JP4464486B2 - High-strength and high-toughness rolled section steel and its manufacturing method - Google Patents

High-strength and high-toughness rolled section steel and its manufacturing method Download PDF

Info

Publication number
JP4464486B2
JP4464486B2 JP17591999A JP17591999A JP4464486B2 JP 4464486 B2 JP4464486 B2 JP 4464486B2 JP 17591999 A JP17591999 A JP 17591999A JP 17591999 A JP17591999 A JP 17591999A JP 4464486 B2 JP4464486 B2 JP 4464486B2
Authority
JP
Japan
Prior art keywords
strength
cooling
steel
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17591999A
Other languages
Japanese (ja)
Other versions
JP2001003136A (en
Inventor
寛哲 佐藤
卓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17591999A priority Critical patent/JP4464486B2/en
Publication of JP2001003136A publication Critical patent/JP2001003136A/en
Application granted granted Critical
Publication of JP4464486B2 publication Critical patent/JP4464486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の構造用部材として用いられる靱性の優れた高張力圧延形鋼およびその製造方法に関するものである。
【0002】
【従来の技術】
建築物の高層化、安全基準の厳格化などから、建築物の柱用に用いられる鋼材、例えば板厚の大きなサイズのH形鋼(以下極厚H形鋼という。)には、一層の高強度化、高靱性化、低降伏比化が求められている。このような要求特性を満たすために、従来は圧延終了後に焼準処理などの熱処理を施すことが行われた。しかし、前述のような熱処理の付加はエネルギーコストの増加や生産効率の低下など大幅なコスト上昇を招き経済性に問題があった。この問題を解決するために、高性能の材質特性が得られるような新しい合金設計に基づく鋼材と、これを製造するための新しい製造方法の開発は必要となってきている。
【0003】
一般に、フランジを有する形鋼、例えばH形鋼をユニバーサル圧延により製造すると、圧延造形上からの圧延条件(圧延温度、圧下率など)の制限およびその形状の特異性からウエブ、フランジ、フィレットの各部位で圧延仕上げ温度、圧下率、冷却速度に差を生じる。その結果、部位間に強度、延性、靱性のバラツキが発生し、例えば溶接構造用圧延鋼材(JIS G3106)等の基準に満たない部位が生じる。特に、極厚H形鋼を連続鋳造鋳片を素材として圧延製造する場合には、連続鋳造設備での製造可能な鋳片最大厚みに限界があり、造形に必要な十分な鋳片断面積が得られないため、その圧延は低圧下比圧延となる。さらに、圧延造形により製品の寸法精度を得るために高温圧延を指向するので板厚の厚いフランジ部は高温圧延となり、圧延終了後の鋼材冷却も徐冷となる。その結果、ミクロ組織は粗粒化し、強度、靱性が低下する。
【0004】
圧延プロセスでの組織微細化法として、TMCP(Thermo-Mechanical-ControlProcess )があるが、形鋼圧延では、圧延条件に制限があるので、鋼板でのTMCPのような低温・大圧下圧延の適用は困難である。また、厚鋼板分野ではVNの析出効果を利用し高強度・高靱性鋼を製造する、例えば特公昭62−50548号公報、特公昭62−54862号公報に開示された技術が提案されている。しかし、これらの方法を590N/mm2 級の鋼材の製造に適用した場合には、高濃度の固溶Nを含有することから、生成するベイナイト組織内に高炭素島状マルテンサイト(以降M*と称する)を生成し、靱性が著しく低下して規格値をクリアーすることは困難であるという問題があった。また、特開平10−147835号公報においては、低炭素化−低窒素化とNb,V,Moの微量添加および、Ti酸化物およびTiNの微細分散による組織微細化に加え、加速冷却型制御圧延による高強度圧延形鋼の製造法が提案されているが、低C化とTMCPの採用による製造コストの上昇や製造工程の複雑化を招いている。
【0005】
【発明が解決しようとする課題】
前述した問題を解決するためには、圧延形鋼においてM*生成量の少ない低炭素ベイナイトを生成させ組織を微細化する必要がある。それには圧延加熱時のγ粒径を細粒化するために製鋼過程において、鋳片中に予めTi−Oを微細晶出させ、これを核にTiNを微細析出させ、加えて、低炭素化するために、微量で高強度が得られるマイクロアロイの微量添加した鋳片を製造する必要がある。また、H形鋼のフランジとウエブの結合部のフィレット部は連続鋳造鋳片の中心偏析帯と一致し、この偏析帯内のMnSは圧延により著しく延伸する。ここでの高濃度の元素偏析帯と延伸MnSは板厚方向の絞り値・靱性を著しく低下させ、さらに溶接時にラメラティア割れを生じさせる場合もあり、この有害な作用を持つMnSの生成を阻止することも大きな課題である。このように、従来の技術では目的の信頼性の高い高強度・高靱性の圧延形鋼をオンラインで製造し安価に提供することは困難である。
【0006】
本発明は、従来の焼準処理などの熱処理を施すことなく、低コストで高張力圧延形鋼の製造を可能とし、建造物の構造部材に用いる高強度で靱性の優れた590N/mm2 級圧延形鋼およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、靱性劣化の主要因であるM*の含有量の少ないベイナイト+フェライト+パーライト組織が得られる鋳片を鋳造し、この鋳片を用い形鋼形状に圧延し、圧延後の冷却速度、温度履歴を制御することにより含有しているM*を低減することにより、焼準処理などの熱処理を施すことなく、低コストで高張力圧延形鋼の製造を可能としたものであり、その要旨は次の通りである。
(1)量%で、C :0.01〜0.10%、
Si:0.05〜0.35%、
Mn:1.0〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.03%、
Nb:0.01〜0.10%、
N :≦0.010%、
O :0.001〜0.007%
Al:≦0.05%
を含み、残部Feおよび不可避的不純物からなる化学組成を有し、かつミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトからなり、前記高炭素島状マルテンサイトの面積率が0.5%以下であることを特徴とする引張強度:590N/mm2以上、降伏強度または0.2%耐力:440N/mm2以上、0℃でのシャルピー衝撃吸収エネルギー:47J以上の機械的特性を有する高強度高靱性圧延形鋼。
(2)量%で、C :0.01〜0.10%、
Si:0.05〜0.35%、
Mn:1.0〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.03%、
Nb:0.01〜0.10%、
N :≦0.010%、
O :0.001〜0.007%、
Al:≦0.05%にさらに、
V:0.01〜0.1%、Cr:0.1〜1.0%、Ni:0.1〜2.0%、Mo:0.05〜0.40%、Mg:0.0001〜0.005%、Ca:0.0001〜0.003%、B:0.0001〜0.003%のうち何れか1種または2種以上を含み、残部Feおよび不可避的不純物からなる化学組成を有し、かつミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトからなり、前記高炭素島状マルテンサイトの面積率が0.5%以下であることを特徴とする引張強度:590N/mm2以上、降伏強度または0.2%耐力:440N/mm2以上、0℃でのシャルピー衝撃吸収エネルギー:47J以上の機械的特性を有する高強度高靱性圧延形鋼。
(3)量%で、C :0.01〜0.10%、
Si:0.05〜0.35%、
Mn:1.0〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.03%、
Nb:0.01〜0.10%、
N :≦0.010%、
O :0.001〜0.007%
Al:≦0.05%
を含み、残部Feおよび不可避的不純物からなる化学組成を有する鋳片を1100〜1300℃の温度域に加熱した後に圧延を開始し、圧延後、
1)鋼材平均温度を(1)式で表すMs点温度まで0.1〜5℃/secの範囲内で加速 冷却し、その後Ms点温度から250℃まで0.001〜0.1℃/secの範囲
内の冷却速度で徐冷却を行い、その後放冷、徐冷却または加速冷却を行うこと、
2)鋼材平均温度をMs点温度以下まで0.1〜5℃/secの範囲内で加速冷却し、そ
の後250〜500℃で15分〜5時間の温度保持を行い、再度冷却すること、
をそれぞれ単独もしくは組合わせた方法により冷却することを特徴とする、鋼材のミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトからなり、前記高炭素島状マルテンサイトの面積率が0.5%以下で、引張強度:590N/mm2以上、降伏強度または0.2%耐力:440N/mm2以上、0℃でのシャルピー衝撃吸収エネルギー:47J以上の機械的特性を有する高強度高靱性圧延形鋼の製造方法。
Ms(℃)=539−423(%C)−30.4(%Mn)−17.7(%Ni)
−12.1(%Cr)−7.5(%Mo)−54(%Cu)・・・・(1)
(4)量%で、C :0.01〜0.10%、
Si:0.05〜0.35%、
Mn:1.0〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.03%、
Nb:0.01〜0.10%、
N :≦0.010%、
O :0.001〜0.007%、
Al:≦0.05%にさらに、
V:0.01〜0.1%、Cr:0.1〜1.0%、Ni:0.1〜2.0%、Mo:0.05〜0.40%、Mg:0.0001〜0.005%、Ca:0.0001〜0.003%、B:0.0001〜0.003%のうち何れか1種または2種以上を含み、残部Feおよび不可避的不純物からなる化学組成を有する鋳片を1100〜1300℃の温度域に加熱した後に圧延を開始し、圧延後、
1)鋼材平均温度を(1)式で表すMs点温度まで0.1〜5℃/secの範囲内で加速
冷却し、その後Ms点温度から250℃まで0.001〜0.1℃/secの範囲
内の冷却速度で徐冷却を行い、その後放冷、徐冷却または加速冷却を行うこと、
2)鋼材平均温度をMs点温度以下まで0.1〜5℃/secの範囲内で加速冷却し、そ
の後250〜500℃で15分〜5時間の温度保持を行い、再度冷却すること、
をそれぞれ単独もしくは組合わせた方法により冷却することを特徴とする、鋼材のミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトからなり、前記高炭素島状マルテンサイトの面積率が0.5%以下で、引張強度:590N/mm2以上、降伏強度または0.2%耐力:440N/mm2以上、0℃でのシャルピー衝撃吸収エネルギー:47J以上の機械的特性を有する高強度高靱性圧延形鋼の製造方法。
Ms(℃)=539−423(%C)−30.4(%Mn)−17.7(%Ni)
−12.1(%Cr)−7.5(%Mo)−54(%Cu) ・・・・ (1)
【0008】
【発明の実施の形態】
以下、本発明について詳細に説明する。
鋼の高強度化は、(1)フェライト結晶粒の微細化、(2)合金元素による固溶体強化、硬化相による分散強化、(3)微細析出物による析出強化等によって達成される。また、高靱性化は、(4)結晶粒の微細化、(5)母相(フェライト)の固溶N,Cの低減、(6)破壊の発生起点となる硬化相の高炭素マルテンサイト(M*)および粗大な酸化物、析出物の低減と微小化等により達成できる。
【0009】
一般的には、高強度化により靱性は低下し、高強度化と高靱性化は相反する対策が必要である。特に本発明が目的とする590N/mm2 級の強度を確保するためには、硬化相であるベイナイト組織の活用が必須となるが、そのベイナイト中には、破壊の発生起点となる硬化相の高炭素マルテンサイト(M*)が多く含有されている。
【0010】
本発明者らは、種々の合金元素が靱性劣化の主要因であるM*生成に及ぼす影響を詳細に調査し、590N/mm2 級の強度を有し、かつ、M*生成量を低減した成分系を見出した。また、圧延後の温度履歴を制御することにより、生成したM*を分解させ、靱性を飛躍的に向上させる方法を見出した。すなわち、圧延後の冷却速度が大きい程、炭素の拡散が抑制されM*は微細となること、また、マルテンサイト変態後かつ炭素拡散温度域で温度保持することにより、生成したM*も分解することを見出した。
【0011】
本発明の特徴は、590N/mm2 級鋼で靱性劣化の主要因であるM*の含有量が少ないベイナイト+フェライト+パーライト組織が得られる鋳片を鋳造し、この鋳片を用い形鋼形状に圧延し、圧延後の冷却速度、温度履歴を制御することにより含有しているM*を低減し、焼準処理などの熱処理を施すことなく、低コストで高張力圧延形鋼の製造を可能としたものである。
【0012】
以下に本発明鋼の成分範囲と制御条件の限定理由について述べる。なお、%は質量%を意味する。
まず、Cは鋼を強化するために添加するもので、0.01%未満では構造用鋼としての必要な強度がえられず、また、0.10%を超える添加では、M*生成量が増大し母材靱性が劣化、また、耐溶接割れ性、溶接熱影響部(以下HAZと略記)靱性などを著しく低下させるので、下限を0.01%、上限を0.10%とした。
【0013】
次に、Siは母材の強度確保、溶鋼の予備脱酸などに必要であるが、0.35%を超えると母材およびHAZの硬化組織中に高炭素島状マルテンサイトを生成し、母材および溶接継手部靱性を著しく低下させる。また、0.05%未満では溶鋼の予備脱酸が十分にできないためSi含有量を0.05〜0.35%の範囲に限定した。
【0014】
Mnは母材の強度確保には1.0%以上の添加が必要であるが、母材および溶接部の靱性、割れ性などに対する許容濃度から上限を2.0%とした。
Cuはα温度域での保持および緩冷却によりα相中の転位上にCu相を析出し、その析出硬化により母材の常温強度を増加させる。ただし、このα中でのCu相の析出は0.3%未満ではα中でのCuの固溶限内であり、析出が生じないためCu析出による強化は得られない。また1.2%ではその析出強化は飽和するのでCu0.3〜1.2%に限定した。
【0015】
TiはTiNを析出し、固溶Nを低減することによりM*の生成を制御する。また、微細析出したTiNはγ相の微細化にも寄与する。これらのTiの作用により組織を微細化し強度・靱性を向上させる。従って、0.005%未満ではTiNの析出量が不足し、これらの効果を発現し得ないためTi量の下限値を0.005%とした。しかし、0.03%を超えると過剰なTiはTiCを析出し、その析出硬化により母材および溶接熱影響部の靱性を劣化させるため0.03%以下に制限した。
【0016】
Nbは焼入性を上昇させ強度を増加させる目的で添加している。この効果の発現には、Nb含有量は0.01%以上が必要である。しかし0.10%超では、Nb炭窒化物の析出量が増加し固溶Nbとしての効果が飽和するので0.10%以下に制限した。
Nはα中に固溶し、強度を上昇させるが、上部ベイナイト組織では、M*を生成し、靱性を劣化させるので、固溶Nはできるだけ低減する必要があり上限を0.010%とした。
【0017】
O(酸素)はTi−Oの生成に不可欠であり、それには0.001%以上の含有が必要であるが、0.007%を超えて含有すると、生成するTi−O粒子は粗大化し、靱性を低下させるため、O含有量を0.001〜0.007%に限定した。Alは強力な脱酸元素であり、鋼の清浄化のために添加するが、0.05%を超えるとM*生成量が増加し靱性を劣化させるので、上限を0.05%とした。なお、酸化物を組織微細化に活用するためにはAlを0.007%以下にすることが必須である。
【0018】
不可避不純物として含有するP,Sについては、それらの量を特に限定しないが凝固偏析による溶接割れ、靱性低下の原因となるので、極力低減すべきでありP,S量はそれぞれ0.002%未満に制限することが望ましい。
更に、本発明による形鋼の鋼種によっては、以上の元素に加えて、母材強度の上昇、および母材の靱性向上の目的で、Cr,Ni,Mo,V,B,MgおよびCaのうちの少なくとも1種を含有することができる。
【0019】
Niは母材の強靱性を高める極めて有効な元素である。この効果の発現にはNi含有量は0.1%以上が必要である。しかし、2.0%を超える添加は合金コストを増加させ経済的でないので上限を2.0%とした。
Vは微量添加により圧延組織を微細化でき、バナジン炭窒化物の析出により強化することから低合金化でき溶接特性を向上できる。この効果の発現には、V含有量は0.01%以上が必要である。しかしながら、Vの過剰な添加は溶接部の硬化や、母材の高降伏点化をもたらすので、含有量の上限をV:0.10%とした。
【0020】
Bは微量添加で焼入性を上昇させ強度増加に寄与するので、0.0001%以上添加する。しかし、0.003%超のBを含有すると上部ベイナイト組織中にM*を多量に生成し靱性を著しく低下させることが判明したので、上限を0.003%とした。Crは焼入性の向上により、母材の強化に有効である。この効果の発現にはCr含有量は0.1%以上が必要である。しかし1.0%を超える過剰の添加は、靱性および硬化性の観点から有害となるため、上限を1.0%とした。
【0021】
Moは母材強度の確保に有効な元素である。この効果の発現には、Mo含有量は0.05%以上が必要である。しかし0.4%超では、Mo炭化物(Mo2 C)を析出し固溶Moとしての焼入性向上効果が飽和するので0.4%以下に制限した。
Mg添加に使用するMg合金はSi−Mg−AlおよびNi−Mgである。Mg合金を用いた理由は合金化によりMg含有濃度を低減し、溶鋼への添加時の脱酸反応を抑制し、添加時の安全性の確保とMgの歩留を向上させるためである。Mgを0.0001〜0.005%に限定するのは、Mgも強力な脱酸元素であり、晶出したMg酸化物は溶鋼中で容易に浮上分離されるため0.005%を超えて添加しても、これ以上は歩留まらないため上限を0.005%とした。また、0.0001%未満では目的のMg系酸化物の分散密度が不足するため下限を0.0001%とした。なお、ここでのMg系酸化物は、主にMgOと表記しているが、電子顕微鏡解析などによると、この酸化物はTi、微量のAlおよび不純物として含まれているCaなどとの複合酸化物を形成している。
【0022】
Caを0.0001〜0.003%に限定する理由は、Caが強力な脱酸元素であり、晶出するCa酸化物は溶鋼中で容易に浮上しスラグとして分離されるため、0.003%を超えて添加しても、これ以上は歩留まらないため、上限を0.003%とした。また0.0001%未満では目的のCa分散密度が不足するため下限を0.0001%とした。
【0023】
本発明の圧延形鋼は、590N/mm2 (60kgf/mm2 )級の引張強さと靱性とを同時に確保するために、ミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトから成り、前記高炭素島状マルテンサイトの面積率が0.5%以下であるミクロ組織を有することが必要である。
ミクロ組織中の高炭素島状マルテンサイトの面積率が0.5%以下としたのは、高炭素島状マルテンサイト面積率が当該上限値を超える場合、靱性が劣化するため当該上限値以下の濃度範囲に限定した。
【0024】
上記のミクロ組織は、本発明の方法によって実現できる。すなわち、上記の化学組成を有する鋳片を1100〜1300℃の温度域に再加熱する。この温度域に再加熱温度を限定したのは、熱間加工による形鋼の製造には塑性変形を容易にするため1100℃以上の加熱が必要であり、且つV,Nbなどの元素を十分に固溶させる必要があるため再加熱温度の下限を1100℃とした。その上限は加熱炉の性能、経済性から1300℃とした。
【0025】
次に、上述のように加熱された鋼片を、圧延し圧延後に、
(1) 鋼材平均温度をMs点温度まで0.1〜5℃/sの範囲内で加速冷却し、その後Ms点温度から250℃まで0.001〜0.1℃/sの範囲内の冷却速度で徐冷却を行い、その後放冷または徐冷却または加速冷却を行うこと
(2) 鋼材平均温度をMs点温度以下まで0.1〜5℃/sの範囲内で加速冷却し、その後250〜500℃で15分〜5時間の温度保持を行い、再度冷却すること、の少なくとも単独もしくは複数の方法を組み合わせて製造する。
このような製造方法を実施する理由は、まず、(1)において、圧延後から鋼材平均温度をMs点温度まで0.1〜5℃/sの範囲内で加熱冷却するのは、0.1℃/s未満であると炭素の拡散量が多く、粗大なM*が多量に生成し、靱性を低下させるからであり、5℃/sの冷却速度を得るためには、強力な加速冷却装置を必要とし、経済的に困難であるからである。
【0026】
また、その後Ms点温度から250℃まで0.001〜0.1℃/sの範囲内の冷却速度で徐冷却する理由は、0.1℃/sの冷却速度では、徐冷却によるM*分解効果が得られず、0.001℃/s未満の冷却速度では、鋼材温度低下に長時間を要し、生産効率を落とすからである。好ましくは、0.01〜0.1℃/sである。
【0027】
次に、(2)において、圧延後から鋼材平均温度をMs点温度以下までの0.1〜5℃/sの範囲内で加速冷却するのは、0.1℃/s未満であると炭素の拡散量が多く、粗大なM*が多量に生成し、靱性を低下させるからであり、5℃/sの冷却速度を得るためには、強力な加速冷却装置を必要とし、経済的に困難であるからである。
【0028】
また、その後、250〜500℃で15分〜5時間の温度保持を行う理由は、250℃未満の温度域ではCの拡散速度が遅く、M*の分解の分解に長時間を要すためであり、500℃の温度域まで上げるには、加熱コストが大きくなるためである。
【0030】
【実施例】
試作鋼は転炉溶製し、合金を添加後、予備脱酸処理を行い、溶鋼の酸素濃度を調整後、場合によりTiおよびMgを順次添加し、連続鋳造により250〜300mmの厚鋳片に鋳造した。鋳片の冷却はモールド下方の二次冷却帯の水量と鋳片の引き抜き速度の選択により制御した。該鋳片を1300℃で加熱し、粗圧延工程の図示は省略するが、図1に示す、ユニバーサル圧延機列でH形鋼に圧延した。圧延パス間水冷は中間ユニバーサル圧延機4の前後に水冷装置5aを設け、フランジ外側面のスプレー冷却とリバース圧延の繰り返しにより必要に応じ行い、圧延後の加速冷却は、仕上げユニバーサル圧延機の後面に設置した冷却装置5bでフランジ外側面を必要に応じスプレー冷却した。また、冷却床では、鋼材を密着させる方法や鋼材のを鉄板で覆う等の方法により、冷却速度をコントロールした。また、必要に応じ、熱処理炉を用い、一定時間の温度保持を行った。
【0031】
機械特性は図2に示す、フランジ2の板厚t2の中心部(1/2t2)でフランジ幅全長(B)の1/4,1/2幅(1/4B,1/2B)から、採集した試験片を用い求めた。なお、これらの箇所についての特性を求めたのは、フランジ1/4F部はH形鋼の平均的な機械特性を示し、フランジ1/2F部はその特性が最も低下するので、これらの2箇所によりH形鋼の機械試験特性を代表できると判断したためである。
【0032】
表1に、本発明鋼および比較鋼の化学成分値を示した。
表2には、表1に示す本発明鋼および比較鋼の製造方法、それらのH形鋼の機械試験特性値、M*の面積率を示す。なお、圧延加熱温度を1300℃に揃えたのは、一般的に加熱温度の低下によりγ粒は細粒化し、機械試験特性を向上させることは周知であり、高温加熱条件では機械特性の最低値を示すと推定され、この値がそれ以下の加熱温度での機械試験特性を代表できると判断したためである。また、圧延後の冷却条件については以下の(1)(3)の条件で実施した。
【0033】
(1) 鋼材平均温度をMs点温度まで0.1〜5℃/sの範囲内で加速冷却し、その後Ms点温度から250℃まで0.001〜0.1℃/sの範囲内の冷却速度で徐冷却を行い、その後放冷または徐冷却または加速冷却を実施。
(2) 鋼材平均温度をMs点温度以下まで0.1〜5℃/sの範囲内で加速冷却し、その後250〜500℃で15分〜5時間の温度保持を行い、再度冷却を実施。
【0034】
(3) 圧延後放冷。
また、図3にはミクロ組織を、図4にはM*分布を示す。図4においては、白い部分がM*である。いずれの図においても(a)は比較鋼No.8のものであり、(b)は本発明鋼No.3のものである。
表2に示したように、本発明により製造された圧延形鋼はいずれも引張強度590N/mm2 以上、降伏強度または0.2%耐力440N/mm2 以上、0℃でのシャルピー衝撃吸収エネルギー47J以上の機械的性質を示した。
【0035】
一方、比較鋼については全てM*面積率が大きくなり、シャルピー衝撃吸収エネルギー47J以上の規格をクリアできていない。
【0036】
【表1】

Figure 0004464486
【0037】
【表2】
Figure 0004464486
【0038】
【発明の効果】
本発明による合金設計された鋳片と圧延後の温度制御を適用した圧延形鋼は機械試験特性の最も保証しにくいフランジ板厚1/2、幅1/2部においても十分な強度および、優れた靱性を有し大型鋼構造物の信頼性の向上、安全性の確保、経済性等の産業上の効果は極めて顕著なものである。
【図面の簡単な説明】
【図1】図1は、本発明法を実施する装置配置例の略図である。
【図2】図2は、H形鋼の断面形状および機械試験片の採取位置を示す図である。
【図3】本発明鋼および比較鋼のミクロ組織を示す図である。
【図4】本発明鋼および比較鋼のM*分布を示す図である。
【符号の説明】
1…H形鋼
2…フランジ
3…ウェブ
4…中間圧延機
5a…中間圧延機前後面の水冷装置
5b…仕上げ圧延機後面冷却装置
6…仕上げ圧延機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile rolled section steel having excellent toughness used as a structural member of a building and a method for producing the same.
[0002]
[Prior art]
Due to the rise in building height and stricter safety standards, steel materials used for building pillars, such as H-shaped steel with a large plate thickness (hereinafter referred to as extra-thick H-shaped steel), are much higher. There is a need for strength, toughness, and a low yield ratio. In order to satisfy such required characteristics, conventionally, a heat treatment such as a normalizing treatment has been performed after rolling. However, the addition of the heat treatment as described above has caused a significant increase in costs such as an increase in energy costs and a decrease in production efficiency, which has a problem in economic efficiency. In order to solve this problem, it is necessary to develop a steel material based on a new alloy design capable of obtaining high-performance material characteristics and a new manufacturing method for manufacturing the steel material.
[0003]
In general, when a shape steel having a flange, for example, an H-shape steel, is manufactured by universal rolling, each of the web, flange, and fillet is restricted due to the limitation of rolling conditions (rolling temperature, rolling reduction, etc.) and the uniqueness of the shape. Differences occur in the rolling finish temperature, rolling reduction, and cooling rate at the site. As a result, variations in strength, ductility, and toughness occur between the portions, and for example, a portion that does not satisfy the standard such as a rolled steel material for welded structure (JIS G3106) occurs. In particular, when rolling and manufacturing extremely thick H-section steel using continuous cast slabs as raw materials, there is a limit to the maximum cast slab thickness that can be produced with continuous casting equipment, and sufficient slab cross-sectional area required for modeling is obtained. Therefore, the rolling is a low pressure ratio rolling. Further, since high temperature rolling is directed to obtain dimensional accuracy of the product by rolling shaping, the thick flange portion becomes high temperature rolling, and the steel material cooling after the rolling is also gradually cooled. As a result, the microstructure becomes coarse and the strength and toughness decrease.
[0004]
There is TMCP (Thermo-Mechanical-Control Process) as a structure refinement method in the rolling process. However, in shape steel rolling, there are restrictions on rolling conditions. Have difficulty. Further, in the field of thick steel plates, techniques disclosed in, for example, Japanese Patent Publication Nos. 62-50548 and 62-54862 have been proposed for producing high-strength and high-toughness steel using the precipitation effect of VN. However, when these methods are applied to the production of a 590 N / mm 2 grade steel material, it contains a high concentration of solute N, so that a high carbon island martensite (hereinafter referred to as M *) is formed in the bainite structure to be formed. It was difficult to clear the standard value due to a significant decrease in toughness. Japanese Patent Laid-Open No. 10-147835 discloses accelerated cooling type controlled rolling in addition to low carbonization-low nitrogenization, addition of a small amount of Nb, V, and Mo and refinement of the structure by fine dispersion of Ti oxide and TiN. Has proposed a method for producing a high-strength rolled section steel, but this leads to an increase in production cost and complexity of the production process due to low C and adoption of TMCP.
[0005]
[Problems to be solved by the invention]
In order to solve the above-described problems, it is necessary to produce a low carbon bainite with a small M * production amount in the rolled shape steel to refine the structure. For this purpose, in order to refine the γ grain size during rolling and heating, Ti-O is finely crystallized in advance in the slab during the steelmaking process, and TiN is finely precipitated and added to the core to reduce carbon. Therefore, it is necessary to manufacture a slab containing a small amount of microalloy that can provide high strength in a small amount. Further, the fillet portion of the joint between the flange of the H-shaped steel and the web coincides with the central segregation zone of the continuous cast slab, and MnS in this segregation zone is remarkably stretched by rolling. Here, the high concentration of element segregation zone and stretched MnS significantly reduce the drawing value and toughness in the thickness direction, and may cause lamellar cracking during welding, thus preventing the generation of MnS having this harmful effect. That is also a big issue. As described above, it is difficult for the conventional technique to produce a high-reliability, high-strength, high-toughness rolled steel with high reliability and provide it at low cost.
[0006]
The present invention makes it possible to produce a high-tensile rolled section steel at a low cost without performing a heat treatment such as a conventional normalizing treatment, and is a high-strength, high-toughness 590 N / mm 2 class used for a structural member of a building. An object of the present invention is to provide a rolled shape steel and a method for producing the same.
[0007]
[Means for Solving the Problems]
The present invention casts a slab from which a bainite + ferrite + pearlite structure having a low M * content, which is the main cause of toughness deterioration, is obtained, and is rolled into a shape steel shape using this slab, and the cooling rate after rolling In addition, by reducing the M * contained by controlling the temperature history, it is possible to produce a high-tensile rolled section steel at a low cost without performing a heat treatment such as a normalizing treatment. The summary is as follows.
(1) in mass%, C: 0.01~0.10%,
Si: 0.05 to 0.35%,
Mn: 1.0-2.0%,
Cu: 0.3 to 1.2%,
Ti: 0.005 to 0.03%,
Nb: 0.01-0.10%,
N: ≦ 0.010%,
O: 0.001 to 0.007% ,
Al: ≦ 0.05%
And having a chemical composition comprising the balance Fe and inevitable impurities, and the microstructure is composed of bainite, ferrite, pearlite and high carbon island martensite, and the area ratio of the high carbon island martensite is 0.5. tensile strength, characterized in that% or less: 590N / mm 2 or more, a yield strength or 0.2% proof stress: 440 N / mm 2 or more, 0 Charpy impact absorption energy at ° C.: having 47J or more mechanical properties High-strength, high-toughness rolled steel.
(2) in mass%, C: 0.01~0.10%,
Si: 0.05 to 0.35%,
Mn: 1.0-2.0%,
Cu: 0.3 to 1.2%,
Ti: 0.005 to 0.03%,
Nb: 0.01-0.10%,
N: ≦ 0.010%,
O: 0.001 to 0.007%,
Al: ≦ 0.05%
V: 0.01 to 0.1%, Cr: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Mo: 0.05 to 0.40%, Mg: 0.0001 to A chemical composition comprising any one or more of 0.005%, Ca: 0.0001-0.003%, B: 0.0001-0.003%, the balance being Fe and inevitable impurities And having a microstructure composed of bainite, ferrite, pearlite, and high carbon island martensite, and an area ratio of the high carbon island martensite is 0.5% or less. High strength, high toughness rolled section steel having mechanical properties of mm 2 or more, yield strength or 0.2% yield strength: 440 N / mm 2 or more, Charpy impact absorption energy at 0 ° C .: 47 J or more.
(3) in mass%, C: 0.01~0.10%,
Si: 0.05 to 0.35%,
Mn: 1.0-2.0%,
Cu: 0.3 to 1.2%,
Ti: 0.005 to 0.03%,
Nb: 0.01-0.10%,
N: ≦ 0.010%,
O: 0.001 to 0.007% ,
Al: ≦ 0.05%
Rolling, after starting the slab having a chemical composition composed of the remaining Fe and inevitable impurities to a temperature range of 1100 to 1300 ° C., after rolling,
1) The steel material average temperature is accelerated and cooled in the range of 0.1 to 5 ° C./sec to the Ms point temperature represented by the formula (1), and then from the Ms point temperature to 250 ° C., 0.001 to 0.1 ° C. / perform gradual cooling at a cooling rate in the range of sec, then cooling, by performing gradual cooling or accelerated cooling,
2) The steel material average temperature accelerated cooling in the range of 0.1 to 5 ° C. / sec to Ms point temperature or less, after its performs temperature holding of 15 minutes to 5 hours at 250 to 500 ° C., cooled again thing,
The microstructure of the steel material is composed of bainite, ferrite, pearlite, and high carbon island martensite, and the area ratio of the high carbon island martensite is 0.00. 5% or less, a tensile strength: 590N / mm 2 or more, a yield strength or 0.2% proof stress: 440 N / mm 2 or more, 0 Charpy impact absorption energy at ° C.: high strength and high toughness having the above mechanical properties 47J A manufacturing method of rolled steel.
Ms (° C.) = 539-423 (% C) -30.4 (% Mn) −17.7 (% Ni)
-12.1 (% Cr) -7.5 (% Mo) -54 (% Cu) ···· (1)
(4) in mass%, C: 0.01~0.10%,
Si: 0.05 to 0.35%,
Mn: 1.0-2.0%,
Cu: 0.3 to 1.2%,
Ti: 0.005 to 0.03%,
Nb: 0.01-0.10%,
N: ≦ 0.010%,
O: 0.001 to 0.007%,
Al: ≦ 0.05%
V: 0.01 to 0.1%, Cr: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Mo: 0.05 to 0.40%, Mg: 0.0001 to A chemical composition comprising any one or more of 0.005%, Ca: 0.0001-0.003%, B: 0.0001-0.003%, the balance being Fe and inevitable impurities Rolling is started after heating the cast slab to 1100 to 1300 ° C, after rolling,
1) The steel material average temperature is accelerated and cooled in the range of 0.1 to 5 ° C./sec to the Ms point temperature represented by the formula (1), and then from the Ms point temperature to 250 ° C., 0.001 to 0.1 ° C. / perform gradual cooling at a cooling rate in the range of sec, then cooling, by performing gradual cooling or accelerated cooling,
2) The steel material average temperature accelerated cooling in the range of 0.1 to 5 ° C. / sec to Ms point temperature or less, after its performs temperature holding of 15 minutes to 5 hours at 250 to 500 ° C., cooled again thing,
The microstructure of the steel material is composed of bainite, ferrite, pearlite, and high carbon island martensite, and the area ratio of the high carbon island martensite is 0.00. 5% or less, a tensile strength: 590N / mm 2 or more, a yield strength or 0.2% proof stress: 440 N / mm 2 or more, 0 Charpy impact absorption energy at ° C.: high strength and high toughness having the above mechanical properties 47J A manufacturing method of rolled steel.
Ms (° C.) = 539-423 (% C) -30.4 (% Mn) −17.7 (% Ni)
-12.1 (% Cr) -7.5 (% Mo) -54 (% Cu) ···· (1)
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Strengthening of steel is achieved by (1) refinement of ferrite crystal grains, (2) solid solution strengthening by alloy elements, dispersion strengthening by hardened phase, and (3) precipitation strengthening by fine precipitates. High toughness is also achieved by (4) refinement of crystal grains, (5) reduction of solid solution N and C in the parent phase (ferrite), and (6) high carbon martensite in the hardened phase that is the origin of fracture ( M *) and coarse oxides and precipitates can be reduced and miniaturized.
[0009]
In general, toughness decreases with increasing strength, and measures to conflict between increasing strength and increasing toughness are necessary. In particular, in order to ensure the strength of 590 N / mm 2 class, which is an object of the present invention, it is essential to use a bainite structure that is a hardened phase. A large amount of high carbon martensite (M *) is contained.
[0010]
The present inventors have investigated in detail the influence of various alloy elements on M * generation, which is the main cause of toughness deterioration, and have a strength of 590 N / mm 2 and reduced the amount of M * generation. Ingredient system was found. In addition, the present inventors have found a method for dramatically improving toughness by decomposing generated M * by controlling the temperature history after rolling. That is, as the cooling rate after rolling increases, the carbon diffusion is suppressed and M * becomes finer, and the generated M * is also decomposed by maintaining the temperature in the carbon diffusion temperature range after the martensite transformation. I found out.
[0011]
The present invention is characterized by casting a slab from which bainite + ferrite + pearlite structure is obtained, which is a 590 N / mm grade 2 steel with a low content of M *, which is the main cause of toughness deterioration. By controlling the cooling rate and temperature history after rolling, the contained M * can be reduced, and high-tensile rolled section steel can be produced at low cost without heat treatment such as normalization. It is what.
[0012]
The reasons for limiting the component ranges and control conditions of the steel of the present invention will be described below. In addition,% means the mass%.
First, C is added to strengthen the steel. If it is less than 0.01%, the necessary strength as a structural steel cannot be obtained, and if it exceeds 0.10%, the amount of M * produced is low. Since the toughness of the base metal is increased and the weld crack resistance, weld heat affected zone (hereinafter abbreviated as HAZ) toughness and the like are significantly reduced, the lower limit is set to 0.01% and the upper limit is set to 0.10%.
[0013]
Next, Si is necessary for securing the strength of the base metal and preliminary deoxidation of the molten steel, but when it exceeds 0.35%, high carbon island martensite is generated in the base metal and the hardened structure of the HAZ. Material and weld joint toughness are significantly reduced. Further, if it is less than 0.05%, the molten steel cannot be sufficiently pre-deoxidized, so the Si content is limited to the range of 0.05 to 0.35%.
[0014]
Mn needs to be added in an amount of 1.0% or more to ensure the strength of the base material, but the upper limit is set to 2.0% from the allowable concentration with respect to the toughness and cracking properties of the base material and the welded part.
Cu precipitates a Cu phase on dislocations in the α phase by holding in the α temperature range and slow cooling, and the normal temperature strength of the base material is increased by precipitation hardening. However, if the Cu phase precipitation in α is less than 0.3%, it is within the solid solubility limit of Cu in α, and no precipitation occurs, so that strengthening by Cu precipitation cannot be obtained. The 1.2% ultra In the precipitation strengthening is limited to Cu0.3~1.2% so saturated.
[0015]
Ti precipitates TiN and controls the generation of M * by reducing the solid solution N. In addition, the finely precipitated TiN contributes to the refinement of the γ phase. By the action of these Ti, the structure is refined and the strength and toughness are improved. Therefore, if the amount is less than 0.005%, the amount of TiN deposited is insufficient, and these effects cannot be exhibited. Therefore, the lower limit of the amount of Ti is set to 0.005%. However, if it exceeds 0.03%, excessive Ti precipitates TiC, and its precipitation hardening causes the toughness of the base metal and the weld heat affected zone to deteriorate, so it is limited to 0.03% or less.
[0016]
Nb is added for the purpose of increasing hardenability and increasing strength. For the expression of this effect, the Nb content needs to be 0.01% or more. However, if it exceeds 0.10%, the precipitation amount of Nb carbonitride increases and the effect as solid solution Nb is saturated, so it was limited to 0.10% or less.
N dissolves in α and increases the strength. However, in the upper bainite structure, M * is generated and the toughness is deteriorated. Therefore, it is necessary to reduce the solid solution N as much as possible, and the upper limit is set to 0.010%. .
[0017]
O (oxygen) is indispensable for the production of Ti-O, and it is necessary to contain 0.001% or more, but if it exceeds 0.007%, the produced Ti-O particles become coarse, In order to reduce toughness, the O content is limited to 0.001 to 0.007%. Al is a strong deoxidizing element and is added to clean steel. However, if it exceeds 0.05%, the amount of M * produced increases and the toughness deteriorates, so the upper limit was made 0.05%. In order to utilize the oxide for refining the structure, Al is required to be 0.007% or less.
[0018]
The amounts of P and S contained as inevitable impurities are not particularly limited, but they should cause a reduction in weld cracking and toughness due to solidification segregation. Therefore, the amounts of P and S should be less than 0.002%, respectively. It is desirable to limit to
Furthermore, depending on the steel type of the section steel according to the present invention, in addition to the above elements, Cr, Ni, Mo, V, B, Mg, and Ca are used for the purpose of increasing the strength of the base material and improving the toughness of the base material. It can contain at least 1 sort (s) of these.
[0019]
Ni is an extremely effective element that enhances the toughness of the base material. To achieve this effect, the Ni content needs to be 0.1% or more. However, addition exceeding 2.0% increases the alloy cost and is not economical, so the upper limit was made 2.0%.
V can refine the rolling structure by adding a small amount, and strengthen it by precipitation of vanadium carbonitride, so that the alloy can be made low in alloy and welding characteristics can be improved. In order to achieve this effect, the V content needs to be 0.01% or more. However, excessive addition of V leads to hardening of the welded part and high yield point of the base metal, so the upper limit of the content was set to V: 0.10%.
[0020]
B is added in a small amount, so that hardenability is increased and strength is increased, so 0.0001% or more is added . However, it has been found that if more than 0.003% B is contained, a large amount of M * is generated in the upper bainite structure and the toughness is significantly reduced, so the upper limit was made 0.003%. Cr is effective for strengthening the base material by improving hardenability. In order to exhibit this effect, the Cr content needs to be 0.1% or more. However, excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.0%.
[0021]
Mo is an element effective for ensuring the strength of the base material. In order to achieve this effect, the Mo content needs to be 0.05% or more. In however 0.4 greater than 0%, hardenability improving effect of solid solution Mo precipitates of Mo carbides (Mo 2 C) is limited to 0.4 0% or less since the saturation.
Mg alloys used for adding Mg are Si-Mg-Al and Ni-Mg. The reason for using the Mg alloy is to reduce the Mg content concentration by alloying, suppress the deoxidation reaction at the time of addition to molten steel, and ensure the safety at the time of addition and improve the yield of Mg. The reason why Mg is limited to 0.0001 to 0.005% is that Mg is also a strong deoxidizing element, and the crystallized Mg oxide easily floats and separates in the molten steel, so it exceeds 0.005%. Even if it is added, no further yield is obtained, so the upper limit was made 0.005%. Further, if the content is less than 0.0001%, the dispersion density of the target Mg-based oxide is insufficient, so the lower limit was made 0.0001%. The Mg-based oxide here is mainly described as MgO. However, according to an electron microscope analysis, this oxide is a complex oxidation with Ti, trace amount Al and Ca contained as impurities. Forming a thing.
[0022]
The reason for limiting Ca to 0.0001-0.003% is that Ca is a strong deoxidizing element, and the crystallized Ca oxide easily floats in the molten steel and is separated as slag. Even if added in excess of%, no further yield is obtained, so the upper limit was made 0.003%. Further, if it is less than 0.0001%, the target Ca dispersion density is insufficient, so the lower limit was made 0.0001%.
[0023]
The rolled steel of the present invention has a microstructure composed of bainite, ferrite, pearlite, and high-carbon island martensite in order to simultaneously secure a tensile strength and toughness of 590 N / mm 2 (60 kgf / mm 2 ) class, It is necessary to have a microstructure in which the area ratio of the high-carbon island martensite is 0.5% or less.
The reason why the area ratio of the high carbon island martensite in the microstructure is 0.5% or less is that when the high carbon island martensite area ratio exceeds the upper limit, the toughness deteriorates, so the upper limit is less than the upper limit. Limited to concentration range.
[0024]
The above microstructure can be realized by the method of the present invention. That is, the slab having the above chemical composition is reheated to a temperature range of 1100 to 1300 ° C. The reason for limiting the reheating temperature to this temperature range is that the production of the shape steel by hot working requires heating at 1100 ° C. or more in order to facilitate plastic deformation, and sufficient elements such as V and Nb are used. The lower limit of the reheating temperature was set to 1100 ° C. because it was necessary to dissolve the solution. The upper limit was set to 1300 ° C. from the performance and economy of the heating furnace.
[0025]
Next, after rolling and rolling the steel slab heated as described above,
(1) The steel material average temperature is accelerated and cooled within the range of 0.1 to 5 ° C./s to the Ms point temperature, and then cooled within the range of 0.001 to 0.1 ° C./s from the Ms point temperature to 250 ° C. Slow cooling at a speed, and then cool down or slow cooling or accelerated cooling
(2) The steel material average temperature is accelerated and cooled within the range of 0.1 to 5 ° C./s to the temperature below the Ms point temperature, and then the temperature is maintained at 250 to 500 ° C. for 15 minutes to 5 hours, and then cooled again. These are produced by combining at least one or a plurality of methods.
The reason for carrying out such a manufacturing method is that, in (1) , the steel material average temperature is heated and cooled within the range of 0.1 to 5 ° C./s up to the Ms point temperature after rolling. ° C. / is less than s many diffusion of carbon, coarse M * is produced in large quantities, is because the toughness is reduced in order to obtain a cooling rate of 5 ° C. / s greater is strong accelerated cooling This is because it requires a device and is economically difficult.
[0026]
Further, after that , the reason for slow cooling from the Ms point temperature to 250 ° C. at a cooling rate in the range of 0.001 to 0.1 ° C./s is that at a cooling rate of more than 0.1 ° C./s, M by slow cooling is used. * This is because the decomposition effect cannot be obtained, and at a cooling rate of less than 0.001 ° C./s, it takes a long time to lower the steel material temperature, and the production efficiency is lowered. Preferably, it is 0.01-0.1 degree-C / s.
[0027]
Next, in (2) , when the steel material average temperature is from 0.1 to 5 ° C./s up to the Ms point temperature or less after rolling, the accelerated cooling is less than 0.1 ° C./s. many of the diffusion quantity, coarse M * is produced in large quantities, is because the toughness is reduced in order to obtain a cooling rate of 5 ° C. / s greater requires powerful accelerated cooling device, economically It is difficult.
[0028]
The reason why the temperature is maintained at 250 to 500 ° C. for 15 minutes to 5 hours is that the diffusion rate of C is slow in the temperature range below 250 ° C., and it takes a long time to decompose M *. There, the raised to the temperature range of 500 ° C. greater, because the heating cost is increased.
[0030]
【Example】
Prototype steel is melted in a converter, alloy is added, preliminary deoxidation treatment is performed, oxygen concentration of the molten steel is adjusted, Ti and Mg are added in some cases, and a thick cast slab of 250 to 300 mm is obtained by continuous casting. Casted. The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the drawing speed of the slab. The slab was heated at 1300 ° C., and the rough rolling process was not shown, but was rolled into an H-section steel by a universal rolling mill shown in FIG. Water cooling between rolling passes is provided with water cooling devices 5a before and after the intermediate universal rolling mill 4, and is performed as necessary by repeating spray cooling and reverse rolling of the outer surface of the flange, and accelerated cooling after rolling is performed on the rear surface of the finishing universal rolling mill. The flange outer surface was spray-cooled as necessary with the installed cooling device 5b. In the cooling floor, the cooling rate was controlled by a method in which the steel material was brought into close contact or a method in which the steel material was covered with an iron plate. Further, if necessary, the temperature was maintained for a certain time using a heat treatment furnace.
[0031]
The mechanical characteristics shown in FIG. 2 are collected from the center part (1 / 2t2) of the plate thickness t2 of the flange 2 from the 1/4 width and 1/2 width (1 / 4B, 1 / 2B) of the flange width overall length (B). The obtained test piece was used. In addition, the characteristic about these places was obtained because the flange 1 / 4F part shows the average mechanical characteristics of the H-section steel, and the flange 1 / 2F part has the most deteriorated characteristics. This is because it was determined that the mechanical test characteristics of the H-section steel can be represented by
[0032]
Table 1 shows the chemical component values of the steel of the present invention and the comparative steel.
Table 2 shows the production methods of the steels of the present invention and comparative steels shown in Table 1, the mechanical test characteristic values of these H-shaped steels, and the area ratio of M *. In addition, it is well known that the rolling heating temperature is set to 1300 ° C., in general, the γ grains are made finer by lowering the heating temperature and the mechanical test characteristics are improved. This is because it was judged that this value can represent the mechanical test characteristics at a heating temperature lower than that. As for the cooling conditions after rolling was performed at the following conditions (1) to (3).
[0033]
(1) The steel material average temperature is accelerated and cooled within the range of 0.1 to 5 ° C./s to the Ms point temperature, and then cooled within the range of 0.001 to 0.1 ° C./s from the Ms point temperature to 250 ° C. Slow cooling is performed at a speed, and then cooling or slow cooling or accelerated cooling is performed.
(2) The steel material average temperature is accelerated and cooled within the range of 0.1 to 5 ° C./s to the Ms point temperature or lower, and then the temperature is kept at 250 to 500 ° C. for 15 minutes to 5 hours, and then cooled again.
[0034]
(3) Allow to cool after rolling.
FIG. 3 shows the microstructure and FIG. 4 shows the M * distribution. In FIG. 4, the white part is M *. In either figure, (a) is a comparative steel No. No. 8 and (b) is a steel No. of the present invention. Three.
As shown in Table 2, any rolling shape steel produced by the present invention tensile strength 590N / mm 2 or more, a yield strength or 0.2% proof stress 440 N / mm 2 or more, Charpy impact absorption energy at 0 ℃ A mechanical property of 47 J or more was exhibited.
[0035]
On the other hand, all the comparative steels have a large M * area ratio, and the standard of Charpy impact absorption energy of 47 J or more cannot be cleared.
[0036]
[Table 1]
Figure 0004464486
[0037]
[Table 2]
Figure 0004464486
[0038]
【The invention's effect】
Rolled section steel with alloy-designed slab and temperature control after rolling according to the present invention has sufficient strength and excellent strength even at 1/2 part of flange plate thickness and width 1/2, which are the most difficult to guarantee mechanical test characteristics. Industrial effects such as improvement of reliability, securing of safety and economic efficiency of large steel structures having excellent toughness are extremely remarkable.
[Brief description of the drawings]
FIG. 1 is a schematic illustration of an example device arrangement for carrying out the method of the present invention.
FIG. 2 is a diagram showing a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece.
FIG. 3 is a view showing microstructures of the steel of the present invention and a comparative steel.
FIG. 4 is a view showing M * distributions of the steel of the present invention and a comparative steel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... H-section steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water cooling device 5b of the front and rear surfaces of the intermediate rolling mill ... Finish rolling mill rear surface cooling device 6 ... Finish rolling mill

Claims (4)

量%で、
C :0.01〜0.10%、
Si:0.05〜0.35%、
Mn:1.0〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.03%、
Nb:0.01〜0.10%、
N :≦0.010%、
O :0.001〜0.007%
Al:≦0.05%
を含み、残部Feおよび不可避的不純物からなる化学組成を有し、かつミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトからなり、前記高炭素島状マルテンサイトの面積率が0.5%以下であることを特徴とする引張強度:590N/mm2以上、降伏強度または0.2%耐力:440N/mm2以上、0℃でのシャルピー衝撃吸収エネルギー:47J以上の機械的特性を有する高強度高靱性圧延形鋼。
In mass%,
C: 0.01 to 0.10%,
Si: 0.05 to 0.35%,
Mn: 1.0-2.0%,
Cu: 0.3 to 1.2%,
Ti: 0.005 to 0.03%,
Nb: 0.01-0.10%,
N: ≦ 0.010%,
O: 0.001 to 0.007% ,
Al: ≦ 0.05%
And having a chemical composition composed of the balance Fe and inevitable impurities, and the microstructure is composed of bainite, ferrite, pearlite and high carbon island martensite, and the area ratio of the high carbon island martensite is 0.00. tensile strength, characterized in that 5% or less: 590N / mm 2 or more, a yield strength or 0.2% proof stress: 440 N / mm 2 or more, Charpy impact absorption energy at 0 ° C.: the 47J or more mechanical properties Has high strength and high toughness rolled section steel.
量%で、
C :0.01〜0.10%、
Si:0.05〜0.35%、
Mn:1.0〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.03%、
Nb:0.01〜0.10%、
N :≦0.010%、
O :0.001〜0.007%、
Al:≦0.05%にさらに、
V:0.01〜0.1%、Cr:0.1〜1.0%、Ni:0.1〜2.0%、Mo:0.05〜0.40%、Mg:0.0001〜0.005%、Ca:0.0001〜0.003%、B:0.0001〜0.003%のうち何れか1種または2種以上を含み、残部Feおよび不可避的不純物からなる化学組成を有し、かつミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトからなり、前記高炭素島状マルテンサイトの面積率が0.5%以下であることを特徴とする引張強度:590N/mm2以上、降伏強度または0.2%耐力:440N/mm2以上、0℃でのシャルピー衝撃吸収エネルギー:47J以上の機械的特性を有する高強度高靱性圧延形鋼。
In mass%,
C: 0.01 to 0.10%,
Si: 0.05 to 0.35%,
Mn: 1.0-2.0%,
Cu: 0.3 to 1.2%,
Ti: 0.005 to 0.03%,
Nb: 0.01-0.10%,
N: ≦ 0.010%,
O: 0.001 to 0.007%,
Al: ≦ 0.05%
V: 0.01 to 0.1%, Cr: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Mo: 0.05 to 0.40%, Mg: 0.0001 to A chemical composition comprising any one or more of 0.005%, Ca: 0.0001-0.003%, B: 0.0001-0.003%, the balance being Fe and inevitable impurities It has, and will microstructure bainite, ferrite, pearlite and high-carbon island-like martensite, the tensile area ratio of the high carbon island martensite being not more than 0.5% strength: 590N / mm 2 or more, a yield strength or 0.2% proof stress: 440 N / mm 2 or more, 0 Charpy impact absorption energy at ° C.: high strength having the above mechanical properties 47J high toughness rolled shape steel.
量%で、
C :0.01〜0.10%、
Si:0.05〜0.35%、
Mn:1.0〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.03%、
Nb:0.01〜0.10%、
N :≦0.010%、
O :0.001〜0.007%
Al:≦0.05%
を含み、残部Feおよび不可避的不純物からなる化学組成を有する鋳片を1100〜1300℃の温度域に加熱した後に圧延を開始し、圧延後、
1)鋼材平均温度を(1)式で表すMs点温度まで0.1〜5℃/secの範囲内で加速
冷却し、その後Ms点温度から250℃まで0.001〜0.1℃/secの範囲
内の冷却速度で徐冷却を行い、その後放冷、徐冷却または加速冷却を行うこと、
2)鋼材平均温度をMs点温度以下まで0.1〜5℃/secの範囲内で加速冷却し、そ
の後250〜500℃で15分〜5時間の温度保持を行い、再度冷却すること、
をそれぞれ単独もしくは組合わせた方法により冷却することを特徴とする、鋼材のミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトからなり、前記高炭素島状マルテンサイトの面積率が0.5%以下で、引張強度:590N/mm2以上、降伏強度または0.2%耐力:440N/mm2以上、0℃でのシャルピー衝撃吸収エネルギー:47J以上の機械的特性を有する高強度高靱性圧延形鋼の製造方法。
Ms(℃)=539−423(%C)−30.4(%Mn)−17.7(%Ni)
−12.1(%Cr)−7.5(%Mo)−54(%Cu)・・・・(1)
In mass%,
C: 0.01 to 0.10%,
Si: 0.05 to 0.35%,
Mn: 1.0-2.0%,
Cu: 0.3 to 1.2%,
Ti: 0.005 to 0.03%,
Nb: 0.01-0.10%,
N: ≦ 0.010%,
O: 0.001 to 0.007% ,
Al: ≦ 0.05%
Rolling, after starting the slab having a chemical composition composed of the remaining Fe and inevitable impurities to a temperature range of 1100 to 1300 ° C., after rolling,
1) The steel material average temperature is accelerated and cooled in the range of 0.1 to 5 ° C./sec to the Ms point temperature represented by the formula (1), and then from the Ms point temperature to 250 ° C., 0.001 to 0.1 ° C. / perform gradual cooling at a cooling rate in the range of sec, then cooling, by performing gradual cooling or accelerated cooling,
2) The steel material average temperature accelerated cooling in the range of 0.1 to 5 ° C. / sec to Ms point temperature or less, after its performs temperature holding of 15 minutes to 5 hours at 250 to 500 ° C., cooled again thing,
The microstructure of the steel material is composed of bainite, ferrite, pearlite, and high carbon island martensite, and the area ratio of the high carbon island martensite is 0.00. 5% or less, a tensile strength: 590N / mm 2 or more, a yield strength or 0.2% proof stress: 440 N / mm 2 or more, 0 Charpy impact absorption energy at ° C.: high strength and high toughness having the above mechanical properties 47J A manufacturing method of rolled steel.
Ms (° C.) = 539-423 (% C) -30.4 (% Mn) −17.7 (% Ni)
-12.1 (% Cr) -7.5 (% Mo) -54 (% Cu) ···· (1)
量%で、
C :0.01〜0.10%、
Si:0.05〜0.35%、
Mn:1.0〜2.0%、
Cu:0.3〜1.2%、
Ti:0.005〜0.03%、
Nb:0.01〜0.10%、
N :≦0.010%、
O:0.001〜0.007%、
Al:≦0.05%にさらに、
V:0.01〜0.1%、Cr:0.1〜1.0%、Ni:0.1〜2.0%、Mo:0.05〜0.40%、Mg:0.0001〜0.005%、Ca:0.0001〜0.003%、B:0.0001〜0.003%のうち何れか1種または2種以上を含み、残部Feおよび不可避的不純物からなる化学組成を有する鋳片を1100〜1300℃の温度域に加熱した後に圧延を開始し、圧延後、
1)鋼材平均温度を(1)式で表すMs点温度まで0.1〜5℃/secの範囲内で加速
冷却し、その後Ms点温度から250℃まで0.001〜0.1℃/secの範囲
内の冷却速度で徐冷却を行い、その後放冷、徐冷却または加速冷却を行うこと、
2)鋼材平均温度をMs点温度以下まで0.1〜5℃/secの範囲内で加速冷却し、そ
の後250〜500℃で15分〜5時間の温度保持を行い、再度冷却すること、
をそれぞれ単独もしくは組合わせた方法により冷却することを特徴とする、鋼材のミクロ組織がベイナイト、フェライト、パーライトおよび高炭素島状マルテンサイトからなり、前記高炭素島状マルテンサイトの面積率が0.5%以下で、引張強度:590N/mm2以上、降伏強度または0.2%耐力:440N/mm2以上、0℃でのシャルピー衝撃吸収エネルギー:47J以上の機械的特性を有する高強度高靱性圧延形鋼の製造方法。
Ms(℃)=539−423(%C)−30.4(%Mn)−17.7(%Ni)
−12.1(%Cr)−7.5(%Mo)−54(%Cu) ・・・・ (1)
In mass%,
C: 0.01 to 0.10%,
Si: 0.05 to 0.35%,
Mn: 1.0-2.0%,
Cu: 0.3 to 1.2%,
Ti: 0.005 to 0.03%,
Nb: 0.01-0.10%,
N: ≦ 0.010%,
O: 0.001 to 0.007%,
Al: ≦ 0.05%
V: 0.01 to 0.1%, Cr: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Mo: 0.05 to 0.40%, Mg: 0.0001 to A chemical composition comprising any one or more of 0.005%, Ca: 0.0001-0.003%, B: 0.0001-0.003%, the balance being Fe and inevitable impurities Rolling is started after heating the cast slab to 1100 to 1300 ° C, after rolling,
1) The steel material average temperature is accelerated and cooled in the range of 0.1 to 5 ° C./sec to the Ms point temperature represented by the formula (1), and then from the Ms point temperature to 250 ° C., 0.001 to 0.1 ° C. / perform gradual cooling at a cooling rate in the range of sec, then cooling, by performing gradual cooling or accelerated cooling,
2) The steel material average temperature accelerated cooling in the range of 0.1 to 5 ° C. / sec to Ms point temperature or less, after its performs temperature holding of 15 minutes to 5 hours at 250 to 500 ° C., cooled again thing,
The microstructure of the steel material is composed of bainite, ferrite, pearlite, and high carbon island martensite, and the area ratio of the high carbon island martensite is 0.00. 5% or less, a tensile strength: 590N / mm 2 or more, a yield strength or 0.2% proof stress: 440 N / mm 2 or more, 0 Charpy impact absorption energy at ° C.: high strength and high toughness having the above mechanical properties 47J A manufacturing method of rolled steel.
Ms (° C.) = 539-423 (% C) -30.4 (% Mn) −17.7 (% Ni)
-12.1 (% Cr) -7.5 (% Mo) -54 (% Cu) ···· (1)
JP17591999A 1999-06-22 1999-06-22 High-strength and high-toughness rolled section steel and its manufacturing method Expired - Fee Related JP4464486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17591999A JP4464486B2 (en) 1999-06-22 1999-06-22 High-strength and high-toughness rolled section steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17591999A JP4464486B2 (en) 1999-06-22 1999-06-22 High-strength and high-toughness rolled section steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001003136A JP2001003136A (en) 2001-01-09
JP4464486B2 true JP4464486B2 (en) 2010-05-19

Family

ID=16004551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17591999A Expired - Fee Related JP4464486B2 (en) 1999-06-22 1999-06-22 High-strength and high-toughness rolled section steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4464486B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696750B2 (en) * 2005-07-25 2011-06-08 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for aging heat treatment
JP5447278B2 (en) * 2009-08-17 2014-03-19 新日鐵住金株式会社 Spiral steel pipe with internal protrusion and its manufacturing method
US8641836B2 (en) 2009-10-28 2014-02-04 Nippon Steel & Sumitomo Metal Corporation Steel plate for line pipe excellent in strength and ductility and method of production of same
JP5471523B2 (en) * 2010-01-29 2014-04-16 新日鐵住金株式会社 High-strength ultrathick H-section steel with excellent toughness and method for producing the same
JP5565531B2 (en) 2011-12-15 2014-08-06 新日鐵住金株式会社 High strength extra thick H-section steel
CN102766809B (en) * 2012-07-17 2013-11-20 东北大学 Hot rolled strip steel with yield strength higher than 800MPa for mine rescue capsule and preparation method of hot rolled strip steel
CN102912250B (en) * 2012-10-23 2016-03-02 鞍钢股份有限公司 A kind of oil-gas transportation economical low yield strength ratio steel for pipe fittings and production method thereof
SG11201500113TA (en) 2012-11-26 2015-03-30 Nippon Steel & Sumitomo Metal Corp H-section steel and method for procuding the same
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
JP6225997B2 (en) * 2013-12-16 2017-11-08 新日鐵住金株式会社 H-section steel and its manufacturing method
CN105728492B (en) * 2016-03-11 2018-02-23 华中科技大学 The clad steel plate of a kind of yield strength more than 700MPa and preparation method thereof
CN105771799B (en) * 2016-03-11 2018-03-27 华中科技大学 A kind of autoclave compound board with enamel panel layer and its production method
KR102419241B1 (en) * 2017-10-31 2022-07-11 제이에프이 스틸 가부시키가이샤 H-shaped steel and method for producing same
DE112020007334T5 (en) * 2020-06-19 2023-03-30 Hyundai Steel Company MOLDED STEEL AND METHOD OF MAKING THE SAME
CN116043117B (en) * 2023-01-31 2024-04-09 马鞍山钢铁股份有限公司 High-strength hot-rolled H-shaped steel with good low-temperature impact toughness at minus 40 ℃ and production method thereof

Also Published As

Publication number Publication date
JP2001003136A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP3507258B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP3507259B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2596853B2 (en) Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH0776751A (en) Slab for high toughness and high strength steel and production of rolled shape steel by the slab
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
JPH09111397A (en) Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock
JP3426433B2 (en) High tensile rolled steel and method of manufacturing the same
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4464486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees