JP2647313B2 - Oxide-containing rolled steel with controlled yield point and method for producing the same - Google Patents

Oxide-containing rolled steel with controlled yield point and method for producing the same

Info

Publication number
JP2647313B2
JP2647313B2 JP27185392A JP27185392A JP2647313B2 JP 2647313 B2 JP2647313 B2 JP 2647313B2 JP 27185392 A JP27185392 A JP 27185392A JP 27185392 A JP27185392 A JP 27185392A JP 2647313 B2 JP2647313 B2 JP 2647313B2
Authority
JP
Japan
Prior art keywords
oxide
steel
weight
slab
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27185392A
Other languages
Japanese (ja)
Other versions
JPH06122942A (en
Inventor
広一 山本
卓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27185392A priority Critical patent/JP2647313B2/en
Publication of JPH06122942A publication Critical patent/JPH06122942A/en
Application granted granted Critical
Publication of JP2647313B2 publication Critical patent/JP2647313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる形鋼の降伏点範囲を保証した耐震性能に優
れた含オキサイド系制御圧延形鋼およびその製造方法に
係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide-containing controlled rolled steel section having excellent seismic performance and guaranteeing a yield point range of a section steel used as a structural member of a building, and a method for producing the same.

【0002】[0002]

【従来の技術】建築物の超高層化、大スパン化とそれに
ともなう耐震性などの安全基準の厳格化から、梁用に用
いられる、薄手サイズのH形鋼にも一層の高強度化、高
靭性化、低降伏比化が求められている。最近は、これら
に加え、構造物部材の設計強度と実際の強度の差を少な
くし、より信頼性を高めるために、降伏点の上限を規定
した、狭幅YP鋼が求められている。このような要求特
性を満たすために、厚鋼板分野では鉄鋼協会講演集、CA
MP-ISIJ Vol.4(1991)758pに示されているように、圧延
終了後に焼準及び焼き戻しなどの熱処理を施すことが行
われた。形鋼においても、このような処理を施せば材質
特性は満たすことが可能であるが、熱処理の付加は熱処
理コストと生産効率の低下、あるいはH形鋼のように、
フランジとウェブの肉厚比が2〜3倍になる形状を有す
る部材では、後熱処理時にウェブとフランジ間の熱膨張
差による応力の発生によりウェブの変形を生じるなど、
経済性と形状性能の低下とに問題がある。
2. Description of the Related Art Due to stricter safety standards such as super-high rise and large span of buildings and accompanying seismic resistance, thin H-shaped steel used for beams has been further enhanced in strength and strength. Higher toughness and lower yield ratio are required. Recently, in addition to the above, in order to reduce the difference between the design strength and the actual strength of the structural member and to further enhance the reliability, a narrow-width YP steel having an upper limit of the yield point is required. In order to satisfy such required characteristics, in the field of steel plates,
As shown in MP-ISIJ Vol. 4 (1991) 758p, heat treatment such as normalizing and tempering was performed after the rolling was completed. In the case of shaped steel, it is possible to satisfy the material properties by performing such treatment. However, the addition of heat treatment lowers the heat treatment cost and production efficiency, or, like H-shaped steel,
In a member having a shape in which the thickness ratio between the flange and the web is 2 to 3 times, deformation of the web is caused by generation of stress due to a difference in thermal expansion between the web and the flange during a post heat treatment.
There is a problem in economy and deterioration in shape performance.

【0003】一般に、フランジを有する形鋼、例えばH
形鋼をユニバーサル圧延により製造すると、圧延造形上
の制約およびその形状の特異性からウエブ、フランジ、
フィレットの各部位で圧延仕上げ温度、圧下率、冷却速
度に差を生じる。その結果、部位間に強度、延性、靭性
のバラツキが発生し、例えば溶接構造用圧延鋼材(JISG3
106) 等の基準に満たない部位が生じる。また、最近、
ウェブ厚がフランジ厚に比し約1/3とした、薄肉ウェ
ブ化し軽量化した高断面性能を有する外法一定H形鋼が
開発された。この中で特にウェブ厚12mm以下の薄手サ
イズの製造にはウェブとフランジ間の熱膨張差からの応
力によるウェブ波を防止するため、フランジを強制冷却
している。このような製造条件では必然的に低温仕上げ
となり、組織が細粒化し高降伏点になり、要求値の範囲
のJISで規定されたYPの最低値+100N/mm2 以内
を満たせない難点があった。
Generally, a section steel having a flange, for example, H
When a section steel is manufactured by universal rolling, the web, flange,
Differences occur in the rolling finish temperature, rolling reduction, and cooling rate at each part of the fillet. As a result, variations in strength, ductility, and toughness occur between the parts, for example, a rolled steel material for a welding structure (JISG3
106) Some parts do not meet the criteria. Also recently,
An externally formed constant H-section steel having a thin web and reduced weight, and having a high cross-sectional performance, in which the web thickness is reduced to about 1/3 of the flange thickness, has been developed. Of these, the flange is forcibly cooled in order to prevent a web wave due to a stress caused by a difference in thermal expansion between the web and the flange particularly in the production of a thin size having a web thickness of 12 mm or less. Under such manufacturing conditions, low-temperature finishing is inevitably performed, the structure becomes finer and a high yield point is obtained, and there is a problem that the required value cannot exceed the minimum value of YP defined by JIS + 100 N / mm 2 . .

【0004】これらの課題を解決するためには圧延まま
で高性能の材質特性を得られるように、新しい合金設計
と製造法の組み合わせによる鋼材の開発が必要となっ
た。
In order to solve these problems, it is necessary to develop a steel material by a combination of a new alloy design and a manufacturing method so that high-performance material characteristics can be obtained as-rolled.

【0005】[0005]

【発明が解決しようとする課題】上記の課題を解決する
ためには、薄手材の製造条件から必然的に低温圧延とな
り、フェライトが細粒化し、降伏点を上昇させるが、こ
のようなプロセス条件においてもフェライトが細粒化し
ない方法を開発する必要がある。本発明は製鋼工程にお
いて溶鋼の溶存酸素量の制御と出鋼直前に微量Al を添
加する脱酸元素の添加手順とにより、鋼中にAl , Ti
, Mn , Si の元素より構成される複酸化物粒子を分
散させ、凝固時と凝固後の緩冷却によって析出物の優先
析出サイトとして機能する活性な複酸化物を疎に析出さ
せ、MnS、TiN等を冷却途上で付着させるとともに
粗大化させ、これらの分散からの粒界のピンニング作用
による細粒化効果を排除するものである。この方法を用
いれば、上述したような薄手形鋼特有の圧延条件下にお
いても、オーステナイトを粗粒化し、変態後のフェライ
トの粗粒化を達成し、降伏点を低下させ、目的の降伏点
制御形鋼をオンラインで製造し安価に提供することが可
能になる。
In order to solve the above-mentioned problems, low-temperature rolling is inevitable due to the conditions for manufacturing thin materials, ferrite is refined, and the yield point is increased. In this case, it is necessary to develop a method in which ferrite is not refined. In the present invention, Al and Ti are contained in steel by controlling the amount of dissolved oxygen in the molten steel and adding a small amount of Al immediately before tapping in the steelmaking process.
, Mn, and Si are dispersed, and active cooling oxides functioning as preferential precipitation sites for precipitates are sparsely precipitated during solidification and by slow cooling after solidification, and MnS, TiN And the like are deposited and coarsened during cooling, and the effect of fine graining due to the pinning action of the grain boundary from these dispersions is eliminated. Using this method, even under the rolling conditions specific to thin steel bars as described above, austenite is coarsened, ferrite after transformation is coarsened, the yield point is reduced, and the desired yield point control is achieved. Shaped steel can be manufactured online and provided at low cost.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、 重量%でC:0.04〜0.20%、Si:0.05〜0.50%、Mn:
0.4〜2.0%、Ti: 0.005〜0.025%、N≦0.004%、S≦0.
01%、Al: 0.005〜0.015%を含み、残部がFeおよび不
可避不純物からなるとともにTi ・Al 系複酸化物とM
nS、TiNとの複合析出物を20個/mm2 以下に分散
した含オキサイド系降伏点制御圧延形鋼、 重量%でC:0.04〜0.20%、Si:0.05〜0.50%、Mn:
0.4〜2.0%、Ti: 0.005〜0.025%、N≦0.004%、S≦0.
01%、Al: 0.005〜0.015%を含み、加えてV≦0.20%、
Cr≦0.7%、Nb≦0.05%、Mo≦0.3%、Ni≦0.1%、Cu≦1.0
%、Ca≦0.003%、REM≦0.010%の1種または2種以上を含
み、残部がFe および不可避不純物からなるとともにT
i ・Al 系複酸化物とMnS、TiNとの複合析出物を
20個/mm2 以下に分散した含オキサイド系降伏点制御
圧延形鋼、 重量%でC:0.04〜0.20%、Si:0.05〜0.50%、Mn:
0.4〜2.0%、Ti: 0.005〜0.025%、N≦0.004%、S≦0.
01%を含み、残部がFe および不可避不純物からなる溶
鋼を、予備脱酸処理によって、溶存酸素を重量%で 0.0
03〜0.015%に調整後さらに、金属アルミもしくはフェロ
アルミの添加により脱酸し、該Al 含有量が重量%で
0.005〜0.015%で、かつ溶鋼の溶存酸素〔O%〕に対し-
0.004≦〔Al%〕-1.1〔O%〕≦0.006 の関係を満たす
鋳片に鋳造後、該鋳片を凝固温度から900℃間を0.05
〜0.5 ℃/secの冷却速度で冷却し、鋼中にTi ・Al 系
複酸化物とMnS、TiNとの複合析出物を20個/mm
2 以下に分散させた該鋳片を1100〜1300℃の温
度域に再加熱後に圧延を開始し、900℃以下で20%
以上圧下する制御圧延により製造する含オキサイド系降
伏点制御圧延形鋼の製造方法、 重量%でC:0.04〜0.20%、Si:0.05〜0.50%、Mn:
0.4〜2.0%、Ti: 0.005〜0.025%、N≦0.004%、S≦0.
01%を含み、加えてV≦0.20%、Cr≦0.7%、Nb≦0.05
%、Mo≦0.3%、Ni≦0.1%、Cu≦1.0%、Ca≦0.003%、 REM
≦0.010%の1種または2種以上を含み、残部がFe およ
び不可避不純物からなる溶鋼を、予備脱酸処理によっ
て、溶存酸素を重量%で 0.003〜0.015%に調整後さら
に、金属アルミもしくはフェロアルミの添加により脱酸
し、該Al 含有量が重量%で 0.005〜0.015%で、かつ溶
鋼の溶存酸素〔O%〕に対し-0.004≦〔Al%〕-1.1〔O
%〕≦0.006 の関係を満たす鋳片に鋳造後、該鋳片を凝
固温度から900℃間を0.05〜0.5 ℃/secの冷却速度で
冷却し、鋼中にTi ・Al 系複酸化物とMnS、TiN
との複合析出物を20個/mm2 以下に分散させた該鋳片
を1100〜1300℃の温度域に再加熱後に圧延を開
始し、900℃以下で20%以上圧下する制御圧延によ
り製造する含オキサイド系降伏点制御圧延形鋼の製造方
法にある。
The gist of the present invention is as follows: C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn:
0.4-2.0%, Ti: 0.005-0.025%, N ≦ 0.004%, S ≦ 0.
01%, Al: 0.005 to 0.015%, the balance being Fe and unavoidable impurities, and Ti / Al-based double oxide and M
Oxide-containing, yield-controlled rolling section steel having a composite precipitate with nS and TiN dispersed at 20 particles / mm 2 or less, C: 0.04 to 0.20% by weight, Si: 0.05 to 0.50%, Mn:
0.4-2.0%, Ti: 0.005-0.025%, N ≦ 0.004%, S ≦ 0.
01%, Al: 0.005 to 0.015%, plus V ≦ 0.20%,
Cr ≦ 0.7%, Nb ≦ 0.05%, Mo ≦ 0.3%, Ni ≦ 0.1%, Cu ≦ 1.0
%, Ca ≤ 0.003%, REM ≤ 0.010%, the balance consisting of Fe and unavoidable impurities and T
Oxide-containing controlled yield point rolled steel with 20 / mm 2 or less of composite precipitates of i-Al-based composite oxide and MnS and TiN, C: 0.04 to 0.20% by weight, Si: 0.05 to 0.50%, Mn:
0.4-2.0%, Ti: 0.005-0.025%, N ≦ 0.004%, S ≦ 0.
0.1% by weight of molten steel containing Fe and unavoidable impurities by the pre-deoxidation treatment.
After being adjusted to 03 to 0.015%, it is further deoxidized by adding metallic aluminum or ferroaluminum, and the Al content is expressed in weight%.
0.005 to 0.015% and relative to the dissolved oxygen [O%] of the molten steel
After casting into a slab that satisfies the relationship of 0.004 ≦ [Al%]-1.1 [O%] ≦ 0.006, the slab was cooled from the solidification temperature to 900 ° C by 0.05.
Cooling was performed at a cooling rate of ~ 0.5 ° C / sec to obtain a composite precipitate of Ti · Al-based double oxide, MnS, and TiN in the steel at a rate of 20 / mm.
Rolling is started after re-heating the slab dispersed below 2 to a temperature range of 1100 to 1300 ° C, and 20% at 900 ° C or less.
Method for producing oxide-containing yield point controlled rolled steel bars produced by controlled rolling with reduction as described above. C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn:
0.4-2.0%, Ti: 0.005-0.025%, N ≦ 0.004%, S ≦ 0.
01%, plus V ≦ 0.20%, Cr ≦ 0.7%, Nb ≦ 0.05
%, Mo ≦ 0.3%, Ni ≦ 0.1%, Cu ≦ 1.0%, Ca ≦ 0.003%, REM
≦ 0.010%, the balance of molten steel containing Fe and unavoidable impurities is adjusted to 0.003 to 0.015% by weight of dissolved oxygen by pre-deoxidation treatment. The Al content is 0.005 to 0.015% by weight, and -0.004≤ [Al%]-1.1 [O
%] ≦ 0.006, and the slab is cooled from the solidification temperature to 900 ° C. at a cooling rate of 0.05 to 0.5 ° C./sec, and Ti / Al-based double oxide and MnS , TiN
Rolling is started after re-heating the slab, in which the composite precipitates are dispersed to 20 pieces / mm 2 or less, in a temperature range of 1100 to 1300 ° C., and is manufactured by controlled rolling in which the reduction is reduced by 20% or more at 900 ° C. or less. The present invention relates to a method for producing an oxide-containing yield-controlled rolled steel section.

【0007】[0007]

【作用】以下、本発明について詳細に説明する。 鋼材の降伏強度は一般に下記 (1)式で示される。 σy =σi +κ・d-1/2 ─────────(1)式 但し、 σy : 降伏応力 σi : パイエルス+固溶体+析出+転位相互作用応力 d : フェライト粒径 κ : 定数 σi 項は鋼材の強度レベルにより合金設計された成分で
ほぼ決定されるため、自由度が少ない。したがって、プ
ロセスによる降伏強度の制御はフェライト粒径の制御が
主眼となる。
Hereinafter, the present invention will be described in detail. The yield strength of steel is generally expressed by the following equation (1). σ y = σ i + κ · d -1/2式 (1) where σ y : yield stress σ i : Peierls + solid solution + precipitation + dislocation interaction stress d: ferrite grain size κ: constant The σ i term is largely determined by the alloy-designed component depending on the strength level of the steel material, and therefore has a small degree of freedom. Therefore, the control of the yield strength by the process focuses on the control of the ferrite grain size.

【0008】また、フェライト(α)粒径は、γ/α変
態のα核生成サイト数とその成長速度により決定され、
変態直前のオーステナイト(γ)粒径、制御圧延冷
却(TMCP) に代表される加工熱処理による加工歪量と冷
却速度、析出物の分散に支配される。本発明は以上の
原理から、の効果は大きいが製造条件から決定され、
特に薄手材ではウエブ波防止から圧延温度、冷却条件の
変更は困難であり、とによるαの粗粒化の可能性を
検討した。それは、従来はあまり注目されていなかっ
た、MnS、AlN、TiNらの分散粒子がγの細粒化
やαの核生成サイトとして作用し、αの細粒化に寄与し
ているのが判明したので、これらの総個数の低減を製鋼
過程の制御による新しい概念の導入により検討した。
The ferrite (α) grain size is determined by the number of α nucleation sites of the γ / α transformation and the growth rate,
It is governed by the austenite (γ) grain size just before transformation, the amount of work strain and cooling rate by working heat treatment represented by controlled rolling cooling (TMCP), and the dispersion of precipitates. The present invention is determined from the manufacturing conditions, although the effect of the present invention is large,
In particular, it is difficult to change the rolling temperature and the cooling condition in order to prevent web wave in thin materials, and the possibility of coarsening α due to this was examined. It was found that the dispersed particles of MnS, AlN, TiN, etc., which had not received much attention in the past, acted as γ fine-graining and α nucleation sites, contributing to α fine-graining. Therefore, the reduction of the total number was studied by introducing a new concept by controlling the steelmaking process.

【0009】なお、結晶粒径と析出物粒子の分散度との
関係は下記 (2)式で示される。 R=3/4 ・r/F ────────────(2)式 但し、 R: 結晶粒径 r: 粒子半径 F: 粒子の体積分率 析出物粒子の体積分率が一定であれば、結晶粒径は析出
物粒子半径に比例する。したがって、本発明の目標であ
る結晶粒径の粗粒化には粒子の体積分率(F)を下げる
ために、MnS、AlN、TiNをできる限り低減する
ことと、加えて粒子を凝集、複合粗粒化(r)し析出物
の総個数を減じることである。
The relationship between the crystal grain size and the degree of dispersion of the precipitate particles is represented by the following equation (2). R = 3/4 · r / F──────────── (2) where R: grain size r: particle radius F: volume fraction of particles volume fraction of precipitate particles Is constant, the crystal grain size is proportional to the precipitate particle radius. Therefore, in order to reduce the volume fraction (F) of the particles, it is necessary to reduce MnS, AlN, and TiN as much as possible in order to reduce the volume fraction (F) of the particles, which is the target of the present invention, and to aggregate and combine the particles. Coarsening (r) to reduce the total number of precipitates.

【0010】これら原理の実現化を本発明の特徴であ
る、製鋼過程において、析出物の析出サイトとして優先
的な機能を有するTi ・Al 系複酸化物を鋼中に生成さ
せ、これらを凝固時、その後を緩冷却するたとにより、
個数の低減と同時にMnS、TiN等を冷却途上で付着
させるとともに粗大化させ、析出物の総個数の低減を達
成した。これによりオーステナイトの粗粒化とフェライ
トの核生成を低減させ、薄手形鋼特有の低温圧延+加速
冷却条件下においても、αの粗粒化を達成し、降伏点の
制御をオンラインで可能にしたものである。
The realization of these principles is a feature of the present invention. In the steelmaking process, Ti.Al-based double oxides having a preferential function as precipitation sites for precipitates are formed in steel, and these are formed during solidification. , Then slowly cool down
Simultaneously with the reduction of the number, MnS, TiN and the like were adhered during the cooling and were coarsened, thereby reducing the total number of precipitates. As a result, austenite coarsening and ferrite nucleation are reduced, and α is coarsened even under the conditions of low-temperature rolling and accelerated cooling unique to thin steel bars, and the yield point can be controlled online. Things.

【0011】次に本発明鋼の基本成分範囲の限定理由に
ついて述べる。Cは鋼の強度を向上させる有効な成分と
して、添加するもので、0.04%未満では構造用鋼として
必要な強度が得られず、また、0.20%を超える過剰の添
加は、母材靭性、溶接割れ性、HAZ靭性などを著しく
低下させるので、上限を0.20%とした。
Next, the reasons for limiting the range of the basic components of the steel of the present invention will be described. C is added as an effective component to improve the strength of the steel. If it is less than 0.04%, the strength required for structural steel cannot be obtained. Since the cracking property and HAZ toughness are significantly reduced, the upper limit is set to 0.20%.

【0012】Si は母材の強度確保、予備脱酸などに必
要であるが、0.5%を超えると熱処理組織内に硬化組織の
高炭素マルテンサイトを生成し、靭性を著しく低下させ
る。また、0.05%未満では脱酸が不十分となりSi 含有
量をこの範囲に制限した。Mn は母材の強度、靭性の確
保には0.4%以上の添加が必要であるが、溶接部の靭性、
割れ性などの許容できる範囲で上限を2.0%とした。
Si is necessary for securing the strength of the base material and performing preliminary deoxidation, but if it exceeds 0.5%, high carbon martensite having a hardened structure is generated in the heat-treated structure, and the toughness is significantly reduced. On the other hand, if it is less than 0.05%, the deoxidation becomes insufficient and the Si content is limited to this range. Mn needs to be added in an amount of 0.4% or more to ensure the strength and toughness of the base metal.
The upper limit was set to 2.0% within an acceptable range such as cracking.

【0013】Ti は脱酸材としてAl ・Ti 系複酸化物
を生成させるために必要な元素であり、0.005%未満では
複酸化物は著しく減少し効果をもたないため、Ti 量の
下限値を0.005%以上とした。しかし0.025%を超えると過
剰なTi はTiN, TiCを生成し、細粒化と析出硬化
を生じ、降伏点を上昇させ、同時に溶接熱影響部の靭性
をも著しく低下させるため0.025%以下に制限した。
Ti is an element necessary for producing an Al.Ti-based composite oxide as a deoxidizing agent. If the content is less than 0.005%, the composite oxide is remarkably reduced and has no effect. Was set to 0.005% or more. However, if it exceeds 0.025%, excessive Ti forms TiN and TiC, causing grain refinement and precipitation hardening, increasing the yield point, and at the same time, significantly reducing the toughness of the heat affected zone. did.

【0014】NはTiN, AlNを析出しγの細粒化と
フェライトへの固溶により降伏強度を高めるので、0.00
4%以下に制限した。SはMnSを析出し、γの細粒化と
粒内フェライト核として作用するので、できるだけ低減
するのが望ましいが、0.01%以下では、Ti 酸化物に付
着させ凝集可能であり、0.01%を超えると単独でMnS
が析出し、析出個数が急激に増大するため0.01%以下に
制限した。
Since N precipitates TiN and AlN and increases the yield strength by refining γ and dissolving in ferrite, the content of N is 0.00
Limited to 4% or less. S precipitates MnS and acts as a grain refinement of γ and acts as an intragranular ferrite nucleus. Therefore, it is desirable to reduce S as much as possible. However, if it is 0.01% or less, it can adhere to Ti oxide to be coagulated and exceed 0.01%. And MnS alone
Was precipitated, and the number of deposited particles rapidly increased, so that the content was limited to 0.01% or less.

【0015】上記の成分でなる溶鋼を予備脱酸処理によ
り溶存酸素を制御する。溶存酸素の制御は溶鋼を高清浄
化すると同時に、次の脱酸工程で、鋳片内に活性なAl
・Ti 系複酸化物を生成させるためである。溶存酸素を
重量%で 0.003〜0.015%の範囲に調整する理由は、予備
脱酸後の〔O〕濃度が0.003%未満ではAl ・Ti 系複酸
化物を生成できず、0.015%を超える場合は、他の条件を
満たしていても、複酸化物が粗粒化し脆性破壊の起点と
なり、靭性を低下させるために予備脱酸後の〔O〕濃度
を重量%で 0.003〜0.015%に限定した。
[0015] The dissolved oxygen of the molten steel having the above components is controlled by a preliminary deoxidation treatment. Control of dissolved oxygen not only purifies molten steel but also activates Al in the slab in the next deoxidation step.
-To form Ti-based double oxides. The reason for adjusting the dissolved oxygen to the range of 0.003 to 0.015% by weight is that if the [O] concentration after preliminary deoxidation is less than 0.003%, an Al.Ti-based double oxide cannot be formed, and if it exceeds 0.015%. Even if other conditions are satisfied, the double oxide becomes coarse and becomes a starting point of brittle fracture, and the [O] concentration after preliminary deoxidation is limited to 0.003 to 0.015% by weight in order to reduce toughness.

【0016】次に微量Al を添加し、鋳造を行い製鋼工
程を終了する。但し、Al は強力な脱酸元素であり、0.
015%超の含有はMnS、TiN等の優先析出サイトとな
る複酸化物が生成されず、また、過剰の固溶Al はNと
化合しAlNを生成し、αを細粒化させるため0.015%以
下に限定した。0.005%未満では目的のAl を含有する複
酸化物が生成できないため、0.005%以上とした。かつ溶
鋼の溶存酸素〔O%〕に対しAl 量を重量%で、-0.004
≦〔Al%〕-1.1〔O%〕≦0.006 の関係を満たすように
限定したのは、この関係式において重量%でAl が
〔O〕濃度に対し過剰である場合はMnS,TiN等の
優先析出サイトとなる複酸化物の生成数が減少し、代わ
りに析出核として無効なAl23 を多数生成し、αの粗
粒化ができないためである。重量%でAl が〔O〕濃度
に対し過小である場合は析出に有効な複酸化物が著しく
減少するため、このように限定した。なお、Al を製鋼
過程の後期に添加する理由はAl は脱酸力が強く安定な
Al23 を生成し、目的の低融点の複酸化物が生成しに
くいためである。
Next, a small amount of Al is added, casting is performed, and the steel making process is completed. However, Al is a strong deoxidizing element, and
When the content exceeds 015%, a double oxide which becomes a preferential precipitation site of MnS, TiN, etc. is not generated, and excessive solid solution Al combines with N to form AlN, and α is refined to 0.015% Limited to the following. If the content is less than 0.005%, the desired double oxide containing Al cannot be produced, so the content was made 0.005% or more. And the amount of Al is -0.004 by weight% with respect to the dissolved oxygen [O%] of the molten steel.
≤ [Al%]-1.1 [O%] ≤ 0.006 is limited to satisfy the relation: in this relational expression, when Al is excessive with respect to the [O] concentration by weight%, MnS, TiN, etc. This is because the number of double oxides that form precipitation sites decreases, and instead, a large number of Al 2 O 3, which are ineffective as precipitation nuclei, are generated, and α cannot be coarsened. If the Al content is too small relative to the [O] concentration in weight%, the double oxide effective for precipitation is remarkably reduced. The reason why Al is added at the latter stage of the steelmaking process is that Al forms a strong Al 2 O 3 with a strong deoxidizing power, and it is difficult to form the desired low melting point double oxide.

【0017】不可避不純物として含有するPはその量に
ついて特に限定しないが凝固偏析による溶接割れ、靭性
などの低下を生じるので、極力低減すべきであり、望ま
しくはP量は0.02%未満である。以上が本発明鋼の基本
成分であるが、母材強度の上昇、および母材の靭性向上
の目的で、V、Cr 、Mo 、Nb 、Ni 、Cu 、Ca 、
REMの1種または2種以上を含有することができる。
Although the amount of P contained as an unavoidable impurity is not particularly limited, it is necessary to reduce the amount of P as much as possible, because the solidification segregation causes a decrease in welding cracks and toughness, etc., and the P content is desirably less than 0.02%. The above are the basic components of the steel of the present invention. For the purpose of increasing the strength of the base material and improving the toughness of the base material, V, Cr, Mo, Nb, Ni, Cu, Ca, and
One or more REMs can be contained.

【0018】V、Cr 、Mo 、Nb 、Ni 、Cu は母材
の強度を保証するための強化元素として添加するもので
あり、V≦0.20%、Cr≦0.7%、Nb≦0.05%、Mo≦0.3%、
Ni≦0.1%、Cu≦1.0%の各々上限を示したのは、強化能と
経済性とのバランスからこのように制限した。Ca とR
EMは熱間圧延時にMnSの延伸により生じるUST欠
陥、靭性低下を防止する目的で添加するものである。理
由はMnSに代わり、高温変形能の小さいCa-O-S或いは
REM-O-Sの球状の硫化酸化物を生成させ、圧延によって
もMnSのように延伸しないように介在物の性状と形状
制御を行うことである。しかし、重量%でCa が0.003%
を、REMで0.01%を超えて添加すると各々のCa-O-S、
REM-O-S は多量に、しかも粗大介在物となり、母材及
び、溶接部の靭性悪化をもたらすので重量%でCa は0.
003%以下に、REMは0.01%以下に制限した。
V, Cr, Mo, Nb, Ni, and Cu are added as strengthening elements for ensuring the strength of the base material. V ≦ 0.20%, Cr ≦ 0.7%, Nb ≦ 0.05%, Mo ≦ 0.3%,
The respective upper limits of Ni ≦ 0.1% and Cu ≦ 1.0% are shown in the above because of the balance between strengthening ability and economy. Ca and R
EM is added for the purpose of preventing UST defects and reduction in toughness caused by stretching of MnS during hot rolling. The reason is that instead of MnS, Ca-OS with small hot deformability or
The purpose is to generate the spherical sulfide oxide of REM-OS and control the properties and shape of the inclusions so that they do not stretch like MnS even by rolling. However, Ca is 0.003% by weight%.
Is added over 0.01% by REM, each Ca-OS,
REM-OS becomes a large amount and coarse inclusions, which deteriorates the toughness of the base metal and the welded part.
Rem was limited to 003% or less and REM to 0.01% or less.

【0019】次に、これらの成分の溶鋼を鋳片の凝固温
度から900℃間を0.05〜0.5 ℃/secの冷却速度で冷却
するとしたのは、鋼中のAl ・Ti 系複酸化物の個数を
20個/mm2 以下にするここと、先に生成させたAl ・
Ti 系複酸化物にMnS、TiNをこの範囲の冷却速度
で冷却することにより付着凝集させるためである。すな
わち、冷却速度が 0.5℃/sec未満では複合析出物を20
個/mm2 以下に分散させるには十分な条件であるが、連
続鋳造時の鋳片のブレイークアウトの危険など操業上の
困難さから 0.5℃/sec以上に限定した。また、 0.5℃/s
ecを超える冷却速度ではAl ・Ti 系複酸化物が微細析
出し、個数が20個/mm2 を超えるため0.5℃/sec以下
に限定した。
The reason why the molten steel of these components is cooled at a cooling rate of 0.05 to 0.5 ° C./sec from 900 ° C. to the solidification temperature of the slab is that the number of Al.Ti-based double oxides in the steel is To 20 pieces / mm 2 or less, and the previously generated Al
This is because MnS and TiN are adhered and aggregated by cooling the Ti-based double oxide at a cooling rate in this range. That is, if the cooling rate is less than 0.5 ° C / sec, the composite
Although it is a sufficient condition to disperse the particles into pieces / mm 2 or less, it was limited to 0.5 ° C./sec or more due to operational difficulties such as the risk of slab breakout during continuous casting. Also, 0.5 ℃ / s
When the cooling rate exceeds ec, Al.Ti-based double oxides are finely precipitated, and the number exceeds 20 / mm 2. Therefore, the cooling rate is limited to 0.5 ° C./sec or less.

【0020】なお、鋼中のAl ・Ti 系複酸化物とMn
S、TiNの複合析出物を20個/mm2 以下に分散させ
るとしたのは、20個/mm2 を超えると、粒内フェライ
トの生成と、γの細粒化が生じ、目的の降伏点化ができ
ないためである。上記の処理を経た鋳片は次に1100
〜1300℃の温度域に再加熱する。この温度域に再加
熱温度を限定したのは、熱間加工による形鋼の製造には
塑性変形を容易にするため1100℃以上の加熱が必要
であり、その上限は加熱炉の性能、経済性から1300
℃とした。
It should be noted that the Al.Ti-based double oxide in steel and Mn
The reason for dispersing the composite precipitate of S and TiN to 20 grains / mm 2 or less is that if it exceeds 20 grains / mm 2 , intragranular ferrite is generated and γ is refined, and the desired yield point is obtained. This is because it cannot be changed. The slab that has undergone the above treatment is then 1100
Reheat to a temperature range of ~ 1300 ° C. The reason for limiting the reheating temperature to this temperature range is that the production of shaped steel by hot working requires heating at 1100 ° C. or higher to facilitate plastic deformation, and the upper limit is the performance and economy of the heating furnace. From 1300
° C.

【0021】加熱した鋼材は粗圧延、中間圧延、仕上げ
圧延の各工程により圧延造形され、中間圧延機におい
て、リバース圧延し、同時に圧延前後でフランジ部を水
冷し、ウェブとの温度差を縮小させるためと、制御圧延
による靭性向上のために、900℃以下で総圧下量20
%以上の圧延が必要であり、圧延条件にこのような制限
を与えた。なお、圧延終了後、必要に応じ、フランジ水
冷を行う場合もある。
[0021] The heated steel material is roll-formed by each of rough rolling, intermediate rolling and finish rolling, and is reverse-rolled in an intermediate rolling mill, and at the same time, the flange portion is water-cooled before and after rolling to reduce the temperature difference with the web. Therefore, in order to improve toughness by controlled rolling, the total reduction amount is 20 ° C. or less at 900 ° C. or less.
% Of rolling is required, and such a restriction is imposed on the rolling conditions. After the rolling, the flange water cooling may be performed as necessary.

【0022】[0022]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を測定し、その量に見
合ったAl 量を添加し連続鋳造により250〜300mm
厚鋳片に鋳造した後、粗圧延工程の図示は省略している
が、図1に示すユニバーサル圧延装置列でH形鋼に圧延
した。なお、鋳造後の冷却速度はスラブの冷却帯の水量
と鋳片の引き抜き速度の選択により制御した。
EXAMPLES A prototype steel was melted in a converter, added with an alloy, preliminarily deoxidized, the oxygen concentration of the molten steel was measured, and an Al amount corresponding to the amount was added.
After casting into a thick slab, the rough rolling step was not illustrated, but was rolled into an H-beam by a universal rolling mill row shown in FIG. The cooling rate after casting was controlled by selecting the amount of water in the cooling zone of the slab and the speed of drawing the slab.

【0023】フランジ外面水冷は中間圧延機4の前後に
水冷装置5aを設け、圧延パス間でのスプレー冷却とリ
バース圧延の繰り返しと仕上げユニバーサル圧延機6で
圧延を終了した後、仕上げユニバーサル圧延機の後面に
設けた冷却装置5bでスプレー冷却した。機械特性は図
2に示すフランジ2の板厚t2 の中心部 (1/2t2)でフラ
ンジ幅全長(B) の1/4, 1/2幅 (1/4B, 1/2B) から、ウェ
ブ3の板厚中心部でウエブ高さの1/2Hから試験片を採集
し求めた。なお、これらの箇所の特性を求めたのはフラ
ンジ1/4F部とウェブ1/2W部はフランジ部とウェブ部の各
々の平均的な機械特性を示し、フランジ1/2F部はその特
性が最も低下するので、これら三箇所によりH形鋼の機
械試験特性を代表できるとしたためである。
For water cooling on the outer surface of the flange, water cooling devices 5a are provided before and after the intermediate rolling mill 4, and after repeating the spray cooling and the reverse rolling between the rolling passes and finishing the rolling by the finishing universal rolling mill 6, the finishing universal rolling mill 6 Spray cooling was performed by a cooling device 5b provided on the rear surface. Mechanical properties 1/4 flange width total length (B) at the center of the plate thickness t 2 of the flange 2 shown in FIG. 2 (1 / 2t 2), 1/2 width (1 / 4B, 1 / 2B ), At the center of the thickness of the web 3, test pieces were collected from 1 / 2H of the web height. The characteristics of these locations were determined by measuring the average mechanical properties of the flange 1 / 4F section and the web 1 / 2W section for each of the flange section and the web section. This is because the mechanical test characteristics of the H-section steel can be represented by these three locations because the strength decreases.

【0024】表1および表2には、試作鋼の化学成分
値、脱酸時の溶存酸素濃度と溶存酸素に対する残存Al
量との関係および、凝固時の冷却速度を示す。
Tables 1 and 2 show the chemical component values of the test steel, the dissolved oxygen concentration during deoxidation, and the residual Al with respect to the dissolved oxygen.
The relationship with the amount and the cooling rate during solidification are shown.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表3および表4には、圧延条件とフランジ
水冷の有無などの製造条件に対する、H形鋼の各部の機
械試験特性を示す。なお、圧延加熱温度を1280℃に
揃えたのは、一般的に加熱温度の低減は機械特性を向上
させることは周知であり、高温加熱条件は機械特性の最
低値を示すと推定され、この値がそれ以下の加熱温度で
の特性を代表できると判断したためである。
Tables 3 and 4 show mechanical test characteristics of each part of the H-section steel with respect to rolling conditions and production conditions such as the presence or absence of flange water cooling. It is well known that the rolling heating temperature is adjusted to 1280 ° C., in general, it is well known that the reduction of the heating temperature improves the mechanical properties, and it is estimated that the high temperature heating condition shows the lowest value of the mechanical properties. Was determined to be able to represent the characteristics at a lower heating temperature.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】表3に示すように、本発明による鋼1〜8
は、目標の SM400ではYP=245〜345N/mm2、 SM490ではYP
=324〜424N/mm2、 SM570ではYP=461〜561N/mm2のJIS
規格の下限値+100N/mm2の範囲内に制御され、しか
も、降伏比(YP/TS) も 0.8以下の低YR値を満たし、抗張
力(前記JIS3106)と−5℃でのシャルピー値4
7(J) 以上を十分に満たしている。一方、表4に示すよ
うに、比較鋼の鋼9、11、13は通常のAl 脱酸し、
本発明の製鋼過程での、溶鋼の酸素濃度の制御と微量A
l 脱酸がなされておらず、Al ・Ti 系酸化物が生成し
ていないためと、通常の連続鋳造条件で製造し、緩冷却
していないために、MnS等の析出物が微細分散し、フ
ェライトの細粒化をまねき、目標のYPのJIS規格の
下限値+100N/mm2の範囲を超え、降伏比(YP/TS) も
0.8以下を満足しない。また、比較鋼の鋼10、12、
14は本発明の製鋼過程での、溶鋼の酸素濃度の制御と
微量Al 脱酸は行われているものの、凝固時の冷却速度
が 0.5℃/secを超えたため、酸化物と複合析出物個数が
20個/mm2 以上となり、目標のYPのJIS規格の下
限値+100N/mm2の範囲を超え、降伏比も 0.8以下を
満足しない。
As shown in Table 3, steels 1 to 8 according to the present invention
Is YP = 245 to 345N / mm 2 for the target SM400, YP for the SM490
= 324 ~ 424N / mm 2 , SM570 YP = 461 ~ 561N / mm 2 JIS
It is controlled within the lower limit of the standard +100 N / mm 2 , and the yield ratio (YP / TS) also satisfies the low YR value of 0.8 or less, and the tensile strength (JIS 3106) and the Charpy value at -5 ° C are 4
7 (J) or more is fully satisfied. On the other hand, as shown in Table 4, comparative steels 9, 11, and 13 were subjected to ordinary Al deoxidation,
Control of oxygen concentration in molten steel and trace A in the steelmaking process of the present invention
l Deoxidation has not been carried out, and no Al / Ti-based oxide has been produced, and since it is manufactured under normal continuous casting conditions and not cooled slowly, precipitates such as MnS are finely dispersed, lead to grain refining of ferrite, beyond the range of the lower limit value + 100 N / mm 2 goal YP of JIS standard, yield ratio (YP / TS) also
0.8 or less is not satisfied. In addition, comparative steels 10, 12,
In the steelmaking process of the present invention, although the control of the oxygen concentration of the molten steel and the deoxidation of a small amount of Al were performed in the steelmaking process of the present invention, the cooling rate at the time of solidification exceeded 0.5 ° C / sec. 20 / mm 2 or more, exceeding the target YP lower limit of JIS standard + 100 N / mm 2 , and the yield ratio does not satisfy 0.8 or less.

【0031】即ち、本発明の要件が総て満たされた時
に、表3に示される形鋼1〜8のように、薄手サイズの
圧延形鋼の低温圧延による高降伏点化を抑制し、建材用
構造部材に求められる機械特性を満たす、圧延ままでの
形鋼の製造が可能になる。なお、本発明が対象とする圧
延形鋼は上記実施例のH形鋼に限らずI形鋼、山形鋼、
溝形鋼、不等辺不等厚山形鋼等のフランジを有する形鋼
にも適用できることは勿論である。
That is, when all the requirements of the present invention are satisfied, as shown in Tables 3 to 8, high yield points due to low-temperature rolling of thin-sized rolled steel sections are suppressed, and It is possible to manufacture as-rolled shaped steel that satisfies the mechanical properties required for structural members for use. Note that the rolled section steels to which the present invention is applied are not limited to the H-section steels of the above-described embodiment, but include I-section steels, angle irons,
It is needless to say that the present invention can also be applied to a section steel having a flange such as a channel section steel, an unequal side unequal thickness angle section steel or the like.

【0032】[0032]

【発明の効果】本発明による圧延形鋼は低温圧延条件に
おいても降伏点をJIS規格の下限値+100N/mm2
範囲に制御し、狭幅降伏点と低降伏比化を達成できる、
建築用形鋼の能率的な製造がインラインで可能になり、
大型構造物の信頼性の向上、経済性等の産業上の効果は
極めて顕著なものがある。
According to the rolled steel according to the present invention, the yield point can be controlled in the range of the lower limit of JIS standard +100 N / mm 2 even under low-temperature rolling conditions, and a narrow width yield point and a low yield ratio can be achieved.
Efficient production of building section steel is possible in-line,
Industrial effects such as improvement in reliability of large structures and economic efficiency are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施する装置配置例の略図であ
る。
FIG. 1 is a schematic view of an example of an apparatus arrangement for performing the method of the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す断面図である。
FIG. 2 is a cross-sectional view showing a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機 DESCRIPTION OF SYMBOLS 1 ... H-shaped steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water cooling device of the front and rear surface of an intermediate rolling mill 5b ... Finishing rolling machine rear surface cooling device 6 ... Finishing rolling mill

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn: 0.4〜2.0%、 Ti: 0.005〜0.025%、 N≦0.004%、 S≦0.01%、 Al: 0.005〜0.015% を含み、残部がFe および不可避不純物からなるととも
にTi ・Al 系複酸化物とMnS、TiNとの複合析出
物を20個/mm2 以下に分散したことを特徴とする含オ
キサイド系降伏点制御圧延形鋼。
C. 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, Ti: 0.005 to 0.025%, N ≦ 0.004%, S ≦ 0.01%, Al: 0.005% by weight% Oxide-containing yield point characterized by containing 0.015%, the balance being Fe and unavoidable impurities, and dispersing a composite precipitate of Ti.Al-based double oxide, MnS and TiN to 20 / mm 2 or less. Controlled rolled section steel.
【請求項2】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn: 0.4〜2.0%、 Ti: 0.005〜0.025%、 N≦0.004%、 S≦0.01%、 Al: 0.005〜0.015% を含み、加えてV≦0.20%、Cr≦0.7%、Nb≦0.05%、Mo
≦0.3%、Ni≦0.1%、Cu≦1.0%、Ca≦0.003%、 REM≦0.01
0%の1種または2種以上を含み、残部がFe および不可
避不純物からなるとともにTi ・Al 系複酸化物とMn
S、TiNとの複合析出物を20個/mm2 以下に分散し
たことを特徴とする含オキサイド系降伏点制御圧延形
鋼。
2. In weight%, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, Ti: 0.005 to 0.025%, N ≦ 0.004%, S ≦ 0.01%, Al: 0.005 to 0.015%, V ≦ 0.20%, Cr ≦ 0.7%, Nb ≦ 0.05%, Mo
≦ 0.3%, Ni ≦ 0.1%, Cu ≦ 1.0%, Ca ≦ 0.003%, REM ≦ 0.01
0% of one or more kinds, the balance being Fe and unavoidable impurities, and a Ti · Al-based double oxide and Mn
An oxide-containing yield-point controlled rolled steel having a composite precipitate of S and TiN dispersed at 20 particles / mm 2 or less.
【請求項3】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn: 0.4〜2.0%、 Ti: 0.005〜0.025%、 N≦0.004%、 S≦0.01% を含み、残部がFe および不可避不純物からなる溶鋼
を、予備脱酸処理によって、溶存酸素を重量%で 0.003
〜0.015%に調整後さらに、金属アルミもしくはフェロア
ルミの添加により脱酸し、該Al 含有量が重量%で 0.0
05〜0.015%で、かつ溶鋼の溶存酸素〔O%〕に対し-0.0
04≦〔Al%〕-1.1〔O%〕≦0.006 の関係を満たす鋳片
に鋳造後、該鋳片を凝固温度から900℃間を0.05〜0.
5 ℃/secの冷却速度で冷却し、鋼中にTi ・Al 系複酸
化物とMnS、TiNとの複合析出物を20個/mm2
下に分散させた該鋳片を1100〜1300℃の温度域
に再加熱後に圧延を開始し、900℃以下で20%以上
圧下することを特徴とする含オキサイド系降伏点制御圧
延形鋼の製造方法。
3. In% by weight, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, Ti: 0.005 to 0.025%, N ≦ 0.004%, S ≦ 0.01%, and the balance is The molten oxygen consisting of Fe and unavoidable impurities was reduced to 0.003% by weight of dissolved oxygen by preliminary deoxidation.
After adjusting the content to 0.015%, the mixture was further deoxidized by adding metallic aluminum or ferroaluminum.
05 to 0.015%, and -0.0 to the dissolved oxygen [O%] of the molten steel
After casting into a slab that satisfies the relationship of 04 ≦ [Al%] − 1.1 [O%] ≦ 0.006, the slab is cast from a solidification temperature to 900 ° C. in a range of 0.05 to 0.2%.
The slab was cooled at a cooling rate of 5 ° C./sec, and the precipitate obtained by dispersing a composite precipitate of a Ti · Al-based double oxide, MnS, and TiN in a steel at a rate of 20 / mm 2 or less at 1100-1300 ° C. A method for producing an oxide-containing yield-point-controlled rolled steel section, wherein rolling is started after reheating to a temperature range and reduced by 20% or more at 900 ° C or lower.
【請求項4】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn: 0.4〜2.0%、 Ti: 0.005〜0.025%、 N≦0.004%、 S≦0.01% を含み、加えてV≦0.20%、Cr≦0.7%、Nb≦0.05%、Mo
≦0.3%、Ni≦0.1%、Cu≦1.0%、Ca≦0.003%、 REM≦0.01
0%の1種または2種以上を含み、残部がFe および不可
避不純物からなる溶鋼を、予備脱酸処理によって、溶存
酸素を重量%で 0.003〜0.015%に調整後さらに、金属ア
ルミもしくはフェロアルミの添加により脱酸し、該Al
含有量が重量%で 0.005〜0.015%で、かつ溶鋼の溶存酸
素〔O%〕に対し-0.004≦〔Al%〕-1.1〔O%〕≦0.00
6 の関係を満たす鋳片に鋳造後、該鋳片を凝固温度から
900℃間を0.05〜0.5 ℃/secの冷却速度で冷却し、鋼
中にTi ・Al 系複酸化物とMnS、TiNとの複合析
出物を20個/mm2 以下に分散させた該鋳片を1100
〜1300℃の温度域に再加熱後に圧延を開始し、90
0℃以下で20%以上圧下することを特徴とする含オキ
サイド系降伏点制御圧延形鋼の製造方法。
4. In% by weight, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, Ti: 0.005 to 0.025%, N ≦ 0.004%, S ≦ 0.01%. V ≦ 0.20%, Cr ≦ 0.7%, Nb ≦ 0.05%, Mo
≦ 0.3%, Ni ≦ 0.1%, Cu ≦ 1.0%, Ca ≦ 0.003%, REM ≦ 0.01
The molten steel containing 0% or 1 or more kinds and the balance consisting of Fe and unavoidable impurities is adjusted to 0.003 to 0.015% by weight of dissolved oxygen by preliminary deoxidation treatment. Deoxidation by addition, the Al
The content is 0.005 to 0.015% by weight, and -0.004 ≦ [Al%]-1.1 [O%] ≦ 0.00 with respect to the dissolved oxygen [O%] of the molten steel.
After casting into a slab that satisfies the relationship of 6, the slab is cooled from the solidification temperature to 900 ° C. at a cooling rate of 0.05 to 0.5 ° C./sec, and Ti / Al-based double oxide, MnS, TiN The slab in which the composite precipitates were dispersed to 20 particles / mm 2 or less was 1100
Rolling was started after reheating to a temperature range of
A method for producing an oxide-containing yield-controlled rolled steel section comprising reducing the temperature by 20% or more at 0 ° C or lower.
JP27185392A 1992-10-09 1992-10-09 Oxide-containing rolled steel with controlled yield point and method for producing the same Expired - Lifetime JP2647313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27185392A JP2647313B2 (en) 1992-10-09 1992-10-09 Oxide-containing rolled steel with controlled yield point and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27185392A JP2647313B2 (en) 1992-10-09 1992-10-09 Oxide-containing rolled steel with controlled yield point and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06122942A JPH06122942A (en) 1994-05-06
JP2647313B2 true JP2647313B2 (en) 1997-08-27

Family

ID=17505794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27185392A Expired - Lifetime JP2647313B2 (en) 1992-10-09 1992-10-09 Oxide-containing rolled steel with controlled yield point and method for producing the same

Country Status (1)

Country Link
JP (1) JP2647313B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221565B (en) * 2010-11-22 2016-04-27 新日铁住金株式会社 Electro-beam welding joint and electrons leaves welding steel plate and its manufacture method
CN105274426B (en) * 2015-11-20 2017-05-10 北京科技大学 Method for improving performance of tin-containing carbon structural steel

Also Published As

Publication number Publication date
JPH06122942A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP2647314B2 (en) Yield point controlled rolled section steel and method for producing the same
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JP2965813B2 (en) Yield point controlled rolled section steel
JPH10147834A (en) 590mpa class rolled shape steel and its production
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JPH10147835A (en) 590mpa class rolled shape steel and its production
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH04279248A (en) Manufacture of rolled shapes piersed fine oxide with excellent toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3502850B2 (en) High-efficiency manufacturing method for steel with excellent toughness
JPH0776725A (en) Production of shape steel excellent in toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 16