JP3285731B2 - Rolled section steel for refractory and method for producing the same - Google Patents

Rolled section steel for refractory and method for producing the same

Info

Publication number
JP3285731B2
JP3285731B2 JP08956595A JP8956595A JP3285731B2 JP 3285731 B2 JP3285731 B2 JP 3285731B2 JP 08956595 A JP08956595 A JP 08956595A JP 8956595 A JP8956595 A JP 8956595A JP 3285731 B2 JP3285731 B2 JP 3285731B2
Authority
JP
Japan
Prior art keywords
rolling
steel
less
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08956595A
Other languages
Japanese (ja)
Other versions
JPH08283901A (en
Inventor
広一 山本
卓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08956595A priority Critical patent/JP3285731B2/en
Publication of JPH08283901A publication Critical patent/JPH08283901A/en
Application granted granted Critical
Publication of JP3285731B2 publication Critical patent/JP3285731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる耐火性、靭性の優れたH形鋼等フランジを
有する圧延形鋼と制御圧延による圧延形鋼の製造方法に
係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled section steel having a flange such as an H-section steel excellent in fire resistance and toughness used as a structural member of a building and a method for producing a rolled section steel by controlled rolling. is there.

【0002】[0002]

【従来の技術】建築物の超高層化、建築設計技術の高度
化などから耐火設計の見直しが建設省総合プロジェクト
により行われ、昭和62年3月に「新耐火設計法」が制
定された。この規定により、旧法令による火災時に鋼材
の温度を350℃以下にするように耐火被覆するとした
制限が解除され、鋼材の高温強度と建築物の実荷重との
かねあいにより、それに適合する耐火被覆方法を決定で
きるようになった。即ち600℃での設計高温強度を確
保できる場合はそれに見合い耐火被覆を削減できるよう
になった。
2. Description of the Related Art Fireproof design has been reviewed by the Ministry of Construction's comprehensive project due to the increase in the height of buildings and the sophistication of building design techniques. In March 1987, the "New Fireproof Design Law" was enacted. According to this regulation, the restriction on fire-resistant coating to keep the temperature of steel at 350 ° C or less in the event of a fire according to the old law is lifted, and the fire-resistant coating method conforming to the balance between the high-temperature strength of steel and the actual load of the building is lifted. Can now be determined. That is, when the design high-temperature strength at 600 ° C. can be ensured, the refractory coating can be reduced accordingly.

【0003】このような動向に対応し、先に特開平2−
77523号公報の耐火性の優れた建築用低降伏比鋼お
よび鋼材並びにその製造方法が提案されている。この先
願発明の要旨は600℃での降伏点が常温時の70%以
上となるようにMo、Nbを添加し高温強度を向上させ
たものである。鋼材の設計高温強度を600℃に設定し
たのは、合金元素による鋼材費の上昇とそれによる耐火
被覆施工費との兼ね合いから最も経済的であるという知
見に基づいたものである。
In response to such a trend, Japanese Patent Laid-Open No.
No. 77523 discloses a low yield ratio steel and a steel material for building having excellent fire resistance and a method for producing the same. The gist of the invention of the prior application is that Mo and Nb are added to improve the high-temperature strength so that the yield point at 600 ° C. becomes 70% or more of that at normal temperature. The design high-temperature strength of the steel material was set to 600 ° C. based on the finding that it is the most economical in view of the balance between the increase in the cost of the steel material due to the alloying element and the cost of the refractory coating.

【0004】また、従来は鋼のAl脱酸は溶製過程の初
期段階でAl添加され、溶鋼の脱酸と生成したAl2
3 を浮上分離し高清浄化することを目的にしていた。即
ち、如何に溶鋼の酸素濃度を下げ、鋼中の粗大な一次脱
酸酸化物個数を減らすかに主題がおかれていた。
[0004] Conventionally, Al deoxidation of steel is carried out by adding Al in the initial stage of the smelting process, thereby deoxidizing the molten steel and forming Al 2 O.
The purpose was to float and separate 3 for high purification. That is, the theme was how to reduce the oxygen concentration of the molten steel and the number of coarse primary deoxidized oxides in the steel.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は前述の先
願技術によって製造された鋼材を各種の形鋼、特に複雑
な形状から厳しい圧延造形上の制約を有するH形鋼の素
材に適用することを試みた結果、ウエブ、フランジ、フ
ィレットの各部位での圧延仕上げ温度、圧下率、冷却速
度に差生じることから、部位により組織、特にベイナイ
ト割合が著しく異なり、常温・高温強度、延性、靭性が
バラツキ、溶接構造用圧延鋼材(JIS G3106) 等の規準に
満たない部位が生じた。また、粒内フェライトの生成に
よる組織微細化では、フェライトの組織割合が比較的高
い成分では効果的であるが、ベイナイトの割合が高くな
ると組織の微細化が困難となる欠点があった。
SUMMARY OF THE INVENTION The present inventors have applied the steel materials manufactured by the above-mentioned prior application to various shaped steels, particularly H-shaped steels having complicated shapes and severe rolling molding restrictions. As a result, the rolling finish temperature, rolling reduction, and cooling rate at each part of the web, flange, and fillet are different, so the structure, especially the bainite ratio, is significantly different depending on the part, and normal temperature / high temperature strength, ductility, There were parts where the toughness varied and did not meet the standards such as rolled steel materials for welded structures (JIS G3106). In the refinement of the structure by the formation of intragranular ferrite, a component having a relatively high ferrite structure ratio is effective. However, when the ratio of bainite is high, there is a disadvantage that the structure is difficult to be refined.

【0006】上記の課題を解決するためには、圧延時の
加熱温度1200〜1300℃でもγ粒径をASTM
No. で6番以上に細粒化ができればベイナイト割合の
高い組織でも組織微細化が可能となるので、このγ細粒
化法の開発が課題となる。この目的を達成するには高温
で分解せず安定に存在する、微細な析出物を分散分布さ
せ、これにより成長するγ粒界をピンニングし、γ粒成
長を抑制し細粒化する方法が考えられる。本発明はこの
析出物としてMg系酸化物とTiNが効果的であること
を見出しこれらを微細晶出・析出させた鋼を開発するこ
とを指向した。
[0006] In order to solve the above-mentioned problems, it is necessary to reduce the γ particle size by ASTM even at a heating temperature of 1200 to 1300 ° C during rolling.
If the grain size can be reduced to No. 6 or more in No., the structure can be refined even in a structure having a high bainite ratio. In order to achieve this object, a method of dispersing and dispersing fine precipitates that are stably present without decomposition at high temperatures, thereby pinning the growing γ grain boundaries, suppressing γ grain growth, and reducing the grain size is considered. Can be The present invention has found that Mg-based oxides and TiN are effective as the precipitates, and has aimed to develop a steel in which these are finely crystallized and precipitated.

【0007】本発明は従来の発想とは異なり、製鋼過程
における脱酸剤の選択、その添加順序及び凝固過程の冷
却制御により酸化物の組成とサイズ、分散密度を制御
し、生成させた酸化物を異相析出の優先析出サイトとし
活用する点にある。本願出願は先に特願平6−1170
5号で、前記酸化物を粒内フェライト変態核として機能
させ、粒内フェライトの生成により組織を微細し、H形
鋼の部位間の材質特性の均質化と高靭性化を達成する手
段を提供した。本発明はこれとは異なり、高温安定性の
高い微細なMg系酸化物(主としてMgO)とTiNを
高密度分散させ、これらの析出物を圧延加熱時の120
0〜1300℃でのγ粒の粒成長を抑制するためのピン
ニングサイトとして機能させ、γ粒の細粒化により組織
を微細化することによりH形鋼の部位間の材質特性の均
質化と高靭性・高温高強度化を達成することを特徴とし
ている。
[0007] Unlike the conventional idea, the present invention controls the composition, size and dispersion density of an oxide by controlling the selection of a deoxidizing agent in the steelmaking process, the order of addition and the cooling in the solidification process. Is used as a preferential precipitation site for heterophase precipitation. The present application was filed in Japanese Patent Application No. Hei.
No. 5 provides a means for making the oxide function as an intragranular ferrite transformation nucleus, making the structure fine by generating intragranular ferrite, and achieving uniform material properties and high toughness between portions of the H-section steel. did. In the present invention, on the other hand, a fine Mg-based oxide (mainly MgO) and TiN having high temperature stability and high density are dispersed at a high density, and these precipitates are subjected to rolling and heating at 120 ° C.
It functions as a pinning site for suppressing the grain growth of γ grains at 0 to 1300 ° C., and by refining the structure by refining γ grains, homogenizing and improving the material properties between parts of the H-section steel. It is characterized by achieving toughness and high temperature and high strength.

【0008】また、製造法におけるTMCPの特徴は厚
鋼板で多く行われている低温・大圧下圧延とは異なり、
形鋼における軽圧下の熱間圧延においても効率的に組織
の細粒化が可能となるように圧延パス間で水冷し、水
冷、圧延、水冷とを繰り返す工程をとる方法にある。
[0008] The feature of TMCP in the manufacturing method is different from the low-temperature and large-reduction rolling that is often performed on thick steel plates.
In the hot rolling under light pressure in a section steel, there is a method in which water cooling is performed between rolling passes and water cooling, rolling, and water cooling are repeated so that the structure can be efficiently refined.

【0009】[0009]

【課題を解決するための手段】本発明は、組織を微細化
することを目的とし、製鋼過程において適正な脱酸処
理を行い、溶鋼の高清浄化、溶存酸素濃度の規制、Ti添
加、最後にSi-Mg 合金及びNi-Mg 合金を添加する添加順
序とMg添加量の限定を行い、鋳片に微細なMg系酸化物を
微細分散させた鋳片を圧延しH形鋼としたものと、該鋳
片を素材として熱間圧延パス間で水冷することによ
り、H形鋼のフランジの表面と内部に温度差を与え、軽
圧下条件下においても、より高温の内部への圧下浸透を
高め、α生成核となる加工転位を導入し、板厚中央部で
の組織の微細化が達成できる圧延中水冷方法を開発し
た。加えて、圧延後のγ/α変態温度域を冷却制御する
ことにより、その核生成させたフェライトの粒成長を抑
制する方法によればミクロ組織の細粒化ができ、高能率
で製造コストの安価な耐火用圧延形鋼の生産が可能であ
ると言う知見に基づき前記課題を解決したもので、その
要旨とするところは、以下のとおりである。 (1)質量%で、C :0.04〜0.20%、Si:
0.05〜0.50%、Mn:0.4〜1.8%、M
o:0.4〜1.0%、N :0.004〜0.015
%、Al:0.004%以下、Ti:0.005〜0.
025%、Mg:0.001〜0.005%、を含有
し、残部Feおよび不可避的不純物からなり、かつ、大
きさ3μm以下のMg系酸化物を50個/mm2 以上含有
する鋳片を熱間圧延して製造したことを特徴とする耐火
用圧延形鋼。 (2)質量%で、更に、Cr:1.0%以下、Cu:
1.0%以下、Ni:2.0%以下、Nb:0.01%
以下の何れか1種または2種以上を含有することを特徴
とする上記(1)記載の耐火用圧延形鋼。 (3)上記(1)記載の耐火用圧延形鋼の製造方法であ
って、前記成分組成を含有する鋳片を1200〜130
0℃の温度域に再加熱した後に圧延を開始し、この圧延
工程で形鋼のフランジ表面温度を700℃以下に水冷
し、以降の圧延パス間の復熱過程で圧延する水冷・圧延
工程を一回以上繰り返し圧延し、圧延終了後に0.5〜
10℃/sの冷却速度で700〜400℃まで冷却し、
その後放冷することを特徴とする請求項1記載の耐火用
圧延形鋼の製造方法。 (4)上記(2)記載の耐火用圧延形鋼の製造方法であ
って、前記成分組成を含有する鋳片を1200〜130
0℃の温度域に再加熱した後に圧延を開始し、この圧延
工程で形鋼のフランジ表面温度を700℃以下に水冷
し、以降の圧延パス間の復熱過程で圧延する水冷・圧延
工程を一回以上繰り返し圧延し、圧延終了後に0.5〜
10℃/sの冷却速度で700〜400℃まで冷却し、
その後放冷することを特徴とする請求項2記載の耐火用
圧延形鋼の製造方法。
DISCLOSURE OF THE INVENTION The present invention aims at refining the structure, performing appropriate deoxidation treatment in the steel making process, purifying the molten steel, regulating the dissolved oxygen concentration, adding Ti, and finally The order of addition of the Si-Mg alloy and the Ni-Mg alloy and the amount of Mg are limited, and a slab in which fine Mg-based oxides are finely dispersed in a slab is rolled into an H-section steel; By water cooling between the hot rolling passes using the slab as a raw material, a temperature difference is given between the surface and the inside of the flange of the H-section steel, and even under light rolling conditions, the penetration into the higher temperature inside is increased, We have developed a water cooling method during rolling that introduces working dislocations, which are α-generating nuclei, and can achieve a finer structure at the center of the sheet thickness. In addition, by controlling the cooling of the γ / α transformation temperature range after rolling, the microstructure can be refined according to the method of suppressing the grain growth of the nucleated ferrite, resulting in high efficiency and low production cost. The above-mentioned problem has been solved based on the finding that inexpensive refractory rolled steel can be produced, and the gist thereof is as follows. (1) In mass%, C: 0.04 to 0.20%, Si:
0.05-0.50%, Mn: 0.4-1.8%, M
o: 0.4 to 1.0%, N: 0.004 to 0.015
%, Al: 0.004% or less, Ti: 0.005 to 0.5%.
025%, Mg: 0.001 to 0.005%, a slab consisting of the balance of Fe and unavoidable impurities and containing at least 50 Mg-based oxides having a size of 3 μm or less / 50 / mm 2 or more. A rolled refractory section steel manufactured by hot rolling. (2) In mass%, Cr: 1.0% or less, Cu:
1.0% or less, Ni: 2.0% or less, Nb: 0.01%
The refractory rolled section steel according to the above (1), comprising one or more of the following. (3) The method for producing a refractory rolled steel section according to the above (1), wherein the slab containing the component composition is 1200 to 130.
Rolling is started after reheating to a temperature range of 0 ° C., and a water cooling / rolling step of rolling the flange surface temperature of the section steel to 700 ° C. or less in this rolling step, and rolling in a recuperation process between rolling passes thereafter. Rolled repeatedly one or more times, 0.5 ~ after rolling
Cooling to 700-400 ° C. at a cooling rate of 10 ° C./s,
The method for producing a refractory rolled steel according to claim 1, wherein the steel is allowed to cool. (4) The method for producing a refractory rolled steel section according to the above (2), wherein the slab containing the component composition is 1200 to 130.
Rolling is started after reheating to a temperature range of 0 ° C., and a water cooling / rolling step of rolling the flange surface temperature of the section steel to 700 ° C. or less in this rolling step, and rolling in a recuperation process between rolling passes thereafter. Rolled repeatedly one or more times, 0.5 ~ after rolling
Cooling to 700-400 ° C. at a cooling rate of 10 ° C./s,
3. The method according to claim 2, wherein the steel is cooled.

【0010】[0010]

【作用】以下、本発明について詳細に説明する。鋼材の
高温強度は鉄の融点のほぼ1/2 の温度の700 ℃以下では
常温での強化機構とほぼ同様であり、フェライト結晶
粒径の微細化、合金元素による固溶体強化、硬化相
による分散強化 微細析出物による析出強化等によっ
て支配される。一般に高温強度の上昇にはMo、Crの
添加による析出強化と転位の消失抑制による高温での軟
化抵抗を高めることにより達成されている。しかしM
o、Crの添加は著しく焼き入れ性を上げ、母材のフェ
ライト+ パーライト組織をベイナイト組織に変化させ
る。ベイナイト組織を生成し易い成分系鋼を圧延H形鋼
に適応した場合は、その特異な形状からウェブ、フラン
ジ、フィレットの各部位で、圧延仕上げ温度、圧下率、
冷却速度に差を生じるため、各部位によりベイナイト組
織割合が大きく変化する。その結果として常温・高温強
度、延性、靭性がバラツキ、規準に満たない部位が生じ
る。加えて、これらの元素の添加により溶接部を著しく
硬化させ、靭性を低下させる。
Hereinafter, the present invention will be described in detail. The high-temperature strength of steel material is almost the same as the strengthening mechanism at room temperature at 700 ° C or less, which is almost half the melting point of iron. It is governed by precipitation strengthening by fine precipitates and the like. In general, the increase in high-temperature strength is achieved by increasing precipitation resistance by adding Mo and Cr and increasing softening resistance at high temperatures by suppressing the disappearance of dislocations. But M
The addition of o and Cr markedly enhances hardenability and changes the ferrite + pearlite structure of the base material to a bainite structure. When a component steel that easily forms a bainite structure is applied to a rolled H-section steel, the rolling finish temperature, rolling reduction,
Since there is a difference in cooling rate, the ratio of bainite structure changes greatly depending on each part. As a result, there are variations in room-temperature / high-temperature strength, ductility, and toughness, and parts that do not meet the standards. In addition, the addition of these elements significantly hardens the weld and reduces toughness.

【0011】本発明の特徴は、製鋼工程において、脱酸
の制御、鋳込み後の冷却速度を規制し、鋳片内に多数の
微細なMg系酸化物を晶出・分散させた鋳片により、圧
延加熱時のγ粒径を細粒化した状態から圧延し耐火性・
靭性に優れたH形鋼を得ることである。加えて本発明で
は、熱間圧延工程において、熱間圧延パス間でフランジ
表面を水冷し、その復熱時に圧延することを繰り返すこ
とによりフランジの板厚中心部に圧下浸透効果を付与
し、この部位においてもTMCPによる組織微細化効果
を高め、この組織微細化によりH形鋼の各部位における
母材の機械特性を向上するとともに均一化を達成するも
のである。
The feature of the present invention is that, in the steel making process, the control of deoxidation, the cooling rate after casting is regulated, and the cast slab in which a large number of fine Mg-based oxides are crystallized and dispersed in the cast slab, Rolling from a state where the γ grain size at the time of rolling heating is reduced
The purpose is to obtain an H-section steel having excellent toughness. In addition, in the present invention, in the hot rolling step, the flange surface is water-cooled between hot rolling passes, and the rolling process is repeated at the time of reheating to impart a rolling reduction effect to the center of the flange thickness. The microstructure refinement effect of TMCP is also enhanced in the parts, and the refinement of the microstructure improves the mechanical properties of the base material in each part of the H-section steel and achieves uniformity.

【0012】以下に本発明形鋼の成分範囲と制御条件の
限定理由について述べる。まず、Cは鋼の強化するため
に添加するもので、0.04% 未満では構造用鋼として必要
な強度が得られず。また、0.20% を超える過剰の添加
は、母材靭性、耐溶接割れ性、溶接熱影響部(以下HA
Zと略記)靭性などを著しく低下させるので、下限を0.
04% 、上限を0.20% とした。
The reasons for limiting the range of components and the control conditions of the shaped steel according to the present invention will be described below. First, C is added to strengthen the steel. If it is less than 0.04%, the strength required for structural steel cannot be obtained. Excessive addition of more than 0.20% results in base metal toughness, weld cracking resistance, heat affected zone (hereinafter referred to as HA).
Z) The lower limit is set to 0.
04%, with an upper limit of 0.20%.

【0013】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50% を超えるとHAZ組織
内に硬化組織の高炭素島状マルテンサイトを生成し、溶
接継手部靭性を著しく低下させる。また、0.05% 未満で
は必要な溶鋼の予備脱酸ができないためSi含有量を0.
05〜0.50% の範囲に限定した。Mnは母材の強度、靭性
の確保には0.4%以上の添加が必要であるが、溶接部の靭
性、割れ性などの許容できる範囲で上限を1.8%とした。
[0013] Next, Si is necessary for securing the strength of the base material, preliminary deoxidation of molten steel, and the like. If it exceeds 0.50%, high-carbon island-like martensite having a hardened structure is formed in the HAZ structure. Significantly lowers toughness. If the content is less than 0.05%, the necessary molten steel cannot be preliminarily deoxidized, so the Si content is reduced to 0.
Limited to the range of 05 to 0.50%. Mn must be added in an amount of 0.4% or more to ensure the strength and toughness of the base material, but the upper limit is set to 1.8% in an acceptable range of the toughness and cracking properties of the welded portion.

【0014】Moは母材強度および高温強度の確保に有
効な元素である。0.4%未満ではMo炭化物(Mo2 C)
の析出が不十分で強化作用を持たないため十分な高温強
度が確保できず、1.0%超では焼き入れ性が上昇しすぎ母
材及びHAZの靭性が劣化するため0.4 〜1.0%に制限し
た。NはTiNの析出には極めて重要な元素であり、0.
004%未満ではTiNの析出量が不足し、1200〜13
00℃再加熱時のγ粒の粒成長を抑制できず、γ粒の細
粒化ができないため0.004%以上とした。含有量が0.015%
を超えるとフェライトの硬化および歪み時効などにより
靭性・延性を低下を生じるため0.015%以下に制限した。
Mo is an element effective for securing the base material strength and the high-temperature strength. If less than 0.4%, Mo carbide (Mo 2 C)
Sufficient precipitation at a high temperature could not be ensured due to insufficient precipitation and no sufficient strengthening effect. If it exceeds 1.0%, the hardenability is too high, and the toughness of the base metal and HAZ is deteriorated. N is an extremely important element for the precipitation of TiN.
If it is less than 004%, the precipitation amount of TiN is insufficient, and
Since the growth of γ grains at the time of reheating at 00 ° C. cannot be suppressed and the γ grains cannot be refined, the content is set to 0.004% or more. 0.015% content
If it exceeds, the toughness and ductility decrease due to hardening of the ferrite and strain aging, etc., so it was limited to 0.015% or less.

【0015】Alを0.004%以下としたのは、Alは強力
な脱酸元素であり、0.004%超の含有ではAl含有量の多
い粒子径の大きなAl−Mg系複合酸化物を生成し、微
細な3μm以下のMg系酸化物が形成されず、高温再加
熱時においてのγ細粒化ができないためAlを0.004%以
下とした。Tiは微細なTiNの析出によりγを細粒化
し母材及び溶接部の靭性を向上させる。従って、0.005%
以下ではTiNの析出量が不足し、γ細粒化ができない
ためTi量の下限値をO.005%とした。しかし0.025%を超
えると過剰なTiはTiCを析出し、その析出硬化によ
り母材および溶接熱影響部の靭性を劣化させるため0.02
5%以下に制限した。
The reason why the content of Al is set to 0.004% or less is that Al is a strong deoxidizing element. If the content exceeds 0.004%, an Al-Mg-based composite oxide having a large Al content and a large particle diameter is formed. Since no Mg-based oxide having a thickness of 3 μm or less was formed and γ-graining could not be performed at the time of high-temperature reheating, Al was set to 0.004% or less. Ti makes γ fine by precipitation of fine TiN and improves the toughness of the base metal and the welded portion. Therefore, 0.005%
In the following, the lower limit of the amount of Ti was set to 0.005% because the amount of precipitated TiN was insufficient and γ refinement was not possible. However, if it exceeds 0.025%, excessive Ti precipitates TiC, and the precipitation hardening deteriorates the toughness of the base metal and the weld heat affected zone.
Limited to 5% or less.

【0016】成分を調整した溶鋼を予備脱酸処理を行い
溶存酸素を重量%で0.003 〜0.015%に調整するのは、溶
鋼の高清浄化と同時に鋳片内に微細なMg系酸化物を晶
出させるために行うものである。予備脱酸後の[O] 濃度
が0.003%未満では微細な酸化物が減少し、細粒化できず
靭性を向上できない。一方、0.015%を超える場合は、他
の条件を満たしていても、酸化物が3μm以上の大きさ
に粗大化し脆性破壊の起点となり、靭性を低下させるた
めに予備脱酸後の[O] 濃度を重量%で0.003 〜0.015%に
限定した。
[0016] Preliminary deoxidation treatment of the molten steel whose components have been adjusted to adjust the dissolved oxygen to 0.003 to 0.015% by weight means that the fine Mg oxide is crystallized in the slab at the same time that the molten steel is highly purified. It is done to make it. If the [O] concentration after the pre-deoxidation is less than 0.003%, the amount of fine oxides decreases, and the fineness cannot be reduced, so that the toughness cannot be improved. On the other hand, if the content exceeds 0.015%, the oxide coarsens to a size of 3 μm or more and becomes the starting point of brittle fracture even if other conditions are satisfied, and the [O] concentration after preliminary deoxidation to reduce toughness Was limited to 0.003 to 0.015% by weight.

【0017】予備脱酸処理は真空脱ガス、Al、Si、
Mg脱酸により行った。その理由は真空脱ガス処理は直
接溶鋼中の酸素をガスおよびCOガスとして除去し、A
l、Si、Mgなどの強脱酸により生成する酸化物系介
在物は浮上、除去しやすく溶鋼の清浄化に有効なためで
ある。次に上述の溶鋼にMg合金を添加し重量%でMg:0.0
01〜0.005%に成分調整した溶鋼を後述する一定の鋳造冷
却速度で鋳込む。
Preliminary deoxidation treatment includes vacuum degassing, Al, Si,
Performed by Mg deoxidation. The reason is that vacuum degassing directly removes oxygen in molten steel as gas and CO gas,
This is because oxide-based inclusions generated by strong deoxidation such as l, Si, and Mg are easy to float and remove, and are effective for cleaning molten steel. Next, an Mg alloy was added to the above molten steel, and Mg: 0.0
The molten steel whose composition is adjusted to 01 to 0.005% is cast at a constant casting cooling rate described later.

【0018】Mg添加に使用したMg合金はSi-Mg 及びNi
-Mg である。Mg合金を用いた理由は合金化によりMg
の濃度を低くし、Mg酸化物生成時の反応を抑え、添加
時の安全性確保とMgの歩留を上げるためである。Mg
を0.001 〜0.005%に限定するのは、Mgも強力な脱酸元
素であり、晶出したMg酸化物は溶鋼中で容易に浮上分
離されるため0.005%を超えての添加は歩留が低いためそ
の上限を0.005%とした。また、0.001%未満では目的のM
g系酸化物の分散密度が不足するため下限を0.001%とし
た。なお、ここでのMg系酸化物は、主にMgOを表し
ているが、この酸化物は微量のAlおよび不純物として
含まれているCaなどの酸化物と複合化している場合が
多いのでこのような表現を用いた。
The Mg alloy used for adding Mg is Si-Mg and Ni.
-Mg. The reason for using Mg alloy is that
This is to reduce the concentration of Mg, suppress the reaction at the time of generating Mg oxide, ensure safety at the time of addition, and increase the yield of Mg. Mg
Is limited to 0.001 to 0.005%, Mg is also a strong deoxidizing element, and the crystallized Mg oxide is easily floated and separated in molten steel, so the addition over 0.005% has a low yield. Therefore, the upper limit was made 0.005%. If the content is less than 0.001%, the target M
Since the dispersion density of the g-based oxide is insufficient, the lower limit is set to 0.001%. Note that the Mg-based oxide here mainly represents MgO, but this oxide is often complexed with a small amount of Al and an oxide such as Ca contained as an impurity. Expression was used.

【0019】不可避不純物として含有するP、Sはその
量について特に限定しないが凝固偏析による溶接割れ、
靱性の低下を生じるので、極力低減すべきであり、望ま
しくはP、S量はそれぞれ0.02% 未満である。以上の成
分に加えて、母材強度の上昇、および母材の靱性向上の
目的で、Cr、Cu、Ni、Nbの1種または2種以上
を含有することができる。
The amounts of P and S contained as inevitable impurities are not particularly limited, but welding cracks due to solidification segregation,
Since toughness is reduced, the content should be reduced as much as possible. Desirably, the P and S contents are each less than 0.02%. In addition to the above components, one or more of Cr, Cu, Ni, and Nb can be contained for the purpose of increasing the strength of the base material and improving the toughness of the base material.

【0020】Crは焼き入れ性の向上により、母材の強
化に有効である。しかし1.0%を超える過剰の添加は、靭
性および硬化性の観点から有害となるため、上限を1.0%
とした。Cuは母材の強化、耐候性に有効な元素である
が、応力除去焼鈍による焼き戻し脆性、溶接割れ性、熱
間加工割れを促進するため、上限を1.0%とした。
[0020] Cr is effective for strengthening the base material by improving the hardenability. However, excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit is 1.0%
And Cu is an element effective for strengthening the base material and weathering resistance. However, the upper limit is set to 1.0% in order to promote temper brittleness by stress relief annealing, weld cracking, and hot work cracking.

【0021】Niは、母材の強靱性を高める極めて有効
な元素であるが2.0%を超える添加は合金コストを増加さ
せ経済的でないので上限を2.0%とした。Nbは微量添加
により圧延組織を微細化でき、それらの炭窒化物の析出
により強化することから低合金化でき溶接特性を向上で
きる。しかしながら、これらの元素の過剰な添加は溶接
部の硬化や、母材の高降伏点化をもたらすので、各々の
含有量の上限をNb:0.01% とした。ここでNb含有量を0.
01% 以下としたのはNbはTiと複合し粗大なNb・T
i炭窒化物を形成し、TiNの微細析出を阻害するので
この形成を阻止するために上限を0.01% に制限した。
Ni is a very effective element for increasing the toughness of the base material, but the addition of more than 2.0% increases the alloy cost and is not economical, so the upper limit was made 2.0%. Nb can refine the rolled structure by adding a small amount of it, and since it is strengthened by the precipitation of carbonitrides, it is possible to reduce the alloy and improve the welding characteristics. However, excessive addition of these elements causes hardening of the welded portion and a high yield point of the base metal, so the upper limit of each content was set to 0.01% Nb. Here, the Nb content is set to 0.
The reason why the content is set to 01% or less is that Nb is combined with Ti and coarse Nb · T
Since i-carbonitride is formed, which inhibits the fine precipitation of TiN, the upper limit is limited to 0.01% to prevent this formation.

【0022】成分調整を終了した溶鋼を鋳込む際の冷却
速度は、Mg系酸化物粒子の個数の増加とその大きさを
制御するため、鋳込み開始から900 ℃までの冷却速度を
0.5〜20℃/sで冷却するのが望ましい。すなわち、過冷
却により晶出する複合酸化物の核生成数を増加させると
同時に冷却中の粒子成長を抑制し、大きさ3μm以下に
した酸化物を鋳片に50個/mm2 以上含有させるため
に行うものである。この温度間の冷却速度が0.5℃/
s未満の緩冷却では複合酸化物は凝集粗大化し、50個
/mm2 未満となり靭性、延性を低下させ、一方、冷却
速度の上限は現状の鋳造技術での冷却速度の限界である
20℃/sとする。
In order to control the increase in the number and the size of the Mg-based oxide particles, the cooling rate at the time of casting the molten steel whose component adjustment has been completed is set at a cooling rate from the start of casting to 900 ° C.
It is desirable to cool at 0.5 to 20 ° C / s. That is, in order to increase the number of nuclei generated in the composite oxide crystallized by supercooling and at the same time to suppress the growth of particles during cooling, the slab contains at least 50 oxides / mm 2 having a size of 3 μm or less. What to do. The cooling rate between these temperatures is 0.5 ° C /
At a slow cooling of less than s, the composite oxide becomes coarse and coarse and becomes less than 50 particles / mm 2 , which lowers the toughness and ductility. On the other hand, the upper limit of the cooling rate is 20 ° C./cm 2 which is the limit of the cooling rate in the current casting technology. s.

【0023】次に、鋳片に複合酸化物が50個/mm2
以上含む必要がある理由について述べる。製品の材質特
性は製鋼、鋳造工程に支配される先天的因子の鋳片の凝
固組織、成分偏析、本発明の微細複合酸化物、析出物等
と圧延、TMCP、熱処理工程等により支配される後天
的因子のミクロ組織により決定される。当然、この先天
的因子である鋳片の性質は後の工程に継承される。本発
明の特徴は、この鋳片の先天的因子の1つを制御するこ
とにあり、鋳片中に高温でのγ粒成長の抑制機能を発揮
する微細なMg系酸化物を分散晶出させることにある。
この粒子の分散個数が50個/mm2 未満では、120
0〜1300℃加熱におけるγ粒径がASTM No.
6番以上の細粒をえることはできないため下限を50個
/mm2とした。
Next, the composite slab contains 50 composite oxides / mm 2
The reason why it is necessary to include the above is described. The material properties of the product are congenital factors governed by the steelmaking and casting processes, such as the solidification structure of the cast slab, component segregation, the fine composite oxides and precipitates of the present invention, and the acquired properties governed by rolling, TMCP, heat treatment processes, etc. Is determined by the microstructure of the objective factor. Naturally, the property of the slab, which is this innate factor, is inherited by the subsequent steps. A feature of the present invention is to control one of the innate factors of the slab, and disperse and crystallize a fine Mg-based oxide exhibiting a function of suppressing γ grain growth at a high temperature in the slab. It is in.
When the number of dispersed particles is less than 50 particles / mm 2 ,
The particle size of γ when heated at 0 to 1300 ° C. is ASTM No.
Since fine grains of No. 6 or more cannot be obtained, the lower limit was set to 50 grains / mm 2 .

【0024】なお、Mg系酸化物個数はX線マイクロア
ナライザー(EPMA)で測定し決定したものである。
上記の処理を経た鋳片は次に1200〜1300℃の温
度域に再加熱する。この温度域に再加熱温度を限定した
のは、熱間加工による形鋼の製造には塑性変形を容易に
するため1200℃以上の加熱が必要であり、且つV、
Nbなどの元素を十分に固溶させる必要があるため再加
熱温度の下限を1200℃とした。その上限は加熱炉の
性能、経済性から1300℃とした。
The number of Mg-based oxides was determined by measuring with an X-ray microanalyzer (EPMA).
The slab that has undergone the above treatment is then reheated to a temperature range of 1200 to 1300 ° C. The reason for limiting the reheating temperature to this temperature range is that the production of a shaped steel by hot working requires heating at 1200 ° C. or higher in order to facilitate plastic deformation.
The lower limit of the reheating temperature was set to 1200 ° C. because elements such as Nb need to be sufficiently dissolved. The upper limit was set to 1300 ° C. in view of the performance and economy of the heating furnace.

【0025】熱間圧延のパス間で水冷し、圧延中に一回
以上、フランジ表面温度を700℃以下に冷却し、その
次の圧延パス間の復熱過程で圧延する水冷・圧延工程を
1回以上繰り返し行うとしたのは、圧延パス間の水冷に
より、フランジの表層部と内部とに温度差を付け、軽圧
下条件においても内部への加工を浸透させるためと、低
温圧延を短時間で効率的に行うためである。
A water-cooling / rolling step of cooling by water between passes of hot rolling, cooling the flange surface temperature to 700 ° C. or less at least once during rolling, and rolling in the reheating process between the subsequent rolling passes is performed in one step. The reason for performing the repetition more than once is to provide a temperature difference between the surface layer and the inside of the flange by water cooling between rolling passes, and to infiltrate the processing into the inside even under light rolling conditions, and to perform low-temperature rolling in a short time This is for efficient operation.

【0026】フランジ表面温度を700℃以下に冷却し
た後、復熱過程で圧延するのは、仕上げ圧延後の加速冷
却による表面の焼入れ硬化を抑制し軟化させるために行
うものである。その理由はフランジ表面温度を700℃
以下に冷却すれば一旦γ/α変態温度を切り、次の圧延
までに表層部は復熱昇温し、圧延はγ/αの二相共存温
度域での加工となり、γ細粒化と加工された微細αとの
混合組織を形成する。これにより表層部の焼き入性を著
しく低減でき、加速冷却により生じる表面層の硬化を防
止できるからである。
Rolling in the reheating process after the flange surface temperature is cooled to 700 ° C. or lower is performed to suppress quenching and hardening of the surface due to accelerated cooling after finish rolling and to soften the surface. The reason is that the flange surface temperature is 700 ° C
Once cooled, the γ / α transformation temperature is temporarily cut off, and the surface layer is reheated and heated by the next rolling. Rolling is performed in the γ / α two-phase coexisting temperature range. A mixed structure with the fine α thus formed is formed. Thereby, the hardenability of the surface layer can be significantly reduced, and the hardening of the surface layer caused by accelerated cooling can be prevented.

【0027】また、圧延終了後、引続き、0.5〜10
℃/Sの冷却速度で700〜400℃まで冷却し放冷す
るとしたのは、加速冷却によりフェライトの粒成長抑制
とベイナイト組織を微細化し高強度・高靭性を得るため
である。引き続く加速冷却を700〜400℃で停止す
るのは、700℃を超える温度で加速冷却を停止する
と、一部がAr1 点以上となりγ相を残存し、このγ相
が、共存するフェライトを核にフェライト変態し、さら
にフェライトが成長し粗粒化するために加速冷却の停止
温度を700℃以下とした。また、400℃未満の冷却
では、その後の放冷中にベイナイト相のラス間に生成す
る高炭素マルテンサイトが、冷却中にセメンタイトを析
出することにより分解できず、硬化相として存在するこ
とになる。これが脆性破壊の起点として作用し、靭性の
低下を招くために、この温度範囲に限定した。
After the end of the rolling, the rolling is continued for 0.5 to 10
The reason for cooling to 700 to 400 ° C. at a cooling rate of ° C./S and allowing to cool is to suppress the grain growth of ferrite and to refine the bainite structure by accelerated cooling to obtain high strength and high toughness. The reason why the subsequent accelerated cooling is stopped at 700 to 400 ° C. is that when the accelerated cooling is stopped at a temperature exceeding 700 ° C., a part becomes one or more Ar and a γ phase remains. The temperature for stopping the accelerated cooling was set to 700 ° C. or less in order to transform the ferrite into a ferrite and further grow the ferrite and coarsen the ferrite. Further, in cooling at a temperature lower than 400 ° C., high-carbon martensite generated between laths of the bainite phase during the subsequent cooling is not decomposed by precipitation of cementite during cooling, and exists as a hardened phase. . Since this acts as a starting point of brittle fracture and causes a decrease in toughness, the temperature is limited to this range.

【0028】[0028]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Ti次いで
Mg合金を添加し、連続鋳造により250 〜300mm 厚鋳片に
鋳造した。鋳片の冷却はモールド下方の二次冷却帯の水
量と鋳片の引き抜き速度の選択により制御した。該鋳片
を加熱し、粗圧延工程の図示は省略するが、図1に示
す、ユニバーサル圧延装置列でH形鋼に圧延した。圧延
パス間水冷は中間ユニバーサル圧延機4の前後に水冷装
置5aを設け、フランジ外側面のスプレー冷却とリバー
ス圧延の繰り返しにより行い、圧延後の加速冷却は仕上
げユニバーサル圧延機6で圧延終了後にその後面に設置
した冷却装置5bでフランジ外側面をスプレー冷却し
た。
[Example] A prototype steel was melted from a converter, added with an alloy, preliminarily deoxidized, and adjusted for oxygen concentration in the molten steel.
Mg alloy was added and cast into a 250-300 mm thick slab by continuous casting. The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the speed of drawing the slab. The slab was heated and rolled into an H-beam by a universal rolling mill row shown in FIG. 1, although illustration of the rough rolling step was omitted. Water cooling between rolling passes is provided with a water cooling device 5a before and after the intermediate universal rolling mill 4, and spray cooling and reverse rolling are repeated on the outer surface of the flange, and accelerated cooling after rolling is performed after finishing rolling by the finishing universal rolling mill 6. The outer surface of the flange was spray-cooled by the cooling device 5b installed in the above.

【0029】機械特性は図2に示す、フランジ2の板厚
2 の中心部(1/2t2 )でフランジ幅全長(B) の1/4,1/
2 幅(1/4B,1/2B) から、試験片を採集し求めた。なお、
これらの箇所の特性を求めたのはフランジ1/4F部はH形
鋼の平均的な機械特性を示し、フランジ1/2F部はその特
性が最も低下するので、これらの2箇所によりH形鋼の
機械試験特性を代表できると判断したためである。
The mechanical properties are shown in FIG. 2 at the center (1 / 2t 2 ) of the thickness t 2 of the flange 2 at 1 / 4,1 / of the overall flange width (B).
2 Test pieces were collected from the widths (1 / 4B, 1 / 2B). In addition,
The characteristics of these locations were determined because the flange 1 / 4F section shows the average mechanical properties of the H-section steel, and the flange 1 / 2F section has the lowest properties. This is because it has been determined that the mechanical test characteristics can be represented.

【0030】表1、表3には、本発明鋼及び比較鋼の化
学成分値を、表2、表4には、それらの鋼の鋳込み後の
冷却速度及び鋳片中のMg系酸化物の分散密度を示す。
表5、表6および表7には、圧延加熱時のγ粒度、圧延
・加速冷却条件及び製品の機械試験特性値を示す。な
お、圧延加熱温度を1300℃に揃えたのは、一般的に
加熱温度の低下はγ粒を細粒化し機械試験特性を向上さ
せることは周知であり、高温加熱条件では機械特性の最
低値を示すと推定され、この値がそれ以下の加熱温度で
の機械試験特性を代表できると判断したためである。
Tables 1 and 3 show the chemical composition values of the steels of the present invention and comparative steels, and Tables 2 and 4 show the cooling rates after casting of these steels and the Mg-based oxides in the slabs. Shows the dispersion density.
Tables 5, 6, and 7 show the γ grain size at the time of rolling heating, rolling / accelerated cooling conditions, and mechanical test characteristic values of the product. It is well known that the rolling heating temperature is adjusted to 1300 ° C. because it is generally known that a decrease in the heating temperature reduces the γ grains to improve mechanical test characteristics. This is because it was determined that this value could represent the mechanical test characteristics at a lower heating temperature.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】表5、6および7に示すように、本発明に
よるH形鋼1〜5、A1〜A3は目標の常温の降伏点範
囲がJIS規格の下限値+120N/mm2以内のSM490 ではYP
=325〜445N/mm2、SM520 ではYP=355〜475N/mm2、に制御
され、しかも、降伏比(YP/TS )も0.8 以下の低YR値を
満たし、抗張力(前記JISG3106)及び600℃
での降伏強度と常温の降伏強度の比が2/3以上であ
り、−10℃でのシャルピー衝撃値47(J) 以上を十分
に満たしている。一方、比較鋼のH形鋼6では、成分の
Nが0.003wt%と本発明の下限値以下であり、Alは0.00
7wt%と本発明の上限値を超えており、そのためにTiN
の析出量不足とMg系酸化物の分散個数が50個/mm
2 未満となり、γ粒度がASTM No.6番以下に粗
粒化し微細組織が得られない。このためにシャルピー衝
撃値が開発目標の−10℃で47J以上を達成できな
い。比較鋼のH形鋼7では、Mg添加前の溶鋼の酸素濃
度が本発明の下限値以下となっているためにMg系酸化
物の個数が不足し、それに反し、比較鋼のH形鋼8で
は、この酸素濃度の上限値を超えているために3μm以
上の大きさの粗大な酸化物が形成されるために、何れも
シャルピー衝撃値が開発目標の−10℃で47J以上を
達成できない。比較鋼のH形鋼9では、Ti含有量が本
発明の下限値未満となるためにTiNの析出量が不足
し、γ粒度がASTMNo.6番以下に粗粒化しシャル
ピー衝撃値をクリアーできない。比較鋼のH形鋼10で
は、Mgが添加されていない。次いで、比較鋼のH形鋼
11では、鋳込み後の冷却速度が下限値以下であるので
Mg系酸化物の個数が不足し、シャルピー衝撃値がクリ
アーできない。比較鋼のH形鋼12では、成分・製鋼条
件は満たしているものの圧延中でのフランジ外側面を7
00℃以下に水冷する処理が施されていないので、水冷
停止温度が725℃と水冷停止温度の上限を超え、圧延
後の冷却速度が1/2F部では制限冷却速度の下限以下
となるため、常温強度及び600℃での強度不足をきた
す。
As shown in Tables 5, 6 and 7, the H-shaped steels 1 to 5 and A1 to A3 according to the present invention have YP values of SM490 whose target yield point range at room temperature is within the lower limit of JIS standard +120 N / mm 2.
= 325~445N / mm 2, SM520 in YP = 355~475N / mm 2, it is controlled to, moreover, the yield ratio (YP / TS) also satisfy the 0.8 or lower YR value, tensile strength (the JISG3106) and 600 ° C.
The ratio between the yield strength at room temperature and the yield strength at room temperature is 2/3 or more, and sufficiently satisfies the Charpy impact value at -10 ° C. of 47 (J) or more. On the other hand, in the comparative steel H-section steel 6, the component N was 0.003 wt%, which is below the lower limit of the present invention, and Al was 0.00%.
7 wt%, which exceeds the upper limit of the present invention.
Insufficient amount of precipitation and the number of dispersed Mg-based oxides is 50 / mm
2 , and the γ particle size is ASTM No. Coarse-grained to No. 6 or less and a fine structure cannot be obtained. Therefore, the Charpy impact value cannot reach 47 J or more at the development target of -10 ° C. In the comparative steel H-section steel 7, the oxygen concentration of the molten steel before the addition of Mg was lower than the lower limit of the present invention, so that the number of Mg-based oxides was insufficient. In this case, since a coarse oxide having a size of 3 μm or more is formed because the oxygen concentration exceeds the upper limit value, the Charpy impact value cannot achieve 47 J or more at the development target of −10 ° C. In the comparative steel H-section steel 9, the Ti content is less than the lower limit of the present invention, so that the precipitation amount of TiN is insufficient, and the γ grain size is ASTM No. The grain size is reduced to 6 or less, and the Charpy impact value cannot be cleared. In the comparative steel H-section steel 10, Mg was not added. Next, in the comparative steel H-section steel 11, since the cooling rate after casting is lower than the lower limit, the number of Mg-based oxides is insufficient and the Charpy impact value cannot be cleared. In the comparative steel H-section steel 12, although the composition and steelmaking conditions are satisfied, the outer surface of the flange during rolling is 7 mm.
Since the water-cooling process is not performed below 00 ° C, the water-cooling stop temperature exceeds the upper limit of the water-cooling stop temperature of 725 ° C, and the cooling rate after rolling is equal to or lower than the lower limit of the limited cooling rate in the 1 / 2F section. Insufficient strength at room temperature and at 600 ° C.

【0039】規格強度で520MPa級鋼に区分される
比較鋼のH形鋼A4では、Mo含有量が本発明の下限値
を以下であるため600℃での強度不足となり、加えて
Mgが添加されていないので組織の微細化ができずシャ
ルピー衝撃値が開発目標の−10℃で47J以上を達成
できない。また、比較鋼のH形鋼A5では、鋳込み後の
冷却速度の制限の下限値以下であるのでMg系酸化物の
個数が不足し、シャルピー衝撃値がクリアーできない。
In the case of the H-section steel A4, which is a comparative steel classified into a 520 MPa class steel with a specified strength, the Mo content is below the lower limit of the present invention, so that the strength is insufficient at 600 ° C., and Mg is added. Therefore, the structure cannot be refined, and the Charpy impact value cannot reach 47 J or more at the development target of −10 ° C. Further, in the comparative steel H-section steel A5, the number of Mg-based oxides is insufficient because the cooling rate after casting is lower than the lower limit of the limit, and the Charpy impact value cannot be cleared.

【0040】即ち、本発明の製造法の要件が総て満たさ
れた時に、表5、6および7に示されるH形鋼1〜5、
A1〜A3のように、圧延形鋼の機械試験特性の最も保
証しにくいフランジ板厚1/2,幅1/2 部においても十分な
常温・高温強度、低温靭性を有する、耐火性及び靭性の
優れた圧延形鋼の生産が可能になる。なお、本発明が対
象とする圧延形鋼は上記実施例のH形鋼に限らずI形
鋼、山形鋼、溝形鋼、不等辺不等厚山形鋼等のフランジ
を有する形鋼にも適用できることは勿論である。
That is, when all the requirements of the production method of the present invention are satisfied, H-section steels 1 to 5 shown in Tables 5, 6 and 7
As in A1 to A3, it has sufficient room temperature / high temperature strength and low temperature toughness even in the flange thickness 1/2 and width 1/2 parts where the mechanical test characteristics of the rolled steel are the least guaranteed. Excellent rolled steel production is possible. The rolled section steel to which the present invention is applied is not limited to the H section steel of the above embodiment, but is also applicable to section steels having flanges such as I section steel, angle steel, channel steel, and unequal thickness angle steel. Of course, you can.

【0041】[0041]

【発明の効果】本発明による圧延形鋼は機械試験特性の
最も保証しにくいフランジ板厚1/2,幅1/2 部においても
十分な強度、靭性を有し、高温特性に優れ、耐火材の被
覆厚さが従来の20〜50%で耐火目的を達成できる、
優れた耐火性及び靭性を持つ形鋼が圧延ままで製造可能
になり、施工コスト低減、工期の短縮による大幅なコス
ト削減が図られ、大型建造物の信頼性向上、安全性の確
保、経済性等の産業上の効果は極めて顕著なものがあ
る。
The rolled section steel according to the present invention has sufficient strength and toughness even at a flange plate thickness of 1/2 and a width of 1/2 part where mechanical test characteristics are most difficult to be guaranteed, has excellent high-temperature characteristics, and is a refractory material. Can achieve the purpose of fire resistance with a coating thickness of 20 to 50% of the conventional one,
Shaped steel with excellent fire resistance and toughness can be manufactured as it is rolled, reducing construction costs and shortening the construction period to achieve significant cost reductions, improving the reliability of large buildings, ensuring safety, and economical efficiency Industrial effects such as these are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法を実施する装置配置例の略図である。FIG. 1 is a schematic view of an example of an apparatus arrangement for performing the method of the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図である。
FIG. 2 is a diagram illustrating a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機 DESCRIPTION OF SYMBOLS 1 ... H-shaped steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water cooling device of the front and back surface of an intermediate rolling mill 5b ... Finishing rolling machine rear cooling device 6 ... Finishing rolling mill

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21C 7/00 - 7/06 C21D 8/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21C 7 /00-7/06 C21D 8/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、 C :0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜1.8%、 Mo:0.4〜1.0%、 N :0.004〜0.015%、 Al:0.004%以下、 Ti:0.005〜0.025%、 Mg:0.001〜0.005%、 を含有し、残部Feおよび不可避的不純物からなり、か
つ、大きさ3μm以下のMg系酸化物を50個/mm2
上含有する鋳片を熱間圧延して製造したことを特徴とす
る耐火用圧延形鋼。
C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 1.8%, Mo: 0.4 to 1. 0%, N: 0.004 to 0.015%, Al: 0.004% or less, Ti: 0.005 to 0.025%, Mg: 0.001 to 0.005%, the balance being Fe And a hot rolled cast slab composed of unavoidable impurities and containing at least 50 Mg-based oxides having a size of 3 μm or less per 50 mm 2 / mm 2 .
【請求項2】 質量%で、更に、Cr:1.0%以下、
Cu:1.0%以下、Ni:2.0%以下、Nb:0.
01%以下の何れか1種または2種以上を含有すること
を特徴とする請求項1記載の耐火用圧延形鋼。
2. In% by mass, Cr: 1.0% or less,
Cu: 1.0% or less, Ni: 2.0% or less, Nb: 0.
The refractory rolled section steel according to claim 1, comprising one or more kinds of not more than 01%.
【請求項3】 請求項1記載の耐火用圧延形鋼の製造方
法であって、前記成分組成を含有する鋳片を1200〜
1300℃の温度域に再加熱した後に圧延を開始し、こ
の圧延工程で形鋼のフランジ表面温度を700℃以下に
水冷し、以降の圧延パス間の復熱過程で圧延する水冷・
圧延工程を一回以上繰り返し圧延し、圧延終了後に0.
5〜10℃/sの冷却速度で700〜400℃まで冷却
し、その後放冷することを特徴とする請求項1記載の耐
火用圧延形鋼の製造方法。
3. The method for producing a rolled refractory steel section according to claim 1, wherein the slab containing the component composition is 1200-200.
After reheating to a temperature range of 1300 ° C., rolling is started. In this rolling process, the flange surface temperature of the section steel is water-cooled to 700 ° C. or less, and water-cooling is performed in a reheating process between subsequent rolling passes.
The rolling process is repeated one or more times, and after the rolling is completed, the rolling process is performed.
The method according to claim 1, wherein the steel is cooled to 700 to 400C at a cooling rate of 5 to 10C / s, and then cooled.
【請求項4】 請求項2記載の耐火用圧延形鋼の製造方
法であって、前記成分組成を含有する鋳片を1200〜
1300℃の温度域に再加熱した後に圧延を開始し、こ
の圧延工程で形鋼のフランジ表面温度を700℃以下に
水冷し、以降の圧延パス間の復熱過程で圧延する水冷・
圧延工程を一回以上繰り返し圧延し、圧延終了後に0.
5〜10℃/sの冷却速度で700〜400℃まで冷却
し、その後放冷することを特徴とする請求項2記載の耐
火用圧延形鋼の製造方法。
4. The method for producing a refractory rolled section steel according to claim 2, wherein the slab containing the component composition is 1200-200.
After reheating to a temperature range of 1300 ° C., rolling is started. In this rolling process, the flange surface temperature of the section steel is water-cooled to 700 ° C. or less, and water-cooling is performed in a reheating process between subsequent rolling passes.
The rolling process is repeated one or more times, and after the rolling is completed, the rolling process is performed.
The method according to claim 2, wherein the steel is cooled to 700 to 400C at a cooling rate of 5 to 10C / s, and then cooled.
JP08956595A 1995-04-14 1995-04-14 Rolled section steel for refractory and method for producing the same Expired - Lifetime JP3285731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08956595A JP3285731B2 (en) 1995-04-14 1995-04-14 Rolled section steel for refractory and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08956595A JP3285731B2 (en) 1995-04-14 1995-04-14 Rolled section steel for refractory and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08283901A JPH08283901A (en) 1996-10-29
JP3285731B2 true JP3285731B2 (en) 2002-05-27

Family

ID=13974345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08956595A Expired - Lifetime JP3285731B2 (en) 1995-04-14 1995-04-14 Rolled section steel for refractory and method for producing the same

Country Status (1)

Country Link
JP (1) JP3285731B2 (en)

Also Published As

Publication number Publication date
JPH08283901A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2006336105A (en) Heat-resistant steel product and method for production thereof
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JPH10147834A (en) 590mpa class rolled shape steel and its production
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JPH04279247A (en) Manufacture of transgranular ferrite system rolled shapes with excellent fire resistance and toughness
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP3472017B2 (en) Refractory rolled steel and method for producing the same
CN113604736A (en) High-strength medium plate with yield strength of 800MPa and preparation method thereof
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3285731B2 (en) Rolled section steel for refractory and method for producing the same
JPH10147835A (en) 590mpa class rolled shape steel and its production
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab
JPH0776725A (en) Production of shape steel excellent in toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

EXPY Cancellation because of completion of term