々な研究・開発がされている。
特開平6−256904号公報には、質量%でC:1.0%以下、Si:1.0%以下、Mn:0.1〜1.5%、Al:0.001〜0.1%、Cu:0.1〜0.5%、Sn:0.2〜1.0%を含み、Sn%≧2×Cu%であるCu、Sn含有熱延鋼が開示されている。この発明では、熱延鋼中のCuとSnの組成比を調整することにより、鋼の表面に生成するCu-Sn合金相(融液)の結晶粒界への浸入を抑制し、熱間圧延による表面疵の発生を防止している。
【0004】
特開平7−242938号公報には、質量%でC:0.01〜0.20%、Si:2.0%以下、Mn:0.05〜2.0%、Ni:0.01〜0.50%、Cu:0.1〜0.5%、Sn:0.001〜0.05%を含有する鋼を熱間圧延した後、500℃以下で巻き取る熱延鋼板の製造方法が開示されている。この発明では、CuとSnにより形成された比較的低い融点を有する合金の融点を、所定量(0.01〜0.5%)のNiを添加することによって、上昇させ、熱延鋼板を加熱する際に起こるCu-Sn合金相(融液)の結晶粒界への侵入を防ぎ、表面疵の発生を防止している。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平6−256904号公報に開示されている熱延鋼板は、Cuに対し、2倍以上のSnが含有するため、製品の機械特性、特に延性が著しく劣化するという問題があった。また、特開平7−242938号公報に開示されている熱延鋼板の製造方法では、高価なNiの添加が必須となり、製造コストが高くならざるを得ないという問題があった。
【0006】
さらに、これらの発明では、精錬により除去しがたいSnやNiといった元素が含有するため、鋼材中のトランプエレメント量の増加に伴うリサイクル性に関する問題も発生する。
【0007】
現在、自動車、家電、管屑等の鉄スクラップの量は増加し、省資源、地球温暖化や廃棄物問題などの観点から、製鉄用の鉄源として鉄スクラップの積極的な利用が見直されつつある。よって、将来的には、リサイクル品をさらに二度、三度と繰り返し使用するといった配慮もしなければならない。
【0008】
しかし、上記の発明のような鋼材へのトランプエレメントの添加は、将来の鉄スクラップ中のトランプエレメント含有量を更に高めることになり、鉄スクラップのリサイクル性を損なうという問題につながる。
【0009】
すなわち、鋼材中へのトランプエレメントの添加は、鋼材の品質を悪化させ、その鋼材を使用した製品を廃棄することにより発生する鉄スクラップをリサイクル品の原料としては使えないという問題が発生する。
【0010】
本願発明の課題は、延性など加工特性に優れ、製造コストが低いことに加え、表面性状がよく、リサイクル性にも優れた熱間圧延鋼材およびその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上述のような問題を解決するために、トランプエレメント(精錬除去が困難で不可避的に混入する元素)としてCu、Snを含有する鋼材(以下、Cu-Sn含有鋼という)に及ぼす添加物とその鋼材を製造する際の加熱温度の関係について調べた。
【0012】
まず、添加物として、ボロン(B)に注目した。Bは、Niと比べ、少量の添加ですむので、比較的安価に鋼材を製造することができる。さらに、トランプエレメントではないので、リサイクルしたとき、精錬により容易に除去でき、リサイクル性が悪くなるという心配もない。
【0013】
また、Cu、Snが作る合金の融点は比較的低い。そのため、鋼材に両元素が含有している場合、熱間加工する際の温度(加熱温度)により、形成されるCu-Sn合金相の状態が異なり、その状態により、表面性状が大きく異なるのではないかと考えた。すなわち、Cu-Sn含有鋼に、任意の量のBを添加したときの表面性状に対する特性は、加熱温度と添加したBの含有量に依存することを想定した。
【0014】
以上のような知見をもとに、Cu-Sn含有鋼にBを添加し、加熱温度、Bの含有量と表面疵(表面割れ発生点数)との関係を調べた。
【0015】
図1は、Cu-Sn含有鋼の表面割れ発生点数に対するBの含有量と加熱温度の関係を示したものである。同図に示すデ−タは実験室的に求めたものであり、水蒸気濃度を16体積%、二酸化炭素濃度を8体積%、酸素濃度を2.5体積%、残部を窒素とした加熱雰囲気中で、それぞれ950℃、1000℃、1050℃、1100℃、1150℃、1200℃で30分間保持した試験片に歪量約40%の引張変形を加えて、試験片の平行部での単位面積当たりの表面割れ発生点数を測定したものである。
【0016】
なお、質量%で、C:0.05%、Si:0.02%、Mn:0.35%、P:0.03%、S:0.005%、Cr:0.03%、Ni:0.02%、N:0.005%、Cu:0.3%、およびSn:0.04%を基準組成とし、Bの含有量を0%、0.0007%、0.0028%にそれぞれ調整したものを直径8mm、平行部20mmの丸棒状にし、試験片とした。
【0017】
図1から分かるように、Cu-Sn含有鋼の表面割れ発生点数は、1100℃付近で最も多く、1150℃以上あるいは1000℃以下で減少した。このような傾向を示す理由について、現在のところ、詳細は明らかでないが、1150℃以上では、鉄の選択的な酸化が加速しCu、Snが酸化スケ−ル層へ移動し鋼材中から排斥された、あるいはCu、Snの拡散速度が速くなるために鋼材中へ逆拡散して、鋼材表面でのCu-Sn合金相の析出が抑制されたと推測される。また、1000℃以下でも、鋼材表面でのCu-Sn合金相の析出が抑制されたと推測される。さらに、同図に示すように、1100℃付近の表面割れ発生点数は、Bの含有量が0.0007%の試験片において著しく減少していたが、Bの含有量が0%あるいは0.0028%の試験片ではほぼ同数認められ、劣っていた。
【0018】
さらに、Bの含有量が鋼材に与える影響について、1100℃で加熱した試験片の表面組織を観察したところ、Bの含有量によって大きな差が出た。
【0019】
図2は、1100℃で加熱した試験片を観察したときの酸化スケール層と鋼材の界面(すなわち、地鉄表面)を模式的に示したものである。ここで、図2(a)、(b)、(c)はそれぞれBの含有量が0%、0.0007%、0.0028%である場合の観察結果を示す。なお、同図は、鋼片を加熱し、引張変形を加えずに室温まで冷却した後、試験片断面を樹脂に埋め込み、鏡面研磨、腐食して、地鉄表面を顕微鏡にて観察することにより得られる。この結果より、鋼材を加熱することで、鉄が選択的に酸化され、酸化スケ−ル層が生成するが、Bの含有量により、地鉄表面の状態は異なることが明らかになった。
【0020】
Bの含有量が0%である場合(図2(a))、鋼材を加熱したことにより、鋼材中に含まれるCuとSnは、溶融状態となり、地鉄表面に濃化し、Cu-Sn合金相として生成していることがわかった。一般に、表面割れは、この溶融状態のCu-Sn合金相が熱間加工により結晶粒界に浸入し、粒界強度を弱めるために発生する。Bの含有量が0%である場合には、地鉄表面に大量のCu-Sn合金相が生成されることから、このCu-Sn合金相が結晶粒界に侵入して、表面割れが発生したと考えられる。
【0021】
一方、表面割れが著しく改善された、Bの含有量が0.0007%である場合(図2(b))は、地鉄表面に生成されたCu-Sn合金相は、Bの含有量が0%である場合に比べ減少した。このことから、表面割れの改善は、Bの微量添加によって、Cu-Sn合金相が少量化、分散化されたためであると推測できる。
【0022】
他方、Bの含有量が0.0028%である場合(図2(c))、地鉄表面に生成されたCu-Sn合金相はさらに減少した。しかし、結晶粒界に沿って鋼材中に侵入したCu-Sn合金相が観察されたことから、表面割れの抑制効果が期待できなかったと推測できる。
【0023】
本発明は、上述の知見をもとに完成に至ったものであり、その要旨は、下記(1)〜(4)に記載の熱間圧延鋼材およびその製造方法にある。
【0025】
(1)質量%で、C:0.01〜0.20%、Si:0.01〜2.0%、Mn:0.85〜2.0%、Nb:0〜0.10%、Ti:0〜0.10%、V:0〜0.20%、Cr:0〜1.0%、Mo:0〜1.0%、希土類元素:0〜0.10%、Cu:0.01〜0.60%、Sn:0.001〜0.10%、およびB:0.0002〜0.0025%を含み、残部がFeおよび不純物からなることを特徴とする熱間圧延鋼材。
【0026】
(2)鉄源の少なくとも一部に鉄スクラップを利用し、製造したことを特徴とする(1)に記載の熱間圧延鋼材。
【0028】
(3)質量%で、C:0.01〜0.20%、Si:0.01〜2.0%、Mn:0.85〜2.0%、Nb:0〜0.10%、Ti:0〜0.10%、V:0〜0.20%、Cr:0〜1.0%、Mo:0〜1.0%、希土類元素:0〜0.10%、Cu:0.01〜0.60%、Sn:0.001〜0.10%、およびB:0.0002〜0.0025%を含み、残部がFeおよび不純物からなるスラブを1150℃以上で加熱した後、熱間圧延を行うことを特徴とする熱間圧延鋼材の製造方法。
【0029】
(4)前記スラブの鉄源の少なくとも一部に鉄スクラップを利用することを特徴とする(3)に記載の熱間圧延鋼材の製造方法。
【0030】
【発明の実施の形態】
本発明は熱間圧延鋼材に関する発明である。ここで、熱間圧延鋼材とは、熱間での圧延工程等の加工工程を経て製造される鋼材を意味し、熱延鋼板を始めとして、継目無鋼管、棒鋼、線材、形鋼、鋼帯等どのような形状を有していてもよい。
【0031】
以下には、その熱間圧延鋼材および製造方法について、具体的に説明する。なお、以下に述べる化学組成の%表示はいずれも質量%を意味する。
【0032】
(a)化学組成
C:Cは、鋼材の強度を高めるために好ましい成分である。しかし、Cの含有量が0.01%未満ではその効果が得られず、0.20%を超えると加工性が低下するうえ、溶接性の劣化を招く。従って、Cの含有量は0.01〜0.20%とする。
【0033】
Si:Siは、通常、脱酸剤として使用される元素であり、0.01%以上含有させる必要がある。さらに、Siは固溶強化により鋼材の強度を向上させるので、0.1%以上含有させることが好ましい。しかし、Siの含有量が2.0%を超えると、その効果が飽和する上、溶接性に悪影響を及ぼす。従って、Si含有量は、0.01〜2.0%とする。
【0034】
Mn:Mnは鋼材の強度を向上させるのに好ましい元素であり、さらに鋼中に不純物として存在するSをMnSとして固定し、熱間圧延中に生じる表面割れを抑制する作用も有する。しかし、Mnの含有量が少ない場合には、その効果が認められない。一方、2.0%を超えて含有させても加工性が低下するうえ、溶接性に悪影響を及ぼすので、Mnの含有量は0.85〜2.0%とする。
【0035】
Nb、Ti、V:Nb、TiおよびVは、フェライトに炭窒化物として析出して鋼材の強度を高める作用を有するので、必要に応じて添加することが好ましい。しかし、NbおよびTiはそれぞれ0.10%、Vは0.20%を超えて含有させてもその効果は飽和してしまうとともに、経済性も損なう。従って、Nb、Ti、Vの含有量は、Nb:0〜0.10%、Ti:0〜0.10%、V:0〜0.20%とした。この効果を十分発揮させるためには、Nb:0.005〜0.10%、Ti:0.005〜0.10%、V:0.005〜0.20%とするのが好ましい。
【0036】
Cr、Mo:CrおよびMoは、変態強化により鋼材の強度を向上させる作用を有するので、必要に応じて添加することが好ましい。しかし、CrおよびMoはそれぞれ1.0%を超えて含有させても、その効果は飽和するうえ、経済性を損なう。従って、CrおよびMoの含有量は、いずれも0〜1.0%とした。この効果を十分発揮させるためには、CrおよびMoのいずれについても、0.01〜1.0%とするのが好ましい。
【0037】
希土類元素:これら元素は介在物の形状を調整して冷間加工性を改善する作用を有するので、必要に応じて添加すればよい。しかし、0.1%を超えて含有させると鋼中の介在物が多くなりすぎて加工性が劣化するなどの悪影響を及ぼす。従って、希土類元素の含有量は、0〜0.10%とした。この効果を十分発揮させるためには、0.002〜0.10%とするのが好ましい。
【0038】
Cu、Sn:Cu、Snは、トランプエレメントとして鋼材中に含有する場合が多い。この場合、前述のように、鋼材を加熱することにより地鉄表面にCu-Sn合金相が生成される。Cu、Snの含有量は、Cu:0.01〜0.60%、Sn:0.001〜0.10%とした。Cuについては0.60%、Snについては0.10%を超えると、本発明で規定するBを添加しても、熱間圧延における表面疵の発生を防止することが出来ない。一方、これらの元素の含有量が、Cuについては0.01%未満、Snについては0.001%未満の場合は、通常の熱間圧延を行っても、表面割れの発生は少ない。
【0039】
B:Bは、熱延鋼材の表面割れを抑制するのに必要な元素であることは既に述べたとおりである。この効果を得るためには、Bの含有量を0.0002%以上にする必要がある。他方、0.0025%を超えて含有させても、その効果が飽和すると同時に、表面割れに悪影響を及ぼす。従って、Bの含有量は、0.0002〜0.0025%とした。さらに、Bは、通常の精錬法、例えば、酸化精錬法などにおいて除去することが可能であり、鉄スクラップ中に濃化して、鉄スクラップのリサイクル性を損なうという問題は生じない。
【0040】
Al:Alは脱酸剤として使用される元素であるが、鋼の清浄度の観点から、Alの含有量は0.30%以下とするのが好ましい。
【0041】
P:Pは溶接性に悪影響を及ぼす元素である。従って、溶接性の観点から、Pの含有量は0.05%以下とするのが好ましい。
【0042】
S:Sは硫化物系介在物を形成して加工性を低下させる元素である。従って、加工性の観点から、0.003%以下とするのが好ましい。
【0043】
なお、本発明に係る熱延鋼材には、この他にも不純物元素が含まれていてもなんら問題はない。さらに、本発明で規定した組成になるのであれば、その鉄源の少なくとも一部に、鉄スクラップを再利用してもよい。このように鉄スクラップを用いて製造された熱間圧延鋼材は、トランプエレメントが少ないため、再度、鉄スクラップにして用いることも可能である。
【0044】
(b)製造方法
本発明に係る熱延鋼材の製造方法をその製品形状が鋼板(熱延鋼板)である場合を例として以下に説明する。なお、製品形状が継目無鋼管、棒鋼、線材、形鋼、鋼帯等、他の形状を有していても、成形が一部異なるだけで、基本となる製造方法に特段の違いはない。
【0045】
(a)項で述べた化学組成を有するスラブは慣用される方法で製造される。例えば、転炉や電気炉で、成分調整をした鉄源を溶解した後、真空脱ガス処理を施し、連続鋳造法や鋼塊にした後に分塊圧延するなどの方法でスラブを製造する。ここで、使用される鉄源には、少なくともその一部に自動車、建築用鋼材などが廃棄されるときに生じる鉄スクラップを使用することが好ましい。このように鉄スクラップを使用することは、鉄のリサイクル使用に大きく貢献する。
【0046】
ここで、スラブの寸法は、通常、厚さ120〜280mm、幅700〜1600mm、長さ10m程度であり、このようなスラブを加熱した後、連続的に熱間圧延し、必要に応じて焼鈍、酸洗処理を施すことで、熱延鋼板を製造する。
【0047】
スラブの加熱温度は、鋼表面でのCu-Sn合金相の析出を抑制するために、1150℃以上とすることが必要である。また、1270℃を超えると、鋼の内部酸化が激しくなり、鋼自体のスケ−ルロスが大きくなるとともに、表面性状にも悪影響を及ぼす。したがって、スラブの加熱温度の上限は1270℃以下とするのが好ましい。
【0048】
加熱炉内の雰囲気は、特に規定するものではないが、通常、水素あるいは炭化水素を含む燃料ガスを用いた燃焼排ガスが使用される。加熱雰囲気の水蒸気濃度は0〜30体積%の範囲である。
【0049】
スラブ加熱時の在炉時間(予熱帯、加熱帯、均熱帯での合計時間)は、通常行うように1〜4時間でよい。1150℃以上で均熱する際の保持時間は、鋼表面でのCu-Sn合金相の析出を抑制するために、20分以上とすることが好ましい。
【0050】
所定の温度に加熱されたスラブは、加熱炉から取り出した後、熱間圧延に先だって脱スケ−ル処理が施される。脱スケ−ル処理は、一般的に9.807〜24.52MPa(=100〜250kgf/cm2)程度の高圧水を噴射する方法で行われる。
【0051】
熱間圧延は、通常の鋼板の製造に用いられる連続式ロ−ル圧延法により行うことが適している。圧延温度の下限は、900℃程度とするのが好ましい。熱延鋼板の厚みは、用途によって異なるが2〜20mm程度に仕上げられる。熱間圧延後は、必要により、焼鈍および酸洗等の処理を施すのが好ましい。
【0052】
【実施例】
工場実炉における加熱雰囲気の影響を調べるために、加熱炉モニター試験を行った。なお、試験に当たり、リサイクル性を考慮に入れ、スラブおよび加熱炉モニタ−試験片(以下、試験片という)は、鉄スクラップを用いて作製した。
【0053】
表1に示す化学組成を有する連続鋳造スラブ(幅1030mm、厚さ200mm、長さ約10m)およびこのスラブより切り出して作製した試験片(幅100mm、厚さ40mm、長さ100mm)を準備した。
【0054】
【表1】

Figure 0004479092
試験片の表面は、機械加工を施し、酸化皮膜を除去した。ただし、試験片の片面は、後で地鉄表面を観察するために、意図的に連続鋳造をした時に生成した酸化皮膜を残存させた。このような試験片を、酸化皮膜の残存面を上にして、スラブ上に乗せ、加熱炉に挿入し、加熱処理を行い、一連の処理が終了した後、スラブを加熱炉から取り出す際に一緒に取り出した。
【0055】
この時の加熱処理は、水蒸気濃度を20体積%、二酸化炭素濃度を8.5体積%、酸素濃度を1体積%、残部を窒素とした加熱雰囲気中で、1050℃で予熱後、徐々に加熱し、任意の温度で均熱状態を保つことで行った。この際、入炉から出炉までの在炉時間はだいたい180〜220分である。
【0056】
加熱処理は、本発明で規定する範囲に相当する条件に加え、比較のために、本発明で規定する範囲を外れる成分あるいは加熱条件で行った。また、その評価は、試験片の表面に析出したCu-Sn合金相を顕微鏡で観察すること、およびスラブより製造された熱延鋼板の表面性状を目視することで行った。
【0057】
試験片の表面におけるCu-Sn合金相の析出は、試験片から表皮下20mm厚さのサンプルを切り出した後、試験片の断面を樹脂に埋め込んだ後、鏡面研磨、腐食して、地鉄表面を光学顕微鏡あるいは走査型電子顕微鏡観察により調べることができる。
【0058】
また、熱延鋼板の表面性状は、スラブより4.5mm厚の熱延鋼帯を製造し、肉眼で表面の品質上、問題となる表面割れ(表面疵)の有無を調べ、表面割れ(表面疵)が確認された場合を×,表面の品質上、問題となる表面割れが確認されない場合を○とした。
【0059】
表2に、加熱処理の条件と熱延鋼板の表面割れ(表面疵)の判定結果を示す。
【0060】
【表2】
Figure 0004479092
表2において、試番5、6、8〜11は、本発明で規定する範囲に相当する条件の例であり、これらの試験片の表面にはCu-Sn合金相の析出は確認されるものの、表面品質を損なう熱延鋼板の表面割れはいずれも発生しておらず、その判定は良好(○)であった。
【0061】
一方、試番1は、Bを含有していない例、試番4は、本発明で規定する以上のBを含有する例である。これらの試験片の表面にはCu-Sn合金相の析出が確認され、熱延鋼板には表面割れが発生しており、その判定は不良(×)であった。
【0062】
また、試番3は、加熱処理の条件が本発明の規定する範囲より低い場合の例である。この試験片の表面にはCu-Sn合金相の析出が確認され、熱延鋼板には表面割れが発生していた。
【0063】
【発明の効果】
本発明に係る熱間圧延鋼材およびその製造方法は、精錬により除去しがたいトランプエレメント量を加えることもなく、鋼材の機械的特性の低下や製造コストの上昇の問題を生じることなく、鋼材の表面性状をよくすることができ、さらにリサイクル性にも優れている。本発明を用いれば、現在、問題となっている鉄スクラップの発生に伴う廃棄物などの問題を解決すべく、積極的な鉄資源の利用にもつながる。
【図面の簡単な説明】
【図1】Cu-Sn含有鋼の表面割れ発生点数に対するBの含有量と加熱温度の関係を示す図である。
【図2】1100℃で加熱した試験片を観察したときの地鉄表面を模式的に示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-rolled steel material having excellent surface properties and a method for producing the same, and more particularly to a hot-rolled steel plate used as a structural member for industrial machines, buildings, or automobiles, and a method for producing the same.
[0002]
[Prior art]
Hot-rolled steel materials (hereinafter referred to as hot-rolled steel materials as necessary) are relatively inexpensive and are widely used as various structural materials. Hot-rolled steel materials are required to have excellent workability such as good ductility characteristics, and are required to have good surface properties.
[0003]
Here, “the surface property is good” means that there are generally no or few defects such as surface flaws and ear cracks generated on the surface of the steel material. When hot-rolled steel is produced using slag that is not sufficiently refined, the surface properties deteriorate. This is because surface defects occur on the surface of the hot-rolled steel material because elements that are difficult to refining and removing such as copper (Cu) and tin (Sn), which are called trump elements, are contained in the steel material. Therefore, various researches and developments have been made to prevent the occurrence of such surface defects.
In JP-A-6-256904, C: 1.0% or less, Si: 1.0% or less, Mn: 0.1-1.5%, Al: 0.001-0.1% by mass% , Cu: 0.1 to 0.5%, Sn: 0.2 to 1.0%, and Cu and Sn containing hot rolled steel with Sn% ≧ 2 × Cu% are disclosed. In this invention, by adjusting the composition ratio of Cu and Sn in the hot-rolled steel, the intrusion of the Cu-Sn alloy phase (melt) generated on the steel surface into the grain boundary is suppressed, and hot rolling Prevents generation of surface flaws.
[0004]
In JP-A-7-242938, C: 0.01 to 0.20%, Si: 2.0% or less, Mn: 0.05 to 2.0%, Ni: 0.01 to 0 by mass%. Disclosed is a method for producing a hot-rolled steel sheet, which is obtained by hot-rolling steel containing 50%, Cu: 0.1-0.5%, Sn: 0.001-0.05% and then winding the steel at 500 ° C. or lower. Has been. In this invention, the melting point of an alloy having a relatively low melting point formed of Cu and Sn is increased by adding a predetermined amount (0.01 to 0.5%) of Ni, and the hot-rolled steel sheet is heated. This prevents the Cu-Sn alloy phase (melt) from intruding into the crystal grain boundaries and prevents surface defects.
[0005]
[Problems to be solved by the invention]
However, the hot-rolled steel sheet disclosed in Japanese Patent Application Laid-Open No. 6-256904 has a problem that the mechanical properties of the product, particularly the ductility, is significantly deteriorated because Sn contains twice or more of Sn. Further, in the method for producing a hot-rolled steel sheet disclosed in Japanese Patent Application Laid-Open No. 7-242938, there is a problem that expensive Ni must be added and the production cost must be increased.
[0006]
Furthermore, in these inventions, since elements such as Sn and Ni that are difficult to remove by refining are contained, a problem relating to recyclability accompanying an increase in the amount of trump elements in the steel material also occurs.
[0007]
Currently, the amount of steel scrap such as automobiles, home appliances and tube scraps has increased, and from the viewpoint of resource saving, global warming and waste problems, the active use of iron scrap as an iron source for iron making is being reviewed. is there. Therefore, in the future, consideration must be given to repeated use of recycled products twice or three times.
[0008]
However, the addition of the trump element to the steel material as in the above invention further increases the content of the trump element in the future iron scrap, leading to a problem of impairing the recyclability of the iron scrap.
[0009]
That is, the addition of the playing element in the steel material deteriorates the quality of the steel material, and there arises a problem that iron scrap generated by discarding a product using the steel material cannot be used as a raw material for a recycled product.
[0010]
An object of the present invention is to provide a hot-rolled steel material having excellent processing characteristics such as ductility, low manufacturing cost, good surface properties, and excellent recyclability, and a manufacturing method thereof.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the present inventors have developed a steel material containing Cu and Sn (hereinafter referred to as Cu-Sn-containing steel) as a trump element (element that is inevitably mixed because of refining removal). The relationship between the additive and the heating temperature during the production of the steel was investigated.
[0012]
First, boron (B) was noted as an additive. Since B needs only a small amount of addition compared with Ni, it is possible to produce a steel material relatively inexpensively. Furthermore, since it is not a trump element, when it is recycled, it can be easily removed by refining, and there is no concern that the recyclability will deteriorate.
[0013]
In addition, the melting point of alloys made of Cu and Sn is relatively low. Therefore, when both elements are contained in the steel material, the state of the formed Cu-Sn alloy phase differs depending on the temperature (heating temperature) at the time of hot working, and the surface properties may differ greatly depending on the state. I thought. That is, it was assumed that the characteristics with respect to the surface properties when an arbitrary amount of B was added to the Cu—Sn-containing steel depended on the heating temperature and the added B content.
[0014]
Based on the above knowledge, B was added to the Cu—Sn containing steel, and the relationship between the heating temperature, the B content and the surface defects (number of surface cracks) was investigated.
[0015]
FIG. 1 shows the relationship between the B content and the heating temperature with respect to the number of surface cracks in the Cu—Sn-containing steel. The data shown in the figure was obtained in a laboratory, in a heated atmosphere where the water vapor concentration was 16% by volume, the carbon dioxide concentration was 8% by volume, the oxygen concentration was 2.5% by volume, and the balance was nitrogen. In each of the test pieces held at 950 ° C., 1000 ° C., 1050 ° C., 1100 ° C., 1150 ° C., and 1200 ° C. for 30 minutes, a tensile deformation with a strain amount of about 40% was applied. The number of occurrence of surface cracks was measured.
[0016]
In mass%, C: 0.05%, Si: 0.02%, Mn: 0.35%, P: 0.03%, S: 0.005%, Cr: 0.03%, Ni: 0.02%, N: 0.005%, Cu: 0.3%, and Sn: 0.04% as the reference composition, and the B content to 0%, 0.0007%, 0.0028%, respectively The adjusted one was formed into a round bar shape having a diameter of 8 mm and a parallel part of 20 mm, and used as a test piece.
[0017]
As can be seen from FIG. 1, the number of surface cracks in the Cu—Sn-containing steel was the largest at around 1100 ° C. and decreased at 1150 ° C. or more or 1000 ° C. or less. The details of the reason for this tendency are not clear at present, but at 1150 ° C. or higher, selective oxidation of iron accelerates and Cu and Sn move to the oxide scale layer and are eliminated from the steel. Alternatively, it is presumed that since the diffusion rate of Cu and Sn is increased, it diffuses back into the steel material and the precipitation of the Cu—Sn alloy phase on the steel material surface is suppressed. Moreover, it is presumed that the precipitation of the Cu—Sn alloy phase on the steel material surface was suppressed even at 1000 ° C. or lower. Further, as shown in the figure, the number of surface cracks near 1100 ° C. was remarkably reduced in the test piece having a B content of 0.0007%, but the B content was 0% or 0.0028. % Of specimens showed almost the same number and were inferior.
[0018]
Furthermore, when the surface structure of the test piece heated at 1100 ° C. was observed with respect to the influence of the B content on the steel material, a large difference was found depending on the B content.
[0019]
FIG. 2 schematically shows the interface between the oxide scale layer and the steel material (that is, the surface of the steel) when a test piece heated at 1100 ° C. is observed. Here, FIGS. 2A, 2B, and 2C show observation results when the B content is 0%, 0.0007%, and 0.0028%, respectively. In this figure, the steel piece is heated and cooled to room temperature without applying tensile deformation, and then the cross section of the test piece is embedded in resin, mirror-polished and corroded, and the surface of the iron bar is observed with a microscope. can get. From this result, it was revealed that heating the steel material selectively oxidizes iron and produces an oxide scale layer, but the state of the surface of the ground iron differs depending on the B content.
[0020]
When the B content is 0% (Fig. 2 (a)), by heating the steel material, Cu and Sn contained in the steel material will be in a molten state and will be concentrated on the surface of the steel, Cu-Sn alloy. It was found that it was formed as a phase. In general, surface cracks occur because this molten Cu—Sn alloy phase penetrates into the grain boundaries by hot working and weakens the grain boundary strength. When the B content is 0%, a large amount of Cu-Sn alloy phase is generated on the surface of the iron base, so this Cu-Sn alloy phase penetrates into the grain boundaries and surface cracks occur. It is thought that.
[0021]
On the other hand, in the case where the surface cracking is remarkably improved and the B content is 0.0007% (FIG. 2 (b)), the Cu-Sn alloy phase produced on the surface of the ground iron has the B content. It decreased compared to the case of 0%. From this, it can be inferred that the improvement of the surface crack is due to the Cu-Sn alloy phase being reduced and dispersed by the addition of a small amount of B.
[0022]
On the other hand, when the content of B is 0.0028% (FIG. 2 (c)), the Cu—Sn alloy phase generated on the surface of the base iron further decreased. However, since the Cu—Sn alloy phase that penetrated into the steel material along the crystal grain boundary was observed, it can be assumed that the effect of suppressing surface cracking could not be expected.
[0023]
The present invention has been completed based on the above-described knowledge, and the gist thereof is the hot-rolled steel material and the manufacturing method thereof described in (1) to (4) below.
[0025]
(1) By mass%, C: 0.01 to 0.20%, Si: 0.01 to 2.0%, Mn: 0.85 to 2.0%, Nb: 0 to 0.10%, Ti : 0 to 0.10%, V: 0 to 0.20%, Cr: 0 to 1.0%, Mo: 0 to 1.0%, Rare earth elements: 0 to 0.10%, Cu: 0.01 A hot-rolled steel material comprising: -0.60%, Sn: 0.001-0.10%, and B: 0.0002-0.0025%, with the balance being Fe and impurities.
[0026]
(2) The hot-rolled steel material according to (1), wherein iron scrap is used for at least a part of the iron source.
[0028]
(3) By mass%, C: 0.01 to 0.20%, Si: 0.01 to 2.0%, Mn: 0.85 to 2.0%, Nb: 0 to 0.10%, Ti : 0 to 0.10%, V: 0 to 0.20%, Cr: 0 to 1.0%, Mo: 0 to 1.0%, Rare earth elements: 0 to 0.10%, Cu: 0.01 -0.60%, Sn: 0.001-0.10%, and B: 0.0002-0.0025%, and after heating the slab consisting of Fe and impurities at 1150 ° C or higher, A method for producing a hot rolled steel material, characterized by performing rolling.
[0029]
(4) The method for producing a hot rolled steel material according to (3), wherein iron scrap is used for at least a part of the iron source of the slab.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a hot rolled steel material. Here, the hot-rolled steel material means a steel material manufactured through a processing process such as a hot rolling process, including a hot-rolled steel sheet, a seamless steel pipe, a bar steel, a wire rod, a shaped steel, and a steel strip. Or any other shape.
[0031]
Below, the hot-rolled steel material and a manufacturing method are demonstrated concretely. In addition, all the percentage display of the chemical composition described below means the mass%.
[0032]
(A) Chemical composition C: C is a preferred component for increasing the strength of the steel material. However, if the C content is less than 0.01%, the effect cannot be obtained, and if it exceeds 0.20%, workability is lowered and weldability is deteriorated. Therefore, the C content shall be the 0.01 to 0.20 percent.
[0033]
Si: Si is an element usually used as a deoxidizer, and it is necessary to contain 0.01% or more. Furthermore, since Si improves the strength of the steel material by solid solution strengthening, it is preferable to contain Si by 0.1% or more. However, if the Si content exceeds 2.0%, the effect is saturated and the weldability is adversely affected. Therefore, the Si content is set to 0.01 to 2.0%.
[0034]
Mn: Mn is a preferable element for improving the strength of the steel material, and further has an effect of fixing S present as an impurity in the steel as MnS and suppressing surface cracks that occur during hot rolling. However, when the Mn content is small , the effect is not recognized. Meanwhile, after which when the content exceeds 2.0% workability is lowered, so adversely affects the weldability, Mn content shall be the 0.85 to 2.0%.
[0035]
Nb, Ti, V: Nb, Ti, and V are precipitated as carbonitrides in ferrite and have an action of increasing the strength of the steel material, and therefore are preferably added as necessary. However, even if Nb and Ti are contained in amounts exceeding 0.10% and V exceeds 0.20%, the effects are saturated and the economic efficiency is also impaired. Therefore, the contents of Nb, Ti, and V were set to Nb: 0 to 0.10%, Ti: 0 to 0.10%, and V: 0 to 0.20%. In order to fully exhibit this effect, it is preferable to set it as Nb: 0.005-0.10%, Ti: 0.005-0.10%, V: 0.005-0.20%.
[0036]
Cr, Mo: Cr and Mo have an effect of improving the strength of the steel material by transformation strengthening, and therefore are preferably added as necessary. However, even if Cr and Mo are contained in amounts exceeding 1.0%, the effect is saturated and the economic efficiency is impaired. Therefore, the contents of Cr and Mo are both 0 to 1.0%. In order to fully exhibit this effect, it is preferable to set it as 0.01 to 1.0% about both Cr and Mo.
[0037]
Rare earth elements: These elements have the effect of improving the cold workability by adjusting the shape of the inclusions, so they may be added as necessary. However, if the content exceeds 0.1%, the inclusions in the steel increase so much that the workability deteriorates. Therefore, the rare earth element content is set to 0 to 0.10%. In order to fully exhibit this effect, it is preferable to set it as 0.002 to 0.10%.
[0038]
Cu, Sn: Cu and Sn are often contained in steel as a playing element. In this case, as described above, a Cu—Sn alloy phase is generated on the surface of the ground iron by heating the steel material. The contents of Cu and Sn were set to Cu: 0.01 to 0.60% and Sn: 0.001 to 0.10%. If Cu exceeds 0.60% and Sn exceeds 0.10%, the occurrence of surface flaws in hot rolling cannot be prevented even if B specified in the present invention is added. On the other hand, when the content of these elements is less than 0.01% for Cu and less than 0.001% for Sn, the occurrence of surface cracks is small even when normal hot rolling is performed.
[0039]
B: As already described, B is an element necessary for suppressing surface cracking of hot-rolled steel. In order to obtain this effect, the B content needs to be 0.0002% or more. On the other hand, even if the content exceeds 0.0025%, the effect is saturated and at the same time adversely affects surface cracking. Therefore, the content of B is set to 0.0002 to 0.0025%. Furthermore, B can be removed by a normal refining method, such as an oxidation refining method, and does not cause a problem that it is concentrated in iron scrap and impairs the recyclability of iron scrap.
[0040]
Al: Al is an element used as a deoxidizer, but from the viewpoint of steel cleanliness, the Al content is preferably 0.30% or less.
[0041]
P: P is an element that adversely affects weldability. Therefore, from the viewpoint of weldability, the P content is preferably 0.05% or less.
[0042]
S: S is an element that forms sulfide inclusions and lowers workability. Therefore, from the viewpoint of workability, it is preferably 0.003% or less.
[0043]
In addition, the hot-rolled steel material according to the present invention does not have any problem even if other impurity elements are included. Furthermore, if it becomes the composition prescribed | regulated by this invention, you may reuse iron scrap for at least one part of the iron source. Thus, since the hot-rolled steel material manufactured using iron scrap has few trump elements, it can also be used again as iron scrap.
[0044]
(B) Manufacturing method The manufacturing method of the hot-rolled steel material according to the present invention will be described below with an example in which the product shape is a steel plate (hot-rolled steel plate). In addition, even if the product shape has other shapes such as seamless steel pipe, bar steel, wire rod, shape steel, steel strip, etc., there is no particular difference in the basic manufacturing method, only the molding is partially different.
[0045]
The slab having the chemical composition described in the item (a) is produced by a conventional method. For example, a slab is produced by a method such as melting a component-adjusted iron source in a converter or an electric furnace, then subjecting it to vacuum degassing, making it into a continuous casting method or forming a steel ingot, and then rolling it into pieces. Here, it is preferable to use, as the iron source to be used, iron scrap generated when automobiles, building steel materials, and the like are discarded at least partially. Using iron scrap in this way greatly contributes to the recycling of iron.
[0046]
Here, the dimensions of the slab are usually 120 to 280 mm in thickness, 700 to 1600 mm in width, and about 10 m in length. After heating such a slab, it is continuously hot-rolled and annealed as necessary. The hot-rolled steel sheet is manufactured by performing pickling treatment.
[0047]
The heating temperature of the slab needs to be 1150 ° C. or higher in order to suppress precipitation of the Cu—Sn alloy phase on the steel surface. Moreover, when it exceeds 1270 degreeC, internal oxidation of steel will become intense, the scale loss of steel itself will become large, and it will also have a bad influence on surface properties. Therefore, the upper limit of the slab heating temperature is preferably 1270 ° C. or less.
[0048]
The atmosphere in the heating furnace is not particularly specified, but usually combustion exhaust gas using a fuel gas containing hydrogen or hydrocarbon is used. The water vapor concentration in the heating atmosphere is in the range of 0 to 30% by volume.
[0049]
The in-furnace time at the time of slab heating (the total time in the pre-tropical zone, heating zone, and soaking zone) may be 1 to 4 hours as usual. In order to suppress precipitation of the Cu—Sn alloy phase on the steel surface, the holding time when soaking at 1150 ° C. or higher is preferably 20 minutes or longer.
[0050]
The slab heated to a predetermined temperature is taken out of the heating furnace and then subjected to descaling prior to hot rolling. The descaling process is generally performed by a method in which high-pressure water of about 9.807 to 24.52 MPa (= 100 to 250 kgf / cm 2 ) is injected.
[0051]
It is suitable to perform the hot rolling by a continuous roll rolling method used for the production of a normal steel plate. The lower limit of the rolling temperature is preferably about 900 ° C. Although the thickness of a hot-rolled steel sheet changes with uses, it is finished to about 2-20 mm. After hot rolling, it is preferable to perform treatments such as annealing and pickling as necessary.
[0052]
【Example】
In order to investigate the influence of the heating atmosphere in the actual furnace, a heating furnace monitor test was conducted. In the test, taking into consideration recyclability, slabs and heating furnace monitor-test specimens (hereinafter referred to as test specimens) were produced using iron scrap.
[0053]
A continuous cast slab having a chemical composition shown in Table 1 (width 1030 mm, thickness 200 mm, length about 10 m) and a test piece cut from the slab (width 100 mm, thickness 40 mm, length 100 mm) were prepared.
[0054]
[Table 1]
Figure 0004479092
The surface of the test piece was machined to remove the oxide film. However, on one side of the test piece, the oxide film formed when intentionally continuously cast was left in order to observe the surface of the base iron later. Place such a test piece on the slab with the remaining surface of the oxide film facing up, insert it into the heating furnace, perform the heat treatment, and when the slab is removed from the heating furnace after a series of treatments are completed. Took out.
[0055]
The heat treatment at this time is preheating at 1050 ° C. and gradually heating in a heating atmosphere in which the water vapor concentration is 20% by volume, the carbon dioxide concentration is 8.5% by volume, the oxygen concentration is 1% by volume, and the balance is nitrogen. And it was performed by maintaining a soaking state at an arbitrary temperature. At this time, the in-furnace time from entering the furnace to leaving the furnace is about 180 to 220 minutes.
[0056]
In addition to the conditions corresponding to the range defined in the present invention, the heat treatment was performed for the purpose of comparison with components or heating conditions outside the range defined by the present invention. Moreover, the evaluation was performed by observing the Cu-Sn alloy phase deposited on the surface of the test piece with a microscope, and visually observing the surface properties of the hot-rolled steel sheet produced from the slab.
[0057]
Precipitation of the Cu-Sn alloy phase on the surface of the test piece is obtained by cutting a 20 mm-thick sample from the test piece, embedding the cross-section of the test piece in a resin, mirror-polishing and corroding it, Can be examined by observation with an optical microscope or a scanning electron microscope.
[0058]
The surface properties of hot-rolled steel sheets are 4.5 mm thick hot-rolled steel strips manufactured from slabs, and the presence of surface cracks (surface defects) that are problematic on the surface quality is checked with the naked eye. The case where (ii) was confirmed was marked as x, and the case where no surface cracks that were problematic in terms of surface quality were confirmed was marked as ◯.
[0059]
Table 2 shows the heat treatment conditions and the determination results of surface cracks (surface defects) of the hot-rolled steel sheet.
[0060]
[Table 2]
Figure 0004479092
In Table 2, trial number 5,6,8~11 is an example of a condition which corresponds to the range defined in the present invention, although the surface precipitation of the Cu-Sn alloy phase of these specimens is confirmed None of the surface cracks of the hot-rolled steel sheet, which deteriorated the surface quality, occurred, and the determination was good (◯).
[0061]
On the other hand, trial number 1 is an example that does not contain B, and trial number 4 is an example that contains more B than specified in the present invention. Precipitation of a Cu—Sn alloy phase was confirmed on the surfaces of these test pieces, surface cracks were generated in the hot-rolled steel sheet, and the determination was poor (×).
[0062]
Moreover, the trial number 3 is an example when the conditions of heat processing are lower than the range which this invention prescribes | regulates. Precipitation of the Cu—Sn alloy phase was confirmed on the surface of this test piece, and surface cracking occurred in the hot-rolled steel sheet.
[0063]
【The invention's effect】
The hot-rolled steel material according to the present invention and the manufacturing method thereof do not add the amount of trump elements that are difficult to remove by refining, and without causing problems of deterioration of mechanical properties of the steel material and increase of manufacturing cost The surface properties can be improved and the recyclability is also excellent. If this invention is used, it will also lead to active utilization of iron resources in order to solve the problems such as waste associated with the generation of iron scrap, which is currently a problem.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the B content and the heating temperature with respect to the number of surface cracks in Cu—Sn containing steel.
FIG. 2 is a view schematically showing a surface of a ground iron when a test piece heated at 1100 ° C. is observed.

Claims (4)

質量%で、C:0.01〜0.20%、Si:0.01〜2.0%、Mn:0.85〜2.0%、Nb:0〜0.10%、Ti:0〜0.10%、V:0〜0.20%、Cr:0〜1.0%、Mo:0〜1.0%、希土類元素:0〜0.10%、Cu:0.01〜0.60%、Sn:0.001〜0.10%、およびB:0.0002〜0.0025%を含み、残部がFeおよび不純物からなることを特徴とする熱間圧延鋼材。In mass%, C: 0.01 to 0.20%, Si: 0.01 to 2.0%, Mn: 0.85 to 2.0%, Nb: 0 to 0.10%, Ti: 0 to 0 0.10%, V: 0 to 0.20%, Cr: 0 to 1.0%, Mo: 0 to 1.0%, Rare earth elements: 0 to 0.10%, Cu: 0.01 to 0. A hot-rolled steel material comprising 60%, Sn: 0.001 to 0.10%, and B: 0.0002 to 0.0025%, the balance being Fe and impurities. 鉄源の少なくとも一部に鉄スクラップを利用し、製造したことを特徴とする請求項1に記載の熱間圧延鋼材。At least a portion of the iron source to use scrap iron, hot rolled steel according to claim 1, characterized in that to produce. 質量%で、C:0.01〜0.20%、Si:0.01〜2.0%、Mn:0.85〜2.0%、Nb:0〜0.10%、Ti:0〜0.10%、V:0〜0.20%、Cr:0〜1.0%、Mo:0〜1.0%、希土類元素:0〜0.10%、Cu:0.01〜0.60%、Sn:0.001〜0.10%、およびB:0.0002〜0.0025%を含み、残部がFeおよび不純物からなるスラブを1150℃以上で加熱した後、熱間圧延を行うことを特徴とする熱間圧延鋼材の製造方法。In mass%, C: 0.01 to 0.20%, Si: 0.01 to 2.0%, Mn: 0.85 to 2.0%, Nb: 0 to 0.10%, Ti: 0 to 0 0.10%, V: 0 to 0.20%, Cr: 0 to 1.0%, Mo: 0 to 1.0%, Rare earth elements: 0 to 0.10%, Cu: 0.01 to 0. 60%, Sn: 0.001 to 0.10%, and B: 0.0002 to 0.0025%, with the balance being Fe and impurities heated at 1150 ° C. or higher, and then hot rolling A method for producing a hot-rolled steel product. 前記スラブの鉄源の少なくとも一部に鉄スクラップを利用することを特徴とする請求項3に記載の熱間圧延鋼材の製造方法。The method for producing hot-rolled steel according to claim 3, wherein iron scrap is used for at least part of the iron source of the slab.
JP2000378836A 2000-12-13 2000-12-13 Hot rolled steel and method for producing the same Expired - Lifetime JP4479092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378836A JP4479092B2 (en) 2000-12-13 2000-12-13 Hot rolled steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378836A JP4479092B2 (en) 2000-12-13 2000-12-13 Hot rolled steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002180192A JP2002180192A (en) 2002-06-26
JP4479092B2 true JP4479092B2 (en) 2010-06-09

Family

ID=18847324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378836A Expired - Lifetime JP4479092B2 (en) 2000-12-13 2000-12-13 Hot rolled steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP4479092B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834857B (en) * 2014-03-25 2016-02-17 攀枝花学院 Heat resisting cast steel and uses thereof
CN107254638B (en) * 2017-06-01 2019-07-02 马鞍山钢铁股份有限公司 A kind of line steel hot rolling steel band and its production method with erosive wear resistant performance
WO2023127413A1 (en) * 2021-12-27 2023-07-06 Jfeスチール株式会社 Cu-sn containing steel manufacturing method

Also Published As

Publication number Publication date
JP2002180192A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
KR101699194B1 (en) Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
TWI535860B (en) High-strength spring roll material and high-strength spring steel wire using this rolled material
JP5838708B2 (en) Steel sheet with excellent surface properties and method for producing the same
JP4369415B2 (en) Spring steel wire rod with excellent pickling performance
JP4998719B2 (en) Ferritic stainless steel sheet for water heaters excellent in punching processability and method for producing the same
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP4479092B2 (en) Hot rolled steel and method for producing the same
JP2018168460A (en) Ferritic stainless steel pipe and ferritic stainless steel pipe for automotive exhaust system parts
JP2000045027A (en) Manufacture of steel plate excellent in surface characteristic
JP2010174293A (en) Steel sheet to be die-quenched superior in hot-punchability
JP4759818B2 (en) Method for producing hot rolled steel
JP3295900B2 (en) High strength alloyed hot-dip galvanized steel sheet for deep drawing with excellent secondary work brittleness resistance
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet
WO2023286338A1 (en) Ni-cr-mo-based alloy for welded pipe having excellent workability and corrosion resistance
JP3260056B2 (en) Method for producing steel with excellent sour resistance and hot workability
JP7356025B2 (en) Hot width reduction rolling method for continuously cast slabs
JP4239647B2 (en) Method for producing Cu-containing steel
JP3622497B2 (en) Manufacturing method of steel sheet with excellent surface properties
WO2023286536A1 (en) Thick steel sheet and method for producing thick steel sheet
JP7124631B2 (en) Method for preventing cast slab placement cracks
JP4675771B2 (en) Ferritic stainless steel wire for glass encapsulation
JP5316028B2 (en) Die quench steel plate with excellent hot punchability
JP2023141895A (en) CONTINUOUS CASTING METHOD OF Cu-CONTAINING STEEL
JP4507666B2 (en) Manufacturing method of stainless cold-rolled steel sheet with excellent bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350