JPH07216498A - Production of oxide grain dispersed cast bloom and rolled shape steel with superior toughness, using this cast bloom as stock - Google Patents

Production of oxide grain dispersed cast bloom and rolled shape steel with superior toughness, using this cast bloom as stock

Info

Publication number
JPH07216498A
JPH07216498A JP1365294A JP1365294A JPH07216498A JP H07216498 A JPH07216498 A JP H07216498A JP 1365294 A JP1365294 A JP 1365294A JP 1365294 A JP1365294 A JP 1365294A JP H07216498 A JPH07216498 A JP H07216498A
Authority
JP
Japan
Prior art keywords
less
rolling
cast
steel
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1365294A
Other languages
Japanese (ja)
Other versions
JP3241199B2 (en
Inventor
Koichi Yamamoto
広一 山本
Taku Yoshida
卓 吉田
Kazuhiko Eda
和彦 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01365294A priority Critical patent/JP3241199B2/en
Publication of JPH07216498A publication Critical patent/JPH07216498A/en
Application granted granted Critical
Publication of JP3241199B2 publication Critical patent/JP3241199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain superior toughness by subjeating a cast bloom, in which Al-Mg-Ti compound oxides are dispersed, to heating/cooling type controlled rolling. CONSTITUTION:A molten steel, having a composition containing, by weight ratio, 0.04-0.20% C, 0.05-0.50% Si, 0.4-1.8% Mn, 0.05-0.20% V, 0.004-0.0150% N, and 0.005-0.025% Ti, is preliminarily deoxidized, by which the amount of remaining oxygen is regulated to 0.003-0.15%. Then, an Fe-Al-Mg alloy is added and the amounts of Al and Mg are regulated to 0.005-0.015% and 0.001-0.010%, respectively. The molten steel is cast and cooled down to 900 deg.C at a rate of (0.5 to 20) deg.C/s, by which Al-Mg-Ti oxides of a size of <=3mum are incorporated into the resulting cast bloom by >=20pieces/mm<2>. Subsequently, the cast bloom is heated to 1100-1200 deg.C and rolling is started, and then, water cooling is done until a cast bloom surface layer temp. of <=700 deg.C is reached and rolling is performed in the course of recuperation between passes. This process is repeated once or more. After the completion of rolling, cooling is done down to 650-400 deg.C at a rate of (1 to 20) deg.C/s, followed by air cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる靭性の優れた材質制御圧延形鋼を提供する
ための酸化物粒子分散鋳片及びその鋳片を素材とする靭
性の優れた圧延形鋼の製造方法に係わるものである。
BACKGROUND OF THE INVENTION The present invention relates to an oxide particle-dispersed slab for providing a material-controlled rolled steel having excellent toughness which is used as a structural member of a building, and an excellent toughness using the slab. The present invention relates to a method for manufacturing rolled shaped steel.

【0002】[0002]

【従来の技術】建築物の超高層化、安全規準の厳格化な
どから、柱用に用いられる鋼材、例えば特に板厚の大き
なサイズのH形鋼(以下、極厚H形鋼と称す)には、一
層の高強度化、高靭性化、低降伏比化が求められてい
る。このような要求特性を満たすために、従来は圧延終
了後に焼準処理などの熱処理を施すことが行われた。熱
処理の付加は熱処理コストと生産効率の低下など大幅な
コスト上昇を招き、経済性に問題があった。この課題を
解決するためには圧延ままで高性能の材質特性を得られ
るように、新しい合金設計による鋳片と製造法の開発が
必要となった。
2. Description of the Related Art Due to the construction of super-high-rise buildings and stricter safety standards, steel materials used for columns, such as H-section steel with a particularly large plate thickness (hereinafter referred to as extra-thick H-section steel) Are required to have higher strength, higher toughness, and lower yield ratio. In order to satisfy such required characteristics, conventionally, heat treatment such as normalizing treatment is performed after the rolling is completed. The addition of heat treatment causes a significant cost increase such as reduction of heat treatment cost and production efficiency, and there is a problem in economic efficiency. In order to solve this problem, it was necessary to develop a new alloy design slab and manufacturing method so that high-performance material properties could be obtained as-rolled.

【0003】一般に、フランジを有する形鋼、例えばH
形鋼をユニバーサル圧延により製造すると、圧延造形上
の制約およびその形状の特異性からウェブ、フランジ、
フィレットの各部位で圧延仕上げ温度、圧下率、冷却速
度に差を生じる。その結果、部位間に強度、延性、靭性
のバラツキが発生し、例えば溶接構造用圧延鋼材(JI
SG3106)等の規準に満たない部位が生じる。特に
極厚H形鋼を連続鋳造スラブを素材とし圧延する場合に
は連続鋳造設備で製造可能なスラブ最大厚みに限界があ
るため、低圧下比となる。さらに、圧延造形上の寸法精
度の制約から板厚の厚いフランジ部は高温圧延となり、
圧延終了後の鋼材冷却は徐冷となって、ミクロ組織は粗
粒化する。
Generally, shaped steel with a flange, such as H
When a shaped steel is manufactured by universal rolling, the web, flange, and
Differences occur in the rolling finish temperature, reduction rate, and cooling rate at each part of the fillet. As a result, variations in strength, ductility, and toughness occur between the parts, and for example, rolled steel for welded structures (JI
Some parts do not meet the criteria such as SG3106). In particular, when rolling an extremely thick H-section steel using a continuous casting slab as a raw material, there is a limit to the maximum thickness of the slab that can be produced by the continuous casting equipment, so that the lower pressure ratio is obtained. In addition, due to the dimensional accuracy restrictions on rolling modeling, the thick flange portion is hot rolled,
After the rolling is finished, the steel material is cooled gradually and the microstructure becomes coarse.

【0004】TMCPによる細粒化法があるが、造形上
の制約から形鋼圧延は鋼板の製造法のような熱間圧延時
に大圧下はできない。また、厚鋼板分野ではVNの析出
効果を利用し高強度・高靭性鋼を製造する、例えば特公
昭62−50548号公報、特公昭62−54862号
公報に開示された技術が提案されているが、溶鋼を従来
法によるAl脱酸処理をしているため粒内フェライト生
成核として、組織の細粒化に効果をもたらす微細なAl
−Mg−Ti系複合酸化物が生成せず、組織の細粒化が
十分ではなかった。即ち、従来のAl脱酸は溶製過程の
初期段階でAlを添加し、溶鋼の脱酸と生成したAl2
3 を浮上分離する高清浄化を目的にしていた。即ち、
如何に溶鋼の酸素濃度を下げ、鋼中の粗大な一次脱酸酸
化物個数を低減するかに主題がおかれていた。
Although there is a grain refining method using TMCP, the shape rolling cannot be largely reduced at the time of hot rolling as in the method of manufacturing a steel sheet due to restrictions in shaping. Further, in the field of thick steel plates, there have been proposed techniques for producing high-strength and high-toughness steel by utilizing the precipitation effect of VN, for example, the techniques disclosed in JP-B-62-50548 and JP-B-62-54862. Since the molten steel is subjected to Al deoxidation treatment by the conventional method, fine Al that acts as an intragranular ferrite formation nucleus and has an effect on grain refinement
-Mg-Ti-based composite oxide was not formed, and the grain refinement of the structure was not sufficient. That is, in the conventional Al deoxidation, Al was added in the initial stage of the melting process to deoxidize the molten steel and the generated Al 2
The purpose was to achieve high cleanliness by floating and separating O 3 . That is,
The theme was how to reduce the oxygen concentration of molten steel and reduce the number of coarse primary deoxidized oxides in the steel.

【0005】本発明は従来の発想とは異なり、製鋼過程
における脱酸材の選択、その添加順序及び凝固過程の冷
却制御により生成する酸化物の組成とサイズ、分散密度
を制御し、生成させた酸化物を異相析出の優先析出サイ
トとし活用する点にある。即ち、粒内フェライト変態核
として機能する微細な複合酸化物を分散晶出させ、この
酸化物により圧延工程に負荷をかけないで組織の微細化
を可能にすることである。加えて採用したTMCPの特
徴は厚鋼板で実施されている強圧下圧延に代わる形鋼圧
延での軽圧下の熱間圧延においても効率的に組織の細粒
化が可能なように圧延パス間で水冷し、圧延と水冷を繰
り返す方法にある。
In contrast to the conventional idea, the present invention was produced by controlling the composition and size of oxides and the dispersion density by selecting the deoxidizer in the steelmaking process, the order of addition, and the cooling control in the solidification process. The point is to utilize the oxide as a preferential precipitation site for heterophasic precipitation. That is, it is possible to disperse and crystallize a fine composite oxide that functions as an intragranular ferrite transformation nucleus, and to make the structure fine without applying a load to the rolling process by this oxide. In addition, the feature of TMCP adopted is that the structure can be efficiently refined even in the hot rolling under light reduction in the shape rolling instead of the strong reduction rolling performed for thick steel plates. It is a method of repeating water cooling, rolling and water cooling.

【0006】[0006]

【発明が解決しようとする課題】前記の課題を解決する
ためには、製鋼過程の成分調整と添加手順の工夫により
粒内フェライトと異相析出の優先析出核として機能する
Al−Mg−Ti系複合酸化物を晶出分散させた鋳片を
製造する必要がある。その他に、H形鋼のフランジとウ
ェブの結合部のフィレット部はCCスラブの中心偏析部
と一致し、この部位に存在するMnSは低温圧延条件下
では著しく延伸し、板厚方向の絞り値を低下させ、溶接
時にラメラテイアを生じる場合がある。このように従来
の技術では目的の信頼性の高い高強度高靭性の圧延形鋼
をオンラインで製造し安価に提供することは困難であ
る。
In order to solve the above-mentioned problems, Al-Mg-Ti-based composites which function as preferential precipitation nuclei for intragranular ferrite and heterophase precipitation by adjusting the composition of the steelmaking process and devising the addition procedure. It is necessary to produce a slab in which oxide is crystallized and dispersed. In addition, the fillet part of the joint between the flange of the H-section steel and the web coincides with the center segregation part of the CC slab, and MnS present in this part remarkably stretches under the low temperature rolling condition, and the drawing value in the plate thickness direction is reduced. And may cause lamellae during welding. As described above, it is difficult for the conventional technique to manufacture the desired highly reliable rolled steel having high strength and high toughness online and to provide it at low cost.

【0007】[0007]

【課題を解決するための手段】本発明は、組織を細粒化
することを目的とし、製鋼過程において適正な脱酸処
理を行い、溶鋼の高清浄化、溶存酸素濃度の規制、Fe
−Al(5〜20%)−Mg(5〜20%)合金を最後
に添加する添加順序とAlとMg添加量の特定を行い、
鋳片に粒内フェライト生成核として機能する微細な複合
酸化物を多数分散晶出させることと、熱間圧延パス間
で水冷することにより、鋼板の表層部と内部に温度差を
与え、軽圧下条件下においても、より高温の内部への圧
下浸透を高め、粒内フェライト生成核となる加工転位を
導入し、粒内フェライト生成核を増加させる。加えて、
圧延後のγ/α変態温度域を冷却制御することにより、
その核生成させたフェライトの粒成長を抑制する方法に
よればミクロ組織の細粒化ができ、高能率で製造コスト
の安価な制御圧延形鋼の製造が可能であると言う知見に
基づき前記課題を解決したもので、その要旨とするとこ
ろは、 重量%でC:0.04〜0.20%、Si:0.05
〜0.50%、Mn:0.4〜1.8%、V:0.05
〜0.20%、N:0.004〜0.015%、Ti:
0.005〜0.025%を含み、残部がFeおよび不
可避不純物からなる溶鋼を、予備脱酸処理によって、溶
存酸素を重量%で0.003〜0.015%に調整後さ
らに、Fe−Al−Mg合金を添加し重量%でAl:
0.005〜0.015%、Mg:0.001〜0.0
10%に成分調整した溶鋼を鋳込み、900℃まで冷却
速度0.5〜20℃/sで冷却し、鋳片内に大きさ3μ
m以下のAl−Mg−Ti系複合酸化物を20個/mm2
以上含有することを特徴とする靱性の優れた圧延形鋼用
の酸化物粒子分散鋳片、 重量%でC:0.04〜0.20%、Si:0.05
〜0.50%、Mn:0.4〜1.8%、V:0.05
〜0.20%、N:0.004〜0.015%、Ti:
0.005〜0.025%を含み、加えてMo:0.3
%以下、Cr:1.0%以下、Cu:1.0%以下、N
i:2.0%以下、Nb:0.05%以下、B:0.0
03%以下、のいずれかの1種または2種以上を含有し
残部がFeおよび不可避不純物からなる溶鋼を、予備脱
酸処理によって、溶存酸素を重量%で0.003〜0.
015%に調整後さらに、Fe−Al−Mg合金を添加
し重量%でAl:0.005〜0.015%、Mg:
0.001〜0.010%に成分調整した溶鋼を鋳込
み、900℃まで冷却速度0.5〜20℃/sで冷却
し、鋳片内に大きさ3μm以下のAl−Mg−Ti系複
合酸化物を20個/mm2 以上含有することを特徴とする
靱性の優れた圧延形鋼用の酸化物粒子分散鋳片、 重量%でC:0.04〜0.20%、Si:0.05
〜0.50%、Mn:0.4〜1.8%、V:0.05
〜0.20%、N:0.004〜0.015%、Ti:
0.005〜0.025%を含み、残部がFeおよび不
可避不純物からなる溶鋼を、予備脱酸処理によって、溶
存酸素を重量%で0.003〜0.015%に調整後さ
らに、Fe−Al−Mg合金を添加し重量%でAl:
0.005〜0.015%、Mg:0.001〜0.0
10%に成分調整した溶鋼を鋳込み、900℃まで冷却
速度0.5〜20℃/sで冷却し、鋳片内に大きさ3μ
m以下のAl−Mg−Ti系複合酸化物を20個/mm2
以上含有する鋳片を1100〜1300℃の温度域に再
加熱後に圧延を開始し、圧延工程で鋼片表層部の温度を
700℃以下に水冷し、パス間の復熱過程で圧延する工
程を一回以上繰り返し圧延し、圧延終了後に1〜20℃
/sの冷却速度で650〜400℃まで冷却し放冷する
ことを特徴とする靭性の優れた圧延形鋼の製造方法、お
よび 重量%でC:0.04〜0.20%、Si:0.05
〜0.50%、Mn:0.4〜1.8%、V:0.05
〜0.20%、N:0.004〜0.015%、Ti:
0.005〜0.025%を含み、加えてMo:0.3
%以下、Cr:1.0%以下、Cu:1.0%以下、N
i:2.0%以下、Nb:0.05%以下、B:0.0
03以下、のいずれかの1種または2種以上を含有し残
部がFeおよび不可避不純物からなる溶鋼を、予備脱酸
処理によって、溶存酸素を重量%で0.003〜0.0
15%に調整後さらに、Fe−Al−Mg合金を添加し
重量%でAl:0.005〜0.015%、Mg:0.
001〜0.010%に成分調整した溶鋼を鋳込み、9
00℃まで冷却速度0.5〜20℃/sで冷却し、鋳片
内に大きさ3μm以下のAl−Mg−Ti系複合酸化物
を20個/mm2 以上含有する鋳片を1100〜1300
℃の温度域に再加熱後に圧延を開始し、圧延工程で鋳片
表層部の温度を700℃以下に水冷し、パス間の復熱過
程で圧延する工程を一回以上繰り返し圧延し、圧延終了
後に1〜20℃/sの冷却速度で650〜400℃まで
冷却し放冷することを特徴とする靭性の優れた圧延形鋼
の製造方法にある。
DISCLOSURE OF THE INVENTION The present invention is intended to make a structure finer, and to perform a proper deoxidizing treatment in a steelmaking process to highly clean molten steel, regulate dissolved oxygen concentration, and Fe.
-Al (5 to 20%)-Mg (5 to 20%) alloy is added last and the addition order and Al and Mg addition amounts are specified.
By dispersing and crystallizing a large number of fine composite oxides that function as intragranular ferrite formation nuclei in the slab and water-cooling between hot rolling passes, a temperature difference is given between the surface layer and the inside of the steel sheet, and Even under the conditions, the infiltration into the inside at a higher temperature is enhanced, the work dislocation that becomes the intragranular ferrite forming nuclei is introduced, and the intragranular ferrite forming nuclei are increased. in addition,
By cooling the γ / α transformation temperature range after rolling,
According to the knowledge that the method of suppressing the grain growth of the nucleated ferrite can refine the microstructure, it is possible to manufacture a controlled rolled steel with high efficiency and low manufacturing cost. The main point of the solution is C: 0.04 to 0.20% and Si: 0.05% by weight.
~ 0.50%, Mn: 0.4-1.8%, V: 0.05
.About.0.20%, N: 0.004 to 0.015%, Ti:
A molten steel containing 0.005 to 0.025% and the balance being Fe and unavoidable impurities was adjusted to 0.003 to 0.015% by weight of dissolved oxygen by preliminary deoxidation treatment. -Mg alloy was added and Al in weight percent:
0.005-0.015%, Mg: 0.001-0.0
Molten steel with the composition adjusted to 10% is cast, cooled to 900 ° C at a cooling rate of 0.5 to 20 ° C / s, and the size is 3μ in the slab.
m The following Al-Mg-Ti-based composite oxide 20 / mm 2
Oxide particle-dispersed slab for rolled steel having excellent toughness, characterized by containing the above, C: 0.04 to 0.20% by weight, Si: 0.05
~ 0.50%, Mn: 0.4-1.8%, V: 0.05
.About.0.20%, N: 0.004 to 0.015%, Ti:
Including 0.005-0.025%, in addition Mo: 0.3
% Or less, Cr: 1.0% or less, Cu: 1.0% or less, N
i: 2.0% or less, Nb: 0.05% or less, B: 0.0
A molten steel containing one or two or more of any of 03% or less and the balance consisting of Fe and unavoidable impurities is subjected to a preliminary deoxidation treatment to obtain a dissolved oxygen content of 0.003 to 0.
After adjusting to 015%, a Fe-Al-Mg alloy is further added, and Al: 0.005 to 0.015% by weight% and Mg:
Molten steel with a composition adjusted to 0.001 to 0.010% is cast, cooled to 900 ° C at a cooling rate of 0.5 to 20 ° C / s, and Al-Mg-Ti-based composite oxide having a size of 3 µm or less is cast in a slab. Oxide particles dispersed slab for rolled shape steel having excellent toughness, characterized by containing at least 20 pieces / mm 2 , C: 0.04 to 0.20% by weight, Si: 0.05
~ 0.50%, Mn: 0.4-1.8%, V: 0.05
.About.0.20%, N: 0.004 to 0.015%, Ti:
A molten steel containing 0.005 to 0.025% and the balance being Fe and unavoidable impurities was adjusted to 0.003 to 0.015% by weight of dissolved oxygen by preliminary deoxidation treatment. -Mg alloy was added and Al in weight percent:
0.005-0.015%, Mg: 0.001-0.0
Molten steel with the composition adjusted to 10% is cast, cooled to 900 ° C at a cooling rate of 0.5 to 20 ° C / s, and the size is 3μ in the slab.
m The following Al-Mg-Ti-based composite oxide 20 / mm 2
A step of starting rolling after reheating the contained slab to a temperature range of 1100 to 1300 ° C., water cooling the temperature of the surface layer of the billet to 700 ° C. or less in the rolling step, and rolling in a reheat process between passes Repeatedly rolled once or more, and after rolling is 1 to 20 ° C.
Method for producing rolled steel having excellent toughness, which comprises cooling to 650 to 400 ° C at a cooling rate of / s and allowing to cool, and C: 0.04 to 0.20% by weight% and Si: 0. .05
~ 0.50%, Mn: 0.4-1.8%, V: 0.05
.About.0.20%, N: 0.004 to 0.015%, Ti:
Including 0.005-0.025%, in addition Mo: 0.3
% Or less, Cr: 1.0% or less, Cu: 1.0% or less, N
i: 2.0% or less, Nb: 0.05% or less, B: 0.0
A molten steel containing one or more of any of the following 03 or less and the balance consisting of Fe and unavoidable impurities is subjected to a preliminary deoxidation treatment to dissolve oxygen in an amount of 0.003 to 0.0% by weight.
After adjusting to 15%, a Fe-Al-Mg alloy was further added, and Al: 0.005 to 0.015% and Mg: 0.
Cast molten steel with composition adjusted to 001 to 0.010%,
To 00 ° C. and cooled at a cooling rate of 0.5 to 20 ° C. / s, the cast slab containing a large inside slab of 3μm following Al-Mg-Ti-based composite oxide 20 / mm 2 or more 1100-1300
Rolling is started after reheating to the temperature range of ℃, the temperature of the surface layer of the slab is water-cooled to 700 ℃ or less in the rolling process, and the process of rolling in the heat recovery process between passes is repeated once or more, and rolling is completed. The method for producing a rolled shaped steel having excellent toughness is characterized by cooling to 650 to 400 ° C. at a cooling rate of 1 to 20 ° C./s and then allowing to cool.

【0008】[0008]

【作用】以下、本発明について詳細に説明する。鋼の高
強度化はフェライト結晶の細粒化合金元素による固
溶体強化、硬化相による分散強化微細析出物による
析出強化等によって達成される。また、高靭性化は結
晶の細粒化母相(フェライト)の固溶N,Cの低減
破壊の発生起点となる硬化相の高炭素マルテンサイト及
び粗大な酸化物、析出物の低減と微細化等により達成さ
れる。
The present invention will be described in detail below. Higher strength of steel is achieved by solid solution strengthening by ferrite grain refinement alloying elements, precipitation strengthening by dispersion strengthening fine precipitates by hardening phase, and the like. In addition, toughness is the grain refinement of crystals. Reduction of solid solution N and C in the parent phase (ferrite). Origin of reduced fracture. High carbon martensite and coarse oxides in the hardened phase. Etc.

【0009】一般的には鋼の高強度化により靭性は低下
し、高強度化と高靭性化は相反する対処が必要である。
両者を同時に満たす冶金因子は唯一、結晶の細粒化であ
る。本発明の特徴は、製鋼工程において、脱酸の制御、
凝固後の冷却速度を規制し、鋳片に粒内フェライト生成
核として機能する多数の微細な複合酸化物を分散晶出さ
せた鋳片を得ることと、それを素材とし熱間圧延工程に
おいて、熱間圧延パス間で水冷し、その復熱時に圧延す
ることを繰り返すことにより粒内フェライト生成核を増
加させ、加えて圧延後に加速冷却を行い、そのフェライ
トの成長を抑制し、ミクロ組織の細粒化を行う、インラ
イン圧延加工プロセスにより母材の高強度化と高靭性化
を達成するものである。
Generally, as the strength of steel is increased, the toughness is lowered, and it is necessary to take contradictory measures against the increase in strength and the increase in toughness.
The only metallurgical factor that satisfies both is grain refinement. The feature of the present invention is to control deoxidation in the steelmaking process,
To regulate the cooling rate after solidification, to obtain a slab obtained by dispersing and crystallizing a large number of fine composite oxides that function as intragranular ferrite formation nuclei in the slab, in a hot rolling process using it as a material, By repeating water cooling between hot rolling passes and rolling at the time of recuperation, the number of intragranular ferrite formation nuclei is increased.In addition, accelerated cooling is performed after rolling to suppress the growth of the ferrite and reduce the microstructure. The in-line rolling process for graining achieves high strength and high toughness of the base material.

【0010】次に本発明形鋼の成分範囲と制御条件の限
定理由について述べる。まず、Cは鋼の強度を向上させ
る有効な成分として添加するもので、0.04%未満で
は構造用鋼として必要な強度が得られない。また、0.
20%を超える過剰の添加は、母材靭性、耐溶接割れ
性、溶接熱影響部靭性などを著しく低下させるので、下
限を0.04%、上限を0.20%とした。
Next, the reasons for limiting the composition range and control conditions of the shaped steel of the present invention will be described. First, C is added as an effective component for improving the strength of steel, and if it is less than 0.04%, the strength required for structural steel cannot be obtained. Also, 0.
Excessive addition of more than 20% significantly lowers the base metal toughness, weld crack resistance, weld heat affected zone toughness, etc., so the lower limit was made 0.04% and the upper limit was made 0.20%.

【0011】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50%を超えるとHAZ
組織内に硬化組織の高炭素マルテンサイトを生成し、溶
接継手部靭性を著しく低下させる。また、0.05%未
満では必要な溶鋼の予備脱酸ができないためSi含有量
を0.05〜0.50%の範囲に限定した。Mnは母材
の強度、靭性の確保には0.4%以上の添加が必要であ
るが、溶接部の靭性、割れ性などの許容できる範囲で上
限を1.8%とした。
Next, Si is necessary for securing the strength of the base metal and pre-deoxidizing molten steel, but if it exceeds 0.50%, HAZ
It forms a high carbon martensite of hardened structure in the structure and significantly reduces the toughness of the welded joint. Further, if less than 0.05%, the necessary preliminary deoxidation of molten steel cannot be performed, so the Si content is limited to the range of 0.05 to 0.50%. Although Mn needs to be added in an amount of 0.4% or more to secure the strength and toughness of the base metal, the upper limit was set to 1.8% within the allowable range of the toughness and cracking property of the welded portion.

【0012】VはVNとなり粒内フェライトの核生成に
よる細粒化と析出強化による高強度化に寄与する極めて
重要な元素であり0.05%未満では、VNの析出が不
十分で、それらの効果が得られず、0.20%を超える
と析出量が過剰になり母材靭性が低下するため0.20
%以下に限定した。NはTiNやVNの析出には極めて
重要な元素であり、0.004%未満ではTiN,VN
の析出量が不足し、析出強化と粒内フェライト組織の十
分な生成量が得られないため0.004%以上とした。
一方、含有量が0.015%を超えると母材靭性を低下
させ、連続鋳造時の鋳片の表面割れを生じさせるため
0.020%以下に限定した。
V is VN, which is an extremely important element that contributes to grain refinement by nucleation of intragranular ferrite and strengthening by precipitation strengthening. If it is less than 0.05%, the precipitation of VN is insufficient and those The effect is not obtained, and if it exceeds 0.20%, the precipitation amount becomes excessive and the base material toughness decreases, so 0.20.
% Or less. N is an extremely important element for the precipitation of TiN and VN. If it is less than 0.004%, TiN, VN
Therefore, the precipitation amount was insufficient, and the precipitation strengthening and the sufficient amount of the intragranular ferrite structure were not obtained, so the content was made 0.004% or more.
On the other hand, if the content exceeds 0.015%, the toughness of the base material is deteriorated and the surface crack of the slab is caused during continuous casting, so the content is limited to 0.020% or less.

【0013】Tiは鋳片にAl−Mg−Ti系複合酸化
物を生成し、さらに、圧延時にその粒子の外殻にTiN
を析出し、粒内フェライトの生成を促進させる効果と微
細なTiNを析出させオーステナイトの細粒化効果によ
り母材及び溶接部の靭性を向上させる。従って、0.0
05%未満では複合酸化物中のTi含有量が不足し、粒
内フェライト生成核としての作用が低下するためTi量
の下限値を0.005%以上とした。しかし0.025
%を超えると過剰なTiはTiCを生成し、析出硬化を
生じ溶接熱影響部の靭性を著しく低下させるためこれ未
満に限定した。
[0013] Ti forms an Al-Mg-Ti-based composite oxide in the cast slab, and TiN is added to the outer shell of the particles during rolling.
To promote the formation of intragranular ferrite and to precipitate fine TiN to improve the toughness of the base material and the welded portion due to the austenite grain refining effect. Therefore, 0.0
If it is less than 05%, the Ti content in the composite oxide becomes insufficient, and the action as intragranular ferrite-forming nuclei decreases, so the lower limit of the Ti content was made 0.005% or more. But 0.025
%, Excess Ti forms TiC, which causes precipitation hardening and significantly reduces the toughness of the weld heat affected zone.

【0014】成分を調整した溶鋼を予備脱酸処理を行い
溶存酸素を重量%で0.003〜0.015%に制御す
るのは、溶鋼の高清浄化と同時に鋳片内に微細な複合酸
化物を生成させるために行うものである。予備脱酸後の
The molten steel having the adjusted components is subjected to a preliminary deoxidation treatment to control the dissolved oxygen to 0.003 to 0.015% by weight in order to highly clean the molten steel and at the same time to form a fine composite oxide in the slab. Is to generate. After pre-deoxidation

〔0〕濃度が0.003%未満では粒内フェライト変態
を促進する粒内フェライト生成核の複合酸化物が減少
し、細粒化できず靭性を向上できない。一方、0.01
5%を超える場合は、他の条件を満たしていても、酸化
物が3μm以上の大きさに粗大化し脆性破壊の起点とな
り、靭性を低下させるために予備脱酸後の
If the [0] concentration is less than 0.003%, the amount of the complex oxide of the intragranular ferrite forming nuclei that promotes the intragranular ferrite transformation is reduced, and the grain size cannot be reduced to improve the toughness. On the other hand, 0.01
If it exceeds 5%, even if other conditions are satisfied, the oxide coarsens to a size of 3 μm or more and becomes a starting point of brittle fracture, and toughness is reduced.

〔0〕濃度を
重量%で0.003〜0.015%に限定した。
The [0] concentration was limited to 0.003 to 0.015% by weight.

【0015】予備脱酸処理は真空脱ガス、Al,Si,
Mg脱酸により行った。その理由は真空脱ガス処理は直
接溶鋼中の酸素をガスおよびCOガスとして除去し、A
l,Si,Mgなどの強脱酸により生成する酸化物系介
在物は浮上、除去しやすいため溶鋼の清浄化に有効なた
めである。次に上述の溶鋼にFe−Al−Mg合金を添
加し重量%でAl:0.005〜0.015%、Mg:
0.001〜0.010%に成分調整した溶鋼を鋳込
み、900℃まで冷却速度0.5〜20℃/sで冷却す
るのは、鋳片内に大きさ3μm以下のAl−Mg−Ti
系複合酸化物を20個/mm2 以上鋳片に含有させる目的
で行うものであり、以下順次その必要理由を以下に詳述
する。
The preliminary deoxidizing treatment is performed by vacuum degassing, Al, Si,
It was performed by Mg deoxidation. The reason is that the vacuum degassing process directly removes oxygen in molten steel as gas and CO gas,
This is because oxide-based inclusions such as l, Si, and Mg produced by strong deoxidation are easy to float and remove, and are effective for cleaning molten steel. Next, the Fe-Al-Mg alloy was added to the above-mentioned molten steel, and Al: 0.005 to 0.015% by weight% and Mg:
Casting the molten steel whose composition is adjusted to 0.001 to 0.010% and cooling it to 900 ° C. at a cooling rate of 0.5 to 20 ° C./s is due to Al-Mg-Ti having a size of 3 μm or less in the cast piece.
And performs the purpose of incorporating the system composite oxide into 20 / mm 2 or more cast piece, sequentially described in detail the necessary reasons below below.

【0016】Fe−Al−Mg合金はAl:1〜20
%、Mg:1〜20%残部がFeから成る合金である。
AlかMg金属の単体で添加した場合には、何れも強力
な酸化物形成元素であり、安定なAl2 3 やMgOを
生成し目的の活性な複合酸化物(スピネル結晶構造の陽
イオン空孔型、〔Mg,Ti〕O・Al2 3 )を生成
できない。加えてこれらの金属は低融点、低密度であり
溶鋼への添加歩留りが低く、均質に添加ができない。こ
れを改善するためにFe−Al−Mg合金とし融点と密
度を高め、同時にAl,Mgの濃度を低くし、酸化物生
成時の反応を抑え、安定添加を可能にした。
The Fe-Al-Mg alloy is Al: 1-20.
%, Mg: 1 to 20% The balance is Fe.
When Al or Mg metal alone is added, both are strong oxide-forming elements and produce stable Al 2 O 3 and MgO, which are active complex oxides of interest (cation vacancy of spinel crystal structure). Pore type, [Mg, Ti] O.Al 2 O 3 ) cannot be generated. In addition, these metals have a low melting point and a low density, and the addition yield to molten steel is low, so that they cannot be added uniformly. In order to improve this, an Fe-Al-Mg alloy was used to increase the melting point and density, and at the same time, lower the concentrations of Al and Mg, suppressing the reaction during oxide formation and enabling stable addition.

【0017】Alを0.005〜0.015%に限定す
るのは、Alは強力な脱酸元素であり、0.015%超
の含有は粒内フェライト変態を促進する複合酸化物が生
成されず、靭性の低下がもたらされることと、過剰の固
溶AlはNと化合しAlNを生成し、VNの析出量を低
減させるため0.015%以下に制限した。また、0.
005%未満では目的のAlを含有する複合酸化物が生
成できないために0.005%以上とした。
Al is limited to 0.005 to 0.015% because Al is a strong deoxidizing element, and the content of more than 0.015% forms a complex oxide which promotes intragranular ferrite transformation. However, in order to reduce the toughness, and excessive solid solution Al combines with N to form AlN, which is limited to 0.015% or less in order to reduce the amount of VN precipitation. Also, 0.
If it is less than 005%, the target composite oxide containing Al cannot be formed, so the content was made 0.005% or more.

【0018】Mgを0.001〜0.010%に限定す
るのは、Mgも強力な脱酸元素であり、0.010%超
の含有は粒内フェライト変態を促進する複合酸化物が生
成されず、粗大なMgOを生成し靭性、延性を低下させ
るために0.010%以下に制限した。また、0.00
1%未満では目的のMgを含有する複合酸化物が生成で
きないために0.001%以上とした。
The Mg content is limited to 0.001 to 0.010% because Mg is also a strong deoxidizing element, and the content of more than 0.010% produces a complex oxide that promotes intragranular ferrite transformation. However, in order to form coarse MgO and reduce toughness and ductility, it was limited to 0.010% or less. Also, 0.00
If it is less than 1%, the desired composite oxide containing Mg cannot be formed, so the content was made 0.001% or more.

【0019】不可避不純物として含有するP,Sはその
量について特に限定しないが凝固偏析による溶接割れ、
靭性の低下を生じるので、極力低減すべきであり、望ま
しくはP,S量はそれぞれ0.02%未満である。以上
の成分に加えて、母材強度の上昇、および母材の靭性向
上の目的で、Mo,Cr,Cu,Ni,Nb,B、の1
種または2種以上を含有することができる。
The amounts of P and S contained as unavoidable impurities are not particularly limited, but welding cracks due to solidification segregation,
Since the toughness is reduced, it should be reduced as much as possible, and the P and S contents are preferably less than 0.02%, respectively. In addition to the above components, one of Mo, Cr, Cu, Ni, Nb, and B is used for the purpose of increasing the strength of the base metal and improving the toughness of the base metal.
It may contain one species or two or more species.

【0020】Moは母材強度の確保に有効な元素である
が、高価であるため0.3%以下に限定した。Crは焼
き入れ性の向上により、母材の強化に有効である。しか
し1.0%を超える過剰の添加は、靭性および硬化性の
観点から有害となるため、上限を1.0%とした。
Mo is an element effective in securing the strength of the base material, but is expensive, so it is limited to 0.3% or less. Cr is effective in strengthening the base metal due to improvement in hardenability. However, excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.0%.

【0021】Cuは母材の強化、耐候性に有効な元素で
あるが、応力除去焼鈍による焼き戻し脆性、溶接割れ
性、熱間加工割れを促進するため、上限を1.0%とし
た。Niは、母材の強靭性を高める極めて有効な元素で
あるが2.0%を超える添加は合金コストを増加させ経
済的でないので上限を2.0%とした。Nb,Bは微量
添加により圧延組織を微細化できることから低合金化で
き溶接特性を向上できる。しかしながら、これらの元素
の過剰な添加は溶接部の硬化や、母材の高降伏点化をも
たらすので、各々の含有量の上限をNb:0.05%、
B:0.003%とした。
Cu is an element effective for strengthening and weathering of the base material, but in order to promote temper embrittlement due to stress relief annealing, weld crackability, and hot work cracking, the upper limit was made 1.0%. Ni is an extremely effective element that enhances the toughness of the base material, but addition of more than 2.0% increases alloy cost and is not economical, so the upper limit was made 2.0%. Nb and B can be made into a low alloy and the welding characteristics can be improved because the rolling structure can be refined by adding a small amount. However, since excessive addition of these elements brings about hardening of the welded portion and increase of the yield point of the base metal, the upper limit of the content of each is Nb: 0.05%,
B: 0.003%.

【0022】成分調整を終了した溶鋼を鋳込みから90
0℃まで冷却速度0.5〜20℃/sで冷却するのは、
酸化物粒子の個数の増加とその大きさを制御する目的で
行うものである。すなわち、過冷却により晶出する複合
酸化物の核生成数を増加させ、同時に冷却中の粒子成長
を抑制し、大きさ3μm以下にした酸化物を鋳片に20
個/mm2 以上含有させるために行うものである。この温
度間の冷却速度が0.5℃/s未満の緩冷却では複合酸
化物は凝集粗大化し、20個/mm2 未満となり靭性、延
性を低下させるため冷却速度を0.5℃/s以上とし
た。上限を20℃/sとしたのは、現状の鋳造技術での
冷却速度の限界であるからである。次に、鋳片に複合酸
化物が20個/mm2 以上含む必要がある理由について述
べる。製品の材質特性は製鋼、鋳造工程に支配される先
天的因子の鋳片の凝固組織、成分偏析、本発明の微細複
合酸化物、析出物等と圧延、TMCP、熱処理工程等に
より支配される後天的因子のミクロ組織により決定され
る。当然、この先天的因子である鋳片の性質は後の工程
に継承される。本発明の特徴は、この鋳片の先天的因子
の1つを制御することにあり、鋳片中に粒内フェライト
と異相析出の優先析出サイトとして機能する組成のAl
−Mg−Ti系複合酸化物を生成させ含ませることであ
る。この粒子の分散個数が20個/mm2 未満では複合酸
化物粒子上に析出し粒内フェライト核生成機能を発現す
るTiN,AlNとVNの析出サイト数として不十分で
粒内フェライト生成量が不足し細粒化できないためであ
る。なお、複合酸化物個数はX線マイクロアナライザー
(EPMA)で測定し決定したものである。
The molten steel whose composition has been adjusted is 90
Cooling to 0 ° C at a cooling rate of 0.5 to 20 ° C / s is
This is done for the purpose of increasing the number of oxide particles and controlling their size. That is, the number of nucleated complex oxides crystallized by supercooling is increased, grain growth during cooling is suppressed at the same time, and the oxide having a size of 3 μm or less is cast on a slab.
This is done in order to contain more than 1 piece / mm 2 . In slow cooling with a cooling rate of less than 0.5 ° C / s between these temperatures, the complex oxide aggregates and coarsens to less than 20 pieces / mm 2 and reduces the toughness and ductility, so the cooling rate is 0.5 ° C / s or more. And The upper limit is set to 20 ° C./s because it is the limit of the cooling rate in the current casting technology. Next, the reason why the slab needs to contain 20 or more complex oxides / mm 2 will be described. The material properties of the product are controlled by steelmaking, solidification structure of cast slab which is an innate factor governed by the casting process, component segregation, fine composite oxide of the present invention, precipitation and rolling, TMCP, heat treatment process, etc. It is determined by the microstructure of specific factors. Naturally, the property of the slab, which is an innate factor, is inherited in the subsequent process. The feature of the present invention resides in controlling one of the innate factors of the slab, and the composition of Al which functions as a preferential precipitation site for intragranular ferrite and heterophase precipitation in the slab.
-Mg-Ti-based composite oxide is generated and included. If the number of dispersed particles is less than 20 particles / mm 2 , the number of precipitation sites of TiN, AlN and VN that precipitate on the composite oxide particles and express the intragranular ferrite nucleation function is insufficient, and the amount of intragranular ferrite formed is insufficient. This is because it cannot be made finer. The number of complex oxides is determined by measuring with an X-ray microanalyzer (EPMA).

【0023】上記の処理を経た鋳片は次に1100〜1
300℃の温度域に再加熱する。この温度域に再加熱温
度を限定したのは、熱間加工による形鋼の製造には塑性
変形を容易にするため1100℃以上の加熱が必要であ
り、且つV,Nbなどの元素を十分に固溶させる必要が
あるため再加熱温度の下限を1100℃とした。その上
限は加熱炉の性能、経済性から1300℃とした。
The cast pieces that have been subjected to the above treatment are then 1100-1.
Reheat to a temperature range of 300 ° C. The reason for limiting the reheating temperature to this temperature range is that in the production of shaped steel by hot working, heating at 1100 ° C. or higher is required to facilitate plastic deformation, and elements such as V and Nb are sufficiently added. Since it is necessary to form a solid solution, the lower limit of the reheating temperature was set to 1100 ° C. The upper limit was set to 1300 ° C. in view of the performance and economical efficiency of the heating furnace.

【0024】熱間圧延のパス間で水冷し、圧延中に1回
以上、鋳片表層部の温度を700℃以下に冷却し、その
復熱過程で熱間圧延を行う、としたのは、圧延パス間の
水冷により、鋳片の表層部と内部とに温度差を付け、軽
圧下条件においても内部への加工を浸透させるためと、
低温圧延を短時間で効率的に行うためである。鋳片表層
部の温度を700℃以下に冷却するのは、圧延に引き続
き加速冷却するため、通常のγ温度域からの冷却では表
層部に、焼きが入り、硬化相を生成し、加工性を損ね
る。この様に限定した温度範囲内に冷却すれば、一旦γ
/α変態温度以下となり、次の圧延するまでに表層部は
復熱昇温し、二相共存温度域での加工となり、焼き入性
を著しく低減でき、加速冷却による表面層の硬化を防止
できる。
The reason is that water cooling is performed between hot rolling passes, the temperature of the surface layer of the slab is cooled to 700 ° C. or less during rolling once, and hot rolling is performed in the recuperating process. By water cooling between rolling passes, a temperature difference is created between the surface layer and the inside of the slab, and in order to infiltrate the processing inside even under light reduction conditions,
This is because low-temperature rolling is performed efficiently in a short time. Cooling the temperature of the surface layer of the cast slab to 700 ° C. or lower is accelerated cooling following rolling, so that cooling from the normal γ temperature range causes the surface layer to be hardened to form a hardened phase and improve workability. Spoil. If cooled within such a limited temperature range, γ
/ Α transformation temperature or less, the surface layer temperature rises to the recuperative temperature until the next rolling, and processing is performed in the two-phase coexisting temperature range, hardenability can be significantly reduced, and hardening of the surface layer due to accelerated cooling can be prevented. .

【0025】また、圧延終了後、引続き、1〜20℃/
Sの冷却速度で650〜400℃まで冷却し終了すると
したのは、加速冷却によりフェライトの粒成長の抑制と
パーライト及びベイナイト組織比率を増加し、低合金で
目標の強度を得るためであり、650〜400℃で加速
冷却を停止するのは、650℃超の加速冷却ではAr 1
点以上となり、一部γ相が残存し、フェライトの粒成長
の抑制とパーライト及びベイナイト組織比率を増加させ
ることができないため、600℃以下とした。また、4
00℃未満の冷却では、その後の放冷によりフェライト
相に過飽和に固溶しているC,Nを炭化物、窒化物とし
て析出させることができず、フェライト相の延性が低下
するため、この温度範囲に限定した。
After the rolling is completed, the temperature is continuously 1 to 20 ° C. /
When it is cooled down to 650 to 400 ° C. at the cooling rate of S and finished
The reason is that accelerated cooling suppresses ferrite grain growth.
Increased pearlite and bainite microstructure ratios with low alloy
To obtain the target strength, accelerate at 650-400 ℃
Cooling is stopped by accelerated cooling above 650 ° C. 1
Above the point, some γ phase remains, and ferrite grain growth
Of pearlite and increase of pearlite and bainite structure ratio
Therefore, the temperature was set to 600 ° C. or lower. Also, 4
If cooled below 00 ° C, ferrite will be released by subsequent cooling.
The supersaturated solid solution of C and N is used as a carbide and a nitride.
Cannot be precipitated by reducing the ductility of the ferrite phase
Therefore, the temperature range is limited to this.

【0026】[0026]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Fe−Al
−Mg合金を添加し、連続鋳造により250〜300mm
厚鋳片に鋳造した。鋳片の冷却はモールド下方の二次冷
却帯の水量と鋳片の引き抜き速度の選択により制御し
た。該鋳片を加熱し、粗圧延工程の図示は省略するが、
図1に示す、ユニバーサル圧延装置列でH形鋼に圧延し
た。圧延パス間水冷は中間ユニバーサル圧延機4の前後
に水冷装置5aを設け、フランジ内外面のスプレー冷却
とリバース圧延の繰り返しにより行い、圧延後の加速冷
却は仕上げユニバーサル圧延機6で圧延終了後にその後
面に設置した冷却装置5bでフランジ、ウェブをスプレ
ー冷却した。
[Example] A prototype shaped steel was melted in a converter, added with an alloy, and then pre-deoxidized to adjust the oxygen concentration of the molten steel, and then Fe-Al.
-Mg alloy added, continuous casting 250-300mm
It was cast into a thick slab. The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the drawing speed of the slab. Although the slab is heated and the rough rolling step is not shown,
It was rolled into an H-section steel by the universal rolling apparatus train shown in FIG. Water cooling between rolling passes is performed by providing water cooling devices 5a before and after the intermediate universal rolling mill 4 and repeating spray cooling of the inner and outer surfaces of the flange and reverse rolling. The flange and the web were spray-cooled by the cooling device 5b installed in.

【0027】機械特性は図2に示す、フランジ2の板厚
2 の中心部(1/2t2 )でフランジ幅全長(B)の
1/4,1/2幅(1/4B,1/2B)から、試験片
を採取し求めた。なお、これらの箇所の特性を求めたの
はフランジ1/4F部はH形鋼の平均的な機械特性を示
し、フランジ1/2F部はその特性が最も低下するの
で、これらの2箇所によりH形鋼の機械試験特性を代表
できると判断したためである。
The mechanical characteristics shown in FIG. 2 are 1/4 and 1/2 width (1 / 4B, 1/1) of the total flange width (B) at the central portion (1 / 2t 2 ) of the plate thickness t 2 of the flange 2. From 2B), a test piece was sampled and determined. The characteristics at these points were determined because the flange 1 / 4F section shows the average mechanical characteristics of the H-section steel, and the flange 1 / 2F section has the most deteriorated characteristics. This is because it was judged that it can represent the mechanical test characteristics of shaped steel.

【0028】表1および表2は、試作鋼の化学成分値、
鋳込み後の冷却速度及び鋳片中のAl−Mg−Ti系複
合酸化物個数を示す。
Tables 1 and 2 show the chemical composition values of the trial steels,
The cooling rate after casting and the number of Al-Mg-Ti-based complex oxides in the slab are shown.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表3および表4は圧延と加速冷却条件及び
製品の機械試験特性を示す。
Tables 3 and 4 show rolling and accelerated cooling conditions and mechanical test properties of the product.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】なお、圧延加熱温度を1280℃に揃えた
のは、一般的に加熱温度の低減は機械特性を向上させる
ことは周知であり、高温加熱条件は機械特性の最低値を
示すと推定され、この値がそれ以下の加熱温度での特性
を代表できると判断したためである。表5および表6に
示すように、本発明による鋼1〜7、鋼A1〜A6は、
目標の降伏点範囲がJIS規格の下限値+80N/mm2
内のSM490ではYP=325〜405N/mm2 、S
M520ではYP=335〜415N/mm2 、SM57
0ではYP=430〜510N/mm2 に制御され、しか
も、降伏比(YP/TS)も0.8以下の低YR値を満
たし、抗張力(前記JISG3106)と−10℃での
シャルピー衝撃値47(J)以上を十分に満たしてい
る。
It is well known that the rolling heating temperature is set to 1280 ° C. Generally, it is well known that the reduction of heating temperature improves the mechanical properties, and the high temperature heating condition is presumed to show the minimum value of the mechanical properties. This is because it was judged that this value can represent the characteristics at heating temperatures lower than that. As shown in Table 5 and Table 6, the steels 1 to 7 and the steels A1 to A6 according to the present invention are
Target yield point range is JIS standard lower limit +80 N / mm 2
In SM490, YP = 325-405N / mm 2 , S
For M520, YP = 335-415N / mm 2 , SM57
At 0, YP was controlled to 430 to 510 N / mm 2 , and the yield ratio (YP / TS) also satisfied the low YR value of 0.8 or less, and the tensile strength (said JISG3106) and the Charpy impact value at -10 ° C 47. (J) The above is sufficiently satisfied.

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】一方、比較鋼の鋼8と鋼B2は成分とFe
−Al−Mg合金添加及び圧延条件も満たしているが鋳
込み後の冷却速度が請求項の下限値以下であり、Al−
Mg−Ti系複合酸化物個数が不足し粒内フェライトの
生成が不十分となる。そのために1/2F部の−10℃
におけるシャルピー試験の目標値、vE-10 ≧47Jが
クリアーできない。9〜11は通常のAlキルド処理を
しておりAl量が本発明の制限を超え、Mgも添加され
ていないので、Al−Mg−Ti系複合酸化物が生成さ
れないために1/2F部の衝撃値が目標を達成できな
い。
On the other hand, the comparative steels, Steel 8 and Steel B2, have the same composition and Fe.
-Al-Mg alloy addition and rolling conditions are also satisfied, but the cooling rate after casting is not more than the lower limit of the claims, and Al-
The number of Mg-Ti-based composite oxides is insufficient, and the generation of intragranular ferrite is insufficient. Therefore, the temperature of 1 / 2F is -10 ° C.
The target value of the Charpy test in vE -10 ≧ 47J cannot be cleared. Nos. 9 to 11 were subjected to the usual Al kill treatment, the amount of Al exceeded the limit of the present invention, and Mg was not added. Therefore, since Al-Mg-Ti-based composite oxides were not produced, 1/2 F part The impact value cannot reach the target.

【0038】加えて、鋼10と鋼B2は圧延中水冷が施
されていないことと、圧延後の冷却条件が請求の範囲外
となるために、フェライト相の細粒化ができず降伏点が
低下し規格値の下限以下となる。即ち、本発明の要件が
総て満たされた時に、表5および表6に示される鋼1〜
7、鋼A1〜A6のように、圧延形鋼の狭幅降伏点及び
高靭性を有する信頼性の高い高靭性形鋼が圧延ままで製
造可能となる。なお、本発明が対象とする圧延形鋼は上
記実施例のH形鋼に限らずI形鋼、山形鋼、溝形鋼、不
等辺不等厚山形鋼等のフランジを有する形鋼にも適用で
きることは勿論である。
In addition, since steel 10 and steel B2 were not water-cooled during rolling and the cooling conditions after rolling were out of the claimed range, the ferrite phase could not be refined and the yield point was It falls and falls below the lower limit of the standard value. That is, when all the requirements of the present invention are satisfied, the steels 1 to 1 shown in Tables 5 and 6 are
7. Like steels A1 to A6, highly reliable high toughness shaped steels having a narrow yield point and high toughness of rolled shaped steels can be manufactured as rolled. The rolled shaped steel to which the present invention is applied is not limited to the H-shaped steel of the above-described embodiment, but is also applicable to shaped steel having a flange such as I-shaped steel, chevron steel, grooved steel, and unequal-thickness chevron steel. Of course you can.

【0039】本発明においては、転炉での製造を前提と
しているが、予備脱酸処理がより行い易い電気炉、もし
くはそれらとその他補助的溶融処理炉との組み合わせ工
程を採用して本発明の溶存酸素に調整してもよい。ま
た、本発明の複合酸化物としては、Al,Mg,Tiを
ベースとして含有しその他Si,Mn等の他元素を含有
する酸化物をAl−Mg−Ti系酸化物と呼称している
ことは当然である。なお、本発明のAl,Mgの添加に
は、Fe−Al−Mg合金の他Fe,Al,Mgの1種
もしくは2種を組み合わせた合金を使用してもよい。な
お、パス間の復熱過程はリバース圧延もしくは連続圧延
の当該圧延開始より終了までのパス間で実施するが、こ
の復熱を強制的に急速加熱する手段によってもよい。
Although the present invention is premised on the production in a converter, an electric furnace in which preliminary deoxidizing treatment is more easily performed, or a combination process of those and other auxiliary melting treatment furnaces is adopted. It may be adjusted to dissolved oxygen. Further, as the complex oxide of the present invention, an oxide containing Al, Mg, Ti as a base and other elements such as Si and Mn is referred to as an Al-Mg-Ti-based oxide. Of course. In addition to the Fe-Al-Mg alloy, an alloy of one or two of Fe, Al and Mg may be used for addition of Al and Mg of the present invention. The reheating process between the passes is performed between the passes from the start to the end of the reverse rolling or the continuous rolling, but this recuperation may be performed by a means for forcibly and rapidly heating.

【0040】[0040]

【発明の効果】本発明による鋳片と制御圧延法を適用し
た圧延形鋼は機械試験特性の最も保証しにくいフランジ
板厚1/2、幅1/2部においても十分な強度を有し、
優れた靭性を持つ形鋼の製造が圧延ままで可能となり、
大型鋼構造物の信頼性の向上、安全性の確保、経済性等
の産業上の効果は極めて顕著なものである。
EFFECT OF THE INVENTION The slab according to the present invention and the rolled shape steel to which the controlled rolling method is applied have sufficient strength even in the flange plate thickness 1/2 and width 1/2 part where mechanical test characteristics are the most difficult to guarantee.
Production of shaped steel with excellent toughness is possible without rolling,
Industrial effects such as improvement of reliability, ensuring safety, and economic efficiency of large steel structures are extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施する装置配置例の略図である。FIG. 1 is a schematic diagram of an example of device arrangement for carrying out the method of the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図である。
FIG. 2 is a view showing a cross-sectional shape of H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機 DESCRIPTION OF SYMBOLS 1 ... H-shaped steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water-cooling device for front and rear surfaces of intermediate rolling mill 5b ... Finishing mill Rear surface cooling device 6 ... Finishing rolling mill

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜1.8%、 V:0.05〜0.20%、 N:0.004〜0.0150%、 Ti:0.005〜0.025%を含み、残部がFeお
よび不可避不純物からなる溶鋼を、予備脱酸処理によっ
て、溶存酸素を重量%で0.003〜0.015%に調
整後さらに、Fe−Al−Mg合金を添加し重量%でA
l:0.005〜0.015%、Mg:0.001〜
0.010%に成分調整した溶鋼を鋳込み、900℃ま
で冷却速度0.5〜20℃/sで冷却し、鋳片内に大き
さ3μm以下のAl−Mg−Ti系複合酸化物を20個
/mm2 以上含有することを特徴とする靭性の優れた圧延
形鋼用の酸化物粒子分散鋳片。
1. By weight%, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 1.8%, V: 0.05 to 0.20. %, N: 0.004 to 0.0150%, Ti: 0.005 to 0.025%, and the balance of Fe and unavoidable impurities in a molten steel by pre-deoxidation treatment to obtain a dissolved oxygen content of 0% by weight. After adjusting to 0.003 to 0.015%, Fe-Al-Mg alloy is further added, and A is added in% by weight.
1: 0.005-0.015%, Mg: 0.001-
Molten steel with the composition adjusted to 0.010% is cast, cooled to 900 ° C at a cooling rate of 0.5 to 20 ° C / s, and 20 pieces of Al-Mg-Ti-based complex oxide having a size of 3 µm or less are included in the cast slab. / Mm 2 or more, an oxide particle-dispersed cast slab for rolled steel with excellent toughness, characterized by being contained.
【請求項2】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜1.8%、 V:0.05〜0.20%、 N:0.004〜0.015%、 Ti:0.005〜0.025%を含み、加えてMo:
0.3%以下、Cr:1.0%以下、Cu:1.0%以
下、Ni:2.0%以下、Nb:0.05%以下、B:
0.003以下、のいずれかの1種または2種以上を含
有し残部がFeおよび不可避不純物からなる溶鋼を、予
備脱酸処理によって溶存酸素を重量%で0.003〜
0.015%に調整後さらに、Fe−Al−Mg合金を
添加し重量%でAl:0.005〜0.015%、M
g:0.001〜0.010%に成分調整した溶鋼を鋳
込み、900℃まで冷却速度0.5〜20℃/sで冷却
し、鋳片内に大きさ3μm以下のAl−Mg−Ti系複
合酸化物を20個/mm2 以上含有することを特徴とする
靭性の優れた圧延形鋼用の酸化物粒子分散鋳片。
2. C: 0.04 to 0.20% by weight%, Si: 0.05 to 0.50%, Mn: 0.4 to 1.8%, V: 0.05 to 0.20 %, N: 0.004 to 0.015%, Ti: 0.005 to 0.025%, and Mo:
0.3% or less, Cr: 1.0% or less, Cu: 1.0% or less, Ni: 2.0% or less, Nb: 0.05% or less, B:
0.003 or less, a molten steel containing one or more of any one of the following and the balance consisting of Fe and unavoidable impurities, and a dissolved oxygen content of 0.003% by weight by preliminary deoxidation treatment.
After adjusting to 0.015%, Fe-Al-Mg alloy is further added, and Al: 0.005-0.015% by weight%, M
g: Molten steel having a composition adjusted to 0.001 to 0.010% is cast, cooled to 900 ° C. at a cooling rate of 0.5 to 20 ° C./s, and an Al-Mg-Ti system having a size of 3 μm or less in a cast piece. An oxide particle-dispersed cast slab for rolled shaped steel having excellent toughness, characterized by containing 20 or more complex oxides / mm 2 .
【請求項3】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜1.8%、 V:0.05〜0.20%、 N:0.004〜0.015%、 Ti:0.005〜0.025%を含み、残部がFeお
よび不可避不純物からなる溶鋼を、予備脱酸処理によっ
て溶存酸素を重量%で0.003〜0.015%に調整
後さらに、Fe−Al−Mg合金を添加し重量%でA
l:0.005〜0.015%、Mg:0.001〜
0.010%に成分調整した溶鋼を鋳込み、900℃ま
で冷却速度0.5〜20℃/sで冷却し、鋳片内に大き
さ3μm以下のAl−Mg−Ti系複合酸化物を20個
/mm2 以上含有する鋳片を1100〜1300℃の温度
域に再加熱後に圧延を開始し、圧延工程で鋳片表層部の
温度を700℃以下に水冷し、パス間の復熱過程で圧延
する工程を1回以上繰り返し圧延し、圧延終了後に1〜
20℃/sの冷却速度で650〜400℃まで冷却し放
冷することを特徴とする靭性の優れた圧延形鋼の製造方
法。
3. C: 0.04 to 0.20% by weight, Si: 0.05 to 0.50%, Mn: 0.4 to 1.8%, V: 0.05 to 0.20. %, N: 0.004 to 0.015%, Ti: 0.005 to 0.025%, with the balance being Fe and unavoidable impurities, a dissolved steel having a residual oxygen content of 0. After adjusting to 003 to 0.015%, Fe-Al-Mg alloy is further added, and A
1: 0.005-0.015%, Mg: 0.001-
Molten steel with the composition adjusted to 0.010% is cast, cooled to 900 ° C at a cooling rate of 0.5 to 20 ° C / s, and 20 pieces of Al-Mg-Ti-based complex oxide having a size of 3 µm or less are included in the cast slab. / Mm 2 or more contained slabs are reheated to a temperature range of 1100 to 1300 ° C, then rolling is started, water temperature of the surface layer of the slabs is cooled to 700 ° C or less in the rolling process, and rolling is performed in a reheat process between passes. Repeat the above process one or more times,
A method for producing a rolled shaped steel having excellent toughness, which comprises cooling to 650 to 400 ° C at a cooling rate of 20 ° C / s and allowing to cool.
【請求項4】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜1.8%、 V:0.05〜0.20%、 N:0.004〜0.015%、 Ti:0.005〜0.025%を含み、加えてMo:
0.3%以下、Cr:1.0%以下、Cu:1.0%以
下、Ni:2.0%以下、Nb:0.05%以下、B:
0.003以下、のいずれかの1種または2種以上を含
有し残部がFeおよび不可避不純物からなる溶鋼を、予
備脱酸処理によって、溶存酸素を重量%で0.003〜
0.015%に調整後さらに、Fe−Al−Mg合金を
添加し重量%でAl:0.005〜0.015%、M
g:0.001〜0.010%に成分調整した溶鋼を鋳
込み、900℃まで冷却速度0.5〜20℃/sで冷却
し、鋳片内に大きさ3μm以下のAl−Mg−Ti系複
合酸化物を20個/mm2 以上含有する鋳片を1100〜
1300℃の温度域に再加熱後に圧延を開始し、圧延工
程で鋳片表層部の温度を700℃以下に水冷し、パス間
の復熱過程で圧延する工程を1回以上繰り返し圧延し、
圧延終了後に1〜20℃/sの冷却速度で650〜40
0℃まで冷却し放冷することを特徴とする靭性の優れた
圧延形鋼の製造方法。
4. C: 0.04 to 0.20% by weight%, Si: 0.05 to 0.50%, Mn: 0.4 to 1.8%, V: 0.05 to 0.20 %, N: 0.004 to 0.015%, Ti: 0.005 to 0.025%, and Mo:
0.3% or less, Cr: 1.0% or less, Cu: 1.0% or less, Ni: 2.0% or less, Nb: 0.05% or less, B:
A molten steel containing one or more of 0.003 or less and the balance consisting of Fe and unavoidable impurities is subjected to a preliminary deoxidation treatment so as to have a dissolved oxygen content of 0.003 to 0.003% by weight.
After adjusting to 0.015%, Fe-Al-Mg alloy is further added, and Al: 0.005-0.015% by weight%, M
g: Molten steel having a composition adjusted to 0.001 to 0.010% is cast, cooled to 900 ° C. at a cooling rate of 0.5 to 20 ° C./s, and an Al-Mg-Ti system having a size of 3 μm or less in a cast piece. 1100 to slabs containing 20 or more complex oxides / mm 2
Rolling is started after reheating to a temperature range of 1300 ° C., the temperature of the surface layer of the cast slab is water-cooled to 700 ° C. or less in the rolling step, and the step of rolling in the reheat process between passes is repeated once or more,
650-40 at a cooling rate of 1-20 ° C / s after rolling
A method for producing rolled steel having excellent toughness, which comprises cooling to 0 ° C. and cooling.
JP01365294A 1994-02-07 1994-02-07 Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab Expired - Fee Related JP3241199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01365294A JP3241199B2 (en) 1994-02-07 1994-02-07 Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01365294A JP3241199B2 (en) 1994-02-07 1994-02-07 Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab

Publications (2)

Publication Number Publication Date
JPH07216498A true JPH07216498A (en) 1995-08-15
JP3241199B2 JP3241199B2 (en) 2001-12-25

Family

ID=11839160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01365294A Expired - Fee Related JP3241199B2 (en) 1994-02-07 1994-02-07 Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab

Country Status (1)

Country Link
JP (1) JP3241199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839921A1 (en) * 1996-04-17 1998-05-06 Nippon Steel Corporation Steel having improved toughness in welding heat-affected zone
CN102828115A (en) * 2012-09-25 2012-12-19 鞍钢股份有限公司 Medium plate Q345B and production method of same
KR20160132929A (en) 2014-04-15 2016-11-21 신닛테츠스미킨 카부시키카이샤 Steel h-beam and method for manufacturing same
KR20180102175A (en) 2016-03-02 2018-09-14 신닛테츠스미킨 카부시키카이샤 H-section steel for low temperature and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839921A1 (en) * 1996-04-17 1998-05-06 Nippon Steel Corporation Steel having improved toughness in welding heat-affected zone
EP0839921A4 (en) * 1996-04-17 1999-06-02 Nippon Steel Corp Steel having improved toughness in welding heat-affected zone
CN102828115A (en) * 2012-09-25 2012-12-19 鞍钢股份有限公司 Medium plate Q345B and production method of same
KR20160132929A (en) 2014-04-15 2016-11-21 신닛테츠스미킨 카부시키카이샤 Steel h-beam and method for manufacturing same
US10280476B2 (en) 2014-04-15 2019-05-07 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
KR20180102175A (en) 2016-03-02 2018-09-14 신닛테츠스미킨 카부시키카이샤 H-section steel for low temperature and its manufacturing method
US10900099B2 (en) 2016-03-02 2021-01-26 Nippon Steel Corporation Steel H-shape for low temperature service and manufacturing method therefor

Also Published As

Publication number Publication date
JP3241199B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
EP0589435B1 (en) Refractory shape steel material containing oxide and process for producing rolled shape steel of said material
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP5098210B2 (en) Refractory steel and method for producing the same
JP3507258B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP3507259B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JPH0776725A (en) Production of shape steel excellent in toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JPH0776724A (en) Production of shape steel excellent in toughness
JPH07238318A (en) Production of shape steel excellent in strength, toughness, and weldability and having flange

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees