JP3403300B2 - 590 MPa class rolled section steel and method for producing the same - Google Patents

590 MPa class rolled section steel and method for producing the same

Info

Publication number
JP3403300B2
JP3403300B2 JP30473996A JP30473996A JP3403300B2 JP 3403300 B2 JP3403300 B2 JP 3403300B2 JP 30473996 A JP30473996 A JP 30473996A JP 30473996 A JP30473996 A JP 30473996A JP 3403300 B2 JP3403300 B2 JP 3403300B2
Authority
JP
Japan
Prior art keywords
rolling
content
less
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30473996A
Other languages
Japanese (ja)
Other versions
JPH10147836A (en
Inventor
広一 山本
寛哲 佐藤
征男 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30473996A priority Critical patent/JP3403300B2/en
Publication of JPH10147836A publication Critical patent/JPH10147836A/en
Application granted granted Critical
Publication of JP3403300B2 publication Critical patent/JP3403300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建造物の構造部材
として用いられる靭性の優れた高張力圧延形鋼およびそ
の製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high tensile rolled steel having excellent toughness, which is used as a structural member of a building, and a method for producing the steel.

【0002】[0002]

【従来の技術】建築物の超高層化、安全規準の厳格化な
どから、柱用に用いられる鋼材、例えば特に板厚の大き
なサイズのH形鋼(以下、極厚H形鋼と称す)には、一
層の高強度化、高靭性化、低降伏比化が求められてい
る。このような要求特性を満たすために、従来は圧延終
了後に焼準処理などの熱処理を施すことが行われた。熱
処理の付加は熱処理コストと生産効率の低下など大幅な
コスト上昇を招き、経済性に問題があった。この問題を
解決するために、圧延ままで高性能の材質特性が得られ
るような新しい合金設計による鋳片と製造法の開発が必
要となった。
2. Description of the Related Art Due to the construction of super-high-rise buildings and stricter safety standards, steel materials used for columns, such as H-section steel with a particularly large plate thickness (hereinafter referred to as extra-thick H-section steel) Are required to have higher strength, higher toughness, and lower yield ratio. In order to satisfy such required characteristics, conventionally, heat treatment such as normalizing treatment is performed after the rolling is completed. The addition of heat treatment causes a significant cost increase such as reduction of heat treatment cost and production efficiency, and there is a problem in economic efficiency. In order to solve this problem, it was necessary to develop a slab and a manufacturing method by a new alloy design that can obtain high-performance material properties as rolled.

【0003】一般に、フランジを有する形鋼、例えばH
形鋼をユニバーサル圧延により製造すると、圧延造形上
からの圧延条件(温度、圧下率)の制限およびその形状
の特異性からウエブ、フランジ、フィレットの各部位で
圧延仕上げ温度、圧下率、冷却速度に差を生じる。その
結果、部位間に強度、延性、靭性のバラツキが発生し、
例えば溶接構造用圧延鋼材(JIS G3106) 等の規準に満た
ない部位が生じる。特に極厚H形鋼を連続鋳造鋳片を素
材とし圧延製造する場合には、連続鋳造設備での製造可
能な鋳片最大厚みに限界があり、造形に必要な十分な鋳
片断面積が得られないため、その圧延は低圧下比圧延と
なる。さらに、圧延造形により製品の寸法精度を得るた
めに高温圧延を指向するので板厚の厚いフランジ部は高
温圧延となり、圧延終了後の鋼材冷却も徐冷となる。そ
の結果、ミクロ組織は粗粒化し、強度・靭性が低下す
る。
Generally, shaped steel with a flange, such as H
When shaped steel is manufactured by universal rolling, the rolling conditions (temperature, reduction rate) from the rolling shaping and the peculiarity of the shape affect the rolling finish temperature, reduction rate, and cooling rate at each part of the web, flange, and fillet. Make a difference. As a result, variations in strength, ductility, and toughness occur between the parts,
For example, a part that does not meet the criteria such as rolled steel for welded structure (JIS G3106) occurs. In particular, when rolling and manufacturing ultra-thick H-section steel using continuously cast slabs as raw materials, there is a limit to the maximum thickness of slabs that can be produced by continuous casting equipment, and a sufficient slab cross-sectional area required for modeling can be obtained. Therefore, the rolling is a low pressure lower ratio rolling. Further, since the high temperature rolling is aimed at in order to obtain the dimensional accuracy of the product by the rolling shaping, the thick flange portion becomes the high temperature rolling, and the steel material after the rolling is gradually cooled. As a result, the microstructure becomes coarser and the strength and toughness decrease.

【0004】圧延プロセスでの組織微細化法として、T
MCP(Thermo-Mechanical-Controll Process)がある
が、形鋼圧延では、圧延条件に制限があるので、鋼板で
のTMCPのような低温・大圧下圧延の適用は困難であ
る。また、厚鋼板分野ではVNの析出効果を利用し高強
度・高靭性鋼を製造する、例えば特公昭62−5054
8号公報、特公昭62−54862号公報の技術が提案
されている。しかし、この方法を590MPa 級の製造に
適用した場合には、高濃度の固溶Nを含有することか
ら、生成するベイナイト組織内に高炭素島状マルテンサ
イト(以降M*と称する)を生成し、靭性が著しく低下
して規格値をクリアーすることは困難であるという問題
があった。
As a structure refining method in the rolling process, T
Although there is an MCP (Thermo-Mechanical-Controll Process), it is difficult to apply low temperature / large reduction rolling such as TMCP to a steel sheet because the rolling conditions are limited in the shape rolling. Further, in the field of thick steel plates, high strength and high toughness steel is manufactured by utilizing the precipitation effect of VN, for example, Japanese Patent Publication No. 62-5054.
The techniques disclosed in Japanese Patent Publication No. 8 and Japanese Patent Publication No. 62-54862 are proposed. However, when this method is applied to the production of 590 MPa class, since high concentration of solute N is contained, high carbon island martensite (hereinafter referred to as M *) is formed in the bainite structure to be formed. However, there is a problem that it is difficult to clear the standard value because the toughness is significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】前記の問題を解決する
ためには、形鋼圧延ままでM*生成量の少ない低炭素ベ
イナイトを生成させ組織を微細化する必要がある。それ
には圧延加熱時のγ粒径を細粒化するために製鋼過程に
おいて、鋳片中に予めMgOを微細晶出させ、これを核
にTiNを微細析出させ、加えて、低炭素化するため
に、微量で高強度が得られるマイクロアロイの微量添加
した鋳片を製造する必要がある。また、H形鋼のフラン
ジとウェブの結合部のフィレット部はCC鋳片の中心偏
析帯と一致し、この偏析帯内のMnSは圧延により著し
く延伸する。ここでの高濃度の元素偏析帯と延伸MnS
は板厚方向の絞り値・靭性を著しく低下させ、さらに溶
接時にラメラテイ ア割れを生じさせる場合もあり、この
有害な作用を持つMnSの生成を阻止することも大きな
課題である。このように従来の技術では目的の信頼性の
高い高強度・高靭性の圧延形鋼をオンラインで製造し安
価に提供することは困難である。
In order to solve the above-mentioned problems, it is necessary to form a low carbon bainite with a small amount of M * formation in the as-rolled shape steel to refine the structure. In order to reduce the γ grain size during rolling and heating, in the steelmaking process, MgO is preliminarily finely crystallized in the slab, and TiN is finely precipitated in the core of the slab to further reduce carbon. In addition, it is necessary to manufacture a slab containing a small amount of microalloy that can obtain a high strength with a small amount. Further, the fillet portion of the joint between the flange of the H-section steel and the web coincides with the central segregation zone of the CC slab, and MnS in this segregation zone is significantly stretched by rolling. High concentration element segregation zone and stretched MnS here
May significantly reduce the drawing value and toughness in the plate thickness direction, and may cause lamellar tearing during welding. It is also a major issue to prevent the formation of MnS having this harmful effect. As described above, it is difficult for the conventional technique to manufacture the desired highly reliable rolled steel having high strength and high toughness online and to provide it inexpensively.

【0006】本発明は、従来の焼準処理などの熱処理を
施すことなく、低コストで(圧延ままで)高張力圧延形
鋼の製造を可能とし、建造物の構造部材に用いる高強度
で靭性の優れた590MPa 級圧延形鋼およびその製造方
法を提供すること目的とする。
The present invention enables the production of high-strength rolled shaped steel at low cost (as-rolled) without performing heat treatment such as conventional normalizing treatment, and has high strength and toughness used for structural members of buildings. It is an object of the present invention to provide an excellent 590 MPa grade rolled steel and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明の特徴は従来の発
想とは異なり、Mgを添加し、これにより生成させた微
細酸化物とTiNの微細分散およびマイクロアロイの添
加による低炭素ベイナイト組織の生成とによる組織の微
細化により高強度でかつ高靭性の圧延形鋼を実現した点
にある。
The features of the present invention are different from the conventional idea, and a low carbon bainite structure is obtained by adding Mg, finely dispersing the fine oxide and TiN produced by the addition, and adding a microalloy. The point is that a rolled shaped steel with high strength and high toughness was realized by refining the structure by forming.

【0008】加えて採用したTMCPの特徴は厚鋼板で
実施されている大圧下圧延に代わる形鋼圧延での軽圧下
の熱間圧延においても効率的に組織の細粒化が可能なよ
うに圧延パス間で水冷し、圧延と水冷を繰り返す方法に
ある。本発明は、圧延ままで、M*含有量の少ない低炭
素ベイナイトの微細組織が得られる鋳片を鋳造し、この
鋳片を用い、形鋼圧延において効率的なTMCPを行い
高強度かつ高靭性を有する形鋼を製造することを特徴と
している。
[0008] In addition, the TMCP adopted is characterized in that the rolling can be efficiently performed even in the hot rolling under the light reduction in the shape rolling instead of the large reduction rolling performed in the thick steel plate. It is a method of water cooling between passes, and repeating rolling and water cooling. INDUSTRIAL APPLICABILITY The present invention casts a slab capable of obtaining a low-carbon bainite fine structure having a low M * content in the as-rolled state, and using this slab, efficient TMCP is performed in a shaped steel rolling to obtain high strength and high toughness It is characterized by manufacturing a shaped steel having

【0009】その鋳片は、製鋼過程において、圧延加熱
時のγ細粒化を目的に、鋳片内にMg添加により微細M
gOの晶出とTi添加によりTiNを微細分散させ、加
えて、圧延後の組織内のM*低減を狙い、合金元素を微
量のNb、V、Mo添加で代替し、さらに極低B化を行
ない製造する。次いで、この鋳片を圧延造形し形鋼を製
造するが、この圧延形鋼圧延プロセスでは、熱間圧延パ
ス間で鋼材を水冷することにより、鋼材の表層部と内部
に温度差を与え、軽圧下条件下においても、より高温の
鋼材内部への圧下浸透を高め、γ粒内でのベイナイト生
成核となる加工転位を導入し、その生成核を増加させ
る。加えて、圧延後のγ/α変態温度域を冷却制御する
ことにより、その核生成させたベイナイトの成長を抑制
する方法によればミクロ組織の微細化ができ、高能率で
製造コストの安価な制御圧延形鋼の製造が可能であると
言う知見に基づき前記課題を解決したもので、その要旨
とするところは、以下のとおりである。
In the steelmaking process, the slab has a fine M content due to the addition of Mg in the slab for the purpose of γ-fine graining during rolling and heating.
TiN is finely dispersed by crystallization of gO and addition of Ti, and in addition, an alloying element is replaced by a small amount of Nb, V, and Mo with the aim of reducing M * in the structure after rolling, and further reduction of B is achieved. Manufacture. Next, this cast slab is rolled and shaped to manufacture a shaped steel.In this rolling shaped steel rolling process, the steel material is water-cooled between hot rolling passes to give a temperature difference between the surface layer portion and the inside of the steel material, and light Even under the rolling condition, the penetration of rolling into the steel at higher temperature is enhanced, and work dislocations that become bainite nuclei in the γ grains are introduced to increase the nuclei. In addition, by controlling the cooling of the γ / α transformation temperature region after rolling, the method of suppressing the growth of the nucleated bainite can make the microstructure fine, which is highly efficient and inexpensive to manufacture. The above problems have been solved based on the finding that it is possible to manufacture controlled rolled steel, and the gist thereof is as follows.

【0010】重量% で、C:0.02〜0.06% 、Si:0.05 〜0.
25% 、Mn:0.8〜1.6%、Cu:0.7〜1.5%、Ti:0.012〜0.030
%、Mg:0.0005 〜0.0050% 、Nb:0.005〜0.03% 、V :0.01
〜0.1%、Mo:0.05 〜0.4%、N :0.004〜0.010%、および
O:0.003 〜0.006%を含み、かつ、TiとNの含有量比Ti
/Nが3.0 〜3.5 であって、残部がFeおよび不可避不純
物からなり、該不可避不純物のうち B含有量を0.0003%
以下およびAl含有量を0.005%以下に制限したことを特徴
とする590MPa 級圧延形鋼。
% By weight, C: 0.02-0.06%, Si: 0.05-0.
25%, Mn: 0.8-1.6%, Cu: 0.7-1.5%, Ti: 0.012-0.030
%, Mg: 0.0005 to 0.0050%, Nb: 0.005 to 0.03%, V: 0.01
~ 0.1%, Mo: 0.05-0.4%, N: 0.004-0.010%, and
O: 0.003 to 0.006% is included, and the content ratio of Ti and N is Ti.
/ N is 3.0 to 3.5, the balance is Fe and inevitable impurities, and the B content of the inevitable impurities is 0.0003%.
A 590 MPa grade rolled shaped steel characterized by the following and Al content limited to 0.005% or less.

【0011】重量% で、C:0.02〜0.06% 、Si:0.05 〜0.
25% 、Mn:0.8〜1.6%、Cu:0.7〜1.5%、Ti:0.012〜0.030
%、Mg:0.0005 〜0.0050% 、Nb:0.005〜0.03% 、V :0.01
〜0.1%、Mo:0.05 〜0.4%、N :0.004〜0.010%、O:0.003
〜0.006%、およびCr:0.1〜1.0%およびNi:0.1〜2.0%の
うちの少なくとも1種を含み、かつ、TiとNの含有量比
Ti/Nが3.0 〜3.5 であって、残部がFeおよび不可避
不純物からなり、該不可避不純物のうち B含有量を0.00
03% 以下およびAl含有量を0.005%以下に制限したことを
特徴とする590MPa 級圧延形鋼。
% By weight, C: 0.02-0.06%, Si: 0.05-0.
25%, Mn: 0.8-1.6%, Cu: 0.7-1.5%, Ti: 0.012-0.030
%, Mg: 0.0005 to 0.0050%, Nb: 0.005 to 0.03%, V: 0.01
~ 0.1%, Mo: 0.05-0.4%, N: 0.004-0.010%, O: 0.003
.About.0.006% and at least one of Cr: 0.1 to 1.0% and Ni: 0.1 to 2.0%, the Ti / N content ratio Ti / N is 3.0 to 3.5, and the balance is Fe. And unavoidable impurities, of which B content is 0.00
A 590 MPa grade rolled steel having a content of 03% or less and an Al content of 0.005% or less.

【0012】重量% で、C:0.02〜0.06% 、Si:0.05 〜0.
25% 、Mn:0.8〜1.6%、Cu:0.7〜1.5%、Ti:0.012〜0.030
%、Mg:0.0005 〜0.0050% 、Nb:0.005〜0.03% 、V :0.01
〜0.1%、Mo:0.05 〜0.4%、N :0.004〜0.010%、および
O:0.003 〜0.006%を含み、かつ、TiとNの含有量比Ti
/Nが3.0 〜3.5 であって、残部がFeおよび不可避不純
物からなり、該不可避不純物のうち B含有量を0.0003%
以下およびAl含有量を0.005%以下に制限した鋳片を1200
〜1300℃の温度域に加熱した後に圧延を開始し、圧延工
程で形鋼のフランジ表面を700 ℃以下にまで水冷し復熱
過程で圧延する水冷・圧延サイクルを一回以上行い、圧
延終了後に0.5 〜10℃/sの冷却速度で700〜400 ℃の温
度域に冷却した後に放冷することを特徴とする590MP
a 級圧延形鋼の製造方法。
% By weight, C: 0.02-0.06%, Si: 0.05-0.
25%, Mn: 0.8-1.6%, Cu: 0.7-1.5%, Ti: 0.012-0.030
%, Mg: 0.0005 to 0.0050%, Nb: 0.005 to 0.03%, V: 0.01
~ 0.1%, Mo: 0.05-0.4%, N: 0.004-0.010%, and
O: 0.003 to 0.006% is included, and the content ratio of Ti and N is Ti.
/ N is 3.0 to 3.5, the balance is Fe and inevitable impurities, and the B content of the inevitable impurities is 0.0003%.
And slabs with Al content limited to 0.005% or less 1200
Rolling is started after heating in the temperature range of ~ 1300 ° C, and the flange surface of the shaped steel is water-cooled to 700 ° C or less in the rolling process and rolled in the reheat process. 590MP characterized by cooling to a temperature range of 700 to 400 ° C at a cooling rate of 0.5 to 10 ° C / s and then allowing to cool.
Manufacturing method of grade a rolled steel.

【0013】重量% で、C:0.02〜0.06% 、Si:0.05 〜0.
25% 、Mn:0.8〜1.6%、Cu:0.7〜1.5%、Ti:0.012〜0.030
%、Mg:0.0005 〜0.0050% 、Nb:0.005〜0.03% 、V :0.01
〜0.1%、Mo:0.05 〜0.4%、N :0.004〜0.010%、O:0.003
〜0.006%、およびCr:0.1〜1.0%およびNi:0.1〜2.0%の
うちの少なくとも1種を含み、かつ、TiとNの含有量比
Ti/Nが3.0 〜3.5 であって、残部がFeおよび不可避
不純物からなり、該不可避不純物のうち B含有量を0.00
03% 以下およびAl含有量を0.005%以下に制限した鋳片を
1200〜1300℃の温度域に加熱した後に圧延を開始し、圧
延工程で形鋼のフランジ表面を700 ℃以下にまで水冷し
復熱過程で圧延する水冷・圧延サイクルを一回以上行
い、圧延終了後に0.5 〜10℃/sの冷却速度で700 〜400
℃の温度域に冷却した後に放冷することを特徴とする5
90MPa 級圧延形鋼の製造方法。
% By weight, C: 0.02-0.06%, Si: 0.05-0.
25%, Mn: 0.8-1.6%, Cu: 0.7-1.5%, Ti: 0.012-0.030
%, Mg: 0.0005 to 0.0050%, Nb: 0.005 to 0.03%, V: 0.01
~ 0.1%, Mo: 0.05-0.4%, N: 0.004-0.010%, O: 0.003
.About.0.006% and at least one of Cr: 0.1 to 1.0% and Ni: 0.1 to 2.0%, the Ti / N content ratio Ti / N is 3.0 to 3.5, and the balance is Fe. And unavoidable impurities, of which B content is 0.00
A slab with a content of 03% or less and an Al content of 0.005% or less
Rolling is started after heating in the temperature range of 1200 to 1300 ° C, the flange surface of the shaped steel is water-cooled to 700 ° C or less in the rolling process, and rolled in the recuperation process. Later 700-400 with 0.5-10 ° C / s cooling rate
It is characterized that it is left to cool after being cooled to a temperature range of ℃ 5
90MPa grade rolled steel manufacturing method.

【0014】[0014]

【発明の実施の形態】以下、本発明について詳細に説明
する。鋼の高強度化はフェライト結晶の微細化、合
金元素による固溶体強化、硬化相による分散強化、微
細析出物による析出強化等によって達成される。また、
高靭性化は、結晶の微細化、母相(フェライト)の
固溶N、Cの低減、破壊の発生起点となる硬化相の高
炭素マルテンサイト及び粗大な酸化物、析出物の低減と
微小化等により達成される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. Higher strength of steel is achieved by refining ferrite crystals, solid solution strengthening by alloying elements, dispersion strengthening by hardening phase, precipitation strengthening by fine precipitates, and the like. Also,
High toughness is achieved by making crystals finer, reducing the solid solution N and C of the parent phase (ferrite), and reducing and miniaturizing high carbon martensite and coarse oxides and precipitates in the hardening phase that is the starting point of fracture. Etc.

【0015】一般的には鋼の高強度化により靭性は低下
し、高強度化と高靭性化は相反する対処が必要である。
両者を同時に満たす冶金因子は唯一、結晶の微細化であ
る。本発明の特徴は、製鋼工程における、Mg添加によ
る微細Mg酸化物とTiNの分散およびマイクロアロイ
ング合金設計に基づく低炭素ベイナイト組織化による組
織微細化により高強度・高靭性化を達成するものであ
る。
Generally, as the strength of steel becomes higher, the toughness decreases, and it is necessary to deal with the conflict between the higher strength and the higher toughness.
The only metallurgical factor that satisfies both requirements is the refinement of crystals. The feature of the present invention is to achieve high strength and high toughness by dispersing fine Mg oxide and TiN by adding Mg in the steel making process and microstructuring by low carbon bainite microstructure based on microalloying alloy design. is there.

【0016】加えて本発明では、熱間圧延工程におい
て、熱間圧延パス間でフランジ表面を水冷し、その復熱
時に圧延する工程を繰り返すことによりフランジの板厚
中心部に圧下浸透効果を付与し、この部位においてもT
MCPによる組織微細化効果を高め、この組織微細化に
よりH形鋼の各部位における母材の機械特性を向上させ
るとともにバラツキを低減し均質化を達成するものであ
る。
In addition, in the present invention, in the hot rolling step, the flange surface is water-cooled between hot rolling passes and the step of rolling at the time of recuperation is repeated to impart a reduction infiltration effect to the central portion of the flange thickness. However, even in this part, T
The effect of microstructure refinement by MCP is enhanced, and the microstructure refinement improves the mechanical properties of the base material in each portion of the H-section steel and reduces variations to achieve homogenization.

【0017】以下に本発明形鋼の成分範囲と制御条件の
限定理由について述べる。まず、Cは鋼を強化するため
に添加するもので、0.02% 未満では構造用鋼として必要
な強度が得られず。また、0.06% を超える添加では、母
材靭性、耐溶接割れ性、溶接熱影響部(以下HAZと略
記)靭性などを著しく低下させるので、下限を0.02% 、
上限を0.06% とした。
The reasons for limiting the composition range and control conditions of the shaped steel of the present invention will be described below. First, C is added to strengthen the steel. If it is less than 0.02%, the strength required for structural steel cannot be obtained. Further, when the content exceeds 0.06%, the base metal toughness, weld crack resistance, weld heat affected zone (hereinafter abbreviated as HAZ) toughness, etc. are significantly reduced, so the lower limit is 0.02%,
The upper limit was 0.06%.

【0018】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.25% を超えると母材および
HAZの硬化組織中に高炭素島状マルテンサイトを生成
し、母材および溶接継手部靭性を著しく低下させる。ま
た、0.05% 未満では溶鋼の予備脱酸が十分にできないた
めSi含有量を0.05〜0.25% の範囲に限定した。Mnは
母材の強度確保には0.8%以上の添加が必要であるが、母
材および溶接部の靭性、割れ性などに対する許容濃度か
ら上限を1.6%とした。
Next, Si is necessary for securing the strength of the base material and pre-deoxidizing molten steel. When it exceeds 0.25%, high carbon island martensite is formed in the hardened structure of the base material and HAZ. Remarkably reduces the toughness of the base material and weld joint. Further, if it is less than 0.05%, the predeoxidation of molten steel cannot be sufficiently performed, so the Si content is limited to the range of 0.05 to 0.25%. Although 0.8% or more of Mn needs to be added to secure the strength of the base metal, the upper limit was set to 1.6% from the allowable concentration with respect to the toughness and crackability of the base metal and the weld.

【0019】Cuはα温度域での保持及び緩冷却により
α相中の転位上にCu相を析出し、その析出硬化により
母材の常温強度を増加させる。ただし、このα中でのC
u相の析出は0.7%未満ではα中でのCuの固溶限内であ
り、析出が生じないためCu析出による強化は得られな
い。また1.5%以上ではその析出強化は飽和するのでCu:
0.7〜1.5%に限定した。
Cu retains in the α temperature range and is slowly cooled to precipitate a Cu phase on dislocations in the α phase, and the precipitation hardening increases the room temperature strength of the base material. However, C in this α
If the u phase precipitation is less than 0.7%, it is within the solid solubility limit of Cu in α, and since precipitation does not occur, strengthening by Cu precipitation cannot be obtained. Further, at 1.5% or more, the precipitation strengthening is saturated, so Cu:
Limited to 0.7-1.5%.

【0020】TiはTiNを析出し、固溶Nを低減する
ことによりM*の生成を抑制する。また、微細析出した
TiNはγ相の細粒化にも寄与する。これらのTiの作
用により組織を微細化し強度・靭性を向上させる。従っ
て、0.012%未満ではTiNの析出量が不足し、これらの
効果を発現し得ないためTi量の下限値を0.012%とし
た。しかし0.03% を超えると過剰なTiはTiCを析出
し、その析出硬化により母材および溶接熱影響部の靭性
を劣化させるため0.03% 以下に制限した。
Ti precipitates TiN and suppresses the formation of M * by reducing the solid solution N. The finely precipitated TiN also contributes to the grain refinement of the γ phase. By the action of these Ti, the structure is refined and the strength and toughness are improved. Therefore, if it is less than 0.012%, the precipitation amount of TiN is insufficient and these effects cannot be exhibited, so the lower limit value of the Ti amount was made 0.012%. However, if it exceeds 0.03%, excess Ti precipitates TiC, and the precipitation hardening deteriorates the toughness of the base material and the weld heat affected zone, so the content was limited to 0.03% or less.

【0021】Mg添加に使用するMg合金はSi-Mg-Al及び
Ni-Mg である。Mg合金を用いた理由は合金化によりM
g含有濃度を低減し、溶鋼への添加時の脱酸反応を抑制
し、添加時の安全性の確保とMgの歩留を向上させるた
めである。Mgを0.0005〜0.005%に限定するのは、Mg
も強力な脱酸元素であり、晶出したMg酸化物は溶鋼中
で容易に浮上分離されるため0.005%を超えて添加して
も、これ以上は歩留まらないため上限を0.005%とした。
また、0.0005% 未満では目的のMg系酸化物の分散密度
が不足するため下限を0.0005% とした。なお、ここでの
Mg系酸化物は、主にMgOと表記しているが、電子顕
微鏡解析などによると、この酸化物はTi、微量のAl
および不純物として含まれているCaなどとの複合酸化
物を形成している。
The Mg alloy used for adding Mg is Si-Mg-Al and
It is Ni-Mg. The reason for using Mg alloy is M
This is because the g-containing concentration is reduced, the deoxidation reaction during addition to molten steel is suppressed, the safety during addition is ensured, and the Mg yield is improved. Limiting Mg to 0.0005 to 0.005% is
Is also a strong deoxidizing element, and the crystallized Mg oxide is easily floated and separated in molten steel, so even if it is added in excess of 0.005%, the yield does not rise any further, so the upper limit was made 0.005%.
If it is less than 0.0005%, the dispersion density of the target Mg-based oxide is insufficient, so the lower limit was made 0.0005%. Note that the Mg-based oxide here is mainly described as MgO, but according to an electron microscope analysis and the like, this oxide is Ti and a trace amount of Al.
And a complex oxide such as Ca contained as an impurity is formed.

【0022】Nbは焼入性を上昇させ強度を増加させる
目的で添加している。この効果の発現には、Nb含有量
は0.005%以上が必要である。しかし0.03% 超では、Nb
炭窒化物の析出量が増加し固溶Nbとしての効果が飽和
するので0.03% 以下に制限した。Vは微量添加により圧
延組織を微細化でき、バナジン炭窒化物の析出により強
化することから低合金化でき溶接特性を向上できる。こ
の効果の発現には、V含有量は0.01% 以上が必要であ
る。しかしながら、Vの過剰な添加は溶接部の硬化や、
母材の高降伏点化をもたらすので、含有量の上限をV:0.
1%とした。
Nb is added for the purpose of increasing hardenability and strength. To achieve this effect, the Nb content needs to be 0.005% or more. However, if it exceeds 0.03%, Nb
Since the precipitation amount of carbonitrides increases and the effect as solid solution Nb is saturated, it is limited to 0.03% or less. The addition of a small amount of V makes it possible to make the rolling structure finer and strengthens it by the precipitation of vanadine carbonitride, so that it can be made into a low alloy and the welding characteristics can be improved. In order to exhibit this effect, the V content needs to be 0.01% or more. However, excessive addition of V causes hardening of the weld,
Since it causes a high yield point of the base material, the upper limit of the content is V: 0.
It was set to 1%.

【0023】Moは母材強度の確保に有効な元素であ
る。この効果の発現には、Mo含有量は0.05% 以上が必
要である。しかし0.4%超では、Mo炭化物(Mo2 C)
を析出し固溶Moとしての焼入性向上効果が飽和するの
で0.4%以下に制限した。Nはα中に固溶し、強度を上昇
させるが、上部ベイナイト組織では、M*を生成し、靭
性を劣化させるので、固溶Nはできるだけ低減する必要
がある。しかし、本発明でのNはTiと化合させ鋼中に
TiNを微細析出させ、固溶Nを低減させた上で、Ti
Nによる結晶の粒成長を抑制し組織微細化効果を発揮さ
せる目的で添加している。従って、この効果の発現に
は、N量が0.004%未満ではTiNの析出量が不足し、0.
010%超では析出量は十分となるが、粗大なTiNが析出
し、靭性を損ねるのでN:0.004 〜0.010%に限定した。
Mo is an element effective for ensuring the strength of the base material. In order to exhibit this effect, the Mo content needs to be 0.05% or more. However, if it exceeds 0.4%, Mo carbide (Mo2 C)
Was precipitated and the effect of improving the hardenability as solid solution Mo was saturated, so it was limited to 0.4% or less. N forms a solid solution in α and increases the strength, but in the upper bainite structure, M * is produced and the toughness is deteriorated, so the solid solution N needs to be reduced as much as possible. However, N in the present invention is combined with Ti to finely precipitate TiN in the steel to reduce solid solution N, and
It is added for the purpose of suppressing the crystal grain growth due to N and exerting the effect of refining the structure. Therefore, in order to achieve this effect, if the N amount is less than 0.004%, the TiN precipitation amount is insufficient, and
If it exceeds 010%, the amount of precipitation will be sufficient, but coarse TiN will precipitate and impair the toughness, so N was limited to 0.004 to 0.010%.

【0024】加えて、「TiとNの含有量比Ti/Nが3.
0 〜3.5 」と限定したのは添加Ti、Nのほぼ全量を化
学量論的にTiNとして析出させ、靭性低下の原因とな
る固溶Ti、Nをできるだけ低減させるためにTiとNの
含有量比を限定した。Bは微量添加で焼入性を上昇させ
強度増加に寄与する。しかし、0.0003% 超のBを含有す
ると上部ベイナイト組織中にM*を生成し靭性を著しく
低下させることが判明したので、Bはむしろ不純物とし
て0.0003% 以下に制限した。
In addition, "Ti / N content ratio Ti / N is 3.
0 to 3.5 "is defined as the content of Ti and N so that almost all the added Ti and N are stoichiometrically precipitated as TiN and the solid solution Ti and N, which cause the toughness decrease, are reduced as much as possible. Limited ratio. When B is added in a small amount, the hardenability is increased and the strength is increased. However, since it was found that when the content of B exceeds 0.0003%, M * is formed in the upper bainite structure and the toughness is remarkably lowered, B is limited to 0.0003% or less as an impurity.

【0025】Alを0.005%以下としたのは、Alは強力
な脱酸元素であり、0.005%超の含有では、M gOの生成
が阻害され、微細な分散ができないため、Alも不純物
として0.005%以下に制限した。O(酸素)はMg−Oの
生成に不可欠であり、それには0.003 %以上の含有が必
要であるが、0.006%を超えて含有すると、生成するMg
−O粒子は粗大化し、靭性を低下させるため、O含有量
を 0.003〜0.006%に限定した。
Al is set to 0.005% or less because Al is a strong deoxidizing element. If the content of Al exceeds 0.005%, the production of MgO is hindered and fine dispersion cannot be achieved. Limited to less than%. O (oxygen) is indispensable for the production of Mg-O, and it is necessary to contain 0.003% or more of it.
The O content is limited to 0.003 to 0.006% in order to coarsen the O particles and reduce the toughness.

【0026】不可避不純物として含有するP、Sについ
ては、それらの量を特に限定しないが凝固偏析による溶
接割れ、靭性低下の原因となるので、極力低減すべきで
ありP、S量はそれぞれ0.02% 未満に制限することが望
ましい。以上の元素に加えて、母材強度の上昇、および
母材の靭性向上の目的で、CrおよびNiの1種または
2種を含有することができる。
The amounts of P and S contained as unavoidable impurities are not particularly limited, but they cause weld cracking due to solidification segregation and decrease in toughness, so they should be reduced as much as possible, and the amounts of P and S are both 0.02%. It is desirable to limit it to less than. In addition to the above elements, one or two kinds of Cr and Ni may be contained for the purpose of increasing the strength of the base material and improving the toughness of the base material.

【0027】Crは焼入性の向上により、母材の強化に
有効である。この効果の発現にはCr含有量は0.1%以上
が必要である。しかし1.0%を超える過剰の添加は、靭性
および硬化性の観点から有害となるため、上限を1.0%と
した。Niは母材の強靭性を高める極めて有効な元素で
ある。この効果の発現にはNi含有量は0.1%以上が必要
である。しかし、2.0%を超える添加は合金コストを増加
させ経済的でないので上限を2.0%とした。
Cr is effective in strengthening the base material by improving the hardenability. To achieve this effect, the Cr content needs to be 0.1% or more. However, excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.0%. Ni is an extremely effective element that enhances the toughness of the base material. To achieve this effect, the Ni content needs to be 0.1% or more. However, the addition of more than 2.0% increases the alloy cost and is not economical, so the upper limit was made 2.0%.

【0028】上記の処理を経た鋳片は次に1200〜1
300℃の温度域に再加熱する。この温度域に再加熱温
度を限定したのは、熱間加工による形鋼の製造には塑性
変形を容易にするため1200℃以上の加熱が必要であ
り、且つV、Nbなどの元素を十分に固溶させる必要が
あるため再加熱温度の下限を1200℃とした。その上
限は加熱炉の性能、経済性から1300℃とした。
The slab that has undergone the above-mentioned treatment is then subjected to 1200-1.
Reheat to a temperature range of 300 ° C. The reason why the reheating temperature is limited to this temperature range is that the manufacturing of shaped steel by hot working requires heating of 1200 ° C. or higher to facilitate plastic deformation and that elements such as V and Nb are sufficiently added. Since it is necessary to form a solid solution, the lower limit of the reheating temperature is 1200 ° C. The upper limit was set to 1300 ° C. in view of the performance and economical efficiency of the heating furnace.

【0029】熱間圧延のパス間で水冷し、圧延中に、フ
ランジ表面温度を700℃以下に冷却し、次の圧延パス
間の復熱過程で圧延する水冷・圧延工程を1回以上繰り
返し行うとしたのは、圧延パス間の水冷により、フラン
ジの表層部と内部とに温度差を付与し、軽圧下条件にお
いても内部への加工歪みを浸透させるためと、水冷によ
り短時間で低温圧延を実現させTMCPを効率的に行う
ためである。
The water cooling / rolling step of water cooling between hot rolling passes, cooling the flange surface temperature to 700 ° C. or less during rolling, and rolling in the recuperation process between the next rolling passes is repeated once or more. The reason for this is that water cooling between rolling passes creates a temperature difference between the surface layer and the inside of the flange, and in order to permeate the processing strain into the inside even under light reduction conditions, it is possible to perform low temperature rolling in a short time by water cooling. This is to realize the TMCP efficiently.

【0030】フランジ表面温度を700℃以下に冷却し
た後、復熱過程で圧延するのは、仕上げ圧延後の加速冷
却による表面の焼入れ硬化を抑制し軟化させるために行
うものである。その理由はフランジ表面温度を700℃
以下に冷却すれば一旦γ/α変態温度を切り、次の圧延
までに表層部は復熱昇温し、圧延はγ/αの二相共存温
度域での加工となり、γ細粒化と加工された微細αとの
混合組織を形成する。これにより表層部の焼入性を著し
く低減でき、加速冷却により生じる表面層の硬化を防止
できるからである。
After the flange surface temperature is cooled to 700 ° C. or lower, rolling in the recuperation process is carried out in order to suppress quench-hardening and soften the surface due to accelerated cooling after finish rolling. The reason is that the flange surface temperature is 700 ° C.
If cooled below, the γ / α transformation temperature is cut once, the surface layer temperature rises to the recuperative temperature until the next rolling, and rolling is performed in the γ / α two-phase coexisting temperature range, and γ grain refinement and processing To form a mixed structure with the fine α. This is because the hardenability of the surface layer portion can be significantly reduced, and the hardening of the surface layer caused by accelerated cooling can be prevented.

【0031】また、圧延終了後、引続き、0.5 〜10℃/s
の冷却速度で700〜400℃まで冷却し放冷するとし
たのは、加速冷却によりフェライトの粒成長抑制とベイ
ナイト組織を微細化し高強度・高靭性を得るためであ
る。次いで、加速冷却を700〜400℃で停止するの
は、700℃を超える温度で停止した場合には、表層部
の一部がAr1 点以上となりγ相を残存し、このγ相が、
共存するフェライトを核にフェライト変態し、さらにフ
ェライトが成長し粗粒化するため加速冷却の停止温度を
700℃以下とした。また、400℃未満の冷却では、
その後の放冷中にベイナイト相のラス間に生成する高炭
素マルテンサイトが、冷却中にセメンタイトを析出する
ことにより分解できず、硬化相として存在することにな
る。この高炭素マルテンサイトは脆性破壊の起点として
作用し、靭性低下の原因となる。これらの理由により、
加速冷却の停止温度を700〜400℃に限定した。
After completion of rolling, 0.5 to 10 ° C / s continues.
The reason for cooling to 700 to 400 ° C. at the cooling rate and allowing to cool is to suppress the grain growth of ferrite and refine the bainite structure by accelerated cooling to obtain high strength and high toughness. Then, the accelerated cooling is stopped at 700 to 400 ° C. When the temperature is stopped at a temperature higher than 700 ° C., a part of the surface layer portion becomes Ar 1 point or more and the γ phase remains, and this γ phase is
The terminating temperature of accelerated cooling was set to 700 ° C. or less because ferrite coexisting with the coexisting ferrite transforms into ferrite and the ferrite grows and becomes coarser. Also, with cooling below 400 ° C,
The high carbon martensite formed between the laths of the bainite phase during the subsequent cooling cannot be decomposed due to the precipitation of cementite during the cooling and exists as a hardening phase. This high carbon martensite acts as a starting point of brittle fracture and causes toughness deterioration. For these reasons,
The stop temperature for accelerated cooling was limited to 700 to 400 ° C.

【0032】[0032]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Ti、Mg
合金を順次添加し、連続鋳造により250 〜300mm 厚鋳片
に鋳造した。鋳片の冷却はモールド下方の二次冷却帯の
水量と鋳片の引き抜き速度の選択により制御した。該鋳
片を加熱し、粗圧延工程の図示は省略するが、図1に示
す、ユニバーサル圧延装置列でH形鋼に圧延した。圧延
パス間水冷は中間ユニバーサル圧延機4の前後に水冷装
置5aを設け、フランジ外側面のスプレー冷却とリバー
ス圧延の繰り返しにより行い、圧延後の加速冷却は仕上
げユニバーサル圧延機6で圧延終了後にその後面に設置
した冷却装置5bでフランジ外側面をスプレー冷却し
た。
[Examples] Prototype shaped steel was melted in a converter, added with an alloy, and then pre-deoxidized to adjust the oxygen concentration in the molten steel.
Alloys were sequentially added, and continuous casting was performed to cast 250 to 300 mm thick slabs. The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the drawing speed of the slab. Although not shown in the drawing, the slab was heated and rough rolling was omitted, and the slab was rolled into H-section steel by a universal rolling apparatus train shown in FIG. Water cooling between rolling passes is performed by providing water cooling devices 5a before and after the intermediate universal rolling mill 4 and repeating spray cooling and reverse rolling on the outer surface of the flange. The outer side surface of the flange was spray-cooled by the cooling device 5b installed in.

【0033】機械特性は図2に示す、フランジ2の板厚
t2 の中心部(1/2t2 )でフランジ幅全長(B) の1/4,1/
2 幅(1/4B,1/2B) から、採集した試験片を用い求めた。
なお、これらの箇所についての特性を求めたのは、フラ
ンジ1/4F部はH形鋼の平均的な機械特性を示し、フラン
ジ1/2F部はその特性が最も低下するので、これらの2箇
所によりH形鋼の機械試験特性を代表できると判断した
ためである。
The mechanical characteristics are shown in FIG. 2, which is 1 / 4,1 / of the total flange width (B) at the center (1 / 2t2) of the plate thickness t2 of the flange 2.
2 From the width (1 / 4B, 1 / 2B), it was determined using the collected test pieces.
The characteristics of these points were determined because the flange 1 / 4F shows the average mechanical characteristics of H-section steel and the flange 1 / 2F has the lowest deterioration of these characteristics. This is because it was judged that the mechanical test characteristics of H-section steel can be represented by.

【0034】表1、表3には、本発明鋼及び比較鋼の化
学成分値を、表2、表4には、それらの鋼のTi添加前
の酸素濃度およびMg系酸化物とTiNの複合体の個数
を、表5、表6には、それらのH形鋼の圧延・加速冷却
条件を、次いで表7、表8には機械試験特性値を示す。
なお、圧延加熱温度を1300℃に揃えたのは、一般的
に加熱温度の低下によりγ粒は細粒化し、機械試験特性
を向上させることは周知であり、高温加熱条件では機械
特性の最低値を示すと推定され、この値がそれ以下の加
熱温度での機械試験特性を代表できると判断したためで
ある。また、各表中で下線を付した数値は本発明の範囲
外である。
Tables 1 and 3 show the chemical composition values of the steels of the present invention and comparative steels, and Tables 2 and 4 show the oxygen concentration before addition of Ti and the composite of Mg-based oxide and TiN. The number of bodies is shown in Tables 5 and 6, and the rolling / accelerated cooling conditions for those H-section steels, and then in Tables 7 and 8 the mechanical test characteristic values.
It is well known that the rolling heating temperature is set to 1300 ° C. Generally, it is well known that the γ grains become finer and the mechanical test characteristics are improved by lowering the heating temperature. This is because it was judged that this value can represent the mechanical test characteristics at heating temperatures below that. The underlined numerical values in each table are outside the scope of the present invention.

【0035】表7、表8に示すように、本発明によるH
形鋼1〜5、H形鋼A1〜A3では、降伏強度、抗張力
ともに590MPa級鋼でのJIS規格値を満たしている。す
なわち降伏強度はその下限値の445MPaを超え、抗張力も
590MPaを超えており、またこれらの降伏比(YS/TS )は
0.8 以下の低YR値を満たしている。シャルピー衝撃値に
ついても−10℃で47(J) を超えておりJIS規格値
を十分に満たしている。
As shown in Tables 7 and 8, H according to the present invention is used.
In each of the section steels 1 to 5 and the H section steels A1 to A3, both the yield strength and the tensile strength satisfy the JIS standard values for the 590 MPa class steel. That is, the yield strength exceeds its lower limit of 445 MPa, and the tensile strength is also
It exceeds 590 MPa, and their yield ratio (YS / TS) is
It satisfies the low YR value of 0.8 or less. The Charpy impact value also exceeds 47 (J) at -10 ° C, which sufficiently satisfies the JIS standard value.

【0036】一方、H形鋼6はMo含有量が、H形鋼7
は炭素とSi含有量が、H形鋼8はTi/N値が、H形
鋼9は窒素とTi含有量が、H形鋼10はボロン含有量
が、H形鋼11はAl含有量が、各々の上限値を超え、
−10℃でのシャルピー吸収エネルギー値が、目標の4
7J以上をクリアできない。加えてH形鋼7では、Cu
含有量が下限値未満であるために、降伏強度が445MPa以
上をクリアできない。H形鋼12では、Mg含有量が下
限値未満であり、また、H形鋼A4では、Ti添加前の
溶鋼の酸素濃度が低く、酸素含有量の下限値未満である
ので、Mg系酸化物の生成個数が減少するため、加熱時
のγ粒径が粗大化して、靭性が低下し、目標のシャルピ
ー吸収エネルギー値をクリアできない。これに反して、
H形鋼A5では、酸素含有量が上限値を超えたために、
Mg系酸化物の個数が必要以上に多く分散し、これによ
り靭性値がクリアできない。次いで、H形鋼A6では、
圧延中の水冷および圧延後の冷却加速の要件を満たして
いないために、強度及び靭性の目標値をクリアできな
い。
On the other hand, the H-section steel 6 has a Mo content of the H-section steel 7
Has carbon and Si contents, H-section steel 8 has Ti / N value, H-section steel 9 has nitrogen and Ti content, H-section steel 10 has boron content, and H-section steel 11 has Al content. , Exceeding each upper limit,
Charpy absorbed energy value at -10 ° C is 4
You cannot clear more than 7J. In addition, in H-section steel 7, Cu
The yield strength cannot exceed 445 MPa because the content is less than the lower limit. In the H-section steel 12, the Mg content is less than the lower limit value, and in the H-section steel A4, the oxygen concentration of the molten steel before Ti addition is low and is less than the lower limit value of the oxygen content. Since the number of particles generated is decreased, the γ grain size during heating is coarsened, the toughness is reduced, and the target Charpy absorbed energy value cannot be cleared. On the contrary,
In the H-section steel A5, since the oxygen content exceeded the upper limit value,
The number of Mg-based oxides disperses more than necessary, so that the toughness value cannot be cleared. Then, in H-section steel A6,
Since the requirements of water cooling during rolling and cooling acceleration after rolling are not satisfied, the target values of strength and toughness cannot be met.

【0037】すなわち、本発明の製造法の要件が総て満
たされた時に、表7、表8に示されるH形鋼1〜5、A
1〜A3のように、圧延形鋼の機械試験特性の最も保証
しにくいフランジ板厚1/2,幅1/2 部においても十分な強
度、低温靭性を有する、高張力圧延形鋼の生産が可能に
なる。なお、本発明が対象とする圧延形鋼は上記実施例
のH形鋼に限らずI形鋼、山形鋼、溝形鋼、不等辺不等
厚山形鋼等のフランジを有する形鋼にも適用できること
は勿論である。
That is, when all the requirements of the manufacturing method of the present invention are satisfied, H-section steels 1 to 5 and A shown in Tables 7 and 8 are obtained.
1 to A3, the production of high-tensile rolled shaped steel with sufficient strength and low temperature toughness even in the flange plate thickness 1/2 and width 1/2 part where the mechanical test characteristics of rolled shaped steel are the most difficult to guarantee. It will be possible. The rolled shaped steel to which the present invention is applied is not limited to the H-shaped steel of the above-described embodiment, but is also applicable to shaped steel having a flange such as I-shaped steel, chevron steel, grooved steel, and unequal-thickness chevron steel. Of course you can.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【表5】 [Table 5]

【0043】[0043]

【表6】 [Table 6]

【0044】[0044]

【表7】 [Table 7]

【0045】[0045]

【表8】 [Table 8]

【0046】[0046]

【発明の効果】本発明による合金設計された鋳片と制御
圧延法を適用した圧延形鋼は機械試験特性の最も保証し
にくいフランジ板厚1/2、幅1/2部においても十分
な強度を有し、優れた靭性を持つ形鋼の製造が圧延まま
で可能となり、大型鋼構造物の信頼性の向上、安全性の
確保、経済性等の産業上の効果は極めて顕著なものであ
る。
EFFECTS OF THE INVENTION The alloy-designed slab according to the present invention and the rolled section steel to which the controlled rolling method is applied have sufficient strength even at a flange plate thickness of 1/2 and a width of 1/2 where the mechanical test characteristics are the most difficult to guarantee. It is possible to manufacture shaped steel with excellent toughness as it is rolled, and industrial effects such as improvement of reliability of large steel structures, ensuring safety, and economic efficiency are extremely remarkable. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明法を実施する装置配置例の略図
である。
FIG. 1 is a schematic diagram of an example of device arrangement for carrying out the method of the present invention.

【図2】図2は、H形鋼の断面形状および機械試験片の
採取位置を示す図である。
FIG. 2 is a view showing a cross-sectional shape of H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機 1 ... H section steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water cooling device on front and rear surfaces of intermediate rolling mill 5b ... Cooling device for rear surface of finishing rolling mill 6 ... Finishing rolling mill

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−283901(JP,A) 特開 平7−216498(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-8-283901 (JP, A) JP-A-7-216498 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量% で C:0.02〜0.06% 、 Si:0.05 〜0.25% 、 Mn:0.8〜1.6%、 Cu:0.7〜1.5%、 Ti:0.012〜0.030%、 Mg:0.0005 〜0.0050% 、 Nb:0.005〜0.03% 、 V :0.01 〜0.1%、 Mo:0.05 〜0.4%、 N :0.004〜0.010%、および O:0.003 〜0.006%、 を含み、かつ、TiとNの含有量比Ti/Nが3.0 〜3.5
であって、残部がFeおよび不可避不純物からなり、該不
可避不純物のうち B含有量を0.0003% 以下およびAl含有
量を0.005%以下に制限したことを特徴とする590MPa
級圧延形鋼。
1. C: 0.02-0.06% by weight%, Si: 0.05-0.25%, Mn: 0.8-1.6%, Cu: 0.7-1.5%, Ti: 0.012-0.030%, Mg: 0.0005-0.0050%, Nb: 0.005-0.03%, V: 0.01-0.1%, Mo: 0.05-0.4%, N: 0.004-0.010%, and O: 0.003-0.006%, and the Ti / N content ratio Ti / N is 3.0 to 3.5
The balance is Fe and unavoidable impurities, and the B content in the unavoidable impurities is limited to 0.0003% or less and the Al content to 0.005% or less.
Grade rolled steel.
【請求項2】 重量% で C:0.02〜0.06% 、 Si:0.05 〜0.25% 、 Mn:0.8〜1.6%、 Cu:0.7〜1.5%、 Ti:0.012〜0.030%、 Mg:0.0005 〜0.0050% 、 Nb:0.005〜0.03% 、 V :0.01 〜0.1%、 Mo:0.05 〜0.4%、 N :0.004〜0.010%、 O:0.003 〜0.006%、および Cr:0.1〜1.0%およびNi:0.1〜2.0%のうちの少なくとも1
種、を含み、かつ、TiとNの含有量比Ti/Nが3.0 〜
3.5 であって、残部がFeおよび不可避不純物からなり、
該不可避不純物のうち B含有量を0.0003% 以下およびAl
含有量を0.005%以下に制限したことを特徴とする590
MPa 級圧延形鋼。
2. C: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Cu: 0.7 to 1.5%, Ti: 0.012 to 0.030%, Mg: 0.0005 to 0.0050% in weight%. Nb: 0.005-0.03%, V: 0.01-0.1%, Mo: 0.05-0.4%, N: 0.004-0.010%, O: 0.003-0.006%, and Cr: 0.1-1.0% and Ni: 0.1-2.0% At least one of
And a Ti / N content ratio Ti / N of 3.0 to
3.5, the balance consisting of Fe and inevitable impurities,
Of the unavoidable impurities, the B content is 0.0003% or less and Al
590 characterized by limiting the content to 0.005% or less
MPa class rolled steel.
【請求項3】 重量% で C:0.02〜0.06% 、 Si:0.05 〜0.25% 、 Mn:0.8〜1.6%、 Cu:0.7〜1.5%、 Ti:0.012〜0.030%、 Mg:0.0005 〜0.0050% 、 Nb:0.005〜0.03% 、 V :0.01 〜0.1%、 Mo:0.05 〜0.4%、 N :0.004〜0.010%、および O:0.003 〜0.006%、 を含み、かつ、TiとNの含有量比Ti/Nが3.0 〜3.5
であって、残部がFeおよび不可避不純物からなり、該不
可避不純物のうち B含有量を0.0003% 以下およびAl含有
量を0.005%以下に制限した鋳片を1200〜1300℃の温度域
に加熱した後に圧延を開始し、圧延工程で形鋼のフラン
ジ表面を700 ℃以下にまで水冷し復熱過程で圧延する水
冷・圧延サイクルを一回以上行い、圧延終了後に0.5 〜
10℃/sの冷却速度で700 〜400 ℃の温度域に冷却した後
に放冷することを特徴とする590MPa 級圧延形鋼の製
造方法。
3. C: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Cu: 0.7 to 1.5%, Ti: 0.012 to 0.030%, Mg: 0.0005 to 0.0050% by weight%. Nb: 0.005-0.03%, V: 0.01-0.1%, Mo: 0.05-0.4%, N: 0.004-0.010%, and O: 0.003-0.006%, and the Ti / N content ratio Ti / N is 3.0 to 3.5
The balance consists of Fe and unavoidable impurities, and after heating the slab with the B content of the unavoidable impurities limited to 0.0003% or less and the Al content of 0.005% or less to a temperature range of 1200 to 1300 ° C. After rolling, the flange surface of the shaped steel is water-cooled to 700 ° C or less in the rolling process and rolled in the recuperating process.
A method for producing a 590 MPa grade rolled steel, which comprises cooling to a temperature range of 700 to 400 ° C at a cooling rate of 10 ° C / s and then allowing to cool.
【請求項4】 重量% で C:0.02〜0.06% 、 Si:0.05 〜0.25% 、 Mn:0.8〜1.6%、 Cu:0.7〜1.5%、 Ti:0.012〜0.030%、 Mg:0.0005 〜0.0050% 、 Nb:0.005〜0.03% 、 V :0.01 〜0.1%、 Mo:0.05 〜0.4%、 N :0.004〜0.010%、 O:0.003 〜0.006%、および Cr:0.1〜1.0%およびNi:0.1〜2.0%のうちの少なくとも1
種、を含み、かつ、TiとNの含有量比Ti/Nが3.0 〜
3.5 であって、残部がFeおよび不可避不純物からなり、
該不可避不純物のうち B含有量を0.0003% 以下およびAl
含有量を0.005%以下に制限した鋳片を1200〜1300℃の温
度域に加熱した後に圧延を開始し、圧延工程で形鋼のフ
ランジ表面を700 ℃以下にまで水冷し復熱過程で圧延す
る水冷・圧延サイクルを一回以上行い、圧延終了後に0.
5 〜10℃/sの冷却速度で700 〜400 ℃の温度域に冷却し
た後に放冷することを特徴とする590MPa 級圧延形鋼
の製造方法。
4. C: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Cu: 0.7 to 1.5%, Ti: 0.012 to 0.030%, Mg: 0.0005 to 0.0050% in weight%. Nb: 0.005-0.03%, V: 0.01-0.1%, Mo: 0.05-0.4%, N: 0.004-0.010%, O: 0.003-0.006%, and Cr: 0.1-1.0% and Ni: 0.1-2.0% At least one of
And a Ti / N content ratio Ti / N of 3.0 to
3.5, the balance consisting of Fe and inevitable impurities,
Of the unavoidable impurities, the B content is 0.0003% or less and Al
The slab with the content limited to 0.005% or less is heated to the temperature range of 1200 to 1300 ° C, then rolling is started, and the flange surface of the shaped steel is water-cooled to 700 ° C or less in the rolling process and rolled in the recuperation process. Water cooling / rolling cycle is performed once or more, and after the rolling is completed, 0.
A method for producing a 590 MPa grade rolled steel, which comprises cooling to a temperature range of 700 to 400 ° C at a cooling rate of 5 to 10 ° C / s and then allowing to cool.
JP30473996A 1996-11-15 1996-11-15 590 MPa class rolled section steel and method for producing the same Expired - Fee Related JP3403300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30473996A JP3403300B2 (en) 1996-11-15 1996-11-15 590 MPa class rolled section steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30473996A JP3403300B2 (en) 1996-11-15 1996-11-15 590 MPa class rolled section steel and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10147836A JPH10147836A (en) 1998-06-02
JP3403300B2 true JP3403300B2 (en) 2003-05-06

Family

ID=17936639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30473996A Expired - Fee Related JP3403300B2 (en) 1996-11-15 1996-11-15 590 MPa class rolled section steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3403300B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913990B (en) * 2018-06-20 2020-07-03 河钢股份有限公司承德分公司 600 MPa-grade high-plasticity anchor rod reinforcing steel bar and production method thereof
CN115572900B (en) * 2022-09-28 2023-11-21 延安嘉盛石油机械有限责任公司 Sulfide stress corrosion resistant oil casing and preparation method thereof

Also Published As

Publication number Publication date
JPH10147836A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP3507258B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP3507259B2 (en) 590 MPa class rolled section steel and method for producing the same
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP2953919B2 (en) Slab for high toughness and high strength steel and method for producing rolled section steel using the slab
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3426433B2 (en) High tensile rolled steel and method of manufacturing the same
JPH09111397A (en) Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock
JPH04279248A (en) Manufacture of rolled shapes piersed fine oxide with excellent toughness
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JPH10204573A (en) 700×c fire resistant rolled shape steel and its production
JPH07238318A (en) Production of shape steel excellent in strength, toughness, and weldability and having flange
JP3285731B2 (en) Rolled section steel for refractory and method for producing the same
JPH0776724A (en) Production of shape steel excellent in toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees