JP2601961B2 - Manufacturing method of rolled section steel with excellent toughness - Google Patents

Manufacturing method of rolled section steel with excellent toughness

Info

Publication number
JP2601961B2
JP2601961B2 JP29553791A JP29553791A JP2601961B2 JP 2601961 B2 JP2601961 B2 JP 2601961B2 JP 29553791 A JP29553791 A JP 29553791A JP 29553791 A JP29553791 A JP 29553791A JP 2601961 B2 JP2601961 B2 JP 2601961B2
Authority
JP
Japan
Prior art keywords
steel
toughness
rolling
weight
section steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29553791A
Other languages
Japanese (ja)
Other versions
JPH05132716A (en
Inventor
広一 山本
康志 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29553791A priority Critical patent/JP2601961B2/en
Publication of JPH05132716A publication Critical patent/JPH05132716A/en
Application granted granted Critical
Publication of JP2601961B2 publication Critical patent/JP2601961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる靭性の優れた圧延形鋼の製造方法に係わる
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rolled steel section having excellent toughness and used as a structural member of a building.

【0002】[0002]

【従来の技術】建築物の超高層化、安全規準の厳格化な
どから、柱用に用いられる鋼材、例えば特に板厚の大き
なサイズのH形鋼(以下、極厚H形鋼と称す)には、一
層の高強度化、高靭性化、低降伏比化が求められてい
る。このような要求特性を満たすために、従来は圧延終
了後に焼準処理などの熱処理を施すことが行われた。熱
処理の付加は熱処理コストと生産効率の低下など大幅な
コスト上昇を招き、経済性に問題があった。この課題を
解決するためには圧延ままで高性能の材質特性を得られ
るように、新しい合金設計、製造法の開発が必要となっ
た。
2. Description of the Related Art Due to the increase in height of buildings and stricter safety standards, steel materials used for pillars, for example, H-beams having a particularly large thickness (hereinafter referred to as extra-thick H-beams) have been developed. There is a demand for higher strength, higher toughness, and lower yield ratio. In order to satisfy such required characteristics, conventionally, a heat treatment such as a normalizing process has been performed after the completion of rolling. The addition of heat treatment causes a significant increase in cost, such as a decrease in heat treatment cost and production efficiency, and has a problem in economy. To solve this problem, it was necessary to develop a new alloy design and manufacturing method so that high-performance material properties could be obtained as-rolled.

【0003】一般に、フランジを有する形鋼、例えばH
形鋼をユニバーサル圧延により製造すると、圧延造形上
の制約およびその形状の特異性からウエブ、フランジ、
フィレットの各部位で圧延仕上げ温度、圧下率、冷却速
度に差を生じる。その結果、強度、延性、靭性がバラつ
き、例えば溶接構造用圧延鋼材(JIS G3106)
等の規準に満たない部位が生じる。特に極厚H形鋼を連
続鋳造スラブを素材とし圧延する場合には連続鋳造設備
で製造可能なスラブ最大厚みに限界があるため、低圧下
比となる。さらに、圧延造形上の制約から板厚の厚いフ
ランジ部は高温圧延となり、圧延終了後の鋼材冷却は徐
冷となって、ミクロ組織は粗粒化する。細粒化方法とし
ては厚鋼板分野で行われている制御圧延法があるが、造
形上の制約から適用は困難である。
Generally, a section steel having a flange, for example, H
When a section steel is manufactured by universal rolling, the web, flange,
Differences occur in the rolling finish temperature, rolling reduction, and cooling rate at each part of the fillet. As a result, the strength, ductility, and toughness vary, for example, a rolled steel material for a welded structure (JIS G3106)
Some parts do not meet the criteria. In particular, when rolling an extremely thick H-section steel as a continuous cast slab as a raw material, the maximum thickness of the slab that can be manufactured by the continuous casting facility is limited, so that the reduction ratio is low. Further, the flange portion having a large thickness is subjected to high-temperature rolling due to the restriction on the rolling molding, and the steel material after rolling is gradually cooled, whereby the microstructure becomes coarse. As a grain refining method, there is a controlled rolling method used in the field of thick steel plates, but it is difficult to apply the method due to restrictions on modeling.

【0004】一方、厚鋼板分野ではVNの析出効果を利
用し高強度・高靭性鋼を製造する、例えば特公昭62−
50548号公報、特公昭62−54862号公報に開
示された技術が提案されているが、溶鋼を従来法による
Al脱酸処理をしているため粒内フェライト生成核とし
て、組織の細粒化に効果を示す微細な複合酸化物が生成
せず、組織の細粒化が十分ではなかった。即ち、従来の
Al脱酸は溶製過程の初期段階でAl添加し、溶鋼の脱
酸と生成したAl2 3 を浮上分離し高清浄化を目的に
していた。即ち、如何に溶鋼の酸素濃度を下げ、鋼中の
一次脱酸酸化物数を減らすかに主題がおかれていた。本
発明は従来の発想とは異なり、脱酸過程を制御すること
により粒内フェライト変態核として有能な微細な複合酸
化物を析出させ利用する点に特徴がある。
On the other hand, in the field of thick steel sheets, high strength and high toughness steels are manufactured by utilizing the precipitation effect of VN.
Japanese Patent Publication No. 50548 and Japanese Patent Publication No. Sho 62-54862 propose a technique. However, since the molten steel is subjected to Al deoxidation treatment by a conventional method, it is used as an intragranular ferrite generation nucleus to reduce the grain size. A fine composite oxide showing an effect was not generated, and the grain refinement of the structure was not sufficient. That is, in the conventional Al deoxidation, Al was added at the initial stage of the smelting process, and the purpose was to deoxidize the molten steel and float off the generated Al 2 O 3 to achieve high purification. That is, the theme was how to reduce the oxygen concentration of molten steel and the number of primary deoxidized oxides in steel. The present invention is characterized in that, unlike the conventional idea, a fine composite oxide capable of being used as an intragranular ferrite transformation nucleus is precipitated by controlling the deoxidation process and used.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の課題
を解決するために、製鋼過程において適正な脱酸処理を
行い、溶鋼の高清浄化、溶存酸素濃度の制御、Alを最
後に添加するAlの添加順序とAl添加量の制御を行
い、鋼中に多数の微細な複合酸化物を分散させることに
より、上述したような形鋼特有の圧延条件下において
も、オーステナイト粒内から粒内フェライト(以下、I
GFと称す)を生成させ、ミクロ組織の細粒化により、
材質特性に対し圧延仕上げ温度、圧延圧下比、鋼板厚
(冷却速度)等の依存性が鈍感な、材質特性に優れ、安
価で経済的な、靭性の優れた圧延形鋼の製造方法を提供
することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention performs an appropriate deoxidation treatment in a steelmaking process, highly purifies molten steel, controls dissolved oxygen concentration, and finally adds Al. By controlling the order of addition of Al and the amount of Al added, and dispersing a large number of fine composite oxides in the steel, even under the rolling conditions peculiar to the section steel as described above, even within the austenitic grains, the intragranular ferrite is reduced. (Hereinafter I
GF), and by micronizing the microstructure,
To provide a method for manufacturing a rolled section steel excellent in material properties, inexpensive, economical, and excellent in toughness, in which the dependence of rolling finish temperature, rolling reduction ratio, steel sheet thickness (cooling rate), etc. on the material properties is insensitive. It is in.

【0006】[0006]

【課題を解決するための手段】本発明は、圧延冷却途上
のオーステナイト相からのフェライト変態時にオーステ
ナイト粒内にIGFを生成させ、ミクロ組織を細粒化す
る方法により、高能率で製造コストの安価な形鋼の製造
が可能であると言う知見に基づき前記課題を解決したも
ので、その要旨とするところは、(1)重量%でC:
0.04〜0.20%、Si:0.05〜0.50%、
Mn:0.8〜1.8%、V:0.05〜0.20%、
N:0.004〜0.015%、Ti:0.005〜
0.025%を含み、残部がFeおよび不可避不純物か
らなる溶鋼を、予備脱酸処理によって、溶存酸素を重量
%で0.003〜0.015%に調整後さらに、金属ア
ルミもしくはフェロアルミの添加により脱酸し、該Al
含有量が重量%で0.005〜0.015%で、かつ溶
鋼の溶存酸素〔O%〕に対し−0.004≦〔Al%〕
−1.1〔O%〕≦0.006の関係を満たす鋳片に鋳
造し、該鋳片を1100〜1300℃の温度域に再加熱
後、熱間圧延を行い750〜1050℃の温度範囲で圧
延を終了することを特徴とする靭性の優れた圧延形鋼の
製造方法および、(2)重量%でC:0.04〜0.2
0%、Si:0.05〜0.50%、Mn:0.8〜
1.8%、V:0.05〜0.20%、N:0.004
〜0.015%、Ti:0.005〜0.025%を含
み、加えてCr≦0.7%、Mo≦0.3%、Nb≦
0.05%、Ni≦1.0%、Cu≦1.0%、の1種
または2種以上を含み、残部がFeおよび不可避不純物
からなる溶鋼を、予備脱酸処理によって、溶存酸素を重
量%で0.003〜0.015%に調整後さらに、金属
アルミもしくはフェロアルミの添加により脱酸し、該A
l含有量が重量%で0.005〜0.015%で、かつ
溶鋼の溶存酸素〔O%〕に対し−0.004≦〔Al
%〕−1.1〔O%〕≦0.006の関係を満たす鋳片
に鋳造し、該鋳片を1100〜1300℃の温度域に再
加熱後、熱間圧延を行い750〜1050℃の温度範囲
で圧延を終了することを特徴とする靭性の優れた圧延形
鋼の製造方法である。
SUMMARY OF THE INVENTION The present invention provides a method for producing IGF in austenite grains at the time of ferrite transformation from an austenite phase during rolling and cooling to refine the microstructure, thereby achieving high efficiency and low production cost. The present invention has solved the above-mentioned problem based on the finding that it is possible to produce various shaped steels. The gist of the present invention is that (1) C:
0.04 to 0.20%, Si: 0.05 to 0.50%,
Mn: 0.8 to 1.8%, V: 0.05 to 0.20%,
N: 0.004 to 0.015%, Ti: 0.005 to
The molten steel containing 0.025%, the balance being Fe and unavoidable impurities, is adjusted to 0.003 to 0.015% by weight of dissolved oxygen by pre-deoxidation treatment, and then metal aluminum or ferroaluminum is added. And the Al
The content is 0.005 to 0.015% by weight%, and -0.004 ≦ [Al%] based on the dissolved oxygen [O%] of the molten steel.
Casting into a slab satisfying the relationship of −1.1 [O%] ≦ 0.006, reheating the slab to a temperature range of 1100 to 1300 ° C., then hot rolling, and a temperature range of 750 to 1050 ° C. And (2) C: 0.04 to 0.2% by weight.
0%, Si: 0.05 to 0.50%, Mn: 0.8 to
1.8%, V: 0.05 to 0.20%, N: 0.004
0.015%, Ti: 0.005 to 0.025%, Cr ≦ 0.7%, Mo ≦ 0.3%, Nb ≦
Molten steel containing one or more of 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0%, and the balance being Fe and unavoidable impurities, is subjected to a preliminary deoxidation treatment to dissolve dissolved oxygen by weight. %, Adjusted to 0.003 to 0.015%, and further deoxidized by adding metallic aluminum or ferroaluminum.
l is 0.005 to 0.015% by weight, and -0.004 ≦ [Al
%]-1.1 [O%] ≦ 0.006, and the resulting slab is reheated to a temperature range of 1100 to 1300 ° C., and then hot-rolled to a temperature of 750 to 1050 ° C. This is a method for producing a rolled section steel having excellent toughness, characterized by terminating rolling in a temperature range.

【0007】[0007]

【作用】以下、本発明について詳細に説明する。鋼の高
強度化は、フェライト結晶の細粒化、合金元素によ
る固溶体強化、硬化相による分散強化、微細析出物
による析出強化等によって達成される。また、高靭性化
は、結晶の細粒化、母相(フェライト)の固溶N,
Cの低減、破壊の発生起点となる硬化相の高炭素マル
テンサイト及び粗大な酸化物、析出物の低減と微細化等
により達成される。
Hereinafter, the present invention will be described in detail. Higher strength of steel is achieved by refinement of ferrite crystals, solid solution strengthening by alloy elements, dispersion strengthening by hardened phases, precipitation strengthening by fine precipitates, and the like. Higher toughness is achieved by reducing the crystal grain size and dissolving N,
This is achieved by reduction of C, reduction and refinement of high-carbon martensite and coarse oxides and precipitates in a hardened phase which is a starting point of fracture.

【0008】一般的には鋼の高強度化により靭性は低下
し、高強度化と高靭性化は相反する対処が必要である。
両者を同時に満たす冶金因子は唯一、結晶の細粒化であ
る。本発明の特徴は製鋼工程における溶鋼の溶存酸素量
の制御と出鋼直前に微量Alを添加する脱酸元素の添加
手順とにより、鋼中に、Al,Ti,Mn,Si元素に
より構成される複合酸化物粒子を核にしたMnS,Ti
NとVNの複合析出物を分散析出させることにより、加
熱圧延時のオーステナイト粒内からの粒内フェライト変
態の促進効果を利用し、形鋼の圧延時の制約条件のもと
で圧延中に、その析出物を核に粒内フェライトを生成さ
せ、上記の結晶の細粒化を行い、圧延ままで母材の高強
度化と高靭性化を達成するものである。
In general, toughness is reduced by increasing the strength of steel, and contradictory measures must be taken to increase strength and toughness.
The only metallurgical factor that satisfies both at the same time is grain refinement. The feature of the present invention is that the steel is made up of Al, Ti, Mn, and Si elements by controlling the amount of dissolved oxygen in the molten steel in the steelmaking process and adding a deoxidizing element that adds a small amount of Al immediately before tapping. MnS, Ti with composite oxide particles as nuclei
By dispersing and precipitating complex precipitates of N and VN, utilizing the effect of promoting intragranular ferrite transformation from within austenite grains during hot rolling, during rolling under the constraints of rolling section steel, The precipitates are used as nuclei to generate intragranular ferrite, to refine the crystal, and to achieve high strength and high toughness of the base material as it is rolled.

【0009】次に本発明形鋼の基本成分範囲の限定理由
について述べる。まず、Cは鋼の強度を向上させる有効
な成分として添加するもので、0.04%未満では構造
用鋼として必要な強度が得られず、また、0.20%を
超える過剰の添加は、母材靭性、耐溶接割れ性、溶接熱
影響部靭性など著しく低下させるので下限を0.04
%、上限を0.20%とした。
Next, the reasons for limiting the range of the basic components of the shaped steel according to the present invention will be described. First, C is added as an effective component for improving the strength of steel. If it is less than 0.04%, the strength required for structural steel cannot be obtained, and if it exceeds 0.20%, excessive addition of The lower limit is set to 0.04 because it significantly lowers the base metal toughness, weld cracking resistance, and toughness of the weld heat affected zone.
% And the upper limit was set to 0.20%.

【0010】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50%を超えるとHAZ
組織内に硬化組織の高炭素マルテンサイトを生成し、溶
接継手部靭性を著しく低下させる。また、0.05%未
満では必要な溶鋼の予備脱酸ができないためSi含有量
を0.05〜0.50%の範囲に限定した。Mnは母材
の強度、靭性の確保には0.8%以上の添加が必要であ
るが、溶接部の靭性、割れ性などの許容できる範囲で上
限を1.8%とした。
[0010] Next, Si is necessary for securing the strength of the base material and for pre-deoxidizing the molten steel.
Generates high-carbon martensite having a hardened structure in the structure, and significantly reduces the toughness of the welded joint. If the content is less than 0.05%, the necessary preliminary deoxidation of molten steel cannot be performed, so the Si content is limited to the range of 0.05 to 0.50%. Mn needs to be added in an amount of 0.8% or more to ensure the strength and toughness of the base material, but the upper limit is set to 1.8% within an allowable range of the toughness and cracking properties of the welded portion.

【0011】VはVNとして粒内フェライト組織の生成
による細粒化、析出強化による高強度化のために極めて
重要な元素であり、0.05%未満ではVNの析出量が
不十分であり、0.20%を超えると析出量が過剰にな
り母材靭性が低下するため0.05〜0.20%に限定
した。
V is an extremely important element as VN for grain refinement due to formation of an intragranular ferrite structure and high strength due to precipitation strengthening. If less than 0.05%, the amount of VN precipitated is insufficient. If it exceeds 0.20%, the amount of precipitation will be excessive and the base material toughness will decrease, so it was limited to 0.05 to 0.20%.

【0012】NはVNの析出には極めて重要な元素であ
り、0.004%未満ではVNの析出量が不足し、粒内
フェライト組織の十分な生成量が得られないため0.0
04%以上とした。含有量が0.015%を超えると母
材靭性を低下させ、連続鋳造時の鋼片の表面割れを生じ
させるため0.015%以下に限定した。
N is an extremely important element for the precipitation of VN. If the content is less than 0.004%, the amount of VN precipitated becomes insufficient, and a sufficient amount of intragranular ferrite structure cannot be obtained.
04% or more. When the content exceeds 0.015%, the toughness of the base material is reduced, and surface cracking of the steel slab during continuous casting is performed, so that the content is limited to 0.015% or less.

【0013】Tiは脱酸材としTi系酸化物を生成さ
せ、圧延時には粒内フェライトの生成を促進させる効果
と微細なTiNを析出させオーステナイトの細粒化と粒
内フェライトの生成を促進し母材及び溶接部の靭性を向
上させる。従って、0.005%以下では酸化物中のT
i含有量が不足し、粒内フェライト生成核としての作用
が低下するためTi量の下限値を0.005%以上とし
た。しかし0.025%を超えると過剰なTiはTiC
を生成し、析出硬化を生じ溶接熱影響部の靭性を著しく
低下させるためこれ未満に限定した。
[0013] Ti is used as a deoxidizing agent to form a Ti-based oxide, which has the effect of promoting the formation of intragranular ferrite during rolling and precipitating fine TiN to promote the reduction of austenite grain size and the formation of intragranular ferrite. Improve the toughness of materials and welds. Therefore, at 0.005% or less, T
Since the i content is insufficient and the effect as an intragranular ferrite generation nucleus is reduced, the lower limit of the Ti content is set to 0.005% or more. However, if it exceeds 0.025%, excess Ti becomes TiC
, Precipitation hardening occurs and the toughness of the heat affected zone is significantly reduced.

【0014】Alは強力な脱酸元素であり、0.015
%超の含有は粒内フェライト変態を促進する複合酸化物
が形成されず、靭性の低下がもたらされることと、過剰
の固溶AlはNと化合しAlNを生成し発明鋼の特徴で
あるVNの析出量を低減させるため0.015%以下に
限定した。また、0.005%未満では目的のAlを含
有する複合酸化物が生成できないため、0.005%以
上とした。かつ溶鋼の溶存酸素〔O%〕に対しAl量を
重量%で、−0.004%≦〔Al%〕−1.1〔O
%〕≦0.006%の関係を満たすように限定したの
は、この関係式において重量%でAlが[O]濃度に対
し過剰である場合は複合酸化物の生成数が減少し、粒内
フェライト生成核として無効なAl2 3 を多数生成し
組織の細粒化ができず靭性が低下し、重量%でAlが
[O]濃度に対し過小である場合は粒内フェライト核と
なる複合酸化物が著しく減少するため、このように限定
した。なお、Alを製鋼過程の最後に添加する理由はA
lは脱酸力が強く安定なAl2 3 を生成し、目的の低
融点の複合酸化物が生成しにくいためである。
Al is a strong deoxidizing element, and 0.015
%, A complex oxide that promotes intragranular ferrite transformation is not formed, resulting in a decrease in toughness, and excess solid solution Al combines with N to form AlN, which is a feature of the invention steel, VN. Was limited to 0.015% or less in order to reduce the amount of precipitation. Further, if the content is less than 0.005%, the target composite oxide containing Al cannot be produced, so the content was made 0.005% or more. In addition, the amount of Al is expressed by weight% with respect to the dissolved oxygen [O%] of the molten steel, -0.004% ≦ [Al%]-1.1 [O
%] ≦ 0.006%, the reason is that if the weight percentage of Al in this relational expression is excessive relative to the [O] concentration, the number of composite oxides produced decreases, and A large number of Al 2 O 3, which are ineffective as ferrite-forming nuclei, are generated, and the structure cannot be refined, toughness is reduced. This was limited because of the significant reduction in oxides. The reason for adding Al at the end of the steelmaking process is as follows.
The reason 1 is that Al 2 O 3 which has a strong deoxidizing power and is stable is generated, and the desired low melting point composite oxide is hardly generated.

【0015】不可避不純物として含有するP,Sはその
量について特に限定しないが凝固偏析による溶接割れ、
靭性の低下を生じるので、極力低減すべきであり、望ま
しくはP,S量はそれぞれ0.02%未満である。
The amounts of P and S contained as inevitable impurities are not particularly limited, but welding cracks due to solidification segregation,
Since toughness is reduced, the content of P and S should be less than 0.02%.

【0016】以上が本発明鋼の基本成分であるが、母材
強度の上昇、および母材の靭性向上の目的で、Cr,M
o,Nb,Ni,Cu,の1種または2種以上を含有す
ることができる。
The basic components of the steel of the present invention have been described above. For the purpose of increasing the strength of the base material and improving the toughness of the base material, Cr, M
One, two or more of o, Nb, Ni, and Cu can be contained.

【0017】まず、Crは焼き入れ性の向上により、母
材の強化に有効である。しかし0.7%を超える過剰の
添加は、靭性および硬化性の観点から有害となるため、
上限を0.7%とした。Moは母材強度の確保に有効な
元素であるが、高価であるため0.3%以下に限定し
た。Nbは母材の強靭化に有効であるが0.05%を超
える過剰の添加は、靭性及び硬化性の観点から有害とな
るため0.05%以下とした。Niは、母材の強靭性を
高める極めて有効な元素であるが、1.0%を超える添
加は合金コストを増加させ経済的でないので上限を1.
0%とした。Cuは母材の強化、耐候性に有効な元素で
あるが、応力除去焼鈍による焼き戻し脆性、溶接割れ
性、熱間加工割れを促進するため、上限を1.0%とし
た。
First, Cr is effective in strengthening the base material by improving the hardenability. However, an excessive addition exceeding 0.7% is harmful from the viewpoint of toughness and curability,
The upper limit was set to 0.7%. Mo is an element effective for securing the base material strength, but is limited to 0.3% or less because it is expensive. Nb is effective for toughening the base material, but an excessive addition exceeding 0.05% is harmful from the viewpoint of toughness and curability, so Nb was set to 0.05% or less. Ni is a very effective element for increasing the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit is 1.
0%. Cu is an element effective for strengthening the base material and weathering resistance. However, the upper limit is set to 1.0% in order to promote temper embrittlement by stress relief annealing, weld cracking, and hot work cracking.

【0018】なお、溶鋼の予備脱酸処理を行い溶存酸素
を重量%で0.003〜0.015%に制御するのは、
溶鋼を高清浄化すると同時に鋳片内に微細な複合酸化物
を生成させるために極めて重要なものである。予備脱酸
後の〔O〕濃度が0.003%未満では粒内フェライト
変態を促進する粒内フェライト生成核の複合酸化物が減
少し、細粒化できず靭性を向上できない。一方、0.0
15%を超える場合は、他の条件を満たしていても、酸
化物が粗粒化し脆性破壊の起点となり、靭性を低下させ
るための予備脱酸後の〔O〕濃度を重量%で0.003
〜0.015%に限定した。
The reason why the molten steel is preliminarily deoxidized to control the dissolved oxygen to 0.003 to 0.015% by weight is as follows.
It is extremely important to clean the molten steel and to generate fine composite oxides in the slab at the same time. If the [O] concentration after the preliminary deoxidation is less than 0.003%, the amount of the composite oxide of the intragranular ferrite nucleus which promotes the intragranular ferrite transformation decreases, and the grain cannot be refined to improve the toughness. On the other hand, 0.0
If it exceeds 15%, even if other conditions are satisfied, the oxide becomes coarse and becomes the starting point of brittle fracture, and the [O] concentration after preliminary deoxidation for reducing toughness is 0.003% by weight.
To 0.015%.

【0019】上記の予備脱酸処理は真空脱ガス,Al,
Si,Ca,Mg脱酸により行った。その理由は真空脱
ガス処理は直接溶鋼中の酸素をガスおよびCOガスとし
て除去し、Al,Si,Ca,Mgなどの強脱酸により
生成する酸化物系介在物は浮上、除去しやすいため溶鋼
の清浄化に極めて効果的なためである。
The above-mentioned preliminary deoxidation treatment is performed by vacuum degassing, Al,
This was performed by deoxidation of Si, Ca, and Mg. The reason is that vacuum degassing directly removes oxygen from molten steel as gas and CO gas, and oxide inclusions generated by strong deoxidation such as Al, Si, Ca, and Mg easily float and are easily removed. This is because it is extremely effective in purifying the water.

【0020】再加熱温度を1100〜1300℃の温度
域に限定したのは、熱間加工による形鋼の製造には塑性
変形を容易にするため1100℃以上の加熱が必要であ
り、且つV,Nbなどの元素を十分に固溶させる必要が
あるため再加熱温度の下限を1100℃とした。その上
限は加熱炉の性能、経済性から1300℃とした。
The reason why the reheating temperature is limited to the temperature range of 1100 to 1300 ° C. is that heating of 1100 ° C. or more is necessary in order to facilitate plastic deformation in the production of a shaped steel by hot working. Since it is necessary to sufficiently dissolve elements such as Nb, the lower limit of the reheating temperature is set to 1100 ° C. The upper limit was set to 1300 ° C. in view of the performance and economy of the heating furnace.

【0021】熱間加工終了温度を750〜1050℃と
したのは、低温圧延ほど靭性は向上するが、形鋼の造形
上750℃未満での加工は困難であり、また1050℃
超えての加工は粗粒組織を形成し靭性が低下するためで
ある。
The reason why the hot working end temperature is set to 750 to 1050 ° C. is that although the toughness is improved as the rolling is performed at a lower temperature, working at a temperature lower than 750 ° C. is difficult due to the shaping of the shaped steel.
Excessive processing forms a coarse-grained structure and lowers toughness.

【0022】[0022]

【実施例】以下に実施例によりさらに本発明の効果を示
す。試作形鋼は転炉溶製し、合金を添加後、予備脱酸処
理を行い、溶鋼の酸素濃度を測定し、その量に見合った
Al量を添加し連続鋳造により250〜300mm厚鋳片
に鋳造した後、圧延造形によりフランジ厚み毎に表1に
示す種々の寸法のH形鋼を製造した。機械特性は図1に
示すフランジ2の板厚t2 の中心部(1/2t2 )でフ
ランジ幅全長(B)の1/4,1/2幅(1/4B,1
/2B)から試験片を採集し求めた。なお、これらの箇
所の特性を求めたのはフランジ1/4F部はH形鋼のほ
ぼ平均的な機械特性を示し、フランジ1/2F部はその
特性が最も低下するため、この二箇所によりH形鋼の機
械試験特性を代表できるとしたためである。
EXAMPLES The effects of the present invention will be further illustrated by the following examples. The prototype steel was melted in the converter, and after adding the alloy, it was pre-deoxidized, the oxygen concentration of the molten steel was measured, and the amount of Al corresponding to the amount was added, and continuous casting was performed to produce a 250-300 mm thick slab. After casting, H-shaped steels having various dimensions shown in Table 1 were produced by rolling molding for each flange thickness. The mechanical characteristics are shown in FIG. 1 at the center (1 / 2t 2 ) of the thickness t 2 of the flange 2, which is 1 / of the entire flange width (B), 1 / width (フ ラ ン ジ B, 1).
/ 2B) to obtain a test piece. The characteristics of these locations were determined by the following: Flange 1 / 4F shows almost average mechanical properties of H-section steel, and Flange 1 / 2F has the lowest properties. This is because the mechanical test characteristics of the section steel can be represented.

【0023】表2は、試作鋼の化学成分、表3は圧延条
件及び機械試験特性を示す。なお、圧延加熱温度を12
80℃に揃えたのは、一般的に加熱温度の低減は機械特
性を向上させることは周知であり、高温加熱条件は機械
特性の最低値を示すと推定され、この値がそれ以下の加
熱温度での特性を代表できると判断したためである。
Table 2 shows the chemical composition of the prototype steel, and Table 3 shows the rolling conditions and mechanical test characteristics. Note that the rolling heating temperature was 12
The reason why the temperature is adjusted to 80 ° C. is that it is generally known that the reduction of the heating temperature improves the mechanical properties, and it is estimated that the high-temperature heating condition indicates the lowest value of the mechanical properties. This is because it has been determined that the characteristics in the above can be represented.

【0024】表3に示すように、本発明による鋼1〜8
は圧延仕上げ温度、フランジ板厚(冷却速度)の変化に
対して、目標の母材強度(前記JIS G3106)と
0℃でのシャルピー値34(J)以上を十分に満たして
いる。一方、比較鋼の鋼9〜12は母材強度は規格を満
たすものの、フランジの板厚1/2で幅1/2部の靭性
は何れも目標の値を満足しない。その原因は鋼9,1
1,12は通常のAl脱酸処理であり、Al添加を製鋼
工程の初期段階に行ったことと、溶鋼の酸素濃度に対す
るAl量の制限範囲−0.004%≦〔Al%〕−1.
1〔O%〕≦0.006%の上限値を外れたことにあ
り、また鋼10は予備脱酸による溶鉄の酸素濃度は制限
範囲内にあるものの、Ti添加処理を加えていないた
め、IGF核生成サイトとして働くTiを含む微細複合
酸化物+MnS+TiN+VNの個数が不足しIGFが
生成せず、細粒化による靭性改善ができなかったためで
ある。
As shown in Table 3, steels 1 to 8 according to the present invention
Satisfies a target base metal strength (JIS G3106) and a Charpy value of 34 (J) or more at 0 ° C. or more with respect to changes in rolling finish temperature and flange plate thickness (cooling rate). On the other hand, the comparative steels 9 to 12 satisfy the standard in the base metal strength, but none of the toughness of the flange thickness 板 and the width 部 portion satisfy the target values. The cause is steel 9.1
Reference numerals 1 and 12 denote ordinary Al deoxidation treatments, in which Al was added in the initial stage of the steelmaking process, and the limitation range of the amount of Al with respect to the oxygen concentration of the molten steel-0.004% ≤ [Al%] -1.
1 [O%] ≦ 0.006%, and the oxygen concentration of the molten iron in the pre-deoxidation was within the limit range, but the steel 10 was not subjected to the Ti addition treatment. This is because the number of fine composite oxides containing Ti serving as nucleation sites + MnS + TiN + VN was insufficient, so that IGF was not generated and toughness could not be improved by grain refinement.

【0025】即ち、本発明の要件が総て満たされた時
に、表3に示される形鋼1〜8のように、圧延形鋼の機
械試験特性を最も満たしにくいフランジ板厚1/2,幅
1/2部においても十分な強度を有し、優れた靭性を持
つ圧延形鋼の製造が可能になる。なお、本発明が対象と
する圧延形鋼は上記実施例のH形鋼に限らずI形鋼、山
形鋼、溝形鋼、不等辺不等厚山形鋼等のフランジを有す
る形鋼にも適用できることは勿論である。
That is, when all the requirements of the present invention are satisfied, as shown in Tables 1 to 8 in Table 3, the flange plate thickness 1/2 and width, which hardly satisfy the mechanical test characteristics of the rolled section steel Even in a half part, a rolled section steel having sufficient strength and excellent toughness can be manufactured. The rolled section steel to which the present invention is applied is not limited to the H section steel of the above embodiment, but is also applicable to section steels having flanges such as I section steel, angle steel, channel steel, and unequal thickness angle steel. Of course, you can.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】本発明により圧延形鋼は機械試験特性を
最も保証しにくいフランジ板厚1/2,幅1/2部にお
いても十分な強度を有し、優れた靭性を持つ圧延形鋼の
製造が圧延ままで可能になり、大型建造物の信頼性向
上、安全性の確保、経済性等の産業上の効果は極めて顕
著なものがある。
According to the present invention, the rolled section steel has sufficient strength even at a flange plate thickness of 1/2 and a width of 1/2 section where mechanical test characteristics are most difficult to be assured, and has excellent toughness. Manufacturing can be performed as it is rolled, and industrial effects such as improvement in reliability of large buildings, safety assurance, and economic efficiency are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】H形鋼の断面形状を示し、各部位の名称と機械
試験片の採取位置を示す図である。
FIG. 1 is a view showing a cross-sectional shape of an H-section steel, showing names of respective parts and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1 H形鋼 2 フランジ 3 ウェブ 1 H-section steel 2 Flange 3 Web

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 301 C22C 38/00 301A 38/14 38/14 Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C22C 38/00 301 C22C 38/00 301A 38/14 38/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%でC:0.04〜0.20%、S
i:0.05〜0.50%、Mn:0.8〜1.8%、
V:0.05〜0.20%、N:0.004〜0.01
5%、Ti:0.005〜0.025%を含み、残部が
Feおよび不可避不純物からなる溶鋼を、予備脱酸処理
によって、溶存酸素を重量%で0.003〜0.015
%に調整後さらに、金属アルミもしくはフェロアルミの
添加により脱酸し、該Al含有量が重量%で0.005
〜0.015%で、かつ溶鋼の溶存酸素〔O%〕に対し
−0.004≦〔Al%〕−1.1〔O%〕≦0.00
6の関係を満たす鋳片に鋳造し、該鋳片を1100〜1
300℃の温度域に再加熱後、熱間圧延を行い750〜
1050℃の温度範囲で圧延を終了することを特徴とす
る靭性の優れた圧延形鋼の製造方法。
1. C: 0.04 to 0.20% by weight, S
i: 0.05 to 0.50%, Mn: 0.8 to 1.8%,
V: 0.05 to 0.20%, N: 0.004 to 0.01
5%, Ti: 0.005 to 0.025%, the balance being molten steel consisting of Fe and unavoidable impurities, by pre-deoxidation treatment, dissolved oxygen by weight 0.003 to 0.015.
% And further deoxidized by adding metallic aluminum or ferroaluminum, and the Al content is 0.005% by weight.
-0.004 ≦ [Al%] − 1.1 [O%] ≦ 0.00 with respect to the dissolved oxygen [O%] of the molten steel.
6 and cast the slabs 1100-1
After reheating to a temperature range of 300 ° C., hot rolling is performed, and
A method for producing a rolled section steel having excellent toughness, wherein rolling is completed in a temperature range of 1050 ° C.
【請求項2】 重量%でC:0.04〜0.20%、S
i:0.05〜0.50%、Mn:0.8〜1.8%、
V:0.05〜0.20%、N:0.004〜0.01
5%、Ti:0.005〜0.025%を含み、加えて
Cr≦0.7%、Mo≦0.3%、Nb≦0.05%、
Ni≦1.0%、Cu≦1.0%、の1種または2種以
上を含み、残部がFeおよび不可避不純物からなる溶鋼
を、予備脱酸処理によって、溶存酸素を重量%で0.0
03〜0.015%に調整後さらに、金属アルミもしく
はフェロアルミの添加により脱酸し、該Al含有量が重
量%で0.005〜0.015%で、かつ溶鋼の溶存酸
素〔O%〕に対し−0.004≦〔Al%〕−1.1
〔O%〕≦0.006の関係を満たす鋳片に鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後、熱間
圧延を行い750〜1050℃の温度範囲で圧延を終了
することを特徴とする靭性の優れた圧延形鋼の製造方
法。
2. C: 0.04 to 0.20% by weight, S
i: 0.05 to 0.50%, Mn: 0.8 to 1.8%,
V: 0.05 to 0.20%, N: 0.004 to 0.01
5%, Ti: 0.005 to 0.025%, Cr ≦ 0.7%, Mo ≦ 0.3%, Nb ≦ 0.05%,
The molten steel containing one or more of Ni ≦ 1.0% and Cu ≦ 1.0%, the balance being Fe and unavoidable impurities, was subjected to a preliminary deoxidation treatment to reduce dissolved oxygen to 0.04% by weight.
After being adjusted to 03 to 0.015%, it is further deoxidized by adding metallic aluminum or ferroaluminum. The Al content is 0.005 to 0.015% by weight and the dissolved oxygen [O%] of the molten steel. -0.004 ≦ [Al%]-1.1
[O%] Cast into a slab that satisfies the relationship of 0.006, re-heat the slab to a temperature range of 1100 to 1300 ° C, perform hot rolling, and finish rolling at a temperature range of 750 to 1050 ° C. A method for producing a rolled section steel having excellent toughness, characterized in that:
JP29553791A 1991-11-12 1991-11-12 Manufacturing method of rolled section steel with excellent toughness Expired - Lifetime JP2601961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29553791A JP2601961B2 (en) 1991-11-12 1991-11-12 Manufacturing method of rolled section steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29553791A JP2601961B2 (en) 1991-11-12 1991-11-12 Manufacturing method of rolled section steel with excellent toughness

Publications (2)

Publication Number Publication Date
JPH05132716A JPH05132716A (en) 1993-05-28
JP2601961B2 true JP2601961B2 (en) 1997-04-23

Family

ID=17821923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29553791A Expired - Lifetime JP2601961B2 (en) 1991-11-12 1991-11-12 Manufacturing method of rolled section steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP2601961B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760713B2 (en) * 1992-09-24 1998-06-04 新日本製鐵株式会社 Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3509603B2 (en) * 1998-03-05 2004-03-22 Jfeスチール株式会社 Extra-thick H-section steel with excellent toughness and yield strength of 325 MPa or more
CN100368577C (en) * 2005-12-29 2008-02-13 攀枝花钢铁(集团)公司 Process for producing fine type steel crystal particle
WO2019122949A1 (en) * 2017-12-18 2019-06-27 Arcelormittal Steel section having a thickness of at least 100mm and method of manufacturing the same

Also Published As

Publication number Publication date
JPH05132716A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2579841B2 (en) Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP2596853B2 (en) Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP2936235B2 (en) Rolled section steel with excellent toughness and method for producing the same
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JP2962629B2 (en) Manufacturing method of refractory section steel with excellent internal characteristics in ultrasonic testing
JPH0739606B2 (en) Method for producing rolled steel having excellent fire resistance and toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

EXPY Cancellation because of completion of term