JP2543282B2 - Method for producing controlled rolled steel with excellent toughness - Google Patents

Method for producing controlled rolled steel with excellent toughness

Info

Publication number
JP2543282B2
JP2543282B2 JP4067494A JP6749492A JP2543282B2 JP 2543282 B2 JP2543282 B2 JP 2543282B2 JP 4067494 A JP4067494 A JP 4067494A JP 6749492 A JP6749492 A JP 6749492A JP 2543282 B2 JP2543282 B2 JP 2543282B2
Authority
JP
Japan
Prior art keywords
rolling
steel
cooling
weight
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4067494A
Other languages
Japanese (ja)
Other versions
JPH05271754A (en
Inventor
広一 山本
卓 吉田
征男 黒川
康志 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4067494A priority Critical patent/JP2543282B2/en
Publication of JPH05271754A publication Critical patent/JPH05271754A/en
Application granted granted Critical
Publication of JP2543282B2 publication Critical patent/JP2543282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる靭性の優れた制御圧延形鋼の製造法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a controlled rolled steel having excellent toughness which is used as a structural member of a building.

【0002】[0002]

【従来の技術】建築物の超高層化、安全規準の厳格化な
どから、柱用に用いられる鋼材、例えば特に板厚の大き
いサイズのH形鋼(以下、極厚H形鋼と称す)には、一
層の高強度化、高靭性化、低降伏比化が求められてい
る。このような要求特性を満たすために、従来は圧延終
了後に焼準処理などの熱処理を施すことが行われた。熱
処理の付加は熱処理コストと生産効率の低下など大幅な
コスト上昇を招き、経済性に問題があった。この課題を
解決するためには圧延ままで高性能の材質特性を得られ
るように、新しい合金設計、製造法の開発が必要となっ
た。
2. Description of the Related Art Due to the construction of super-high-rise buildings and stricter safety standards, steel materials used for columns, such as H-section steel with a particularly large plate thickness (hereinafter referred to as extra-thick H-section steel) Are required to have higher strength, higher toughness, and lower yield ratio. In order to satisfy such required characteristics, conventionally, heat treatment such as normalizing treatment is performed after the rolling is completed. The addition of heat treatment causes a significant cost increase such as reduction of heat treatment cost and production efficiency, and there is a problem in economic efficiency. To solve this problem, it was necessary to develop a new alloy design and manufacturing method so that high-performance material properties could be obtained as-rolled.

【0003】一般に、フランジを有する形鋼、例えばH
形鋼をユニバーサル圧延により製造すると、圧延造形上
の制約およびその形状の特異性からウエブ、フランジ、
フィレットの各部位で圧延仕上げ温度、圧下率、冷却速
度に差を生じる。その結果、各部位間に強度、延性、靭
性のバラつきが発生し、例えば溶接構造用圧延鋼材(J
IS G3106)等の規準に満たない部位が生じる。
特に極厚H形鋼を連続鋳造スラブを素材とし圧延する場
合には、連続鋳造設備で製造可能なスラブ最大厚みに限
界があるため、低圧下比となる。さらに、圧延造形上の
寸法精度の制約から板厚の厚いフランジ部は高温圧延と
なり、圧延終了後の鋼材冷却は徐冷となって、ミクロ組
織は粗粒化する。
Generally, shaped steel with a flange, such as H
When a section steel is manufactured by universal rolling, the web, flange,
Differences occur in the rolling finish temperature, rolling reduction, and cooling rate at each part of the fillet. As a result, variations in strength, ductility, and toughness occur between the respective parts, and for example, rolled steel material for welded structure (J
Some parts do not meet the criteria such as IS G3106).
In particular, when an extremely thick H-section steel is rolled using a continuous casting slab as a raw material, there is a limit to the maximum thickness of the slab that can be produced by the continuous casting equipment, and therefore the lower pressure lower ratio is obtained. Further, the flange portion having a large thickness is subjected to high-temperature rolling due to the restriction of dimensional accuracy in the rolling molding, and the steel material after the rolling is gradually cooled, and the microstructure is coarsened.

【0004】TMCPによる細粒化法も周知であるが、
造形上の制約から形鋼圧延では鋼板の製造方法の大圧下
はできない。また、厚鋼板分野ではVNの析出効果を利
用し高強度・高靭性鋼を製造する、例えば特公昭62−
50548号公報、特公昭62−54862号公報の技
術が提案されている。しかしながら、この従来法では溶
鋼の脱酸を一般的なAl脱酸処理で行っているため、粒
内フェライト生成核として、組織の細粒化に効果を示す
微細な複合酸化物が生成せず、組織の細粒化が十分では
なかった。即ち、従来のAl脱酸は溶製過程の初期段階
でAl添加し、溶鋼の脱酸と生成したAl2 3 を浮上
分離し高清浄化を目的していた。即ち、従来は如何に溶
鋼の酸素濃度を下げ、鋼中の一次脱酸酸化物数を減らす
かに重点が置かれていた。
A fine graining method using TMCP is well known,
Due to the restrictions on shaping, large reduction of the steel sheet manufacturing method is not possible with shaped steel rolling. Further, in the field of thick steel plates, high strength and high toughness steel is manufactured by utilizing the precipitation effect of VN.
The techniques disclosed in Japanese Patent No. 50548 and Japanese Patent Publication No. 62-54862 are proposed. However, in this conventional method, since deoxidation of molten steel is performed by general Al deoxidation treatment, fine complex oxides that are effective in grain refinement of the structure are not generated as intragranular ferrite formation nuclei, The grain refinement of the tissue was not sufficient. That is, in the conventional Al deoxidation, Al was added in the initial stage of the melting process, and the deoxidation of the molten steel and the produced Al 2 O 3 were floated and separated for the purpose of high cleaning. That is, conventionally, emphasis has been placed on how to reduce the oxygen concentration of molten steel and the number of primary deoxidized oxides in steel.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の課題
を解決するために、製鋼、圧延および圧延後の冷却まで
の工程を総合的に対象とした新規な製造手段により、圧
延ままで組織を細粒化し、強度・靭性の優れた低合金圧
延形鋼の製造方法を提供すること、即ち、製造工程にお
いてフェライトの核生成サイトを増加させ、核生成した
フェライトの成長を抑制し細粒化する手段の提供を目的
とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention uses a novel manufacturing means comprehensively for the steps of steelmaking, rolling and cooling after rolling, and the structure as rolled To provide a method for producing a low alloy rolled steel having excellent strength and toughness, that is, to increase the nucleation sites of ferrite in the production process and suppress the growth of nucleated ferrite to reduce the grain size. The purpose is to provide a means to do so.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、 重量%でC:0.04〜0.20%、Si:0.05
〜0.50%、Mn:0.5〜1.8%、N:0.00
3〜0.012%、Ti:0.005〜0.025%を
含み、残部がFeおよび不可避不純物からなる溶鋼を、
予備脱酸処理によって、溶存酸素を重量%で0.003
〜0.015%に調整後さらに、金属アルミもしくはフ
ェロアルミの添加により脱酸し、該Al含有量が重量%
で0.005〜0.015%で、かつ溶鋼の溶存酸素
[O%]に対し−0.004≦[Al%]−1.1[O
%]≦0.006の関係を満たす鋳片に鋳造し、該鋳片
を1100〜1300℃の温度域に再加熱後に圧延を開
始し、中間圧延工程のパス間で鋼材表層部の温度をAr
3 −20℃以下・Ar3 −100℃以上に水冷し、その
復熱過程で少なくとも一回以上圧延し、最終仕上げ圧延
後に1〜30℃/Sの冷却速度で600〜400℃まで
冷却することを特徴とする靭性の優れた制御圧延形鋼の
製造方法、および 重量%でC:0.04〜0.2%、Si0.05〜
0.50%、Mn:0.5〜1.8%、N:0.003
〜0.012%、Ti:0.005〜0.025を含
み、加えてV≦0.02%、Cr≦0.7%、Mo≦
0.3%、Nb≦0.05%、Ni≦1.0%、Cu≦
1.0%の1種または2種以上を含み、残部がFeおよ
び不可避不純物からなる溶鋼を、予備脱酸処理によっ
て、溶存酸素を重量%で0.003〜0.015%に調
整後さらに、金属アルミもしくはフェロアルミの添加に
より脱酸し、該Al含有量が重量%で0.005〜0.
015%で、かつ溶鋼の溶存酸素[0%]に対し−0.
004≦[Al%]−1.1[O%]≦0.006の関
係を満たす鋳片に鋳造し、該鋳片を1100〜1300
℃の温度域に再加熱後に圧延を開始し、中間圧延工程の
パス間で鋼材表層部の温度をAr3 −20℃以下・Ar
3 −100℃以上に水冷し、その復熱過程で少なくとも
一回以上圧延し、最終仕上げ圧延後に1〜30℃/Sの
冷却速度で600〜400℃まで冷却することを特徴と
する靭性の優れた制御圧延形鋼の製造方法にある。
The gist of the present invention is as follows: C: 0.04 to 0.20% by weight, Si: 0.05
~ 0.50%, Mn: 0.5-1.8%, N: 0.00
Molten steel containing 3 to 0.012%, Ti: 0.005 to 0.025%, and the balance Fe and unavoidable impurities,
By the pre-deoxidation treatment, the dissolved oxygen is reduced to 0.003% by weight.
After being adjusted to 0.015%, it is further deoxidized by adding metallic aluminum or ferroaluminum.
Is 0.005 to 0.015%, and -0.004≤ [Al%]-1.1 [O] with respect to dissolved oxygen [O%] of molten steel.
%] ≦ 0.006, cast into a slab, reheat the slab to a temperature range of 1100 to 1300 ° C., and then start rolling, and set the temperature of the surface layer of the steel material to Ar between passes in the intermediate rolling step.
3 water cooling to -20 ° C. or less · Ar 3 -100 ° C. or more, that the rolling at least once with recuperation process is cooled after the final finish rolling to six hundred to four hundred ° C. at a cooling rate of 1 to 30 ° C. / S A method for producing a controlled rolled steel with excellent toughness, characterized by: C: 0.04 to 0.2% by weight, Si: 0.05 to
0.50%, Mn: 0.5 to 1.8%, N: 0.003
.About.0.012%, Ti: 0.005 to 0.025, and in addition V.ltoreq.0.02%, Cr.ltoreq.0.7%, Mo.ltoreq.
0.3%, Nb ≦ 0.05%, Ni ≦ 1.0%, Cu ≦
After adjusting the dissolved oxygen to 0.003 to 0.015% by weight, the molten steel containing 1.0% of one kind or two or more kinds and the balance consisting of Fe and unavoidable impurities is further adjusted to 0.003 to 0.015% by weight. It is deoxidized by adding metallic aluminum or ferroaluminum, and the Al content is 0.005 to 0.
015% and -0 .. with respect to the dissolved oxygen [0%] of the molten steel.
It casts to the slab which satisfy | fills the relationship of 004 <= [Al%]-1.1 [O%] <= 0.006, The said slab is 1100-1300.
Rolling is started after reheating to a temperature range of ° C., and the temperature of the surface layer portion of the steel material is Ar 3 -20 ° C.
3 water cooling to -100 ° C. or higher, and rolled at least once in the recuperation process, after the final finish rolling at a cooling rate of 1 to 30 ° C. / S excellent toughness, characterized by cooling to six hundred to four hundred ° C. There is a method of manufacturing controlled rolled steel.

【0007】本発明は、組織を細粒化するために、製鋼
過程において、適正な脱酸処理を行い、溶鋼の高清浄
化、溶存酸素濃度の制御、Alを最後に添加するAlの
添加順序とAl添加量の制御を行い、鋼中に粒内フェラ
イト生成核として働く微細な複合酸化物を鋼中に多数分
散させることと、熱間圧延パス間で水冷することによ
り、鋼板の表層部と内部に温度差を与え、低圧下条件下
においても、より高温の内部への圧下浸透を高め、粒内
フェライト生成核となる加工転位を導入し、粒内フェラ
イト生成核を増加させる。加えて、圧延後のγ/α変態
温度域を冷却制御することにより、その核生成させたフ
ェライトの成長を抑制させ、ミクロ組織の細粒化を可能
とし、高能率で製造コストの安価な制御圧延形鋼の製造
を可能とするものである。
According to the present invention, in order to reduce the grain size of the structure, appropriate deoxidation treatment is performed in the steelmaking process to make the molten steel highly clean, control the dissolved oxygen concentration, and add Al in the final addition order. By controlling the amount of Al added and dispersing a large number of fine composite oxides that act as intragranular ferrite formation nuclei in the steel and water-cooling between hot rolling passes, A temperature difference is applied to the steel, and even under a low pressure condition, the infiltration into the inside at a higher temperature is enhanced, and a work dislocation that becomes an intragranular ferrite formation nucleus is introduced to increase the intragranular ferrite formation nucleus. In addition, by controlling the cooling of the γ / α transformation temperature range after rolling, the growth of the nucleated ferrite is suppressed and the microstructure can be made finer, and the production cost can be controlled at high efficiency. It enables the production of rolled steel.

【0008】[0008]

【作用】以下、本発明の作用を実施例に基づき詳細に説
明するに説明する。鋼の高強度化はフェライト結晶の細
粒化、合金元素による固溶体強化、硬化相による分散強
化、微細析出物による析出強化等によって達成される。
また、高靭性化は結晶の細粒化、母相(フェライト)の
固溶N、Cの低減、破壊の発生起点となる硬化相の高炭
素マルテンサイト及び粗大な酸化物・析出物の低減と微
細化等により達成される。一般的には鋼の高強度化によ
り靭性は低下し、高強度化と高靭性化は相反する対処が
必要である。両者を同時に満たす冶金因子は唯一、結晶
の細粒化である。
The operation of the present invention will be described in detail below with reference to examples. Higher strength of steel is achieved by finer ferrite crystals, solid solution strengthening by alloying elements, dispersion strengthening by hardened phases, and precipitation strengthening by fine precipitates.
In addition, toughening reduces the grain size of crystals, reduces the solid solution N and C of the parent phase (ferrite), and reduces the high carbon martensite in the hardening phase and the coarse oxides / precipitates that are the starting points of fracture. It is achieved by miniaturization and the like. In general, toughness is reduced by increasing the strength of steel, and contradictory measures must be taken to increase strength and toughness. The only metallurgical factor that satisfies both at the same time is grain refinement.

【0009】本発明の特徴は、製鋼工程において、脱酸
の制御を行い、鋼中に粒内フェライト生成核として働く
多数の微細な複合酸化物の分散と、熱間圧延工程の圧延
パス間で水冷し、その復熱時に圧延することを繰り返す
ことの、両処理により粒内フェライト生成核を増加さ
せ、加えて圧延後に加速冷却を行い、そのフェライトの
成長を抑制しミクロ組織の細粒化を行い、インライン圧
延プロセスにより母材の高強度化と高靭性化を達成する
ものである。次に本発明が対象とする形鋼の基本成分範
囲の限定理由について述べる。
A feature of the present invention is that deoxidation is controlled in the steelmaking process, and a large number of fine composite oxides that act as intragranular ferrite formation nuclei are dispersed in the steel and between rolling passes in the hot rolling process. By repeating water cooling and rolling at the time of recuperation, both treatments increase intragranular ferrite formation nuclei, and in addition, accelerated cooling is carried out after rolling to suppress the growth of the ferrite and reduce the microstructure grain. The base material is strengthened and toughened by an in-line rolling process. Next, the reasons for limiting the basic composition range of the shaped steel targeted by the present invention will be described.

【0010】まず、Cは鋼の強度を向上させる有効な成
分として添加するもので、0.04%未満では構造用鋼
として必要な強度が得られず、また、0.20%を超え
る過剰の添加は、母材靭性、耐溶接割れ性、溶接熱影響
部靭性などを著しく低下させるので下限を0.04%、
上限を0.20%とした。
First, C is added as an effective component for improving the strength of steel. If it is less than 0.04%, the strength required for structural steel cannot be obtained, and if it exceeds 0.20%, it is excessive. Addition significantly lowers the base metal toughness, weld crack resistance, weld heat affected zone toughness, etc., so the lower limit is 0.04%,
The upper limit was 0.20%.

【0011】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50%を超えるとHAZ
組織内に硬化組織の高炭素マルテンサイトを生成し、溶
接継手部靭性を著しく低下させる。また、0.05%未
満では必要な溶鋼の予備脱酸ができないためSi含有量
を0.05〜0.50%の範囲に限定した。
Next, Si is necessary for securing the strength of the base metal and pre-deoxidizing molten steel, but if it exceeds 0.50%, HAZ
Generates high-carbon martensite having a hardened structure in the structure, and significantly reduces the toughness of the welded joint. If the content is less than 0.05%, the necessary preliminary deoxidation of molten steel cannot be performed, so the Si content is limited to the range of 0.05 to 0.50%.

【0012】Mnは母材の強度、靭性の確保には0.5
%以上の添加が必要であるが、溶接部の靭性、割れ性な
どの許容できる範囲で上限を1.8%とした。
Mn is 0.5 for securing the strength and toughness of the base material.
% Or more is necessary, but the upper limit is set to 1.8% within an allowable range such as toughness and cracking of the welded portion.

【0013】NはTiNやVNの析出には極めて重要な
元素であり、0.003%未満ではTiN,VNの析出
量が不足し、析出強化と粒内フェライト組織の十分な生
成量が得られないため0.003%以上とした。含有量
が0.012%を超えると母材靭性を低下させ、連続鋳
造時の鋼片の表面割れを生じさせるため0.012%以
下に限定した。
N is an extremely important element for precipitation of TiN and VN. If it is less than 0.003%, the amount of precipitation of TiN and VN is insufficient, and precipitation strengthening and a sufficient amount of intragranular ferrite structure are obtained. Since it does not exist, it is set to 0.003% or more. When the content exceeds 0.012%, the toughness of the base material is reduced, and surface cracks of the steel slab during continuous casting are caused, so that the content is limited to 0.012% or less.

【0014】Tiは脱酸材としてTi系酸化物を生成さ
せ、圧延時に粒内フェライトの生成を促進させる効果と
微細なTiNを析出させオーステナイトの細粒化と粒内
フェライトの生成を促進させる効果により母材及び溶接
部の靭性を向上させる。従って、0.005%以下では
酸化物中のTi含有量が不足し、粒内フェライト生成核
としての作用が低下するためTi量の下限値を0.00
5%以上とした。しかし0.025%を超えると過剰な
TiはTiCを生成し、析出硬化を生じ溶接熱影響部の
靭性を著しく低下させるためこれ未満に限定した。
As a deoxidizing agent, Ti forms a Ti-based oxide and promotes the generation of intragranular ferrite during rolling, and the effect of precipitating fine TiN to refine austenite and promote the formation of intragranular ferrite. Improves the toughness of the base material and the welded part. Therefore, if it is 0.005% or less, the Ti content in the oxide is insufficient, and the action as intragranular ferrite formation nuclei is reduced, so the lower limit of the Ti content is 0.00
It was set to 5% or more. However, if it exceeds 0.025%, excessive Ti forms TiC, precipitation hardening occurs, and the toughness of the weld heat affected zone is remarkably reduced, so the Ti content is limited to this range.

【0015】Alは強力な脱酸元素であり、0.015
%超の含有は粒内フェライト変態を促進する複合酸化物
が生成されず、靭性の低下がもたらされることと、過剰
の固溶AlはNと化合しAlNを生成し、VNの析出量
を低減させるため0.015%以下に限定した。また、
0.005%未満では目的のAlを含有する複合酸化物
が生成できないため、0.005%以上とした。かつ溶
鋼の溶存酸素[0%]に対しAl量を重量%で、−0.
004%≦[Al%]−1.1[0%]≦0.006%
の関係を満たすように限定したのは、この関係式におい
て重量%でAlが[O]濃度に対し過剰である場合は複
合酸化物の生成数が減少し、粒内フェライト生成核とし
て無効なAl2 3 を多数生成し組織の細粒化ができず
靭性が低下し、重量%でAlが[O]濃度に対し過小で
ある場合は粒内フェライト核となる複合酸化物が著しく
減少するため、このように限定した。なお、Alを製鋼
過程の後期に添加する理由はAlは脱酸力が強く安定な
Al2 3 を生成し、目的の低融点の複合酸化物が生成
しにくいためである。
Al is a strong deoxidizing element, and 0.015
%, The complex oxide that promotes the intragranular ferrite transformation is not generated, resulting in a decrease in toughness. Excess solute Al combines with N to form AlN, which reduces the amount of VN precipitation. Therefore, the content is limited to 0.015% or less. Also,
If it is less than 0.005%, the target composite oxide containing Al cannot be formed, so the content was made 0.005% or more. And the amount of Al is -0.% By weight% with respect to the dissolved oxygen [0%] of the molten steel.
004% ≦ [Al%] − 1.1 [0%] ≦ 0.006%
In the relational expression, when Al is excessive with respect to the [O] concentration in the above relational expression, the number of complex oxides formed decreases, and Al that is ineffective as intragranular ferrite formation nuclei is reduced. Since a large amount of 2 O 3 is generated and the structure cannot be refined, the toughness is reduced, and when Al is too small with respect to the [O] concentration in weight%, the amount of compound oxide that becomes intragranular ferrite nuclei is significantly reduced. , Limited like this. The reason for adding Al in the latter stage of the steelmaking process is that Al forms stable Al 2 O 3 with a strong deoxidizing power, and it is difficult to form the target low melting point composite oxide.

【0016】不可避不純物として含有するP,Sはその
量について特に限定しないが凝固偏析による溶接割れ、
靭性の低下を生じるので、極力低減すべきであり、望ま
しくはP,S量はそれぞれ0.02%未満である。
The amounts of P and S contained as inevitable impurities are not particularly limited, but welding cracks due to solidification segregation,
Since toughness is reduced, the content of P and S should be less than 0.02%.

【0017】以上が本発明鋼の基本成分であるが、母材
強度の上昇、および母材の靭性向上の目的で、V,C
r,Mo,Nb,Ni,Cu,の1種または2種以上を
含有することができる。まず、VはVNとして粒内フェ
ライト組織の生成による細粒化、析出強化による高強度
化のために重要な元素であるが、0.20%を超えると
析出量が過剰になり母材靭性が低下するため0.20%
以下に限定した。
The above are the basic components of the steel of the present invention. V, C are used for the purpose of increasing the strength of the base metal and improving the toughness of the base metal.
One or more of r, Mo, Nb, Ni and Cu can be contained. First, V is an important element as VN for grain refinement due to the formation of intragranular ferrite structure and high strength due to precipitation strengthening. However, if it exceeds 0.20%, the amount of precipitation becomes excessive and the base material toughness decreases. 0.20% to decrease
Limited to:

【0018】Crは焼き入れ性の向上により、母材の強
化に有効である。しかし0.7%を超える過剰の添加
は、靭性および硬化性の観点から有害となるため、上限
を0.7%とした。Moは母材強度の確保に有効な元素
であるが、高価であるため0.3%以下に限定した。N
bは母材の強靭化に有効であるが0.05%を超える過
剰の添加は、靭性及び硬化性の観点から有害となるため
0.05%以下とした。Niは、母材の強靭性を高める
極めて有効な元素であるが、1.0%を超える添加は合
金コストを増加させ経済的でないので上限を1.0%と
した。Cuは母材の強化、耐候性に有効な元素である
が、応力除去焼鈍による焼き戻し脆性、溶接割れ性、熱
間加工割れを促進するため、上限を1.0%とした。
[0018] Cr is effective in strengthening the base material by improving the hardenability. However, excessive addition exceeding 0.7% is harmful from the viewpoint of toughness and curability, so the upper limit was made 0.7%. Mo is an element effective for securing the base material strength, but is limited to 0.3% or less because it is expensive. N
b is effective for toughening the base material, but excessive addition exceeding 0.05% is harmful from the viewpoint of toughness and hardenability, so b was made 0.05% or less. Ni is an extremely effective element that enhances the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%. Cu is an element effective for strengthening the base material and weathering resistance. However, the upper limit is set to 1.0% in order to promote temper embrittlement by stress relief annealing, weld cracking, and hot work cracking.

【0019】次に、上記成分でなる溶鋼を予備脱酸処理
により溶存酸素を制御する。溶存酸素の制御は溶鋼を高
清浄化すると同時に鋳片内に微細な複合酸化物を生成さ
せるために極めて重要である。溶存酸素を重量%で0.
003〜0.015%に制御する理由は、予備脱酸後の
[O]濃度が0.003%未満では粒内フェライト変態
を促進する粒内フェライト生成核の複合酸化物が減少
し、細粒化できず靭性を向上できない。一方、0.01
5%を超える場合は、他の条件を満たしていても、酸化
物が粗粒化し脆性破壊の起点となり、靭性を低下させる
ための予備脱酸後の[O]濃度を重量%で0.003〜
0.015%に限定した。上記の予備脱酸処理は真空脱
ガス、Al,Si,Ca,Mg脱酸により行った。その
理由は真空脱ガス処理は直接溶鋼中の酸素をガスおよび
COガスとして除去し、Al,Si,Mgなどの強脱酸
により生成する酸化物系介在物は浮上し除去しやすいた
め溶鋼の清浄化に極めて効果的である。
Next, the dissolved oxygen containing the above components is controlled by pre-deoxidation treatment to control the dissolved oxygen. The control of dissolved oxygen is extremely important for highly cleaning molten steel and at the same time producing fine complex oxides in the slab. Dissolved oxygen is 0.
The reason for controlling to 003 to 0.015% is that when the [O] concentration after preliminary deoxidation is less than 0.003%, the complex oxide of intragranular ferrite-forming nuclei that promotes intragranular ferrite transformation decreases, and Toughness cannot be improved. On the other hand, 0.01
If it exceeds 5%, the oxide becomes coarse and becomes a starting point of brittle fracture even if other conditions are satisfied, and the [O] concentration after preliminary deoxidation for reducing toughness is 0.003% by weight. ~
It was limited to 0.015%. The preliminary deoxidizing treatment was performed by vacuum degassing and deoxidizing Al, Si, Ca, and Mg. The reason is that the vacuum degassing process directly removes oxygen in molten steel as gas and CO gas, and oxide inclusions generated by strong deoxidation of Al, Si, Mg, etc. float and are easily removed, so that the molten steel is cleaned. It is extremely effective for

【0020】上記の処理を経た鋳片は次に1100〜1
300℃の温度域に再加熱する。この温度域に再加熱温
度を限定したのは、熱間加工による形鋼の製造には塑性
変形を容易にするため1100℃以上の加熱が必要であ
り、且つV,Nbなどの元素を十分に固溶させる必要が
あるため再加熱温度の下限を1100℃とした。その上
限は加熱炉の性能,経済性から1300℃とした。
The slab that has undergone the above treatment is then 1100-1.
Reheat to a temperature range of 300 ° C. The reason for limiting the reheating temperature to this temperature range is that the production of a shaped steel by hot working requires heating at 1100 ° C. or more to facilitate plastic deformation, and sufficiently removes elements such as V and Nb. Since it is necessary to form a solid solution, the lower limit of the reheating temperature was set to 1100 ° C. The upper limit was set to 1300 ° C in view of the performance and economical efficiency of the heating furnace.

【0021】加熱した鋼材は粗圧延、中間圧延、仕上げ
圧延の各工程によって圧延造形するが、本発明法の圧延
工程における特徴は、中間圧延工程において圧延パス間
で鋳片表層部の温度をAr3 −20℃以下、Ar3 −1
00℃以上に冷却し、鋼材表面が復熱する過程で熱間圧
延を行うことを少なくとも中間圧延工程で1回以上行う
ことである。これは圧延パス間の水冷により、鋼片の表
層部と内部とに温度差を付与し、低圧下条件においても
内部への加工を浸透させるためと、低温圧延を短時間で
効率的に行うためである。復熱圧延のパス回数は被圧延
材の厚みの大きさ、例えばH形鋼の場合ではフランジの
厚みに応じ、厚みが大きい場合には複数回行う。ここ
で、鋳片表層部の温度をAr3 −20℃以下、Ar3
100℃以上に限定し冷却する理由は、圧延に引き続き
加速冷却するため、通常のγ温度域からの冷却では表層
部に焼きが入り硬化相を生成し、加工性を損ねるためで
ある。この温度に限定した範囲内に冷却すれば、一旦γ
/α変態温度を切り、次の圧延までに表層部は復熱昇温
し、二相共存温度域での加工となって焼き入性を著しく
低減でき、加速冷却による表面層の硬化を防止できる。
The heated steel material is roll-molded by each process of rough rolling, intermediate rolling and finish rolling. The characteristic feature of the rolling process of the method of the present invention is that the temperature of the surface layer of the slab is Ar between rolling passes in the intermediate rolling process. 3 -20 ° C. or less, Ar 3 -1
It is to perform hot rolling at least in the intermediate rolling step at least once in the process of cooling to 00 ° C. or higher and reheating the surface of the steel material. This is because water cooling between rolling passes creates a temperature difference between the surface layer and the inside of the steel slab so that the internal processing can permeate even under low pressure conditions, and low-temperature rolling can be performed efficiently in a short time. Is. The number of passes of recuperative rolling depends on the thickness of the material to be rolled, for example, the thickness of the flange in the case of H-section steel, and is performed plural times when the thickness is large. Here, the temperature of the surface layer of the cast slab is set to Ar 3 −20 ° C. or lower, Ar 3
The reason why the cooling is limited to 100 ° C. or higher is that accelerated rolling is followed by accelerated cooling, so that cooling from the normal γ temperature range causes quenching in the surface layer portion to form a hardened phase and impairs workability. If cooled within the range limited to this temperature, once γ
/ Α transformation temperature is cut, the surface layer temperature rises by recuperative heating until the next rolling, and processing is performed in the two-phase coexisting temperature range, hardenability can be significantly reduced, and hardening of the surface layer due to accelerated cooling can be prevented. .

【0022】中間圧延工程の後、仕上げ圧延工程で最終
製品とするが、本発明では最終仕上げ圧延が終了した後
に、1〜30℃/Sの冷却速度で600〜400℃まで
鋼材を冷却する。このいわゆる加速冷却によりフェライ
トの粒成長抑制とパーライト及びベイナイト組織比率を
増加させ、低合金で目標の強度が得られる。600〜4
00℃で加速冷却を停止するのは、600℃超の加速冷
却ではAr1 点以上となり、一部γ相が残存しフェライ
トの粒成長の抑制とパーライト及びベイナイト組織比率
を増加させることができないためである。また、400
℃未満の冷却では、その後の放冷によりフェライト相に
過飽和に固溶しているC,Nを炭化物、窒化物として析
出させることができず、フェライト相の延性が低下する
ため、この温度範囲に限定した。
After the intermediate rolling process, the final product is obtained in the finish rolling process. In the present invention, the steel product is cooled to 600 to 400 ° C. at a cooling rate of 1 to 30 ° C./S after the final finishing rolling is completed. This so-called accelerated cooling suppresses the grain growth of ferrite and increases the pearlite and bainite structure ratios, so that the target strength can be obtained with a low alloy. 600-4
The reason why the accelerated cooling is stopped at 00 ° C. is that the accelerated cooling above 600 ° C. results in Ar 1 point or more, and a part of the γ phase remains to suppress the grain growth of ferrite and to increase the pearlite and bainite structure ratio. Is. Also, 400
If the temperature is lower than 0 ° C, C and N that are solidly dissolved in the ferrite phase in a supersaturated state cannot be precipitated as carbides or nitrides by subsequent cooling, and the ductility of the ferrite phase is reduced. Limited

【0023】[0023]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を測定し、その量に見
合ったAl量を添加し連続鋳造により250〜300mm
厚鋳片に鋳造した後、図1示すユニバーサル圧延装置列
でH形鋼に圧延した。粗圧延工程の図示は省略している
が、中間ユニバーサル圧延機4の前後に水冷装置5aを
設け、圧延パス間水冷はフランジ内外面のスプレー冷却
とリバース圧延の繰り返しにより行い、仕上げユニバー
サル圧延機6で圧延を終了した後、この仕上げユニバー
サル圧延機の後面に設けた冷却装置5bで加速冷却を製
品のフランジ、ウェブをスプレー冷却した。
[Examples] Prototype shaped steel was melted in a converter, pre-deoxidized after adding an alloy, oxygen concentration of the molten steel was measured, and an Al amount corresponding to the amount was added and continuous casting was carried out to 250 to 300 mm.
After being cast into a thick slab, it was rolled into an H-section steel by the universal rolling apparatus train shown in FIG. Although illustration of the rough rolling step is omitted, water cooling devices 5a are provided before and after the intermediate universal rolling machine 4, water cooling between rolling passes is performed by repeating spray cooling of the inner and outer surfaces of the flange and reverse rolling, and a finishing universal rolling machine 6 After the rolling was completed in step 1, accelerated cooling was performed by spray cooling of the product flange and web by a cooling device 5b provided on the rear surface of this finishing universal rolling machine.

【0024】機械特性は図2に示すフランジ2の板厚t
2 の中心部(1/2t2 )でフランジ幅全長(B)の1
/4,1/2幅(1/4B,1/2B)から、ウェブ3
の板厚中心部でウェブ高さの1/2Hから試験片を採集
し求めた。なお、これらの箇所の特性を求めたのはフラ
ンジ1/4F部とウェブ1/2w部はフランジ部とウェ
ブ部の各々の平均的な機械特性を示し、フランジ1/2
F部はその特性が最も低下するので、これら3箇所によ
りH形鋼の機械試験特性を代表できるとしたためであ
る。
The mechanical characteristics are the thickness t of the flange 2 shown in FIG.
1 of the total flange width (B) at the center of 2 (1 / 2t 2 ).
/ 4, 1/2 width (1 / 4B, 1 / 2B) to web 3
A test piece was collected from the center of the plate thickness of 1 / 2H of the web height. In addition, the characteristics of these portions were obtained because the flange 1 / 4F portion and the web 1 / 2w portion show the average mechanical characteristics of the flange portion and the web portion, respectively.
This is because the characteristics of the F portion are the most deteriorated, so that the mechanical test characteristics of the H-section steel can be represented by these three points.

【0025】表1は、試作鋼の化学成分値を示し、表2
は圧延と加速冷却条件に対する機械試験特性を示す。な
お、圧延加熱温度を1280℃に揃えたのは、一般的に
加熱温度の低減は機械特性を向上させることは周知であ
り、高温加熱条件は機械特性の最低値を示すと推定さ
れ、この値がそれ以下の加熱温度での特性を代表できる
と判断したためである。
Table 1 shows the chemical composition values of the trial steels, and Table 2
Shows mechanical test characteristics for rolling and accelerated cooling conditions. The rolling heating temperature is set to 1280 ° C. It is well known that reducing the heating temperature generally improves the mechanical properties, and it is estimated that the high temperature heating condition shows the lowest value of the mechanical properties. This is because it was determined that the characteristics at a heating temperature lower than that can be represented.

【0026】表2に示すように、本発明による鋼1〜6
は、目標の母材強度(前記JISG3106)と−5℃
でのシャルピー値47(J)以上を十分に満たしてい
る。一方、比較鋼の鋼7はAl脱酸過程において、溶存
酸素濃度に対してAl添加量が本発明の上限を超えたこ
とと、圧延後の加速冷却処理が施されていないため、母
材強度は規格を満たすものの、フランジの板厚1/2で
幅1/2部の靭性は目標値を満足しない。鋼8は本発明
の微量Al脱酸処理のみ施されているが、他の処理が施
されいてないため、組織の細粒化が十分でなく母材強度
の規格を満たせず、加えてフランジの板厚1/2で幅1
/2部の靭性も目標値を満足しない。また、鋼9は本発
明において加速冷却処理のみを施し、強度は目標値を達
成するものの、他の処理を行っていないためフランジ部
の靭性が目標値を満たさず、さらに、圧延パス間水冷に
よるフランジ外側面のγ細粒化が達成されていないので
加速冷却によりフランジ表層部は焼きが入り、外側面の
表面硬さが目標のビッカース硬さでHv240以下を遥
かに超えて、加工性の低下を生じる。
As shown in Table 2, steels 1 to 6 according to the present invention
Is the target base material strength (JISG3106) and -5 ° C
Satisfies a Charpy value of 47 (J) or more. On the other hand, in the comparative steel, steel 7, in the Al deoxidation process, the amount of Al added exceeded the upper limit of the present invention with respect to the dissolved oxygen concentration, and the accelerated cooling treatment after rolling was not performed. Satisfies the standard, but the toughness of the flange thickness of 1/2 and the width of 1/2 portion does not satisfy the target value. Steel 8 was only subjected to the trace Al deoxidation treatment of the present invention, but was not subjected to any other treatment, so the grain refinement of the structure was not sufficient and the standard of the base metal strength was not satisfied. 1/2 thickness and 1 width
The toughness of the / 2 part also does not satisfy the target value. Further, although the steel 9 is subjected to only accelerated cooling treatment in the present invention, and the strength achieves the target value, the toughness of the flange portion does not satisfy the target value because no other treatment is carried out. Since gamma grain refinement on the outer surface of the flange has not been achieved, the surface layer of the flange is hardened by accelerated cooling, and the surface hardness of the outer surface far exceeds the target Vickers hardness of Hv240 or less, and the workability deteriorates. Cause

【0027】即ち、本発明の要件が総て満たされた時
に、表2に示される形鋼1〜6のように、圧延形鋼の機
械試験特性を最も満たしにくいフランジ板厚1/2,幅
1/2部においても十分な強度を有し、優れた靭性を持
つ圧延形鋼の製造が可能になる。なお、本発明が対象と
する圧延形鋼は上記実施例のH形鋼に限らずI形鋼、山
形鋼、溝形鋼、不等辺不等厚山形鋼等のフランジを有す
る形鋼にも適用できることは勿論である。
That is, when all the requirements of the present invention are satisfied, like the shaped steels 1 to 6 shown in Table 2, the flange plate thickness 1/2 and the width which are the most difficult to satisfy the mechanical test characteristics of the rolled shaped steels. It is possible to manufacture a rolled steel having a sufficient strength even in ½ part and excellent toughness. The rolled shaped steel to which the present invention is applied is not limited to the H-shaped steel of the above-described embodiment, but is also applicable to shaped steel having a flange such as I-shaped steel, chevron steel, channel steel, and unequal-thickness chevron steel. Of course you can.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明により圧延形鋼は機械試験特性を
最も保証しにくいフランジ板厚1/2,幅1/2部にお
いても十分な強度を有し、優れた靭性を持つ制御圧延形
鋼の製造がオンラインで可能になり、大型建造物の信頼
性向上、安全性の確保、経済性等の産業上の効果は極め
て顕著なものがある。
EFFECTS OF THE INVENTION According to the present invention, the rolled rolled steel is a controlled rolled steel having excellent toughness with sufficient strength even in the flange plate thickness 1/2 and width 1/2 part where it is most difficult to guarantee mechanical test characteristics. Can be manufactured online, and industrial effects such as reliability improvement, safety assurance, and economic efficiency of large-scale buildings are extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施する装置配置例の略図である。FIG. 1 is a schematic diagram of an example of device arrangement for carrying out the method of the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図である。
FIG. 2 is a view showing a cross-sectional shape of H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1 H形鋼 2 フランジ 3 ウェブ 4 中間圧延機 5a 中間圧延機前後面の水冷装置 5b 仕上げ圧延機後面冷却装置 6 仕上げ圧延機 1 H-shaped steel 2 Flange 3 Web 4 Intermediate rolling mill 5a Intermediate rolling mill Water-cooling device for front and rear surfaces 5b Finishing rolling mill Rear cooling device 6 Finishing rolling mill

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.5〜1.8%、 N:0.003〜0.012%、 Ti:0.005〜0.025% を含み、残部がFeおよび不可避不純物からなる溶鋼
を、予備脱酸処理によって、溶存酸素を重量%で0.0
03〜0.015%に調整後さらに、金属アルミもしく
はフェロアルミの添加により脱酸し、該Al含有量が重
量%で0.005〜0.015%で、かつ溶鋼の溶存酸
素[O%]に対し−0.004≦[Al%]−1.1
[O%]≦0.006の関係を満たす鋳片に鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後に圧延
を開始し、中間圧延工程のパス間で鋼材表層部の温度を
Ar3 −20℃以下・Ar3 −100℃以上に水冷し、
その復熱過程で少なくとも一回以上圧延し、最終仕上げ
圧延後に1〜30℃/Sの冷却速度で600〜400℃
まで冷却することを特徴とする靭性の優れた制御圧延形
鋼の製造方法。
1. C: 0.04 to 0.20% by weight%, Si: 0.05 to 0.50%, Mn: 0.5 to 1.8%, N: 0.003 to 0.012 %, Ti: 0.005 to 0.025%, and the balance of Fe and unavoidable impurities in a molten steel by preliminary deoxidation treatment to obtain a dissolved oxygen content of 0.0% by weight.
After adjusting to 03 to 0.015%, it is further deoxidized by addition of metal aluminum or ferroaluminum, the Al content is 0.005 to 0.015% by weight, and dissolved oxygen [O%] of molten steel. On the other hand, -0.004≤ [Al%]-1.1
[O%] ≦ 0.006 is cast into a slab, the slab is reheated to a temperature range of 1100 to 1300 ° C., and then rolling is started, and the temperature of the steel material surface layer portion between passes of the intermediate rolling step. Water-cooled to Ar 3 -20 ° C or lower and Ar 3 -100 ° C or higher,
Roll at least once in the recuperating process, and 600-400 ° C at a cooling rate of 1-30 ° C / S after final finishing rolling.
A method for producing a controlled rolled steel with excellent toughness, which is characterized by cooling up to
【請求項2】 重量%で C:0.04〜0.2%、 Si0.05〜0.50%、 Mn:0.5〜1.8%、 N:0.003〜0.012%、 Ti:0.005〜0.025%を含み、 加えてV≦0.02%、Cr≦0.7%、Mo≦0.3
%、Nb≦0.05%、Ni≦1.0%、Cu≦1.0
%の1種または2種以上を含み、残部がFeおよび不可
避不純物からなる溶鋼を、予備脱酸処理によって、溶存
酸素を重量%で0.003〜0.015%に調整後さら
に、金属アルミもしくはフェロアルミの添加により脱酸
し、該Al含有量が重量%で0.005〜0.015%
で、かつ溶鋼の溶存酸素[0%]に対し−0.004≦
[Al%]−1.1[0%]≦0.006の関係を満た
す鋳片に鋳造し、該鋳片を1100〜1300℃の温度
域に再加熱後に圧延を開始し、中間圧延工程のパス間で
鋼材表層部の温度をAr3 −20℃以下・Ar3 −10
0℃以上に水冷し、その復熱過程で少なくとも一回以上
圧延し、最終仕上げ圧延後に1〜30℃/Sの冷却速度
で600〜400℃まで冷却することを特徴とする靭性
の優れた制御圧延形鋼の製造方法。
2. C .: 0.04 to 0.2%, Si: 0.05 to 0.50%, Mn: 0.5 to 1.8%, N: 0.003 to 0.012% by weight. Ti: 0.005 to 0.025% inclusive, in addition V ≦ 0.02%, Cr ≦ 0.7%, Mo ≦ 0.3
%, Nb ≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0
% Of the molten steel containing one or two or more of Fe and the balance of Fe and inevitable impurities, and adjusting the dissolved oxygen to 0.003 to 0.015% by weight by preliminary deoxidation. Deoxidized by addition of ferroaluminium, and the Al content is 0.005 to 0.015% by weight.
And -0.004 ≦ for dissolved oxygen [0%] of molten steel
[Al%]-1.1 [0%] ≤ 0.006 is cast into a slab, the slab is reheated to a temperature range of 1100 to 1300 ° C, and then rolling is started. The temperature of the surface layer of the steel material between the passes is Ar 3 -20 ° C or less · Ar 3 -10
Excellent toughness control characterized by cooling to 0 ° C or higher with water, rolling at least once in the recuperating process, and cooling to 600 to 400 ° C at a cooling rate of 1 to 30 ° C / S after final finishing rolling. Rolled shaped steel manufacturing method.
JP4067494A 1992-03-25 1992-03-25 Method for producing controlled rolled steel with excellent toughness Expired - Lifetime JP2543282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4067494A JP2543282B2 (en) 1992-03-25 1992-03-25 Method for producing controlled rolled steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4067494A JP2543282B2 (en) 1992-03-25 1992-03-25 Method for producing controlled rolled steel with excellent toughness

Publications (2)

Publication Number Publication Date
JPH05271754A JPH05271754A (en) 1993-10-19
JP2543282B2 true JP2543282B2 (en) 1996-10-16

Family

ID=13346602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4067494A Expired - Lifetime JP2543282B2 (en) 1992-03-25 1992-03-25 Method for producing controlled rolled steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP2543282B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180102175A (en) 2016-03-02 2018-09-14 신닛테츠스미킨 카부시키카이샤 H-section steel for low temperature and its manufacturing method
KR20240059920A (en) * 2022-10-28 2024-05-08 현대제철 주식회사 Section steel and method for manufacturing section steel

Also Published As

Publication number Publication date
JPH05271754A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JPH06279928A (en) High strength rail excellent in toughness and ductility and its production
JP3507259B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JPH06122943A (en) Yield point-controlled rolled shape steel and its production
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JPH04279248A (en) Manufacture of rolled shapes piersed fine oxide with excellent toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
CN114134414B (en) Low-yield-ratio high-toughness steel and preparation method thereof
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JP2962629B2 (en) Manufacturing method of refractory section steel with excellent internal characteristics in ultrasonic testing
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604