JP2607796B2 - Method for producing low alloy rolled section steel with excellent toughness - Google Patents

Method for producing low alloy rolled section steel with excellent toughness

Info

Publication number
JP2607796B2
JP2607796B2 JP5816692A JP5816692A JP2607796B2 JP 2607796 B2 JP2607796 B2 JP 2607796B2 JP 5816692 A JP5816692 A JP 5816692A JP 5816692 A JP5816692 A JP 5816692A JP 2607796 B2 JP2607796 B2 JP 2607796B2
Authority
JP
Japan
Prior art keywords
steel
rolling
weight
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5816692A
Other languages
Japanese (ja)
Other versions
JPH05263182A (en
Inventor
山本広一
卓 吉田
黒川征男
小田直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5816692A priority Critical patent/JP2607796B2/en
Publication of JPH05263182A publication Critical patent/JPH05263182A/en
Application granted granted Critical
Publication of JP2607796B2 publication Critical patent/JP2607796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる靭性の優れた低合金圧延形鋼の製造法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low alloy rolled section steel having excellent toughness and used as a structural member of a building.

【0002】[0002]

【従来の技術】建造物の超高層化、安全規準の厳格化な
どから、柱用に用いられる鋼材、例えば板厚の大きなサ
イズのH形鋼(以下、極厚H形鋼と称す)には、一層の
高強度化、高靭性化、低降伏比化が求められている。こ
のような要求特性を満たすために、従来は圧延終了後に
焼準処理などの熱処理を施すことが行われた。熱処理の
付加は熱処理コストと生産効率の低下など大幅なコスト
上昇を招き、経済性に問題があった。この課題を解決す
るためには圧延ままで高性能の材質特性を得られるよう
に、新しい合金設計、製造法の開発が必要となった。
2. Description of the Related Art Due to the increase in height of buildings and stricter safety standards, steel materials used for pillars, for example, H-shaped steel having a large plate thickness (hereinafter, referred to as extra-thick H-shaped steel) are being used. Further, higher strength, higher toughness and lower yield ratio are required. In order to satisfy such required characteristics, conventionally, a heat treatment such as a normalizing process has been performed after the completion of rolling. The addition of heat treatment causes a significant increase in cost, such as a decrease in heat treatment cost and production efficiency, and has a problem in economy. To solve this problem, it was necessary to develop a new alloy design and manufacturing method so that high-performance material properties could be obtained as-rolled.

【0003】一般に、フランジを有する形鋼、例えばH
形鋼をユニバーサル圧延により製造すると、圧延造形上
の制約およびその形状の特異性からウェブ、フランジ、
フィレットの各部位で圧延仕上げ温度、圧下率、冷却速
度に差を生じる。その結果、部位間に強度、延性、靭性
のバラつきが発生し、例えば溶接構造用圧延鋼材(JI
S G3106)等の規準に満たない部位が生じる。特
に極厚H形鋼を連続鋳造スラブを素材とし圧延する場合
には連続鋳造設備で製造可能なスラブ最大厚みに限界が
あるため、低圧下比となる。さらに、圧延造形上の寸法
精度の制約から板厚の厚いフランジ部は高温圧延とな
り、圧延終了後の鋼材冷却は徐冷となって、ミクロ組織
は粗粒化する。
Generally, a section steel having a flange, for example, H
When a section steel is manufactured by universal rolling, the web, flange,
Differences occur in the rolling finish temperature, rolling reduction, and cooling rate at each part of the fillet. As a result, variations in strength, ductility, and toughness occur between the portions, and for example, a rolled steel material for a welding structure (JI
There are sites that do not meet the criteria such as SG3106). In particular, when rolling an extremely thick H-section steel as a continuous cast slab as a raw material, the maximum thickness of the slab that can be manufactured by the continuous casting facility is limited, so that the reduction ratio is low. Further, the flange portion having a large thickness is subjected to high-temperature rolling due to the restriction of dimensional accuracy in the rolling molding, and the steel material after the rolling is gradually cooled, and the microstructure is coarsened.

【0004】TMCPによる細粒化法も周知であるが、
造形上の制約から形鋼圧延では鋼板の製造法の大圧下は
できない。また、厚鋼板分野ではVNの析出効果を利用
し高強度・高靭性鋼を製造する、例えば特公昭62−5
0548号公報、特公昭62−54862号公報の技術
が提案されている。しかしながら、この従来法では溶鋼
の脱酸を一般的なAl脱酸処理で行っているため粒内フ
ェライト生成核として、組織の細粒化に効果を示す微細
な複合酸化物が生成せず、組織の細粒化が十分ではなか
った。即ち、従来のAl脱酸は溶製過程の初期段階でA
l添加し、溶鋼の脱酸と生成したAl23 を浮上分離
し高清浄化を目的にしていた。即ち、従来は如何に溶鋼
の酸素濃度を下げ、鋼中の一次脱酸酸化物数を減らすか
に重点が置かれていた。
[0004] A fine graining method using TMCP is also well known.
Due to the limitations of modeling, rolling of steel bars does not allow a large reduction in the manufacturing method of steel sheets. In the field of thick steel plates, high strength and high toughness steels are produced by utilizing the precipitation effect of VN.
No. 0548 and Japanese Patent Publication No. Sho 62-54862 have been proposed. However, in this conventional method, since the deoxidation of molten steel is performed by a general Al deoxidation treatment, fine composite oxides that are effective in refining the structure are not formed as intragranular ferrite generation nuclei, and Was not sufficiently refined. That is, the conventional Al deoxidation is performed at the initial stage of the melting process.
The deoxidation of molten steel and the generated Al 2 O 3 were floated and separated for high purification. That is, conventionally, emphasis has been placed on how to reduce the oxygen concentration of molten steel and the number of primary deoxidized oxides in steel.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の課題
を解決するために、製鋼、圧延および圧延後の冷却まで
の工程を総合的に対象とした新規な製造手段により、圧
延ままで組織を細粒化し、強度・靭性の優れた低合金圧
延形鋼を提供すること、即ち、製造工程においてフェラ
イトの核生成サイトを増加させ、核生成したフェライト
の成長を抑制し細粒化する手段を提供することを目的と
する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a novel manufacturing method which comprehensively covers steelmaking, rolling and cooling after rolling. To provide a low-alloy rolled section steel with excellent strength and toughness, that is, a means for increasing the number of ferrite nucleation sites in the manufacturing process, suppressing the growth of nucleated ferrite, and reducing the grain size. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、 重量%でC:0.04〜0.20%、Si:0.0
5〜0.50%、Mn:0.5〜1.8%、N:0.0
03〜0.012%、Al≦0.005%を含み、残部
がFeおよび不可避不純物からなる溶鋼を、予備脱酸処
理によって溶存酸素を重量%で0.003〜0.015
%に調整後さらに、チタン脱酸し、該チタン含有量が重
量%で0.005〜0.025%で、かつ溶鋼の溶存酸
素[O%]に対し−0.006≦[Ti%]−2[O
%]≦0.008の関係を満たす鋳片に鋳造し、該鋳片
を1100〜1300℃の温度域に再加熱後に圧延を開
始し、中間圧延工程のパス間で鋼材表層部の温度をAr
3 −20℃以下・Ar3 −100℃以上に水冷し、その
復熱過程で少なくとも1回以上圧延し、最終仕上げ圧延
後に1〜30℃/Sの冷却速度で600〜400℃まで
冷却する靭性の優れた低合金圧延形鋼の製造方法およ
び、 重量%でC:0.04〜0.20%、Si:0.0
5〜0.50%、Mn:0.5〜1.8%、N:0.0
03〜0.012%、Al≦0.005%を含み、加え
てV≦0.20%、Cr≦0.7%、Mo≦0.3%、
Nb≦0.05%、Ni≦1.0%、Cu≦1.0%、
の1種または2種以上を含み、残部がFeおよび不可避
不純物からなる溶鋼を、予備脱酸処理によって溶存酸素
を重量%で0.003〜0.015%に調整後さらに、
チタン脱酸し、該チタン含有量が重量%で0.005〜
0.025%で、かつ溶鋼の溶存酸素[O%]に対し−
0.006≦[Ti%]−2[O%]≦0.008の関
係を満たす鋳片に鋳造し、該鋳片を1100〜1300
℃の温度域に再加熱後に圧延を開始し、中間圧延工程の
パス間で鋼材表層部の温度をAr3 −20℃以下・Ar
3 −100℃以上に水冷し、その復熱過程で少なくとも
1回以上圧延し、最終仕上げ圧延後に1〜30℃/Sの
冷却速度で600〜400℃まで冷却する靭性の優れた
低合金圧延形鋼の製造方法にある。
The gist of the present invention is that C: 0.04 to 0.20% by weight and Si: 0.0% by weight.
5 to 0.50%, Mn: 0.5 to 1.8%, N: 0.0
The molten steel containing 0.3 to 0.012% and Al ≦ 0.005%, the balance being Fe and unavoidable impurities is dissolved in a pre-deoxidation treatment to reduce dissolved oxygen by weight to 0.003 to 0.015%.
%, The titanium content is further deoxidized, the titanium content is 0.005 to 0.025% by weight, and -0.006 ≦ [Ti%] − based on the dissolved oxygen [O%] of the molten steel. 2 [O
%] ≦ 0.008, and after reheating the slab to a temperature range of 1100 to 1300 ° C., rolling is started, and the temperature of the surface layer portion of the steel material is changed to Ar between passes in the intermediate rolling process.
3 water cooling to -20 ° C. or less · Ar 3 -100 ° C. or more, then rolling at least once in its recuperation process, toughness cooled to 600-400 ° C. at a cooling rate of 1 to 30 ° C. / S after the final finish rolling Method of producing low alloy rolled section steel with excellent C: 0.04 to 0.20% by weight, Si: 0.0% by weight
5 to 0.50%, Mn: 0.5 to 1.8%, N: 0.0
03-0.012%, Al ≦ 0.005%, V ≦ 0.20%, Cr ≦ 0.7%, Mo ≦ 0.3%,
Nb ≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0%,
The molten steel containing one or more of the following, the balance being Fe and unavoidable impurities, is adjusted to 0.003 to 0.015% by weight of dissolved oxygen by pre-deoxidation treatment.
Titanium is deoxidized, and the titanium content is 0.005% by weight.
0.025% and relative to the dissolved oxygen [O%] of the molten steel
Cast into slabs satisfying the relationship of 0.006 ≦ [Ti%] − 2 [O%] ≦ 0.008, and cast the slabs from 1100 to 1300
Rolling is started after reheating to a temperature range of ° C., and the temperature of the surface layer portion of the steel material is Ar 3 -20 ° C.
3 Low-rolled rolled alloy with excellent toughness that is water-cooled to -100 ° C or more, rolled at least once in the recuperation process, and cooled to 600 to 400 ° C at a cooling rate of 1 to 30 ° C / S after final finish rolling In the method of manufacturing steel.

【0007】本発明は、組織を細粒化するために、製鋼
過程において適正な脱酸処理を行い、溶鋼の高清浄化、
溶存酸素濃度の制御と最後にチタン脱酸することによ
り、粒内フェライト生成核として働く微細な複合酸化物
を鋼中に多数分散させ、更に熱間圧延パス間で水冷する
ことにより、鋼板の表層部と内部に温度差を与え、低圧
下条件下においても、より高温の内層部への圧下浸透を
高め、粒内フェライト生成核となる加工転位を導入し、
粒内フェライト生成核を増加させるものである。加え
て、圧延後のγ/α変態温度域を冷却制御することによ
り、その核生成させたフェライトの成長を抑制させ、ミ
クロ組織の細粒化を可能とし、高能率で製造コストの安
価な形鋼の製造を可能とするものである。
According to the present invention, in order to refine the structure, an appropriate deoxidation treatment is performed in the steel making process, and the molten steel is highly purified.
By controlling the dissolved oxygen concentration and finally deoxidizing titanium, a large number of fine composite oxides that act as intragranular ferrite formation nuclei are dispersed in the steel, and further cooled with water between hot rolling passes to form the surface layer of the steel sheet. Gives a temperature difference between the inside and the inside, and even under low pressure conditions, enhances the penetration under pressure into the higher temperature inner layer, and introduces processing dislocations that become intragranular ferrite formation nuclei,
This is to increase the number of intragranular ferrite nuclei. In addition, by controlling the γ / α transformation temperature range after rolling, the growth of the nucleated ferrite can be suppressed, the microstructure can be refined, and high efficiency and low production cost can be achieved. It enables the production of steel.

【0008】[0008]

【作用】以下、本発明の作用を実施例に基づき詳細に説
明する。鋼の高強度化はフェライト結晶の細粒化、合金
元素による固溶体強化、硬化相による分散強化、微細析
出物による析出強化等によって達成される。また、高靭
性化は結晶の細粒化、母相(フェライト)の固溶N,C
の低減、破壊の発生起点となる硬化相の高炭素マルテン
サイト及び粗大な酸化物・析出物の低減と微細化等によ
り達成される。
Hereinafter, the operation of the present invention will be described in detail based on embodiments. Higher strength of steel is achieved by finer ferrite crystals, solid solution strengthening by alloying elements, dispersion strengthening by hardened phases, and precipitation strengthening by fine precipitates. In addition, toughness can be improved by refining the crystal and dissolving N, C in the mother phase (ferrite).
This is achieved by reducing and miniaturizing high carbon martensite and coarse oxides / precipitates in the hardened phase, which is a starting point of fracture.

【0009】一般的には鋼の高強度化により靭性は低下
し、高強度化と高靭性化は相反する対処が必要である。
両者を同時に満たす冶金因子は唯一、結晶の細粒化であ
る。
In general, toughness is reduced by increasing the strength of steel, and it is necessary to contradict high strength and toughness.
The only metallurgical factor that satisfies both at the same time is grain refinement.

【0010】本発明の特徴は、製鋼工程において、溶鋼
の溶存酸素量の制御と強脱酸元素Al,Ca等での脱酸
をせず、弱脱酸元素のTiにより適正な脱酸処理を行
い、微細なTi系酸化物を鋼中に多数分散させること
と、熱間圧延工程において熱間圧延パス間で水冷と復熱
時に圧延することを繰り返すこと、の両処理により粒内
フェライト生成核を増加させ、加えて圧延後の冷却を制
御し、そのフェライトの成長を抑制し、ミクロ組織の細
粒化を行い圧延ままで母材の高強度化と高靭性化を達成
するものである。
The feature of the present invention is that in the steelmaking process, the control of the amount of dissolved oxygen in molten steel and the proper deoxidation treatment with Ti, a weak deoxidizing element, without performing deoxidation with the strongly deoxidizing elements Al, Ca, etc. In the hot rolling process, the process of dispersing a large number of fine Ti-based oxides in the steel and repeating the process of water cooling between hot rolling passes and rolling at the time of recuperation are repeated. In addition, the cooling after rolling is controlled, the growth of ferrite is suppressed, the microstructure is refined, and high strength and high toughness of the base material are achieved as rolled.

【0011】次に本発明形鋼の基本成分範囲の限定理由
について述べる。まず、Cは鋼の強度を向上させる有効
な成分として添加するもので、0.04%未満では構造
用鋼として必要な強度が得られず、また、0.20%を
超える過剰の添加は、母材靭性、耐溶接割れ性、溶接熱
影響部靭性などを著しく低下させるので下限を0.04
%、上限を0.20%とした。
Next, the reasons for limiting the range of the basic components of the shaped steel according to the present invention will be described. First, C is added as an effective component for improving the strength of steel. If it is less than 0.04%, the strength required for structural steel cannot be obtained, and if it exceeds 0.20%, excessive addition of Since the base material toughness, weld cracking resistance, toughness of the weld heat affected zone, etc. are significantly reduced, the lower limit is set to 0.04.
% And the upper limit was set to 0.20%.

【0012】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50%を超えるとHAZ
組織内に硬化組織の高炭素マルテンサイトを生成し、溶
接継手部靭性を著しく低下させる。また、0.05%未
満では必要な溶鋼の予備脱酸ができないためSi含有量
を0.05〜0.50%の範囲に限定した。
Next, Si is necessary for securing the strength of the base material, pre-deoxidizing the molten steel, and the like.
Generates high-carbon martensite having a hardened structure in the structure, and significantly reduces the toughness of the welded joint. If the content is less than 0.05%, the necessary preliminary deoxidation of molten steel cannot be performed, so the Si content is limited to the range of 0.05 to 0.50%.

【0013】Mnは母材の強度、靭性の確保には0.5
%以上の添加が必要であるが、溶接部の靭性、割れ性な
どの許容できる範囲で上限を1.8%とした。
Mn is 0.5 to secure the strength and toughness of the base material.
% Or more is necessary, but the upper limit is set to 1.8% within an allowable range such as toughness and cracking of the welded portion.

【0014】NはTiNやVNの析出には極めて重要な
元素であり、0.003%未満ではTiN,VNの析出
量が不足し、析出強化と粒内フェライト組織の十分な生
成量が得られないため0.003%以上とした。含有量
が0.012%を超えると母材靭性を低下させ、連続鋳
造時の鋼片の表面割れを生じさせるため0.012%以
下に限定した。
N is an extremely important element for the precipitation of TiN and VN. If the content is less than 0.003%, the amount of TiN and VN is insufficient, and the precipitation strengthening and the sufficient amount of intragranular ferrite structure can be obtained. Therefore, it was made 0.003% or more. When the content exceeds 0.012%, the toughness of the base material is reduced, and surface cracks of the steel slab during continuous casting are caused, so that the content is limited to 0.012% or less.

【0015】Tiは脱酸材としTi系酸化物を生成さ
せ、圧延時に粒内フェライトの生成を促進させる効果と
微細なTiNを析出させオーステナイトの細粒化と粒内
フェライトの生成を促進し母材及び溶接部の靭性を向上
させる。従って、0.005%以下では酸化物中のTi
含有量が不足し、粒内フェライト生成核としての作用が
低下するためTi量の下限値を0.005%以上とし
た。しかし0.025%を超えると、過剰なTiはTi
Cを生成し、析出硬化を生じ溶接熱影響部の靭性を著し
く低下させるためこれ未満に限定した。なお、Ti含有
量を溶鋼の溶存酸素[O%]に対し−0.006≦[T
i%]−2[O%]≦0.008の関係を満たす重量%
とするという制限を与えたのは、この関係式において重
量%でTiが[O]濃度に対し過剰である場合は過剰な
Tiが必要以上のTiNを生成し、鋳片割れや母材靭性
を損なうためであり、重量%でTiが[O]濃度に対し
過小である場合は粒内フェライト核となるTi系酸化物
の個数が必要数の40個/mm2 を超えなくなるため、
このように限定した。Alは強力な脱酸元素であり、
0.005%を超えて含有すると粒内フェライト変態を
促進するTi系酸化物、Mn・Si系酸化物などが形成
されず、靭性の低下がもたらされるため0.005%以
下に限定した。
[0015] Ti is used as a deoxidizing agent to form a Ti-based oxide, which promotes the formation of intragranular ferrite during rolling and precipitates fine TiN to promote austenite grain refinement and the formation of intragranular ferrite. Improve the toughness of materials and welds. Therefore, if the content is 0.005% or less, Ti
The lower limit of the Ti content is set to 0.005% or more because the content is insufficient and the effect as the intragranular ferrite generation nucleus is reduced. However, if it exceeds 0.025%, excess Ti becomes Ti
C was formed, precipitation hardening occurred, and the toughness of the heat affected zone was significantly reduced. It should be noted that the Ti content is defined as −0.006 ≦ [T
i%]-2 [O%] ≤ 0.008% by weight
In this relation, when Ti is excessive with respect to the [O] concentration by weight%, the excess Ti generates TiN more than necessary, thereby impairing slab cracks and impairing base material toughness. When the content of Ti is too small relative to the [O] concentration in% by weight, the number of Ti-based oxides serving as intragranular ferrite nuclei does not exceed the required number of 40 / mm 2 ,
This is limited. Al is a strong deoxidizing element,
If the content exceeds 0.005%, a Ti-based oxide or a Mn-Si-based oxide which promotes intragranular ferrite transformation is not formed, and the toughness is reduced. Therefore, the content is limited to 0.005% or less.

【0016】不可避不純物として含有するP,Sはその
量について特に限定しないが凝固偏析による溶接割れ、
靭性の低下を生じるので、極力低減すべきであり、望ま
しくはP,S量はそれぞれ0.02%未満である。
The amounts of P and S contained as inevitable impurities are not particularly limited, but welding cracks due to solidification segregation,
Since toughness is reduced, the content of P and S should be less than 0.02%.

【0017】以上が本発明鋼の基本成分であるが、母材
強度の上昇、および母材の靭性向上の目的で、V,C
r,Mo,Nb,Ni,Cu、の1種または2種以上を
含有することができる。まず、VはVNとして粒内フェ
ライト組織の生成による細粒化、析出強化による高強度
化のために重要な元素であるが、0.20%を超えると
析出量が過剰になり母材靭性が低下するため0.20%
以下に限定した。
The basic components of the steel of the present invention have been described above. For the purpose of increasing the strength of the base material and improving the toughness of the base material, V, C
One, two or more of r, Mo, Nb, Ni, and Cu can be contained. First, V is an important element as VN for grain refinement due to the formation of intragranular ferrite structure and high strength due to precipitation strengthening. However, if it exceeds 0.20%, the amount of precipitation becomes excessive and the base material toughness decreases. 0.20% to decrease
Limited to the following.

【0018】Crは焼き入れ性の向上により、母材の強
化に有効である。しかし0.7%を超える過剰の添加
は、靭性および硬化性の観点から有害となるため、上限
を0.7%とした。
[0018] Cr is effective in strengthening the base material by improving the hardenability. However, excessive addition exceeding 0.7% is harmful from the viewpoint of toughness and curability, so the upper limit was made 0.7%.

【0019】Moは母材強度の確保に有効な元素である
が、高価であるため0.3%以下に限定した。
Mo is an element effective for securing the base material strength, but is limited to 0.3% or less because it is expensive.

【0020】Nbは母材の強靭化に有効であるが0.0
5%を超える過剰の添加は、靭性及び硬化性の観点から
有害となるため0.05%以下とした。
Nb is effective for strengthening the base material,
Excessive addition exceeding 5% is harmful from the viewpoint of toughness and hardenability, so it was made 0.05% or less.

【0021】Niは、母材の強靭性を高める極めて有効
な元素であるが、1.0%を超える添加は合金コストを
増加させ経済的でないので上限を1.0%とした。
Ni is a very effective element for increasing the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%.

【0022】Cuは母材の強化、耐候性に有効な元素で
あるが、応力除去焼鈍による焼き戻し脆性、溶接割れ
性、熱間加工割れを促進するため、上限を1.0%とし
た。
Although Cu is an element effective for strengthening the base material and weathering resistance, the upper limit is set to 1.0% in order to promote temper brittleness by stress relief annealing, weld cracking, and hot work cracking.

【0023】次に、上記の成分でなる溶鋼を予備脱酸処
理により溶存酸素を制御する。溶存酸素の制御は溶鋼を
高清浄化すると同時に鋳片内に微細な複合酸化物を生成
させるために極めて重要である。溶存酸素を重量%で
0.003〜0.015%の範囲に制御する理由は、予
備脱酸後の[O]濃度が0.003%未満では粒内フェ
ライト変態を促進する粒内フェライト生成核の複合酸化
物が減少し、細粒化できず靭性を向上できない。一方、
0.015%を超える場合は、他の条件を満たしていて
も、酸化物が粗粒化し脆性破壊の起点となり、靭性を低
下させるための予備脱酸後の[O]濃度を重量%で0.
003〜0.015%に限定した。上記の予備脱酸処理
は真空脱ガス、Al,Si,Ca,Mg脱酸により行っ
た。その理由は真空脱ガス処理は直接溶鋼中の酸素をガ
スおよびCOガスとして除去し、Al,Si,Ca,M
gなどの強脱酸により生成する酸化物系介在物は浮上し
除去しやすいため溶鋼の清浄化に極めて効果的である。
Next, the dissolved oxygen of the molten steel composed of the above components is controlled by a preliminary deoxidation treatment. The control of dissolved oxygen is extremely important for purifying molten steel at the same time as generating fine composite oxides in the slab. The reason for controlling the dissolved oxygen in the range of 0.003 to 0.015% by weight is that if the [O] concentration after preliminary deoxidation is less than 0.003%, intragranular ferrite nuclei that promote intragranular ferrite transformation are promoted. Of composite oxides, and cannot be refined to improve toughness. on the other hand,
If it exceeds 0.015%, even if other conditions are satisfied, the oxide becomes coarse and becomes the starting point of brittle fracture, and the [O] concentration after preliminary deoxidation for reducing toughness is reduced to 0% by weight. .
003 to 0.015%. The preliminary deoxidizing treatment was performed by vacuum degassing and deoxidizing Al, Si, Ca, and Mg. The reason is that vacuum degassing directly removes oxygen in molten steel as gas and CO gas, and removes Al, Si, Ca, M
Oxide-based inclusions generated by strong deoxidation, such as g, float and are easily removed, which is extremely effective for cleaning molten steel.

【0024】上記の処理を経た鋳片は次に1100〜1
300℃の温度域に再加熱する。この温度域に再加熱温
度を限定したのは、熱間加工による形鋼の製造には塑性
変形を容易にするため1100℃以上の加熱が必要であ
り、且つV,Nbなどの元素を十分に固溶させる必要が
あるため再加熱温度の下限を1100℃とした。その上
限は加熱炉の性能、経済性から1300℃とした。
The slab that has undergone the above treatment is then subjected to 1100-1
Reheat to a temperature range of 300 ° C. The reason for limiting the reheating temperature to this temperature range is that the production of a shaped steel by hot working requires heating at 1100 ° C. or more to facilitate plastic deformation, and sufficiently removes elements such as V and Nb. Since it is necessary to form a solid solution, the lower limit of the reheating temperature was set to 1100 ° C. The upper limit was set to 1300 ° C. in view of the performance and economy of the heating furnace.

【0025】加熱した鋼材は粗圧延、中間圧延、仕上げ
圧延の各工程によって圧延造形するが、本発明法の圧延
工程における特徴は、中間圧延工程において圧延パス間
で鋼片表層部の温度をAr3 −20℃以下・Ar3 −1
00℃以上に冷却し、鋼材表面が復熱する過程で熱間圧
延を行うことを少なくとも中間圧延工程で1回以上行う
ことである。これは圧延パス間の水冷により、鋼片の表
層部と内部の温度差を付与し、低圧下条件においても内
部への加工を浸透させるためと、低温圧延を短時間で効
率的に行うためである。復熱圧延のパス回数は被圧延材
の厚みの大きさ、例えばH形鋼の場合ではフランジの厚
みに応じ、厚みが大きい場合には複数回行う。ここで、
鋼片表層部の温度をAr3 −20℃以下・Ar3 −10
0℃以上に限定し冷却する理由は、圧延に引き続き加速
冷却するため、通常のγ温度域からの冷却では表層部に
焼きが入り硬化相を生成し、加工性を損ねるためであ
る。この温度範囲内に冷却すれば、一旦γ/α変態温度
を切り、次の圧延までに表層部は復熱昇温し、二相共存
温度域での加工となって焼き入性を著しく低減でき、加
速冷却による表面層の硬化を防止できる。中間圧延工程
の後、仕上げ圧延工程で最終製品とするが、本発明では
最終仕上げ圧延が終了した後に、1〜30℃/Sの冷却
速度で600〜400℃まで鋼材を冷却する。
The heated steel material is rolled and formed by the steps of rough rolling, intermediate rolling and finish rolling. The feature of the rolling step of the present invention is that in the intermediate rolling step, the temperature of the surface layer of the slab is changed between the rolling passes by Ar. 3 -20 ℃ or less · Ar 3 -1
Cooling to a temperature of at least 00 ° C. and performing hot rolling in the process of recovering the surface of the steel material is to be performed at least once in the intermediate rolling step. This is because water cooling between rolling passes gives a temperature difference between the surface layer and the inside of the slab to allow the inside to work even under low pressure reduction conditions, and to perform low-temperature rolling efficiently in a short time. is there. The number of passes of recuperative rolling depends on the thickness of the material to be rolled, for example, the thickness of the flange in the case of H-section steel, and is performed plural times when the thickness is large. here,
The temperature of the steel strip surface layer portion Ar 3 -20 ° C. or less · Ar 3 -10
The reason for cooling at a temperature of 0 ° C. or higher is that cooling is carried out at an ordinary γ temperature range because of accelerated cooling subsequent to rolling, so that the surface layer is baked and a hardened phase is formed, thereby impairing workability. Once cooled within this temperature range, the γ / α transformation temperature is temporarily cut off, and the surface layer is reheated to the temperature before the next rolling, and it is processed in a two-phase coexisting temperature range to significantly reduce hardenability. The hardening of the surface layer due to accelerated cooling can be prevented. After the intermediate rolling step, the final product is obtained in the finish rolling step. In the present invention, after the final finish rolling is completed, the steel material is cooled to 600 to 400 ° C. at a cooling rate of 1 to 30 ° C./S.

【0026】このいわゆる加速冷却によりフェライトの
粒成長の抑制とパーライト及びベイナイト組織比率を増
加させ、低合金で目標の強度が得られる。600〜40
0℃で加速冷却を停止するのは、600℃超の加速冷却
ではAr1点以上となり、一部γ相が残存しフェライト
の粒成長の抑制とパーライト及びベイナイト組織比率を
増加させることができないためである。また、400℃
未満の冷却では、その後の放冷によりフェライト相に過
飽和に固溶しているC,Nを炭化物、窒化物として析出
させることができず、フェライト相の延性が低下するた
め、この温度範囲に限定した。
The so-called accelerated cooling suppresses the ferrite grain growth and increases the pearlite and bainite structure ratios, so that the desired strength can be obtained with a low alloy. 600-40
The reason why the accelerated cooling is stopped at 0 ° C. is that the accelerated cooling at 600 ° C. or more causes the Ar point to be higher than or equal to 1, and a part of the γ phase remains, so that the grain growth of ferrite cannot be suppressed and the pearlite and bainite structure ratios cannot be increased. is there. 400 ° C
If the cooling is lower than this, C and N which are dissolved in the ferrite phase in a supersaturated state in the ferrite phase cannot be precipitated as carbides and nitrides, and the ductility of the ferrite phase decreases. did.

【0027】[0027]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を測定し、その量に見
合ったTi量を添加し連続鋳造により250〜300m
m厚鋳片に鋳造した後、図1に示すユニバーサル圧延装
置列でH形鋼に圧延した。粗圧延工程の図示は省略して
いるが、中間ユニバーサル圧延機4の前後に水冷装置5
aを設け、圧延パス間水冷はフランジ内外面のスプレー
冷却とリバース圧延の繰り返しにより行い、仕上げユニ
バーサル圧延機6で圧延を終了した後、この仕上げユニ
バーサル圧延機の後面に設けた冷却装置5bによって製
品のフランジ、ウェブに対してスプレーによる加速冷却
を行った。
EXAMPLE A prototype steel was melted in a converter, added with an alloy, preliminarily deoxidized, the oxygen concentration of the molten steel was measured, and a Ti amount corresponding to the amount was added.
After casting into a m-thick slab, it was rolled into an H-beam by the universal rolling mill row shown in FIG. Although illustration of the rough rolling step is omitted, a water cooling device 5 is provided before and after the intermediate universal rolling mill 4.
a, water cooling between rolling passes is performed by repeating spray cooling and reverse rolling of the inner and outer surfaces of the flange, and after finishing rolling in the finishing universal rolling mill 6, the product is cooled by a cooling device 5b provided on the rear face of the finishing universal rolling mill. The flange and the web were subjected to accelerated cooling by spraying.

【0028】機械特性は図2に示すH形鋼1のフランジ
2の板厚t2 の中心部(1/2t2)でフランジ幅全長
(B)の1/4,1/2幅(1/4B,1/2B)か
ら、ウェブ3の板厚中心部でウェブ高さの1/2Hから
試験片を採集し求めた。なお、これらの箇所の特性を求
めたのはフランジ1/4F部とウェブ1/2w部はフラ
ンジ部とウェブ部の各々の平均的な機械特性を示し、フ
ランジ1/2F部はその特性が最も低下するので、これ
ら3箇所によりH形鋼の機械試験特性を代表できるとし
たためである。
The mechanical properties are shown in FIG. 2 at the center (1 / 2t 2 ) of the thickness t 2 of the flange 2 of the H-section steel 1 1 / of the full length (B) of the flange width (B). 4B, 1 / 2B), a test piece was collected from the center of the thickness of the web 3 at 1 / 2H of the web height. It should be noted that the characteristics of these locations were obtained by calculating the average mechanical properties of the flange 1 / 4F and the web 1 / 2w in the flange 1 / 4F, and the flange 1 / 2F 1 This is because the mechanical test characteristics of the H-section steel can be represented by these three locations because the strength decreases.

【0029】表1は、試作鋼の化学成分値を示し、表2
は圧延と加速冷却条件に対する機械試験特性を示す。な
お、圧延加熱温度を1280℃に揃えたのは、一般的に
加熱温度の低減は機械特性を向上させることは周知であ
り、高温加熱条件は機械特性の最低値を示すと推定さ
れ、この値がそれ以下の加熱温度での特性を代表できる
と判断したためである。
Table 1 shows the chemical component values of the prototype steel, and Table 2
Shows mechanical test characteristics for rolling and accelerated cooling conditions. It is well known that the rolling heating temperature is adjusted to 1280 ° C., in general, it is well known that the reduction of the heating temperature improves the mechanical properties, and it is estimated that the high temperature heating condition shows the lowest value of the mechanical properties. Was determined to be able to represent the characteristics at a lower heating temperature.

【0030】表2に示すように、本発明による鋼1〜6
は、目標の母材強度(前記JISG3106)と−5℃
でのシャルピー値47(J)以上を十分に満たしてい
る。一方、比較鋼の鋼7は通常のAl脱酸し、本発明の
Ti脱酸と圧延後の加速冷却処理が施されていないた
め、母材強度は規格を満たすものの、フランジの板厚1
/2で幅1/2部の靭性は目標値を満足しない。鋼8は
Ti脱酸処理のみ施されているが他の処理が施されてい
ないため、組織の細粒化が十分でなく、母材強度の規格
を満たせず、加えて、フランジの板厚1/2で幅1/2
部の靭性も目標値を満足しない。また、鋼9は本発明に
おいて加速冷却処理のみを施し、低合金化は達成できた
が、他の処理を行っていないのでフランジ部の靭性が目
標値を満たさず、さらに、圧延パス間水冷によるγ細粒
化が達成されていないので加速冷却によりフランジ表層
部は焼きが入り、外側面の表面硬さが目標のビッカース
硬さでHv240以下を遥かに超えて、加工性の低下を
生じる。
As shown in Table 2, steels 1 to 6 according to the present invention
Is the target base material strength (JISG3106) and -5 ° C
Satisfies a Charpy value of 47 (J) or more. On the other hand, the steel 7 of the comparative steel is subjected to ordinary Al deoxidation and is not subjected to the Ti deoxidation of the present invention and the accelerated cooling treatment after rolling, so that the base material strength satisfies the standard, but the flange thickness 1
In the case of / 2, the toughness of the width 1/2 part does not satisfy the target value. Steel 8 was subjected to only Ti deoxidation treatment but not to other treatments, so that the grain refinement of the structure was not sufficient, the base material strength was not satisfied, and the thickness of the flange was 1 / 2 width 1/2
The toughness of the part does not satisfy the target value. The steel 9 was subjected to only the accelerated cooling treatment in the present invention, and a low alloy was achieved. However, since other treatments were not performed, the toughness of the flange portion did not satisfy the target value. Since gamma refinement has not been achieved, the flange surface layer is quenched by accelerated cooling, and the surface hardness of the outer surface is much higher than Hv 240 or less at the target Vickers hardness, resulting in a reduction in workability.

【0031】即ち、本発明の要件が総て満たされた時
に、表2に示される形鋼1〜6のように、圧延形鋼の機
械試験特性を最も満たしにくいフランジ板厚1/2,幅
1/2部においても十分な強度を有し、優れた靭性を持
つ圧延形鋼の製造が可能になる。なお、本発明が対象と
する圧延形鋼は上記実施例のH形鋼に限らずI形鋼、山
形鋼、溝形鋼、不等辺不等厚山形鋼等の他のフランジを
有する形鋼にも適用できることは勿論である。
That is, when all the requirements of the present invention are satisfied, the flange plate thickness 1/2 and width, which hardly satisfy the mechanical test characteristics of the rolled steel, as shown in Tables 1 to 6 shown in Table 2. Even in a half part, a rolled section steel having sufficient strength and excellent toughness can be manufactured. Note that the rolled section steels to which the present invention is applied are not limited to the H-section steels of the above-described embodiment, but include section steels having other flanges such as I-section steels, angle irons, channel steels, unequal-thickness angle irons. Of course, it can also be applied.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明により圧延形鋼は機械試験特性を
最も保証しにくいフランジ板厚1/2,幅1/2部にお
いても十分な強度を有し、優れた靭性を持つ低合金圧延
形鋼の製造がオンラインで可能になり、大型建造物の信
頼性向上、安全性の確保、経済性等の産業上の効果は極
めて顕著なものがある。
According to the present invention, the rolled section steel has a sufficient strength even at a flange plate thickness of 1/2 and a width of 1/2 part where mechanical test characteristics are most difficult to be guaranteed, and is a low alloy rolled section having excellent toughness. Steel production becomes possible online, and there are extremely significant industrial effects such as improvement in reliability of large buildings, safety assurance, and economic efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する装置配置例の略図。FIG. 1 is a schematic diagram of an example of an apparatus arrangement for implementing the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図。
FIG. 2 is a diagram showing a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 6…仕上げ圧延機 5b…仕上げ圧延機
後面の冷却装置
DESCRIPTION OF SYMBOLS 1 ... H-shaped steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water cooling device of the front and back surface of an intermediate rolling mill 6 ... Finish rolling mill 5b ... Cooling device of the rear surface of a finishing rolling mill

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21D 8/00 9270−4K C21D 8/00 B 9/00 102 9352−4K 9/00 102A C22C 38/00 301 C22C 38/00 301A 38/06 38/06 (72)発明者 小田直樹 堺市築港八幡町1番地 新日本製鐵株式 会社堺製鐵所内 (56)参考文献 特開 平4−157117(JP,A) 特開 平4−279247(JP,A) 特開 平5−271754(JP,A)──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location C21D 8/00 9270-4K C21D 8/00 B 9/00 102 9352-4K 9/00 102A C22C 38 / 00 301 C22C 38/00 301A 38/06 38/06 (72) Inventor Naoki Oda 1 Chikako-Hachiman-cho, Sakai City Inside Nippon Steel Corporation Sakai Works (56) References JP-A-4-157117 ( JP, A) JP-A-4-279247 (JP, A) JP-A-5-271754 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.5〜1.8%、 N:0.003〜0.012%、 Al≦0.005%を含み、 残部がFeおよび不可避不純物からなる溶鋼を、予備脱
酸処理によって溶存酸素を重量%で0.003〜0.0
15%に調整後さらに、チタン脱酸し、該チタン含有量
が重量%で0.005〜0.025%で、かつ溶鋼の溶
存酸素[O%]に対し−0.006≦[Ti%]−2
[O%]≦0.008の関係を満たす鋳片に鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後に圧延
を開始し、中間圧延工程のパス間で鋼材表層部の温度を
Ar3 −20℃以下・Ar3 −100℃以上に水冷し、
その復熱過程で少なくとも1回以上圧延し、最終仕上げ
圧延後に1〜30℃/Sの冷却速度で600〜400℃
まで冷却することを特徴とする靭性の優れた低合金圧延
形鋼の製造方法。
C. 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.5 to 1.8%, N: 0.003 to 0.012 by weight% %, Al ≦ 0.005%, the balance being molten iron consisting of Fe and unavoidable impurities.
After adjusting to 15%, the titanium was further deoxidized, and the titanium content was 0.005 to 0.025% by weight, and -0.006 ≦ [Ti%] based on the dissolved oxygen [O%] of the molten steel. -2
[O%] <= 0.008, cast into a slab that satisfies the relationship, re-heated the slab to a temperature range of 1100 to 1300 ° C, started rolling, and measured the temperature of the surface layer of the steel material between passes of the intermediate rolling process. Water cooled to Ar 3 -20 ° C or lower and Ar 3 -100 ° C or higher,
Rolled at least once in the recuperation process, and 600-400 ° C at a cooling rate of 1-30 ° C / S after the final finish rolling.
A method for producing a low alloy rolled section steel having excellent toughness, characterized by cooling to a low temperature.
【請求項2】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.5〜1.8%、 N:0.003〜0.012%、 Al≦0.005%を含み、 加えてV≦0.20%、Cr≦0.7%、Mo≦0.3
%、Nb≦0.05%、Ni≦1.0%、Cu≦1.0
%、の1種または2種以上を含み、 残部がFeおよび不可避不純物からなる溶鋼を、予備脱
酸処理によって溶存酸素を重量%で0.003〜0.0
15%に調整後さらにチタン脱酸し、該チタン含有量が
重量%で0.005〜0.025%で、かつ溶鋼の溶存
酸素[O%]に対し−0.006≦[Ti%]−2[O
%]≦0.008の関係を満たす鋳片に鋳造し、該鋳片
を1100〜1300℃の温度域に再加熱後に圧延を開
始し、中間圧延工程のパス間で鋼材表層部の温度をAr
3 −20℃以下・Ar3 −100℃以上に水冷し、その
復熱過程で少なくとも1回以上圧延し、最終仕上げ圧延
後に1〜30℃/Sの冷却速度で600〜400℃まで
冷却することを特徴とする靭性の優れた低合金圧延形鋼
の製造方法。
2. In% by weight, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.5 to 1.8%, N: 0.003 to 0.012 %, Al ≦ 0.005%, V ≦ 0.20%, Cr ≦ 0.7%, Mo ≦ 0.3
%, Nb ≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0
% Or more, and the balance of molten steel consisting of Fe and inevitable impurities is reduced to 0.003 to 0.0% by weight of dissolved oxygen by preliminary deoxidation treatment.
After adjusting to 15%, the titanium was further deoxidized, and the titanium content was 0.005 to 0.025% by weight, and -0.006 ≦ [Ti%]-based on the dissolved oxygen [O%] of the molten steel. 2 [O
%] ≦ 0.008, and after reheating the slab to a temperature range of 1100 to 1300 ° C., rolling is started, and the temperature of the surface layer portion of the steel material is changed to Ar between passes in the intermediate rolling process.
3 water cooling to -20 ° C. or less · Ar 3 -100 ° C. or more, that the rolled at least once in recuperation process is cooled after the final finish rolling to 600-400 ° C. at a cooling rate of 1 to 30 ° C. / S A method for producing a low alloy rolled section steel having excellent toughness characterized by the following.
JP5816692A 1992-03-16 1992-03-16 Method for producing low alloy rolled section steel with excellent toughness Expired - Fee Related JP2607796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5816692A JP2607796B2 (en) 1992-03-16 1992-03-16 Method for producing low alloy rolled section steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5816692A JP2607796B2 (en) 1992-03-16 1992-03-16 Method for producing low alloy rolled section steel with excellent toughness

Publications (2)

Publication Number Publication Date
JPH05263182A JPH05263182A (en) 1993-10-12
JP2607796B2 true JP2607796B2 (en) 1997-05-07

Family

ID=13076415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5816692A Expired - Fee Related JP2607796B2 (en) 1992-03-16 1992-03-16 Method for producing low alloy rolled section steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP2607796B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565531B2 (en) 2011-12-15 2014-08-06 新日鐵住金株式会社 High strength extra thick H-section steel
SG11201500113TA (en) 2012-11-26 2015-03-30 Nippon Steel & Sumitomo Metal Corp H-section steel and method for procuding the same
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
JP6131833B2 (en) * 2013-11-08 2017-05-24 新日鐵住金株式会社 Method for continuous casting of Ti deoxidized steel
JP6225997B2 (en) * 2013-12-16 2017-11-08 新日鐵住金株式会社 H-section steel and its manufacturing method
WO2015159793A1 (en) 2014-04-15 2015-10-22 新日鐵住金株式会社 Steel h-beam and method for manufacturing same
EP3425080B1 (en) 2016-03-02 2021-05-26 Nippon Steel Corporation Steel h-shape for low temperature service and manufacturing method therefor
CN113699441B (en) * 2021-07-29 2022-10-04 马鞍山钢铁股份有限公司 Flange super-thick hot-rolled H-shaped steel with good low-temperature impact toughness and production method thereof
CN115418459B (en) * 2022-08-26 2024-03-22 河钢股份有限公司 Production method of steel plate

Also Published As

Publication number Publication date
JPH05263182A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP2647314B2 (en) Yield point controlled rolled section steel and method for producing the same
JP2596853B2 (en) Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP2953919B2 (en) Slab for high toughness and high strength steel and method for producing rolled section steel using the slab
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH10147835A (en) 590mpa class rolled shape steel and its production
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2936235B2 (en) Rolled section steel with excellent toughness and method for producing the same
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees