JP3107696B2 - Method for producing shaped steel having flange excellent in strength, toughness and fire resistance - Google Patents

Method for producing shaped steel having flange excellent in strength, toughness and fire resistance

Info

Publication number
JP3107696B2
JP3107696B2 JP06028286A JP2828694A JP3107696B2 JP 3107696 B2 JP3107696 B2 JP 3107696B2 JP 06028286 A JP06028286 A JP 06028286A JP 2828694 A JP2828694 A JP 2828694A JP 3107696 B2 JP3107696 B2 JP 3107696B2
Authority
JP
Japan
Prior art keywords
steel
rolling
temperature range
cooling
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06028286A
Other languages
Japanese (ja)
Other versions
JPH07238317A (en
Inventor
卓 吉田
広一 山本
征男 黒川
和彦 江田
紀昭 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06028286A priority Critical patent/JP3107696B2/en
Publication of JPH07238317A publication Critical patent/JPH07238317A/en
Application granted granted Critical
Publication of JP3107696B2 publication Critical patent/JP3107696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる形鋼の製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a shaped steel used as a structural member of a building.

【0002】[0002]

【従来の技術】建築物の安全基準の厳格化等により梁お
よび柱用に用いられるフランジを有する形鋼の代表的な
形鋼であるH形鋼には、一層の高機能化が求められてい
る。その一例として耐火設計の見直しが建設省総合プロ
ジェクトにより行われ、昭和62年3月に「新耐火設計
法」が制定されたように旧法令による火災時に鋼材の温
度を350℃以下にするように耐火被覆するとした制限
が解除され、鋼材の高温強度と建築物の実荷重とのかね
あいにより、それに適合する耐火被覆方法を決定できる
ようになった。即ち、600℃での設計高温強度を確保
できる場合にはそれに見合い耐火被覆を削減できるよう
になった。
2. Description of the Related Art Due to stricter safety standards for buildings, etc., H-section steel, which is a typical section steel having flanges used for beams and columns, is required to have higher functions. I have. As an example, the fire resistance design was reviewed by the Comprehensive Ministry of Construction Project, and as of March 1987, the "New Fire Resistance Design Law" was enacted to reduce the temperature of steel materials to 350 ° C or less in the event of a fire under the old laws. The restriction on fire-resistant coating was lifted, and it became possible to determine the appropriate fire-resistant coating method according to the balance between the high-temperature strength of steel and the actual load of the building. That is, when the design high-temperature strength at 600 ° C. can be ensured, the refractory coating can be reduced accordingly.

【0003】このような動向に対応し、先に特開平2−
77523号公報の耐火性の優れた建築用低降伏点比鋼
および鋼材並びにその製造方法が提案されている。この
先願発明の要旨は600℃での降伏点が常温時の70%
以上となるようにMo,Nbを添加し高温強度を向上さ
せたものである。鋼材の設計高温強度を600℃に設定
したのは、合金元素による鋼材費の上昇とそれによる耐
火被覆施工費とのかねあいから最も経済的であるという
知見に基づいたものである。
In response to such a trend, Japanese Patent Laid-Open No.
No. 77523 proposes a low yield point ratio steel and a steel material for building having excellent fire resistance and a method for producing the same. The gist of this invention is that the yield point at 600 ° C. is 70% of that at normal temperature.
As described above, Mo and Nb are added to improve the high-temperature strength. The reason why the design high-temperature strength of the steel material is set to 600 ° C. is based on the finding that it is the most economical in view of the increase in the cost of the steel material due to the alloy element and the cost of the construction of the fireproof coating.

【0004】また、一方では、建築物の超高層化、安全
基準の厳格化などから、柱、梁用に用いられるH形鋼に
は一層の高強度化、高靱性化が求められている。上述の
耐火性能を有し、且つ高強度、高靱性が確保された厚肉
フランジを有するH形鋼においては、まず、強度を確保
するために多量の合金元素を添加することが1つの方策
であるが、この場合は同時に靱性の低下をもたらし、一
方、靱性を確保するためには、低合金成分であることが
必要条件であるために、アズロールでは強度を確保でき
ない。低合金成分で且つ強度を満足させる方法として、
圧延終了後の鋼材の加速冷却法(TMCP法)が周知で
あるが、厚肉フランジを有するH形鋼の場合、仕上圧延
直後の鋼材温度がAr3 点以上のγ域からの冷却では必
要強度を確保するまでの加速冷却を行うとベイナイト相
あるいはマルテンサイト相の組織分率が上昇し、靱性を
著しく損なう。また、厚鋼板分野ではVNの析出効果を
利用し高強度・高靱性鋼を製造する、例えば特公昭62
−50548号公報、特公昭62−54862号公報の
技術が提案されている。しかしながら、この従来法で
は、V添加による製造原価の上昇、Nの成分コントロー
ルが困難なため、安価で安定した製造ができなかった。
また、一方では、強度、靱性を同時に確保させるため
に、従来は圧延−冷却終了後に焼準処理などの熱処理を
施すことも行われた。しかし、熱処理の付加は熱処理コ
ストと生産効率の低下など大幅なコスト上昇を招き、経
済性に問題があった。
[0004] On the other hand, H-shaped steels used for columns and beams are required to have higher strength and higher toughness due to the increase in height of buildings and stricter safety standards. In the H-section steel having the above-mentioned fire resistance performance, and having a thick flange in which high strength and high toughness are ensured, first, one of the measures is to add a large amount of alloying elements in order to secure the strength. However, in this case, at the same time, the toughness is reduced. On the other hand, in order to secure the toughness, a low alloy component is a necessary condition. As a method of satisfying strength with low alloy components,
The accelerated cooling method (TMCP method) of steel after rolling is well known, but in the case of an H-section steel having a thick flange, the required strength is obtained by cooling from a γ region where the temperature of the steel immediately after finish rolling is at least 3 points of Ar. If the accelerated cooling is performed until the temperature is secured, the structure fraction of the bainite phase or the martensite phase increases, and the toughness is significantly impaired. In the field of thick steel plates, high strength and high toughness steels are produced by utilizing the precipitation effect of VN.
Japanese Patent Publication No. -50548 and Japanese Patent Publication No. Sho 62-54862 have been proposed. However, in this conventional method, the production cost is increased due to the addition of V, and it is difficult to control the N component.
On the other hand, in order to secure the strength and the toughness at the same time, conventionally, a heat treatment such as a normalizing process has been performed after the completion of the rolling and cooling. However, the addition of heat treatment causes a significant increase in cost, such as a decrease in heat treatment cost and production efficiency, and there is a problem in economy.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の課題
を解決するために、製鋼、圧延および冷却までの工程を
総合的に対象とした新規の製造方法により、強度・靱性
・耐火性の優れたフランジを有する形鋼を低コストで提
供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a novel manufacturing method which comprehensively covers the steps from steel making, rolling and cooling to strength, toughness and fire resistance. An object of the present invention is to provide a shaped steel having an excellent flange at low cost.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、その特徴点は製鋼
過程において適正な脱酸処理を行い、溶鋼の清浄化、溶
存酸素濃度調整、合金元素のうちAlの添加順序の変更
等により、Al添加量の制御を行い、鋼中に多数の微細
な複合酸化物を分散させることにより粒内フェライトを
生成させたうえで、加速冷却を行い、ベイナイト相ある
いはマルテンサイト相の組織分率の上昇を防止し、細粒
なフェライト組織とし、強度、靱性を確保することにあ
る。更に必要に応じて中間圧延工程のパス間で鋼材表層
部の温度をAr3 −20℃以下、Ar3 −100℃以上
に水冷し、その復熱過程で少なくとも1回以上圧延し、
さらにミクロ組織の細粒化を行い、特にH形鋼におい
て、高温圧延、低冷却速度となるフィレット部の靱性を
向上させる。即ち、本発明は格別な設備を必要とせず経
済的で効率良く靱性の優れた高品質の鋼材の製造方法を
提供するものである。本発明の要旨は、下記(1)〜
(4)に記載のとおりである。 (1)質量%で、C:0.05〜0.15%、Si:
0.05〜0.50%、Mn:0.8 〜2.0%、
N:0.003〜0.015%、Ti:0.005〜
0.025%、Mo:0.30〜0.70%を含み、残
部Feおよび不可避的不純物からなる溶鋼を、予備脱酸
処理によって溶存酸素を質量%で0.003〜0.01
5%に調整後、さらに金属アルミもしくはフェロアルミ
の添加により脱酸し、該Al含有量が質量%で0.00
5〜0.015%で、かつ溶鋼の溶存酸素〔O%〕に対
し、−0.004≦〔Al%〕−1.1〔O%〕≦0.
006の関係を満たす鋳片に連続鋳造で鋳造し、該鋳片
を1100〜1300℃の温度域に再加熱後に圧延を開
始した後、以下の(a)、(b)のいずれかの製造工程
を経ることを特徴とする強度・靱性および溶接性の優れ
たフランジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。 (2)質量%で、C:0.05〜0.15%、Si:
0.05〜0.50%、Mn:0.8 〜2.0%、
N:0.003〜0.015%、Ti:0.005〜
0.025%、Mo:0.30〜0.70%を含み、残
部Feおよび不可避的不純物からなる溶鋼を、予備脱酸
処理によって溶存酸素を質量%で0.003〜0.01
5%に調整後、さらに金属アルミもしくはフェロアルミ
の添加により脱酸し、該Al含有量が質量%で0.00
5〜0.015%で、かつ溶鋼の溶存酸素〔O%〕に対
し、−0.004≦〔Al%〕−1.1〔O%〕≦0.
006の関係を満たす鋳片に連続鋳造で鋳造し、該鋳片
を1100〜1300℃の温度域に再加熱後に圧延を開
始し、中間圧延工程のパス間で鋼材表層部の温度をAr
3 −20℃以下、Ar3 −100℃以上に水冷し、その
復熱過程で少なくとも1回以上圧延した後、以下の
(a)、(b)のいずれかの製造工程を経ることを特徴
とする強度・靱性および耐火性の優れたフランジを有す
る形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。 (3)質量%で、C:0.05〜0.15%、Si:
0.05〜0.50%、Mn:0.8 〜2.0%、
N:0.003〜0.015%、Ti:0.005〜
0.025%、Mo:0.30〜0.70%を含み、加
えて、V≦0.20%、Cr≦0.7%、Nb≦0.0
5%、Ni≦1.0%、Cu≦1.0%、Mo≦0.3
%の1種または2種以上を含み、残部Feおよび不可避
的不純物からなる溶鋼を、予備脱酸処理によって溶存酸
素を質量%で0.003〜0.015%に調整後、さら
に金属アルミもしくはフェロアルミの添加により脱酸
し、該Al含有量が質量%で0.005〜0.015%
で、かつ溶鋼の溶存酸素〔O%〕に対し、−0.004
≦〔Al%〕−1.1〔O%〕≦0.006の関係を満
たす鋳片に連続鋳造で鋳造し、該鋳片を1100〜13
00℃の温度域に再加熱後に圧延を開始した後、以下の
(a)、(b)のいずれかの製造工程を経ることを特徴
とする強度・靱性および耐火性の優れたフランジを有す
る形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。 (4)質量%で、C:0.05〜0.15%、Si:
0.05〜0.50%、Mn:0.8 〜2.0%、
N:0.003〜0.015%、Ti:0.005〜
0.025%、Mo:0.30〜0.70%を含み、加
えて、V≦0.20%、Cr≦0.7%、Nb≦0.0
5%、Ni≦1.0%、Cu≦1.0%、Mo≦0.3
%の1種または2種以上を含み、残部Feおよび不可避
的不純物からなる溶鋼を、予備脱酸処理によって溶存酸
素を質量%で0.003〜0.015%に調整後、さら
に金属アルミもしくはフェロアルミの添加により脱酸
し、該Al含有量が質量%で0.005〜0.015%
で、かつ溶鋼の溶存酸素〔O%〕に対し、−0.004
≦〔Al%〕−1.1〔O%〕≦0.006の関係を満
たす鋳片に連続鋳造で鋳造し、該鋳片を1100〜13
00℃の温度域に再加熱後に圧延を開始し、中間圧延工
程のパス間で鋼材表層部の温度をAr3 −20℃以下、
Ar3 −100℃以上に水冷し、その復熱過程で少なく
とも1回以上圧延した後、以下の(a)、(b)のいず
れかの製造工程を経ることを特徴とする強度・靱性およ
び耐火性の優れたフランジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the feature of the present invention is to perform appropriate deoxidation treatment in the steel making process, to clean the molten steel, and to solve the dissolved oxygen concentration. Controlling the amount of Al by adjusting the order of addition of Al among the alloying elements, etc., and dispersing a large number of fine composite oxides in the steel to generate intragranular ferrite, and then accelerated cooling To prevent an increase in the structure fraction of the bainite phase or the martensite phase, form a fine-grained ferrite structure, and secure strength and toughness. Further, if necessary, the temperature of the surface layer portion of the steel material between the passes of the intermediate rolling step is Ar 3 −20 ° C. or less, water-cooled to Ar 3 −100 ° C. or more, and rolled at least once in the recuperation process,
Further, the microstructure is refined, and particularly in an H-section steel, the toughness of a fillet portion at a high temperature rolling and a low cooling rate is improved. That is, the present invention is to provide a method for producing a high-quality steel material which is economical, efficiently and excellent in toughness without requiring special equipment. The gist of the present invention is the following (1) to
It is as described in (4). (1) In mass%, C: 0.05 to 0.15%, Si:
0.05-0.50%, Mn: 0.8-2.0%,
N: 0.003 to 0.015%, Ti: 0.005 to
The molten steel containing 0.025%, Mo: 0.30 to 0.70%, and the balance being Fe and unavoidable impurities is dissolved in pre-deoxidation treatment to dissolve oxygen in a mass% of 0.003 to 0.01.
After being adjusted to 5%, the mixture was further deoxidized by adding metallic aluminum or ferroaluminum, and the Al content was 0.00% by mass.
5 to 0.015%, and based on the dissolved oxygen [O%] of the molten steel, -0.004 ≦ [Al%] − 1.1 [O%] ≦ 0.
006 is cast by continuous casting, the slab is reheated to a temperature range of 1100 to 1300 ° C., and after rolling is started, any one of the following manufacturing steps (a) and (b) A method for producing a shaped steel having a flange excellent in strength, toughness, and weldability, characterized by passing through. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s. (2) In mass%, C: 0.05 to 0.15%, Si:
0.05-0.50%, Mn: 0.8-2.0%,
N: 0.003 to 0.015%, Ti: 0.005 to
The molten steel containing 0.025%, Mo: 0.30 to 0.70%, and the balance being Fe and unavoidable impurities is dissolved in pre-deoxidation treatment to dissolve oxygen in a mass% of 0.003 to 0.01.
After being adjusted to 5%, the mixture was further deoxidized by adding metallic aluminum or ferroaluminum, and the Al content was 0.00% by mass.
5 to 0.015%, and based on the dissolved oxygen [O%] of the molten steel, -0.004 ≦ [Al%] − 1.1 [O%] ≦ 0.
006 is cast by continuous casting, the slab is reheated to a temperature range of 1100 to 1300 ° C., and rolling is started, and the temperature of the surface layer of the steel material is set to Ar between passes of the intermediate rolling process.
3 -20 ° C. or less, and water-cooled over Ar 3 -100 ° C., was rolled at least once in its recuperation process the following (a), and characterized in that go through any of the manufacturing process of (b) For producing a shaped steel having a flange with excellent strength, toughness and fire resistance. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s. (3) In mass%, C: 0.05 to 0.15%, Si:
0.05-0.50%, Mn: 0.8-2.0%,
N: 0.003 to 0.015%, Ti: 0.005 to
0.025%, Mo: 0.30 to 0.70%, plus V ≦ 0.20%, Cr ≦ 0.7%, Nb ≦ 0.0
5%, Ni ≦ 1.0%, Cu ≦ 1.0%, Mo ≦ 0.3
% Of molten steel containing one or two or more kinds and the balance of Fe and unavoidable impurities is adjusted to 0.003 to 0.015% by mass of dissolved oxygen by preliminary deoxidation treatment. Deoxidized by addition of aluminum, the Al content is 0.005 to 0.015% by mass
And -0.004 with respect to the dissolved oxygen [O%] of the molten steel.
≤ [Al%]-1.1 [O%] ≤ 0.006.
A shape having a flange excellent in strength, toughness and fire resistance characterized in that after rolling is started after reheating to a temperature range of 00 ° C., one of the following manufacturing steps (a) and (b) is performed. Steel production method. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s. (4) In mass%, C: 0.05 to 0.15%, Si:
0.05-0.50%, Mn: 0.8-2.0%,
N: 0.003 to 0.015%, Ti: 0.005 to
0.025%, Mo: 0.30 to 0.70%, plus V ≦ 0.20%, Cr ≦ 0.7%, Nb ≦ 0.0
5%, Ni ≦ 1.0%, Cu ≦ 1.0%, Mo ≦ 0.3
% Of molten steel containing one or two or more kinds and the balance of Fe and unavoidable impurities is adjusted to 0.003 to 0.015% by mass of dissolved oxygen by preliminary deoxidation treatment. Deoxidized by addition of aluminum, the Al content is 0.005 to 0.015% by mass
And -0.004 with respect to the dissolved oxygen [O%] of the molten steel.
≤ [Al%]-1.1 [O%] ≤ 0.006.
Rolling was started after reheating to a temperature range of 00 ° C., and the temperature of the surface layer of the steel material was reduced to Ar 3 −20 ° C. or less between passes of the intermediate rolling step,
Ar 3 −100 ° C. or more, and after being rolled at least once in the recuperation process, pass through any one of the following manufacturing steps (a) and (b), and strength, toughness, and fire resistance For producing shaped steel having a flange with excellent heat resistance. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.

【0007】[0007]

【作用】以下、本発明の作用を実施例に基づき詳細に説
明する。鋼材の強度、靱性は、合金成分、結晶粒径によ
る依存性を有する。即ち、組織中に固溶する成分が少な
いほど、あるいは、組織中のフェライト粒が細粒である
ほど、靱性は向上する。連続鋳造スラブを素材としてユ
ニバーサル熱間圧延により、フランジを有する形鋼、例
えばH形鋼を製造する場合、フィレット部において素材
の中心偏析が集積され、偏析成分が著しく濃化する。ま
た、同時にフィレット部は他の部位と比較して圧延温度
が高いため、熱間圧延を行っても、例えばフランジ部や
ウェブ部よりもフェライト粒は粗粒化する。また、強度
の高い形鋼を製造する場合には、以下の強化機構を利用
することが知られている。
Hereinafter, the operation of the present invention will be described in detail based on embodiments. The strength and toughness of a steel material depend on the alloy component and the crystal grain size. That is, the toughness improves as the amount of the component that dissolves in the structure is smaller or the ferrite grains in the structure are finer. When a steel section having a flange, for example, an H-section steel is manufactured by universal hot rolling using a continuously cast slab as a raw material, central segregation of the raw material is accumulated in a fillet portion, and the segregated component is significantly concentrated. At the same time, since the fillet portion has a higher rolling temperature than other portions, even when hot rolling is performed, ferrite grains are coarsened more than, for example, a flange portion or a web portion. It is also known to use the following strengthening mechanism when manufacturing a high-strength section steel.

【0008】フェライト結晶粒径の微細化 合金元素による固溶体強化 微細析出物による析出強化 このうち、の合金元素による固溶体強化が最も一般的
であるが、例えば、代表的な固溶体強化元素であるMn
の添加は著しく鋼材の焼入れ性を高め、フェライト+パ
ーライト組織をベイナイト組織に変化させる。ベイナイ
ト組織を生成し易い成分系鋼を圧延H形鋼に適用した場
合は、特に圧延工程で素材である連続鋳造スラブの中心
偏析部が集積されるように加工されるフィレット部にお
いて上記Mnが偏析成分として濃化し、ベイナイトおよ
び島状マルテンサイト組織分率が著しく高くなる。その
結果として特に靱性が低下する。また、の微細析出物
による析出強化も靱性を低下させる。従って、靱性を確
保しつつ強度を上昇させることが可能なのはのフェラ
イト結晶粒径の微細化のみである。
[0008] Refinement of ferrite crystal grain size Solid solution strengthening by alloy element Precipitation strengthening by fine precipitate Among these, solid solution strengthening by alloy element is most common. For example, Mn which is a typical solid solution strengthening element is used.
Addition significantly increases the hardenability of the steel material and changes the ferrite + pearlite structure to a bainite structure. When a component steel that easily forms a bainite structure is applied to a rolled H-section steel, Mn is segregated, particularly in a fillet portion processed so that the center segregation portion of a continuous cast slab as a material is integrated in a rolling process. It is concentrated as a component, and the bainite and island martensite structure fractions are significantly increased. As a result, the toughness is particularly reduced. In addition, precipitation strengthening by fine precipitates also reduces toughness. Therefore, only the refinement of the ferrite crystal grain size can increase the strength while securing the toughness.

【0009】また、耐火性能に関しては、鋼材の高温強
度は鉄の融点のほぼ1/2の温度の700℃以下では常
温での強化機構とほぼ同様であり、一般にMo,Crの
添加により析出強化することと転位の消失抑制による高
温での軟化抵抗を高めることにより達成されている。し
かしMo,Crの添加は著しく焼入れ性を上げ、母材の
フェライト+パーライト組織をベイナイト組織に変化さ
せる。ベイナイト組織を生成し易い成分系鋼を圧延H形
鋼に適用した場合は、特に圧延工程で素材である連続鋳
造スラブの中心偏析部が集積されるように加工されるフ
ィレット部において上記Mo,Crが濃化し、ベイナイ
トおよび島状マルテンサイト組織分率が著しく高くな
る。その結果として特に靱性が低下する。
Regarding the fire resistance, the high temperature strength of the steel material is almost the same as the strengthening mechanism at room temperature below 700 ° C., which is about half the melting point of iron, and is generally precipitation strengthened by the addition of Mo and Cr. This is achieved by increasing the softening resistance at high temperatures by reducing the dislocation loss. However, the addition of Mo and Cr significantly increases the hardenability, and changes the ferrite + pearlite structure of the base material to a bainite structure. When a component steel that easily forms a bainite structure is applied to a rolled H-section steel, the Mo, Cr, particularly in a fillet portion processed so that the center segregation portion of a continuous cast slab as a material is integrated in a rolling process. Is concentrated, and the bainite and island martensite structure fractions are significantly increased. As a result, the toughness is particularly reduced.

【0010】本発明の特徴は厚肉フランジを有するH形
鋼の熱間圧延での製造時に仕上圧延前あるいは後に空冷
して一部にフェライトを出現させたのち、加速冷却し
て、ベイナイト相あるいは、フェライト相の組織分率の
上昇を防止し、細粒なフェライト組織とし、強度、靱
性、耐火性の全てを満足させるところにある。つぎに本
発明が対象とする基本成分範囲の限定理由について述べ
る。まず、Cは鋼の強度を向上させる有効な成分として
添加するもので0.05%未満では、構造用鋼として必
要な強度が得られず、また0.15%を超える過剰の添
加は、母材靱性、耐溶接割れ性、溶接熱影響部靱性等を
著しく低下させるので、下限を0.05%、上限を0.
15%とした。
A feature of the present invention is that, during the production of an H-section steel having a thick flange by hot rolling, air is cooled before or after finish rolling to allow a part of ferrite to appear, and then accelerated cooling is performed to accelerate the bainite phase or The purpose is to prevent an increase in the structure fraction of the ferrite phase, to provide a fine-grained ferrite structure, and to satisfy all of the strength, toughness, and fire resistance. Next, the reasons for limiting the range of the basic components targeted by the present invention will be described. First, C is added as an effective component for improving the strength of steel. If it is less than 0.05%, the strength required for structural steel cannot be obtained. Since the material toughness, weld cracking resistance, and toughness of the heat affected zone are significantly reduced, the lower limit is 0.05% and the upper limit is 0.
15%.

【0011】Siは母材の強度確保、溶鋼の予備脱酸等
に必要であるが、0.50%を超えると溶接熱影響部内
に硬化組織の高炭素マルテンサイトを生成し、溶接継手
部靱性を著しく低下させる。また、0.05%未満では
必要な溶鋼の予備脱酸ができないため、Si含有量を
0.05%〜0.50%の範囲に限定した。Mnは母材
の強度、靱性の確保には0.8%以上の添加が必要であ
るが、溶接部の靱性、割れ性等の許容できる範囲内で上
限を2.0%とした。
[0011] Si is necessary for securing the strength of the base material, preliminary deoxidation of the molten steel, etc. If it exceeds 0.50%, high carbon martensite having a hardened structure is formed in the heat affected zone of the weld, and the toughness of the weld joint is reduced. Is significantly reduced. If the content is less than 0.05%, the necessary preliminary deoxidation of molten steel cannot be performed, so the Si content is limited to the range of 0.05% to 0.50%. Mn needs to be added in an amount of 0.8% or more to ensure the strength and toughness of the base material, but the upper limit is set to 2.0% within an acceptable range of the toughness, cracking, and the like of the welded portion.

【0012】Nは不可避不純物として鋼中に混入する元
素であり、過剰に固溶すると靱性を低下させる元素であ
るため、できるだけ低減することが望ましいが、0.0
03%未満とすると、脱Nのためのコストがかかり、製
造原価が高くなるので、下限を0.003%とした。他
方0.015%を超えると母材靱性が劣化し、連続鋳造
時に鋳片に表面割れが生じるため0.015%を上限と
した。
N is an element mixed into steel as an unavoidable impurity, and is an element that reduces toughness when it is dissolved excessively. Therefore, it is desirable to reduce N as much as possible.
If it is less than 03%, the cost for denitrification will be high and the production cost will be high, so the lower limit was made 0.003%. On the other hand, if the content exceeds 0.015%, the base material toughness deteriorates, and a surface crack occurs in the slab during continuous casting, so the upper limit was made 0.015%.

【0013】TiはTi系酸化物を生成し、圧延時に粒
内フェライトの生成を促進させ、あるいは微細なTiN
を析出させ、オーステナイトの細粒化と粒内フェライト
の生成を促進し、母材及び溶接部の靱性を向上させる効
果があるが、0.005%未満では酸化物中のTi含有
量が不足し、粒内フェライト生成核としての作用が低下
し、他方0.025%を超えると過剰なTiはTiCを
生成し、析出硬化を生じ靱性を著しく低下させるため
0.005〜0.025%に制限した。
[0013] Ti forms a Ti-based oxide, promotes the formation of intragranular ferrite during rolling, or produces fine TiN.
Has the effect of promoting the refinement of austenite and the formation of intragranular ferrite and improving the toughness of the base metal and the welded portion. However, if it is less than 0.005%, the Ti content in the oxide is insufficient. When the content exceeds 0.025%, excessive Ti forms TiC, causes precipitation hardening, and significantly reduces toughness, so that the content is limited to 0.005 to 0.025%. did.

【0014】Moは耐火性能、即ち母材の高温での強化
に有効な元素であるが、0.30%未満では十分な高温
強度を発揮できないため不適であり、0.70%よりも
高濃度であれば溶接割れ、熱間加工割れなどが懸念され
ること、合金コストを増加させ経済的でなくなること等
により不適である。したがって、適する成分範囲を0.
30〜0.70%とした。
Mo is an element effective for refractory performance, that is, for strengthening the base material at high temperatures. However, if it is less than 0.30%, it is not suitable because it cannot exhibit sufficient high-temperature strength. If this is the case, it is unsuitable because welding cracks, hot working cracks, and the like may be a concern, and alloy costs may be increased and uneconomical. Therefore, a suitable component range is set to 0.1.
30% to 0.70%.

【0015】不可避不純物として含有するP,Sはその
量について特に限定しないが、凝固時のマクロ偏析によ
り溶接割れや靱性の低下が生じるので、極力低減すべき
であり、また、本発明でP,S量が、目的とする量まで
低減できるのは、それぞれ0.02%未満である。以上
が本発明の対象となる鋼の基本成分であるが、母材強度
の上昇及び靱性向上の目的で、V,Cr,Ni,Nb,
Cu、の1種または2種以上を含有することができる。
Although the amounts of P and S contained as unavoidable impurities are not particularly limited, they should be reduced as much as possible because macrosegregation at the time of solidification causes welding cracks and a decrease in toughness. The amount of S that can be reduced to the target amount is less than 0.02% each. The above are the basic components of the steel that is the subject of the present invention. For the purpose of increasing the base metal strength and improving the toughness, V, Cr, Ni, Nb,
One or more of Cu, may be contained.

【0016】まず、VはVNとして粒内フェライト組織
の生成とその細粒化、高温強度の確保のために極めて重
要であるが、0.20%超では析出物が過剰になり、母
材靱性や溶接熱影響部靱性が劣化するため上限を0.2
0%に制限した。Niは、母材の強靱性を高める極めて
有効な元素であるが、1.0%超の添加は合金コストを
増加させ経済的でないので上限を1.0%とした。
First, V is extremely important as VN for the formation of an intragranular ferrite structure, its grain refinement, and the securing of high-temperature strength. However, if it exceeds 0.20%, precipitates become excessive and the base material toughness increases. And weld heat affected zone toughness deteriorate, so the upper limit is 0.2
Limited to 0%. Ni is a very effective element for increasing the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%.

【0017】Crは焼入れ性を向上させ、母材の強化、
高温強化に有効である。しかし、0.7%を超える過剰
の添加は、靱性及び硬化性の観点から有害となるため上
限を0.7%とした。Nbは母材の強靱化には有効であ
るが、0.05%を超える過剰の添加は靱性及び硬化性
の観点から有害となるため上限を0.05%とした。
Cr improves the hardenability, strengthens the base material,
Effective for high temperature strengthening. However, an excessive addition exceeding 0.7% is harmful from the viewpoint of toughness and curability, so the upper limit is set to 0.7%. Nb is effective for toughening the base material, but an excessive addition exceeding 0.05% is harmful from the viewpoint of toughness and hardenability, so the upper limit was made 0.05%.

【0018】Cuは母材の強化、耐候性に有効な元素で
あるが、応力除去焼鈍による焼戻し脆性、溶接割れ、熱
間加工割れなどを考慮して、上限を1.0%とした。溶
鉄の予備脱酸処理を行い、溶存酸素を重量%で0.00
3〜0.015%に制御するのは、溶鉄を高清浄化する
と同時に鋳片内に微細な酸化物を分散させるために極め
て重要だからである。予備脱酸後の〔O〕濃度が0.0
03%未満では粒内フェライト変態を促進する粒内フェ
ライト生成核の複合酸化物が減少し、細粒化できないた
め靱性は向上できない。一方、0.015%を超える場
合は、他の条件を満たしていても、酸化物が粗粒化し、
脆性破壊の発生起点となり、靱性を低下させる。以上の
理由により、予備脱酸後の〔O〕濃度を0.003〜
0.015%に限定した。
Although Cu is an element effective for strengthening the base material and weathering resistance, the upper limit is set to 1.0% in consideration of temper brittleness due to stress relief annealing, welding cracks, hot working cracks, and the like. Preliminary deoxidation of the molten iron is performed, and the dissolved oxygen is reduced to 0.00% by weight.
The reason for controlling the content to 3 to 0.015% is because it is extremely important to highly purify the molten iron and to disperse fine oxides in the slab. [O] concentration after preliminary deoxidation is 0.0
If the content is less than 03%, the amount of the composite oxide of the intragranular ferrite nucleus that promotes intragranular ferrite transformation decreases, and the grain cannot be refined, so that the toughness cannot be improved. On the other hand, if it exceeds 0.015%, the oxide coarsens even if other conditions are satisfied,
It becomes a starting point of brittle fracture and lowers toughness. For the above reasons, the [O] concentration after the preliminary deoxidation is 0.003 to
It was limited to 0.015%.

【0019】なお、予備脱酸処理は真空脱ガスとAl,
Si,Zr,Ca,Mg脱酸の1種あるいは2種以上の
組合せで行った。その理由は真空脱ガス処理は直接溶鋼
中の酸素をガス及びCOガスとして除去し、Al,S
i,Zr,Ca,Mg等の強脱酸により生成する酸化物
系介在物は浮上し除去しやすいため、溶鋼の清浄化に極
めて効果的だからである。
The preliminary deoxidation is performed by vacuum degassing and Al,
The deoxidation was performed by one or more of Si, Zr, Ca, and Mg deoxidation. The reason is that vacuum degassing directly removes oxygen in molten steel as gas and CO gas,
This is because oxide-based inclusions generated by strong deoxidation such as i, Zr, Ca, and Mg easily float and are easily removed, and are extremely effective in cleaning molten steel.

【0020】Alは強力な脱酸元素であるが、0.01
5%超の含有は粒内フェライト変態を促進する複合酸化
物が形成されず、靱性の低下がもたらされ、一方、0.
005%未満では目的の複合酸化物が生成できないた
め、0.005〜0.015%に制限した。さらに溶鋼
のAl含有量〔Al%〕を溶鋼の溶存酸素〔O%〕に対
し−0.004≦〔Al%〕−1.1〔O%〕≦0.0
06%の関係を満たすように制限したのは、この関係に
おいて重量%でAlが〔O〕濃度に対し過剰である場合
は複合酸化物の生成数が減少し、粒内フェライト生成核
としては無効なAl2 3 を多数生成して組織の細粒化
ができず靱性が低下し、重量%でAlが〔O〕濃度に対
し過小である場合は粒内フェライト核となる複合酸化物
が著しく減少するため組織の細粒化ができず靱性が低下
するためである。Alの添加順序を最後とするのは製鋼
の初期段階で添加した場合にはAlは脱酸力が強く、粒
内フェライト生成核としては無効なAl2 3 を生成
し、浮上し易いためと、低融点の複合酸化物ができにく
いためである。
Al is a strong deoxidizing element.
If the content exceeds 5%, a composite oxide that promotes intragranular ferrite transformation is not formed, and the toughness is reduced.
If the content is less than 005%, the target composite oxide cannot be produced, so the content was limited to 0.005 to 0.015%. Further, the Al content [Al%] of the molten steel is -0.004 ≦ [Al%]-1.1 [O%] ≦ 0.0 with respect to the dissolved oxygen [O%] of the molten steel.
The reason for limiting the relationship to satisfy the relation of 06% is that, in this relation, when Al is excessive in weight% with respect to the [O] concentration, the number of composite oxides produced is reduced, and it is ineffective as intragranular ferrite formation nuclei. When a large amount of Al 2 O 3 is formed, the structure cannot be refined and the toughness is reduced, and when the Al content is too small relative to the [O] concentration in weight%, the composite oxide which becomes the intragranular ferrite nucleus is remarkably formed. This is because the structure cannot be refined due to the decrease and the toughness decreases. The reason why the order of addition of Al is the last is that when added at the initial stage of steelmaking, Al has a strong deoxidizing power, generates Al 2 O 3 which is invalid as intragranular ferrite generation nuclei, and is easy to float. This is because it is difficult to form a low melting point composite oxide.

【0021】上記の製造方法で溶製した溶鋼を連続鋳造
機により鋳片に製造した後、1100〜1300℃の温
度域に再加熱する。この温度域に再加熱温度を限定した
のは、熱間加工による形鋼の製造には塑性変形を容易に
するため1100℃以上の加熱が必要であり、また、加
熱炉の性能、経済性から上限を1300℃とした。加熱
した鋼材は、粗圧延、中間圧延、仕上圧延の各工程によ
って圧延成形を行う。圧延終了温度を750〜1050
℃としたのは、低温圧延ほど靱性は向上するが、形鋼の
造形上750℃未満での加工は困難であり、また105
0℃を超えての加工は粗粒組織を生成して靱性が低下す
るためである。
After the molten steel produced by the above-described production method is produced into a slab by a continuous casting machine, it is reheated to a temperature range of 1100 to 1300 ° C. The reason for limiting the reheating temperature to this temperature range is that the production of shaped steel by hot working requires heating at 1100 ° C. or higher to facilitate plastic deformation, and also from the performance and economy of the heating furnace. The upper limit was 1300 ° C. The heated steel material is roll-formed in each of the steps of rough rolling, intermediate rolling and finish rolling. Rolling end temperature 750-1050
The reason why the temperature was set to 0 ° C is that the lower the temperature, the better the toughness is, but the processing at less than 750 ° C is difficult due to the shaping of the shaped steel.
This is because processing at a temperature exceeding 0 ° C. generates a coarse-grained structure and lowers toughness.

【0022】また、中間圧延工程での圧延パス間におい
て鋼材表層部の温度をAr3 −20℃以下、Ar3 −1
00℃以上に水冷し、その復熱過程で少なくとも1回以
上圧延し、750〜1050℃の温度範囲で圧延を終了
させるのは、低温圧延で表層部を極細粒な組織とし、そ
の後の復熱により、フェライトからオーステナイトへ再
変態させ、加工歪を除去するためである。この水冷と圧
延パス、復熱の組み合わせにより、鋼材表層部は歪のな
い極細粒なフェライト+パーライト組織となり、靱性が
向上する。
Further, the temperature of the steel surface layer portion between rolling passes in the intermediate rolling step Ar 3 -20 ° C. or less, Ar 3 -1
Water cooling to at least 00 ° C., rolling at least once in the recuperation process, and terminating the rolling at a temperature in the range of 750 to 1050 ° C. are performed by low-temperature rolling so that the surface layer has an ultrafine-grained structure. Thereby, the ferrite is transformed again to austenite to remove working strain. Due to the combination of the water cooling, the rolling pass, and the recuperation, the surface layer of the steel material has an ultrafine grained ferrite + pearlite structure without distortion, and the toughness is improved.

【0023】中間圧延終了後、仕上圧延前あるいは後に
表面温度をAr3 −20℃以下、Ar1 以上まで放冷す
るのは表面から約20mm程度の厚みまでフェライト変態
を進行させるためであり、このフェライトの生成によ
り、ベイナイト相あるいはマルテンサイト相の生成が抑
制されるためである。この温度域よりも高温域で放冷を
停止し加速冷却を行うとベイナイト相あるいはマルテン
サイト相の組織分率が顕著に上昇し、靱性が低下する。
また、この温度域よりも低温域まで放冷すると、加速冷
却によるフェライト細粒化の効果がみられなくなり、強
度が低下する。また、上述の最適な温度域までの放冷
は、仕上圧延前あるいは後のいずれでも構わない。その
理由は、仕上圧延での圧下量は小さく、仕上圧延の有無
による材質変動は無視できるためである。
After the completion of the intermediate rolling and before or after the finish rolling, the surface temperature is allowed to cool to Ar 3 -20 ° C. or lower and Ar 1 or higher because the ferrite transformation proceeds to a thickness of about 20 mm from the surface. This is because the formation of a ferrite suppresses the formation of a bainite phase or a martensite phase. When the cooling is stopped in a temperature range higher than this temperature range and accelerated cooling is performed, the structure fraction of the bainite phase or the martensite phase is significantly increased, and the toughness is reduced.
Further, if the temperature is allowed to cool to a temperature lower than this temperature range, the effect of ferrite fine graining by accelerated cooling is not seen, and the strength is reduced. The cooling to the above-mentioned optimum temperature range may be performed before or after finish rolling. The reason is that the amount of reduction in the finish rolling is small, and the material variation due to the presence or absence of the finish rolling can be ignored.

【0024】仕上圧延前に放冷した鋼材は仕上圧延後、
仕上圧延後に放冷した鋼材はただちに加速冷却を行う。
700℃から400℃までの平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で冷却して製造するとしたの
は、この冷却速度範囲よりも高冷却速度で加速冷却する
と、ベイナイト相やマルテンサイト相の組織分率が上昇
し、靱性が低下する。また、この冷却速度範囲よりも低
冷却速度で加速冷却しても、加速冷却によるフェライト
細粒化の効果がみられなくなり、強度が低下する。従っ
て、上述の冷却速度の範囲を最適な冷却速度範囲とす
る。
The steel material which has been cooled before the finish rolling is finished after the finish rolling.
The steel that has been cooled after finish rolling is immediately subjected to accelerated cooling.
The average cooling rate from 700 ° C to 400 ° C is 0.5 ° C /
The reason why the cooling is performed within the range of s to 3.0 ° C./s is that when accelerated cooling is performed at a higher cooling rate than this cooling rate range, the structural fraction of the bainite phase or the martensite phase increases, and the toughness increases. Decrease. In addition, even if accelerated cooling is performed at a cooling rate lower than this cooling rate range, the effect of ferrite grain refinement by accelerated cooling is not observed, and strength is reduced. Therefore, the above-described range of the cooling rate is set as the optimum cooling rate range.

【0025】[0025]

【実施例】試作形鋼は転炉溶製し、成分調整後、連続鋳
造により240mm〜300mm厚鋳片に鋳造した後、図1
に示すレイアウトの加熱炉1で加熱し、粗圧延機2で粗
圧延した後、引き続いて、第1中間圧延機3、第2中間
圧延機4で所定の寸法のH形鋼となるまで成形を行う。
このとき、必要に応じて第2中間圧延機4での圧延パス
間で、鋼材表層部の温度をAr3 −20℃以下、Ar3
−100℃以上に水冷し、その復熱過程で少なくとも1
回以上圧延し、750〜1050℃の温度範囲で中間圧
延を終了させる。その後、仕上圧延機5による仕上圧延
前に第2中間圧延機4と仕上圧延機5との間の任意の場
所において所定の温度域、即ち鋼材表面がAr3 −20
℃以下、Ar1 以上の温度域まで放冷させる。その後、
仕上圧延を経て、仕上圧延機5の下流側に設置された水
冷による鋼材の加速冷却装置6により、所定の冷却速
度、即ち700℃から400℃までの冷却速度を0.5
℃/s〜3.0℃/sの範囲内に確保できるように加速
冷却を行う。冷却後は冷却床7で次工程の矯正まで放冷
される。
EXAMPLE A prototype steel was melted from a converter, the components were adjusted, and then cast into a slab of 240 to 300 mm thick by continuous casting.
After being heated in the heating furnace 1 having the layout shown in FIG. 1 and rough-rolled by the rough rolling mill 2, subsequently, the first intermediate rolling mill 3 and the second intermediate rolling mill 4 form the steel until it becomes an H-shaped steel having a predetermined size. Do.
In this case, among the rolling passes of the second intermediate rolling mill 4 as required, the temperature of the steel surface layer portion Ar 3 -20 ° C. or less, Ar 3
Water cooling to -100 ° C or higher, and at least 1
Rolling more than once and finishing the intermediate rolling in a temperature range of 750 to 1050 ° C. After that, before the finish rolling by the finish rolling mill 5, the predetermined temperature range, that is, the steel material surface is Ar 3 -20 at an arbitrary position between the second intermediate rolling mill 4 and the finish rolling mill 5.
℃ below, it is allowed to cool to Ar 1 or more temperature region. afterwards,
After the finish rolling, a predetermined cooling rate, that is, a cooling rate from 700 ° C. to 400 ° C. by 0.5 is accelerated by a water-cooled accelerated cooling device 6 for steel material installed downstream of the finishing mill 5.
Accelerated cooling is performed so that the temperature can be maintained in the range of ° C / s to 3.0 ° C / s. After cooling, it is allowed to cool on the cooling floor 7 until it is corrected in the next step.

【0026】機械特性は、図2に示すH形鋼8のフラン
ジ9の板厚t2 の中心部(1/2t 2 )でフランジ幅全
長(B)の1/4幅(1/4B)から試験片を採取して
求めた。なお、この箇所の特性を求めたのは、フランジ
1/4B部は母材の平均的な機械特性を示すので、この
部位でH形鋼の機械試験特性を代表できるとしたためで
ある。
The mechanical properties of the H-shaped steel 8 shown in FIG.
Thickness t of J9TwoCenter (1 / 2t Two) At full flange width
Take a test piece from 1/4 width (1 / 4B) of length (B)
I asked. The characteristics of this location were determined by the flange
Since the 1 / 4B section shows the average mechanical properties of the base material,
Because it was possible to represent the mechanical test characteristics of H-section steel
is there.

【0027】表1および表2は、試作鋼の化学成分値を
示し、表3は圧延と冷却条件に対する機械試験特性を示
す。なお、加熱温度を1280℃に揃えたのは、一般的
に加熱温度の低減は、機械特性を向上させることは周知
であり、高温加熱条件は機械特性の最低値を示すと推定
され、この値がそれ以下の加熱温度での特性を代表でき
ると判断したためである。
Tables 1 and 2 show the chemical component values of the prototype steel, and Table 3 shows the mechanical test characteristics with respect to the rolling and cooling conditions. It is well known that the heating temperature is adjusted to 1280 ° C., in general, it is well known that the reduction of the heating temperature improves the mechanical properties, and it is estimated that the high-temperature heating condition shows the lowest value of the mechanical properties. Was determined to be able to represent the characteristics at a lower heating temperature.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】また、表1および表3での成分範囲におい
てはAr3 点は860℃から800℃の間、Ar1 点は
700℃から650℃の間にあるため、放冷停止温度を
Ar 1 点以上、Ar3 点−20℃以下とするには、少な
くとも700℃以上780℃以下とする必要がある。表
3に示すように本発明による鋼1〜6は、母材を代表す
る部位であるフランジ1/4B部、で目標の母材強度
(前記JISG3106、SM490)と0℃でのシャ
ルピー衝撃吸収エネルギーの目標値(前記JISG31
06、SM490C)である45(J)以上を充分に満
足する。
Further, in the component ranges in Tables 1 and 3,
ArThreeThe point is between 860 ° C and 800 ° C, Ar1The point is
Because the temperature is between 700 ° C and 650 ° C,
Ar 1Ar pointsThreeTo reduce the temperature to -20 ° C or less,
It is necessary to be at least 700 ° C or more and 780 ° C or less. table
As shown in FIG. 3, steels 1 to 6 according to the present invention represent a base material.
Target base metal strength at the flange 1 / 4B part
(JIS G3106, SM490) and a
Target value of rupee impact absorption energy (JISG31
06, SM490C) of 45 (J) or more.
Add.

【0032】一方、比較鋼の鋼7では、Al,O以外の
成分、放冷停止温度、700℃から400℃までの冷却
速度は本発明における条件に適合しているが、AlとO
の濃度バランスが、〔Al%〕−1.1〔O〕が0.0
073で、本発明での条件である、−0.004以上、
0.006以下の範囲に逸脱するため、強度は目標値よ
りも、低い値となっている。鋼8では放冷停止温度、4
00℃までの冷却速度は本発明における製造条件の範囲
内であるが、Mnの濃度が2.03%であり、0℃での
シャルピー衝撃吸収エネルギーの目標値を満足しない。
鋼9では成分、700℃から400℃までの冷却速度は
ともに本発明の製造条件を満足するものの、放冷停止温
度が640℃であり、Ar1 点よりも低い温度であるた
め、強度は目標値を下回る。鋼10では成分、放冷後7
00℃から400℃までの冷却速度はともに本発明の製
造条件を満足するものの、放冷停止温度が870℃でA
3 点−20℃以上となり、0℃でのシャルピー衝撃吸
収エネルギーが著しく低く目標値以下となる。鋼11で
は成分、放冷停止温度はともに本発明における製造条件
を満たすものの、700℃から400℃までの冷却速度
が0.4℃/sであり、本発明における冷却速度の下限
値0.5℃/sを下回るため、強度は目標値よりも、低
い値となる。鋼12は、成分、放冷停止温度はともに本
発明における製造条件を満たすものの、700℃から4
00℃までの冷却速度が3.1℃/sであり、本発明に
おける冷却速度の上限値3.0℃/sを上回るため、0
℃でのシャルピー衝撃吸収エネルギーが低く、目標値を
満足しない。
On the other hand, in Comparative Steel No. 7, other than Al and O
Component, cooling stop temperature, cooling from 700 ° C to 400 ° C
The speed is compatible with the conditions in the present invention, but Al and O
Concentration balance of [Al%]-1.1 [O] is 0.0
073, which is the condition in the present invention, -0.004 or more,
The strength is better than the target value because it deviates from the range of 0.006 or less.
The value is low. In steel 8, the cooling stop temperature, 4
The cooling rate up to 00 ° C is within the range of the manufacturing conditions in the present invention.
, The concentration of Mn is 2.03%,
Does not meet the target value of Charpy impact absorption energy.
In steel 9, the components, the cooling rate from 700 ° C to 400 ° C,
Although both satisfy the production conditions of the present invention,
The temperature is 640 ° C. and Ar1The temperature is lower than the point
Therefore, the intensity is lower than the target value. In steel 10, the composition is 7 after cooling
The cooling rate from 00 ° C to 400 ° C is the same as that of the present invention.
Although the cooling conditions are satisfied, the cooling stop temperature is
r ThreePoint -20 ° C or higher, Charpy impact absorption at 0 ° C
The energy harvest is extremely low and below the target value. With steel 11
Are the components and the cooling stop temperature are the production conditions in the present invention.
Cooling rate from 700 ° C to 400 ° C
Is 0.4 ° C./s, the lower limit of the cooling rate in the present invention.
Since the value is lower than 0.5 ° C / s, the intensity is lower than the target value.
Value. Steel 12 has both components and cooling stop temperature.
Although it satisfies the manufacturing conditions of the invention, it is
The cooling rate to 3.1 ° C. is 3.1 ° C./s.
The cooling rate exceeds the upper limit of 3.0 ° C./s.
Low Charpy impact absorption energy at ℃
Not satisfied.

【0033】また、耐火性に関しては、Mo濃度が0.
30以上であれば優れた溶接性を確保することが可能で
あり、鋼1〜6はその条件を満足しているので良溶接性
を有していると判断できる。即ち、本発明の要件が全て
満たされた時に、表3に示される鋼1〜6のように、母
材強度、靱性、耐火性の優れた厚肉フランジH形鋼の熱
間圧延による製造が可能になる。なお、本発明が対象と
する圧延形鋼は、上述のH形鋼のみならず、I形鋼、山
形鋼、溝形鋼、不等辺不等厚山形鋼等のフランジを有す
る形鋼にも適用できることは勿論である。
Regarding the fire resistance, the Mo concentration is set at 0.1.
If it is 30 or more, excellent weldability can be secured, and it can be determined that steels 1 to 6 have good weldability because they satisfy the conditions. That is, when all of the requirements of the present invention are satisfied, as in steels 1 to 6 shown in Table 3, production of a thick flange H-section steel excellent in base material strength, toughness, and fire resistance by hot rolling is performed. Will be possible. The rolled section steel to which the present invention is applied is applicable not only to the above-mentioned H-section steel, but also to section steels having flanges such as I-section steel, angle steel, channel steel, and unequal thickness angle steel. Of course, you can.

【0034】なお、上記実施例における製鋼法は転炉で
の製造を前提にしているが、予備脱酸処理がより行い易
い電気炉、もしくはそれらとその補助的溶融処理炉との
組合せ工程を採用して本発明の溶存酸素に調整してもよ
い。また、圧延パス間の復熱過程はリバース圧延もしく
は連続圧延の当該圧延開始より終了までのパス間で実施
するが、この復熱を強制的に急速加熱手段によってもよ
い。
The steel making method in the above embodiment is premised on the production in a converter, but employs an electric furnace in which preliminary deoxidation is more easily performed, or a step of combining them with an auxiliary melting furnace. Then, the dissolved oxygen of the present invention may be adjusted. In addition, the recuperation process between the rolling passes is performed during the pass from the start to the end of the reverse rolling or the continuous rolling, but the recuperation may be forcibly performed by the rapid heating means.

【0035】[0035]

【発明の効果】本発明により、母材強度、靱性および耐
火性の優れた厚肉フランジH形鋼の熱間圧延による製造
が可能となり、大型建造物の信頼性向上、安全性確保、
経済性の向上等の産業上の効果は極めて顕著なものがあ
る。
According to the present invention, it is possible to produce a thick flange H-section steel having excellent base metal strength, toughness and fire resistance by hot rolling, thereby improving the reliability of a large building and ensuring safety.
Industrial effects such as improvement of economic efficiency are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法を実施する装置配置列例の説明略図で
ある。
FIG. 1 is an explanatory schematic view of an example of a device arrangement row for implementing the method of the present invention.

【図2】H形鋼の断面形状を示し、各部位の名称と機械
試験片の採取位置を示す図である。
FIG. 2 is a view showing a cross-sectional shape of an H-section steel, showing names of respective parts and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…加熱炉 2…粗圧延機 3…第1中間圧延機 4…第2中間圧延機 5…仕上圧延機 6…鋼材冷却装置 7…冷却床 8…H形鋼 9…フランジ 10…ウェブ 11…フィレット部 DESCRIPTION OF SYMBOLS 1 ... Heating furnace 2 ... Rough rolling mill 3 ... 1st intermediate rolling mill 4 ... 2nd intermediate rolling mill 5 ... Finishing rolling mill 6 ... Steel cooling device 7 ... Cooling floor 8 ... H-shaped steel 9 ... Flange 10 ... Web 11 ... Fillet part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 和彦 大阪府堺市築港八幡町1番地 新日本製 鐵株式会社 堺製鐵所内 (72)発明者 小野寺 紀昭 大阪府堺市築港八幡町1番地 新日本製 鐵株式会社 堺製鐵所内 (56)参考文献 特開 平5−105947(JP,A) 特開 平2−163341(JP,A) 特開 平7−238318(JP,A) 特開 平6−100923(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kazuhiko Eda 1 at Chikko Yawatacho, Sakai City, Osaka Prefecture Nippon Steel Corporation Sakai Works (72) Inventor Noriaki Onodera 1 at Chikko Yawatacho Sakai City, Osaka New Nippon Steel Corporation Sakai Works (56) References JP-A-5-105947 (JP, A) JP-A-2-163341 (JP, A) JP-A-7-238318 (JP, A) JP 6-100923 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/00-8/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、C :0.05〜0.15
%、 Si:0.05〜0.50%、 Mn:0.8 〜2.0%、 N :0.003〜0.015%、 Ti:0.005〜0.025%、 Mo:0.30〜0.70%、 を含み、残部Feおよび不可避的不純物からなる溶鋼
を、予備脱酸処理によって溶存酸素を質量%で0.00
3〜0.015%に調整後、さらに金属アルミもしくは
フェロアルミの添加により脱酸し、該Al含有量が質量
%で0.005〜0.015%で、かつ溶鋼の溶存酸素
〔O%〕に対し、−0.004≦〔Al%〕−1.1
〔O%〕≦0.006の関係を満たす鋳片に連続鋳造で
鋳造し、該鋳片を1100〜1300℃の温度域に再加
熱後に圧延を開始した後、以下の(a)、(b)のいず
れかの製造工程を経ることを特徴とする強度・靱性およ
び溶接性の優れたフランジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
1. C: 0.05 to 0.15 by mass%
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.015%, Ti: 0.005 to 0.025%, Mo: 0. The molten steel consisting of 30 to 0.70%, the balance being Fe and unavoidable impurities was dissolved in a pre-deoxidation treatment to reduce dissolved oxygen to 0.000% by mass.
After being adjusted to 3 to 0.015%, it is further deoxidized by adding metallic aluminum or ferroaluminum. The Al content is 0.005 to 0.015% by mass%, and the dissolved oxygen [O%] of the molten steel. -0.004 ≦ [Al%]-1.1
[O%] ≦ 0.006 is cast by continuous casting to a slab, and after re-heating the slab to a temperature range of 1100 to 1300 ° C., rolling is started, and then the following (a) and (b) A method for producing a shaped steel having a flange excellent in strength, toughness and weldability, which is characterized by passing through any one of the production steps of (1). (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.
【請求項2】 質量%で、C :0.05〜0.15
%、 Si:0.05〜0.50%、 Mn:0.8 〜2.0%、 N :0.003〜0.015%、 Ti:0.005〜0.025%、 Mo:0.30〜0.70%、 を含み、残部Feおよび不可避的不純物からなる溶鋼
を、予備脱酸処理によって溶存酸素を質量%で0.00
3〜0.015%に調整後、さらに金属アルミもしくは
フェロアルミの添加により脱酸し、該Al含有量が質量
%で0.005〜0.015%で、かつ溶鋼の溶存酸素
〔O%〕に対し、−0.004≦〔Al%〕−1.1
〔O%〕≦0.006の関係を満たす鋳片に連続鋳造で
鋳造し、該鋳片を1100〜1300℃の温度域に再加
熱後に圧延を開始し、中間圧延工程のパス間で鋼材表層
部の温度をAr3 −20℃以下、Ar3 −100℃以上
に水冷し、その復熱過程で少なくとも1回以上圧延した
後、以下の(a)、(b)のいずれかの製造工程を経る
ことを特徴とする強度・靱性および耐火性の優れたフラ
ンジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
2. C: 0.05 to 0.15 by mass%
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.015%, Ti: 0.005 to 0.025%, Mo: 0. The molten steel consisting of 30 to 0.70%, the balance being Fe and unavoidable impurities was dissolved in a pre-deoxidation treatment to reduce dissolved oxygen to 0.000% by mass.
After being adjusted to 3 to 0.015%, it is further deoxidized by adding metallic aluminum or ferroaluminum. The Al content is 0.005 to 0.015% by mass%, and the dissolved oxygen [O%] of the molten steel. -0.004 ≦ [Al%]-1.1
[O%] ≤ 0.006 is cast by continuous casting to a slab, and the slab is reheated to a temperature range of 1100 to 1300 ° C and rolling is started. The temperature of the part is water-cooled to Ar 3 -20 ° C. or lower and Ar 3 -100 ° C. or higher, and after at least one rolling in the recuperation process, any one of the following manufacturing steps (a) and (b) is performed. A method for producing a shaped steel having a flange excellent in strength, toughness and fire resistance characterized by passing through. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.
【請求項3】 質量%で、C :0.05〜0.15
%、 Si:0.05〜0.50%、 Mn:0.8 〜2.0%、 N :0.003〜0.015%、 Ti:0.005〜0.025%、 Mo:0.30〜0.70%、 を含み、加えて、V≦0.20%、Cr≦0.7%、N
b≦0.05%、Ni≦1.0%、Cu≦1.0%、M
o≦0.3%の1種または2種以上を含み、残部Feお
よび不可避的不純物からなる溶鋼を、予備脱酸処理によ
って溶存酸素を質量%で0.003〜0.015%に調
整後、さらに金属アルミもしくはフェロアルミの添加に
より脱酸し、該Al含有量が質量%で0.005〜0.
015%で、かつ溶鋼の溶存酸素〔O%〕に対し、−
0.004≦〔Al%〕−1.1〔O%〕≦0.006
の関係を満たす鋳片に連続鋳造で鋳造し、該鋳片を11
00〜1300℃の温度域に再加熱後に圧延を開始した
後、以下の(a)、(b)のいずれかの製造工程を経る
ことを特徴とする強度・靱性および耐火性の優れたフラ
ンジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
3. C: 0.05 to 0.15 by mass%
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.015%, Ti: 0.005 to 0.025%, Mo: 0. And V ≦ 0.20%, Cr ≦ 0.7%, N
b ≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0%, M
After the molten steel containing one or more kinds of o ≦ 0.3%, the balance being Fe and inevitable impurities, the dissolved oxygen is adjusted to 0.003 to 0.015% by mass% by preliminary deoxidation treatment, Furthermore, deoxidation is performed by adding metallic aluminum or ferroaluminum, and the Al content is 0.005 to 0.5% by mass.
015% and relative to the dissolved oxygen [O%] of the molten steel,
0.004 ≦ [Al%] − 1.1 [O%] ≦ 0.006
Is cast by continuous casting to a slab satisfying the relationship of
After starting rolling after reheating to a temperature range of 00 to 1300 ° C., a flange excellent in strength, toughness and fire resistance characterized by passing through any of the following manufacturing steps (a) and (b): A method for producing a shaped steel having (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.
【請求項4】 質量%で、C :0.05〜0.15
%、 Si:0.05〜0.50%、 Mn:0.8 〜2.0%、 N :0.003〜0.015%、 Ti:0.005〜0.025%、 Mo:0.30〜0.70%、 を含み、加えて、V≦0.20%、Cr≦0.7%、N
b≦0.05%、Ni≦1.0%、Cu≦1.0%、M
o≦0.3%の1種または2種以上を含み、残部Feお
よび不可避的不純物からなる溶鋼を、予備脱酸処理によ
って溶存酸素を質量%で0.003〜0.015%に調
整後、さらに金属アルミもしくはフェロアルミの添加に
より脱酸し、該Al含有量が質量%で0.005〜0.
015%で、かつ溶鋼の溶存酸素〔O%〕に対し、−
0.004≦〔Al%〕−1.1〔O%〕≦0.006
の関係を満たす鋳片に連続鋳造で鋳造し、該鋳片を11
00〜1300℃の温度域に再加熱後に圧延を開始し、
中間圧延工程のパス間で鋼材表層部の温度をAr3 −2
0℃以下、Ar3 −100℃以上に水冷し、その復熱過
程で少なくとも1回以上圧延した後、以下の(a)、
(b)のいずれかの製造工程を経ることを特徴とする強
度・靱性および耐火性の優れたフランジを有する形鋼の
製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
4. C: 0.05 to 0.15 by mass%
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.015%, Ti: 0.005 to 0.025%, Mo: 0. And V ≦ 0.20%, Cr ≦ 0.7%, N
b ≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0%, M
After the molten steel containing one or more kinds of o ≦ 0.3%, the balance being Fe and inevitable impurities, the dissolved oxygen is adjusted to 0.003 to 0.015% by mass% by preliminary deoxidation treatment, Furthermore, deoxidation is performed by adding metallic aluminum or ferroaluminum, and the Al content is 0.005 to 0.5% by mass.
015% and relative to the dissolved oxygen [O%] of the molten steel,
0.004 ≦ [Al%] − 1.1 [O%] ≦ 0.006
Is cast by continuous casting to a slab satisfying the relationship of
Rolling starts after reheating to a temperature range of 00 to 1300 ° C,
The temperature of the surface layer of the steel material is set to Ar 3 -2 between passes of the intermediate rolling process.
After water cooling to 0 ° C. or lower and Ar 3 −100 ° C. or higher and rolling at least once in the recuperation process, the following (a)
A method for producing a section steel having a flange excellent in strength, toughness, and fire resistance, which is performed through any one of the production steps (b). (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.
JP06028286A 1994-02-25 1994-02-25 Method for producing shaped steel having flange excellent in strength, toughness and fire resistance Expired - Fee Related JP3107696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06028286A JP3107696B2 (en) 1994-02-25 1994-02-25 Method for producing shaped steel having flange excellent in strength, toughness and fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06028286A JP3107696B2 (en) 1994-02-25 1994-02-25 Method for producing shaped steel having flange excellent in strength, toughness and fire resistance

Publications (2)

Publication Number Publication Date
JPH07238317A JPH07238317A (en) 1995-09-12
JP3107696B2 true JP3107696B2 (en) 2000-11-13

Family

ID=12244373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06028286A Expired - Fee Related JP3107696B2 (en) 1994-02-25 1994-02-25 Method for producing shaped steel having flange excellent in strength, toughness and fire resistance

Country Status (1)

Country Link
JP (1) JP3107696B2 (en)

Also Published As

Publication number Publication date
JPH07238317A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP2579841B2 (en) Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP3323272B2 (en) Manufacturing method of high strength rail with excellent ductility and toughness
JPH04279248A (en) Manufacture of rolled shapes piersed fine oxide with excellent toughness
JP2962629B2 (en) Manufacturing method of refractory section steel with excellent internal characteristics in ultrasonic testing
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees