JP2579841B2 - Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness - Google Patents

Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness

Info

Publication number
JP2579841B2
JP2579841B2 JP3043855A JP4385591A JP2579841B2 JP 2579841 B2 JP2579841 B2 JP 2579841B2 JP 3043855 A JP3043855 A JP 3043855A JP 4385591 A JP4385591 A JP 4385591A JP 2579841 B2 JP2579841 B2 JP 2579841B2
Authority
JP
Japan
Prior art keywords
toughness
weight
intragranular
steel
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3043855A
Other languages
Japanese (ja)
Other versions
JPH04279247A (en
Inventor
広一 山本
康志 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3043855A priority Critical patent/JP2579841B2/en
Publication of JPH04279247A publication Critical patent/JPH04279247A/en
Application granted granted Critical
Publication of JP2579841B2 publication Critical patent/JP2579841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる耐火性、靱性の優れた圧延形鋼の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rolled section steel having excellent fire resistance and toughness used as a structural member of a building.

【0002】[0002]

【従来の技術】建築物の超高層化、建築設計技術の高度
化などから耐火設計の見直しが建設省総合プロジェクト
により行われ、昭和62年3月に「新耐火設計法」が制
定された。この規定により、旧法令による火災時に鋼材
の温度を350℃以下にするように耐火被覆するとした
制限は解除され、鋼材の高温強度と建築物の実荷重との
兼ね合いにより、それに適合する耐火被覆方法を決定で
きるようになった。即ち、600℃での設計高温強度を
確保できる場合はそれに見合い耐火被覆を削減できるよ
うになった。
2. Description of the Related Art Fireproof design has been reviewed by the Ministry of Construction's comprehensive project due to the increase in the height of buildings and the sophistication of building design techniques. In March 1987, the "New Fireproof Design Law" was enacted. According to this regulation, the restriction on fire-resistant coating to keep the temperature of steel at 350 ° C or less in the event of a fire according to the old law is lifted, and a fire-resistant coating method that conforms to the balance between the high-temperature strength of steel and the actual load of a building is lifted. Can now be determined. That is, when the design high-temperature strength at 600 ° C. can be secured, the refractory coating can be reduced accordingly.

【0003】このような動向に対応し、先に特開平2−
77523号公報で耐火性の優れた建築用低降伏比鋼お
よび鋼材並びにその製造方法が提案されている。この先
願発明の要旨は600℃での降伏点が常温時の70%以
上となるようにMo、Nbを添加し、高温強度を向上さ
せたものである。鋼材の設計高温強度を600℃に設定
したのは、合金元素による鋼材費の上昇とそれによる耐
火被覆施工費との兼ね合いから最も経済的であるという
知見に基づいたものである。
In response to such a trend, Japanese Patent Laid-Open No.
No. 77523 proposes a low yield ratio steel and a steel material for building having excellent fire resistance and a method for producing the same. The gist of the invention of the prior application is that Mo and Nb are added so that the yield point at 600 ° C. becomes 70% or more of that at normal temperature to improve the high-temperature strength. The design high-temperature strength of the steel material was set to 600 ° C. based on the finding that it is the most economical in view of the balance between the increase in the cost of the steel material due to the alloying element and the cost of the refractory coating.

【0004】[0004]

【発明が解決しようとする課題】一般に、フランジを有
する形鋼、例えばH形鋼をユニバーサル圧延により製造
すると、圧延造形上の制約およびその固有の形状からウ
エブ、フランジ、フィレットの各部位で圧延仕上げ温
度、圧下率、冷却速度に差を生じる。その結果、強度、
延性、靱性がバラツキ、例えば溶接構造用圧延鋼材(J
IS G3106)等の基準に満たない部位が生じる。
Generally, when a section steel having a flange, for example, an H-section steel, is manufactured by universal rolling, a rolling finish is performed at each part of a web, a flange, and a fillet due to restrictions on rolling molding and its unique shape. Differences occur in temperature, draft and cooling rate. As a result, strength,
Ductility and toughness vary, for example, rolled steel for welded structures (J
Some sites do not meet standards such as IS G3106).

【0005】本発明者等は前述の先願技術によって製造
された鋼材を各種の形鋼、特に複雑な形状から厳しい圧
延造形上の制約を有するH形鋼の素材に適用することを
試みた結果、部位により組織、特にベイナイト割合が著
しく異なり、常温・高温強度、延性、靱性がバラツキ、
基準に満たない部位が生じた。本発明は、上記の課題を
解決するために、製鋼工程において適正な予備脱酸処理
を行い、溶鋼の高清浄化、溶存酸素濃度の制御と凝固直
前に脱酸元素をモールド添加する方法により多数の微細
な酸化物を分散させ、上述したような形鋼特有の圧延条
件下においても、オーステナイト粒内から粒内フェライ
ト(以下、IGFと称す)を生成させ、ミクロ組織を細
粒化し、高温強度特性、材質特性に対し圧延仕上げ温
度、圧延圧下比、鋼板厚(冷却速度)依存性が少なく、
材質特性に優れた安価で経済的な耐火性、靱性に優れた
圧延形鋼を提供することを目的とするものである。
The inventors of the present invention have tried to apply the steel material manufactured by the above-mentioned prior application to various shaped steels, particularly to H-shaped steels having complicated shapes and severe restrictions on rolling molding. , The structure, especially the bainite ratio varies significantly depending on the part, and the room temperature / high temperature strength, ductility, and toughness vary,
Some parts did not meet the criteria. In order to solve the above-mentioned problems, the present invention performs a suitable preliminary deoxidation treatment in a steelmaking process, performs high purification of molten steel, controls dissolved oxygen concentration, and molds a deoxidizing element immediately before solidification. Disperses fine oxides and generates intragranular ferrite (IGF) from austenite grains under the rolling conditions peculiar to shaped steel as described above, refines the microstructure, and provides high-temperature strength characteristics. Less dependent on rolling properties such as rolling finish temperature, rolling reduction ratio and steel sheet thickness (cooling rate)
An object of the present invention is to provide an inexpensive and economical rolled steel excellent in material properties and excellent in fire resistance and toughness.

【0006】[0006]

【課題を解決するための手段】本発明は、前述の問題を
解決するためになされたものであり、その要旨とすると
ころは下記のとおりである。 (1)溶鉄に真空脱ガス処理に加え脱酸元素Al,S
i,Ca,Mgの単独かそれらの合金併用添加による予
備脱酸処理を施し、溶存酸素を重量%で0.003〜
0.015%に溶製後、合金添加により、重量%でC:
0.04〜0.20%、Si:0.05〜0.50%、
Mn:0.4〜2.0%、Mo:0.3〜0.7%、
V:0.05〜0.20%、N:0.006〜0.01
5%、Al≦0.005%を含み、残部がFeび不可
避不純物からなる溶鋼に調整し、さらに連続鋳造モール
ド内で該溶鋼にTi−Cu、Ti−Ni、Ti−Fe合
金のいずれかを連続添加して最終脱酸し、Ti含有量が
溶鋼の溶存酸素〔O%〕に対し−0.006≦〔Ti
%〕−2〔O%〕≦0.008の関係を満たす重量%の
鋳片に鋳造し、その際該鋳片は粒内フェライト核となる
Ti系酸化物及びSi・Mn系酸化物粒子を分散含有し
てなり、該鋳片を1100〜1300℃の温度域に再加
熱後、熱間圧延を行い750〜1050℃の温度範囲で
圧延を終了し、かくして前記圧延条件下において前記酸
化物粒子を核にしたMnS、TiN、VNの複合析出に
よるオーステナイト粒内からの粒内フェライトの生成に
よりミクロ組織の細粒化を行わせることを特徴とする
延ままで耐火性及び靱性の優れた粒内フェライト系形鋼
の製造方法。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and its gist is as follows. (1) In addition to vacuum degassing of molten iron, deoxidizing elements Al and S
Preliminary deoxidation treatment is performed by adding i, Ca, Mg alone or in combination with an alloy thereof, and the dissolved oxygen is reduced to 0.003 to 0.003% by weight.
After smelting to 0.015%, by adding an alloy, C:
0.04 to 0.20%, Si: 0.05 to 0.50%,
Mn: 0.4 to 2.0%, Mo: 0.3 to 0.7%,
V: 0.05 to 0.20%, N: 0.006 to 0.01
5%, include Al ≦ 0.005% and adjusted to the molten steel a balance of Fe beauty inevitable impurities, further Ti-Cu in solution steel in a continuous casting mold, Ti-Ni, either Ti-Fe alloy Is continuously added for final deoxidation, and the Ti content is −0.006 ≦ [Ti based on the dissolved oxygen [O%] of the molten steel.
%] - 2 [O%] and cast into weight percent of slab satisfy the relationship of ≦ 0.008, this time the template piece becomes intragranular ferrite nuclei
Contains Ti-based oxide and Si-Mn-based oxide particles dispersedly
Te becomes, after reheating the said template pieces to a temperature range of 1100 to 1300 ° C., and ends the rolling in a temperature range of from 750 to 1,050 ° C. subjected to hot rolling, thus said acid in said rolling conditions
Precipitation of MnS, TiN, and VN with nucleation of halide particles
Of Intragranular Ferrite from Austenite Grains
A pressure characterized by more microstructural refinement
A method for producing an intragranular ferritic section steel having excellent fire resistance and toughness as it is .

【0007】(2)溶鉄に真空脱ガス処理に加え脱酸元
素Al,Si,Ca,Mgの単独かそれらの合金併用添
加による予備脱酸処理を施し、溶存酸素を重量%で0.
003〜0.015%に溶製後、合金添加により、重量
%でC:0.04〜0.20%、Si:0.05〜0.
50%、Mn:0.4〜2.0%、Mo:0.3〜0.
7%、V:0.05〜0.20%、N:0.006〜
0.015%、Al≦0.005%を含み、加えてCr
≦0.7%、Ni≦1.0%、Nb≦0.05%、Cu
≦1.0%の1種または2種以上を含み、残部がFe
び不可避不純物からなる溶鋼に調整し、さらに連続鋳造
モールド内で該溶鋼にTi−Cu、Ti−Ni、Ti−
Fe合金のいずれかを連続添加して最終脱酸し、Ti含
有量が溶鋼の溶存酸素〔O%〕に対し−0.006≦
〔Ti%〕−2〔O%〕≦0.008の関係を満たす重
量%の鋳片に鋳造し、その際該鋳片は粒内フェライト核
となるTi系酸化物及びSi・Mn系酸化物粒子を分散
含有してなり、該鋳片を1100〜1300℃の温度域
に再加熱後、熱間圧延を行い750〜1050℃の温度
範囲で圧延を終了し、かくして前記圧延条件下において
前記酸化物粒子を核にしたMnS、TiN、VNの複合
析出によるオーステナイト粒内からの粒内フェライトの
生成によりミクロ組織の細粒化を行わせることを特徴と
する圧延ままで耐火性及び靱性の優れた粒内フェライト
系形鋼の製造方法。
(2) In addition to the vacuum degassing treatment, the molten iron is subjected to a preliminary deoxidation treatment by adding the deoxidizing elements Al, Si, Ca, and Mg alone or in combination with their alloys, and the dissolved oxygen is reduced to 0.1% by weight.
After smelting to 003 to 0.015%, by adding an alloy, C: 0.04 to 0.20% and Si: 0.05 to 0.
50%, Mn: 0.4-2.0%, Mo: 0.3-0.
7%, V: 0.05 to 0.20%, N: 0.006 to
0.015%, Al ≤ 0.005%, plus Cr
≦ 0.7%, Ni ≦ 1.0%, Nb ≦ 0.05%, Cu
≦ 1.0%, the balance being adjusted to molten steel consisting of Fe and unavoidable impurities, and further adding Ti—Cu, Ti—Ni, Ti-
Any one of the Fe alloys is continuously added for final deoxidation, and the Ti content is -0.006 ≦ to the dissolved oxygen [O%] of the molten steel.
[Ti%] − 2 [O%] ≦ 0.008 is cast into a slab of weight% which satisfies the relationship, wherein the slab is an intragranular ferrite nucleus.
Dispersed Ti-based oxide and Si-Mn-based oxide particles
After the slab is reheated to a temperature range of 1100 to 1300 ° C., hot rolling is performed and rolling is completed in a temperature range of 750 to 1050 ° C. , thus under the rolling conditions.
Composite of MnS, TiN, VN with the oxide particles as nuclei
Of intragranular ferrite from austenite grains by precipitation
A method for producing an intragranular ferritic section steel excellent in fire resistance and toughness as rolled , characterized in that the microstructure is refined by generation .

【0008】[0008]

【作用】以下、本発明について詳細に説明する。鋼材の
高温強度は鉄の融点のほぼ1/2の温度の700℃以下
では常温での強化機構とほぼ同様であり、フェライト結
晶粒径の微細化、合金元素による固溶体強化、硬化相に
よる分散強化、微細析出物による析出強化等によって支
配される。
Hereinafter, the present invention will be described in detail. The high temperature strength of steel material is almost the same as the strengthening mechanism at room temperature below 700 ° C, which is almost half the melting point of iron, and is similar to the strengthening mechanism at normal temperature. Fine grain size of ferrite, solid solution strengthening by alloying elements, dispersion strengthening by hardened phase. , Governed by precipitation strengthening by fine precipitates.

【0009】一般に高温強度の上昇はMo、Crの添加
による析出強化と転位の消失抑制による高温での軟化抵
抗を高めることにより達成されている。しかしMo、C
rの添加は著しく焼入れ性を上げ、母材のフェライト+
パーライト組織をベーナイト組織化し易くする。ベーナ
イト組織を生成し易い成分系鋼を圧延形鋼に適応した場
合は、その特異な形状からウェブ、フランジ、フィレッ
トの各部位で、圧延仕上げ温度、圧下率、冷却速度に差
を生じるため、各部位によりベーナイト組織割合が大き
く変化する。その結果として常温・高温強度、延性、靱
性がバラツキ、基準に満たない部位が生じる。加えて、
これらの元素の添加により溶接部を著しく硬化させ、靱
性を低下させる。
In general, an increase in the high-temperature strength is achieved by increasing the softening resistance at a high temperature by adding precipitation strengthening by adding Mo and Cr and suppressing the disappearance of dislocations. But Mo, C
The addition of r significantly increases the hardenability, and the ferrite of the base metal +
A pearlite structure is easily formed into a bainite structure. When a component steel that easily produces a bainite structure is applied to a rolled section steel, a difference occurs in the rolling finish temperature, rolling reduction, and cooling rate at each part of the web, flange, and fillet due to its unique shape. The proportion of the bainite structure changes greatly depending on the location. As a result, there are variations in room-temperature / high-temperature strength, ductility, and toughness, and portions that do not meet standards. in addition,
The addition of these elements significantly hardens the weld and reduces toughness.

【0010】本発明の特徴は、溶鋼の溶存酸素量の制御
と、脱酸元素の添加手順の選択により、鋼中に分散させ
たTi系酸化物、Si・Mn系酸化物などの酸化物粒子
を核にしたMnS、TiNとVNの複合析出によるオー
ステナイト粒内からの粒内フェライト変態の促進効果を
活用し、形鋼の各部位のベーナイトとフェライトの組織
割合の変化を少なくし、母材の機械特性の均一化を達成
したことと、高温強度をV炭窒化物による析出強化に
向上させたところにある。
A feature of the present invention is that oxide particles such as Ti-based oxides and Si / Mn-based oxides dispersed in steel are controlled by controlling the amount of dissolved oxygen in molten steel and selecting a procedure for adding a deoxidizing element. Utilizing the promotion effect of intragranular ferrite transformation from within austenite grains due to the complex precipitation of MnS, TiN and VN with nucleus as the core, the change in the microstructure ratio of bainite and ferrite in each part of the section steel is reduced, and that to achieve uniformity of mechanical properties, high-temperature strength to precipitation strengthening by V carbonitride
It has been improved.

【0011】溶接熱影響部(以下HAZと称す)は鉄の
融点直下の高温に加熱され、オーステナイト粒の著しい
粗粒化を生じ、その結果、組織の粗粒化を招き、靱性を
著しく低下させる。本発明により鋼中に分散させたTi
酸化物、Si・Mn酸化物などの酸化物粒子は針状の粒
内フェライト生成機能に優れ、これを核に粒内フェライ
ト組織を生成し、組織を著しく微細化し靱性を向上させ
る特徴を有している。
The heat affected zone (hereinafter referred to as HAZ) is heated to a high temperature just below the melting point of iron, causing remarkable coarsening of austenite grains, resulting in coarsening of the structure and remarkably lowering toughness. . Ti dispersed in steel according to the present invention
Oxide particles, such as oxides and Si-Mn oxides, have an excellent needle-like intragranular ferrite generation function, and use this as a nucleus to generate an intragranular ferrite structure, which has the feature of remarkably refining the structure and improving toughness. ing.

【0012】次に本発明の対象鋼の基本成分範囲の限定
理由について述べる。まず、Cは鋼の強度を向上させる
有効な成分として添加するもので、0.04%未満では
構造用鋼として必要な強度が得られず、また、0.20
%を超える過剰の添加は、母材靱性、耐溶接割れ性、H
AZ靱性などを著しく低下させるので上限を0.20%
とした。
Next, the reasons for limiting the range of the basic components of the target steel of the present invention will be described. First, C is added as an effective component for improving the strength of steel, and if it is less than 0.04%, the strength required for structural steel cannot be obtained.
% In excess, the base material toughness, weld cracking resistance, H
The upper limit is 0.20% because AZ toughness is significantly reduced.
And

【0013】次に、Siは母材の強度確保、Si系酸化
物の生成などに必要であるが、0.50%を超えると熱
処理組織内に硬化組織の高炭素マルテンサイトを生成
し、靱性を著しく低下させる。また、0.05%未満で
は必要なSi系酸化物が生成できないため、Si含有量
を0.05〜0.50%に限定した。Mnは母材の強
度、靱性の確保には0.4%以上の添加が必要である
が、溶接部の靱性、耐割れ性などの許容できる範囲で上
限を2.0%とした。
Next, Si is necessary for securing the strength of the base material and for generating Si-based oxides. If it exceeds 0.50%, high-carbon martensite having a hardened structure is formed in the heat-treated structure, and toughness is increased. Is significantly reduced. If the content is less than 0.05%, a necessary Si-based oxide cannot be formed, so the Si content is limited to 0.05 to 0.50%. Mn must be added in an amount of 0.4% or more in order to ensure the strength and toughness of the base material, but the upper limit is set to 2.0% in an allowable range such as the toughness and crack resistance of the welded portion.

【0014】Alは強力な脱酸元素であり、0.005
%を超えて含有すると粒内フェライト変態を促進するT
i系酸化物、Si・Mn系酸化物などが形成されず、靱
性の低下がもたらされることと、過剰の固溶AlはNと
化合してAlNを形成し本発明対象鋼の特徴であるVN
の析出量を低減させるため0.005%以下に限定し
た。
Al is a strong deoxidizing element and has a content of 0.005%.
%, It promotes intragranular ferrite transformation.
No i-based oxide, Si-Mn-based oxide, etc. are formed, resulting in a decrease in toughness, and excess solid solution Al combines with N to form AlN, and VN which is a feature of the steel of the present invention.
Was limited to 0.005% or less in order to reduce the amount of precipitation.

【0015】NはVNの析出には極めて重要な元素であ
り、0.006%未満ではVNの析出量が不足し、粒内
フェライト組織の十分な生成量が得られず、また600
℃での高温強度も確保できないため0.006%以上と
した。含有量が0.015%を超えると母材靱性を低下
させ、連続鋳造時に鋼片に表面割れを生じさせるため
0.015%以下に限定した。
N is an extremely important element for the precipitation of VN. If it is less than 0.006%, the amount of VN deposited is insufficient, and a sufficient amount of intragranular ferrite structure cannot be obtained.
Since the high temperature strength at ℃ cannot be secured, the content is set to 0.006% or more. When the content exceeds 0.015%, the toughness of the base material is reduced, and the steel slab is subjected to surface cracking during continuous casting, so that the content is limited to 0.015% or less.

【0016】Moは母材強度および高温強度の確保に有
効な元素である。0.3%未満ではVNの析出強化との
複合作用によっても十分な高温強度が確保できず、0.
7%超では焼入れ性が上昇しすぎて母材靱性、HAZ靱
性が劣化するため、0.3〜0.7%に限定した。Vは
VNとして粒内フェライト組織の生成とその細粒化、高
温強度の確保のために極めて重要であり、0.05%未
満ではVNの析出量が不十分であり、0.20%超では
析出量が過剰になり母材靱性、溶接部靱性が低下するた
め、0.05〜0.20%に限定した。
Mo is an element effective for securing the base material strength and the high-temperature strength. If it is less than 0.3%, sufficient high-temperature strength cannot be ensured even by the combined action of VN and precipitation strengthening, and the effect of VN is not sufficient.
If it exceeds 7%, the hardenability is excessively increased, and the base material toughness and the HAZ toughness are deteriorated. V is extremely important as VN for formation of intragranular ferrite structure, grain refinement thereof, and securing high-temperature strength. When V is less than 0.05%, the amount of VN precipitated is insufficient. Since the amount of precipitation becomes excessive and the toughness of the base material and the toughness of the welded portion decrease, the content is limited to 0.05 to 0.20%.

【0017】不可避不純物として含有するP,Sはその
量について特に限定しないが、凝固偏析による溶接割
れ、靱性などの低下を生じるので極力低減すべきであ
り、望ましくはP,S量はそれぞれ0.02%未満であ
る。以上が本発明の対象鋼の基本成分であるが、母材強
度の上昇および母材の靱性向上の目的で、Cr、Ni、
Nb、Cuの1種または2種以上を含有することができ
る。
Although the amounts of P and S contained as unavoidable impurities are not particularly limited, they should be reduced as much as possible because welding cracks and toughness are reduced due to solidification segregation. Less than 02%. The above are the basic components of the target steel of the present invention. For the purpose of increasing the base metal strength and improving the toughness of the base metal, Cr, Ni,
One or two or more of Nb and Cu can be contained.

【0018】まず、Niは母材の強靱性を高める極めて
有効な元素であるが、1.0%を超える添加は合金コス
トを増加させて経済的でないので、上限を1.0%とし
た。Crは焼き入れ性の向上と析出硬化により、母材の
強化、高温強化に有効である。しかし上限を超える過剰
の添加は、靱性および硬化性の観点から有害となるた
め、上限を0.7%とした。
First, Ni is an extremely effective element for increasing the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%. Cr is effective in strengthening the base material and strengthening at high temperatures by improving hardenability and precipitation hardening. However, excessive addition exceeding the upper limit is detrimental from the viewpoint of toughness and curability, so the upper limit was set to 0.7%.

【0019】Nbは、母材の強靱化に有効であるが上限
を超える過剰の添加は、靱性及び硬化性の観点から有害
となるため0.05%以下とした。Cuは母材の強化、
耐候性に有効な元素であるが、応力除去焼鈍による焼き
戻し脆性、耐溶接割れ性、熱間加工割れなどを考慮し
て、上限を1.0%とした。溶鉄の真空脱ガス処理およ
びAl、Si、Ca、Mgの金属かそれらの合金併用添
加による予備脱酸処理は、溶鉄を高清浄化すると同時
に、溶存酸素を重量%で0.003〜0.015%に制
御するために極めて重要な処理である。
Nb is effective for toughening the base material, but excessive addition exceeding the upper limit is detrimental from the viewpoint of toughness and hardenability, so Nb is set to 0.05% or less. Cu strengthens the base material,
Although it is an element effective for weather resistance, the upper limit is set to 1.0% in consideration of temper brittleness due to stress relief annealing, welding crack resistance, hot working crack, and the like. The vacuum degassing treatment of molten iron and the preliminary deoxidation treatment by adding Al, Si, Ca, and Mg metals or their alloys in combination make the molten iron highly purified, and at the same time, dissolve dissolved oxygen by 0.003 to 0.015% by weight. This is an extremely important process for controlling the speed.

【0020】溶鉄の高清浄化が不十分で溶鋼中に粗大な
酸化物が残存すると、それを核生成サイトとして、Ti
合金のモールド添加により生成する粒内フェライト生成
に効果を持つ微細な二次脱酸酸化物が付着、凝集して粗
大酸化物を生成し、その個数の減少と粗大酸化物により
靱性低下をもたらす。さらに予備脱酸後の〔O〕濃度が
0.003%未満では粒内フェライト変態を促進するT
i系酸化物などの粒内フェライト生成核が減少し、細粒
化ができず、靱性を向上できない。一方、0.015%
を超える場合は、他の条件を満たしていても、溶鋼中及
び凝固時に酸化物が粗粒化して脆性破壊の起点となり、
靱性を低下させる。そのため、予備脱酸後の〔O〕濃度
を重量%で0.003〜0.015%に限定した。
If the high purity of the molten iron is insufficient and a coarse oxide remains in the molten steel, it is used as a nucleation site to form Ti.
Fine secondary deoxidized oxide, which has an effect on the formation of intragranular ferrite generated by adding the alloy to the mold, adheres and agglomerates to form a coarse oxide, which reduces the number of the coarse oxide and reduces the toughness due to the coarse oxide. If the [O] concentration after the pre-deoxidation is less than 0.003%, T
Intragranular ferrite generation nuclei such as i-based oxides are reduced, grain refinement cannot be performed, and toughness cannot be improved. On the other hand, 0.015%
If it exceeds, even if other conditions are met, the oxide becomes coarse in molten steel and during solidification and becomes the starting point of brittle fracture,
Decreases toughness. Therefore, the [O] concentration after the preliminary deoxidation is limited to 0.003 to 0.015% by weight.

【0021】なお、予備脱酸処理に真空脱ガスおよびA
l、Si、Ca、Mg等による脱酸を選択したのは、真
空脱ガス処理は直接溶鋼中の酸素をガスおよびCOガス
として除去し、またAl、Si、Ca、Mgなどの強脱
酸により生成する酸化物系介在物は浮上、除去し易いた
め、溶鋼の清浄化に極めて効果的であることから採用し
た。
In the preliminary deoxidation treatment, vacuum degassing and A
l, Si, Ca, Mg, etc. are selected because the vacuum degassing directly removes oxygen in the molten steel as gas and CO gas, and the strong deoxidation of Al, Si, Ca, Mg, etc. Oxide-based inclusions formed were used because they are very effective in cleaning molten steel because they are easy to float and remove.

【0022】Tiを最終脱酸としてモールド添加するの
は、鋳片内に微細なTi系酸化物を均一分散析出させる
ための処理である。なぜならば、溶鋼段階で析出する一
次脱酸酸化物は凝集粗大化し易いため、Ti添加後、で
きる限り短時間に出鋼、凝固させる必要がある。それに
は連続鋳造においてTiをモールド添加する方法が最も
有効なためである。
The addition of Ti as a final deoxidizer in a mold is a process for uniformly dispersing and depositing a fine Ti-based oxide in a slab. This is because the primary deoxidized oxide precipitated in the molten steel stage is liable to be agglomerated and coarsened. Therefore, it is necessary to tap and solidify the steel as short as possible after adding Ti. This is because the method of adding Ti in a continuous casting is most effective.

【0023】この処理の添加剤にTi−Cu、Ti−N
i、Ti−Fe合金を選択したのは、連続鋳造のモール
ドで溶鋼中に、できる限り短時間に添加したTiを均一
拡散させる必要があり、それには融点の低いTi合金が
有効なことと、Cu,Ni,Feは材質特性にほとんど
影響を及ぼさない金属のためである。その各々の合金の
主組成は重量%でTi:30〜60%、残部はCu、T
i:30〜80%、残部はNi、Ti:40〜75%、
残部はFeからなるもので、何れも純Tiに比べ低融点
の合金である。添加はこれらの合金をワイヤーもしくは
粒状に加工し、連続してモールド添加すればよい。
Ti-Cu, Ti-N
i, Ti-Fe alloy was selected because it is necessary to uniformly diffuse Ti added in molten steel in a short time as possible in a continuous casting mold, and that a Ti alloy having a low melting point is effective, Cu, Ni, and Fe are metals that hardly affect the material properties. The main composition of each alloy is 30-60% by weight of Ti, and the balance is Cu, T
i: 30 to 80%, balance is Ni, Ti: 40 to 75%,
The balance is made of Fe, and all are alloys having a lower melting point than pure Ti. The addition may be performed by processing these alloys into wires or granules and adding them continuously to the mold.

【0024】なお、Ti含有量を溶鋼の溶存酸素〔O
%〕に対し−0.006≦〔Ti%〕−2〔O%〕≦
0.008の関係を満たす重量%とするという制限を与
えたのは、この関係式において重量%でTiが〔O〕濃
度に対し過剰である場合は過剰なTiが必要以上のTi
Nを生成し、本発明の特徴であるVNの析出量を低減さ
せ、重量%でTiが〔O〕濃度に対し過小である場合は
粒内フェライト核となるTi系酸化物及びSi・Mn系
酸化物個数の総計が必要数の40個/mm2 を超えなくな
るため限定したものである。
It should be noted that the Ti content is determined by changing the dissolved oxygen [O
%] To -0.006 ≦ [Ti%] − 2 [O%] ≦
The limitation that the weight% satisfying the relation of 0.008 is given is that in this relational expression, when the weight% is excessive with respect to the [O] concentration, the excess Ti becomes excessive Ti.
N forms N and reduces the amount of VN precipitation which is a feature of the present invention. When Ti is too small relative to the [O] concentration by weight%, Ti-based oxide and Si-Mn-based become ferrite nuclei in grains. The total number of oxides is limited because it does not exceed the required number of 40 / mm 2 .

【0025】再加熱温度を1100〜1300℃の温度
域に規制したのは、熱間加工による形鋼の製造には塑性
変形を容易にするため1100℃以上の加熱が必要であ
り、且つV,Moによる高温での降伏点を増大させるに
は、これらの元素を十分に固溶させる必要があるため、
再加熱温度の下限を1100℃とした。その上限は加熱
炉の性能、経済性から1300℃とした。
The reason why the reheating temperature is restricted to the temperature range of 1100 to 1300 ° C. is that heating of 1100 ° C. or more is necessary in order to facilitate plastic deformation in the production of shaped steel by hot working, and V, In order to increase the high-temperature yield point of Mo, these elements must be sufficiently dissolved to form a solid solution.
The lower limit of the reheating temperature was 1100 ° C. The upper limit was set to 1300 ° C. in view of the performance and economy of the heating furnace.

【0026】熱間加工終了温度を750〜1050℃と
したのは、低温圧延ほど靱性は向上するが、形鋼の造形
上750℃未満での加工は困難であり、また1050℃
超での加工は粗粒組織を生成し、靱性が低下するためで
ある。以下に実施例によりさらに本発明の効果を示す。
The reason why the hot working end temperature is set to 750 to 1050 ° C. is that the lower the temperature, the more the toughness is improved, but it is difficult to work at a temperature lower than 750 ° C.
This is because excessive processing produces a coarse-grained structure and lowers toughness. Hereinafter, the effects of the present invention will be further shown by examples.

【0027】[0027]

【実施例】試作形鋼は転炉溶製し、真空脱ガス処理後、
Al,Si,Ca,Mgの合金を添加して予備脱酸処理
を行い、さらに連続鋳造のモールドでTi合金を連続的
に添加し、250〜300mm厚鋳片に鋳造した後、圧延
造形によりフランジ厚み毎に表1に示す種々の寸法のH
形鋼を製造した。
[Example] A prototype steel was melted from a converter and vacuum degassed.
Preliminary deoxidation treatment is performed by adding an alloy of Al, Si, Ca, and Mg. Further, a Ti alloy is continuously added by a continuous casting mold, cast into a 250-300 mm thick slab, and then flanged by rolling molding. H of various dimensions shown in Table 1 for each thickness
Shaped steel was manufactured.

【0028】機械特性は図1に示すフランジ2の板厚t
2 の中心部(1/2・t2 )でフランジ幅全長Bの1/
4、1/2幅(1/4B,1/2B)から試験片を採取
して求めた。溶接継手シャルピー試験片は図2、図3に
示すフランジの板厚中心部(1/2・t2 )で幅全長の
1/4幅(1/4B)から採取した。なお、これらの箇
所の特性を求めたのはフランジ1/4F部はH形鋼のほ
ぼ平均的な機械特性を示し、フランジ1/2F部はその
特性が最も低下するため、この2箇所によりH形鋼の機
械試験特性を代表できると判断したためである。
The mechanical properties are shown by the thickness t of the flange 2 shown in FIG.
2 at the center (1/2 · t 2 ), 1 / of the overall flange width B
Specimens were sampled from 4, 1/2 widths (1 / 4B, 1 / 2B). The welded joint Charpy test piece 2 was taken from 1/4 width of the full-length (1 / 4B) at the center of plate thickness of the flange shown in FIG. 3 (1/2 · t 2). It should be noted that the characteristics of these portions were obtained because the flange 1 / 4F portion shows almost the average mechanical properties of the H-section steel, and the flange 1 / 2F portion has the lowest characteristics. This is because it was determined that the mechanical test characteristics of the section steel could be represented.

【0029】溶接部の靱性はレ型開先(図2)およびK
型開先(図3)による多層潜孤溶接を行い、2mmVノッ
チシャルピー試験により評価した。溶接は電流700
A,電圧32V,溶接速度30cm/min ,入熱量45kJ
/cmの1電極潜孤溶接である。表2、表3(表2つづ
き)は試作鋼の化学成分、表4、表5(表4のつづき)
は圧延条件および機械試験特性を示す。なお、圧延加熱
温度は1280℃に揃えた。その理由は、一般的に加熱
温度の低下により機械特性を向上させることは周知であ
り、高温加熱条件は機械特性の最低値を示すと推定さ
れ、この値がそれ以下の加熱温度での特性を代表できる
と判断したためである。
[0029] The toughness of the weld was determined by using a groove (Fig. 2) and K
Multi-layer latent welding was performed using a mold groove (FIG. 3) and evaluated by a 2 mm V notch Charpy test. Welding current is 700
A, voltage 32V, welding speed 30cm / min, heat input 45kJ
/ Cm one-electrode arc welding. Tables 2 and 3 (continued in Table 2) show the chemical composition of the prototype steel, and Tables 4 and 5 (continued in Table 4)
Indicates rolling conditions and mechanical test characteristics. The rolling heating temperature was set to 1280 ° C. The reason is that it is generally known that mechanical properties are improved by lowering the heating temperature, and it is estimated that high-temperature heating conditions show the lowest value of mechanical properties, and this value lowers the properties at lower heating temperatures. This is because it was judged that he could represent.

【0030】表4、表5に示すように、本発明による鋼
1〜8は圧延仕上げ温度、フランジ板厚(冷却速度)の
変化に対して、目標の母材機械特性の常温強度である6
00℃での高温強度と、0℃でのシャルピー値3.5kg
f-m 以上を十分に満たしている。さらに、溶接継手・H
AZ部の0℃でのシャルピー値も3.5kgf-m 以上を十
分に満たしている。一方、比較鋼の鋼9〜12は常温強
度、高温強度は満たすものの、フランジの板厚1/2部
で幅1/2部の靱性は何れも目標の値を満足しない。そ
の原因は鋼9、11、12はAl脱酸処理によりTi添
加前の溶鋼の酸素濃度がその制限範囲の下限値を外れ、
また鋼10はCa−Si合金予備脱酸により酸素濃度は
制限範囲内にあるものの、鋼9、11、12と同様、T
i合金のモールド添加処理を加えていないため、IGF
核生成サイトとして働く微細酸化物+MnS+TiNの
個数が不足し、IGFが生成せず、細粒化による靱性改
善ができなかったためである。
As shown in Tables 4 and 5, the steels 1 to 8 according to the present invention have room temperature strength of the target base material mechanical properties with respect to changes in the rolling finish temperature and flange plate thickness (cooling rate).
High temperature strength at 00 ° C and Charpy value of 3.5kg at 0 ° C
satisfies fm and above. Furthermore, welded joints and H
The Charpy value of the AZ portion at 0 ° C. sufficiently satisfies 3.5 kgf-m or more. On the other hand, the steels 9 to 12 of the comparative steels satisfy the normal temperature strength and the high temperature strength, but none of the toughness of the flange thickness 1/2 part and the width 1/2 part satisfy the target values. The cause is that the oxygen concentration of molten steel before the addition of Ti deviates from the lower limit of the limit range for steels 9, 11, and 12 by Al deoxidation treatment,
Although the oxygen concentration of the steel 10 is within the limited range due to the preliminary deoxidation of the Ca—Si alloy, like the steels 9, 11, and 12, T
Since the mold addition treatment of i-alloy is not added, IGF
This is because the number of fine oxides + MnS + TiN acting as nucleation sites was insufficient, IGF was not generated, and toughness could not be improved by grain refinement.

【0031】即ち、本発明の製造法の要件が総て満たさ
れた時に、表4、表5に示される形鋼1〜8のように、
圧延形鋼の機械試験特性の最も保証しにくいフランジ板
厚1/2、幅1/2部においても十分な強度、靱性を有
し、フランジ板厚1/2、幅1/4部においても十分な
常温、高温強度と溶接HAZ靱性を持つ、耐火性および
靱性の優れた圧延形鋼の製造が可能になる。なお、本発
明が対象とする圧延形鋼は上記実施例のH形鋼に限ら
ず、I形鋼、山形鋼、溝形鋼、不等辺不等厚山形鋼等の
フランジを有する形鋼にも適用できることは勿論であ
る。
That is, when all the requirements of the production method of the present invention are satisfied, as shown in Tables 4 and 5,
It has sufficient strength and toughness even in the flange plate thickness 1/2 and width 1/2 parts where the mechanical test characteristics of rolled section steel are the least guaranteed, and it is sufficient in the flange plate thickness 1/2 and width 1/4 part. It is possible to produce a rolled section steel having excellent room temperature, high temperature strength and weld HAZ toughness, and excellent in fire resistance and toughness. Note that the rolled section steels to which the present invention is applied are not limited to the H-section steels of the above-described embodiment, but may also be applied to section steels having flanges such as I-section steel, angle steel, channel steel, and unequal-thickness angle steel. Of course, it can be applied.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【発明の効果】本発明により、圧延形鋼は機械試験特性
の最も保証しにくいフランジ板厚1/2、幅1/2部に
おいても十分な強度、靱性を有し、高温特性、溶接性に
優れ、耐火材の被覆厚さが従来の20〜50%で耐火目
的を達成できる優れた耐火性及び靱性を持つ圧延形鋼の
製造が圧延ままで可能になり、施工コスト低減、工期の
短縮による大幅なコスト削減が可能になり、大型建造物
の信頼性向上、安全性の確保、経済性等の産業上の効果
は極めて顕著なものがある。
According to the present invention, the rolled section steel has sufficient strength and toughness even at a flange plate thickness of 1/2 and a width of 1/2 part where mechanical test characteristics are hardly guaranteed, and high-temperature characteristics and weldability are obtained. It is possible to manufacture rolled section steel with excellent fire resistance and toughness that can achieve the purpose of fire resistance with the coating thickness of the refractory material being 20 to 50% of the conventional one as it is, reducing the construction cost and shortening the construction period. The cost can be significantly reduced, and the industrial effects such as the improvement of the reliability of large buildings, the securing of safety, and the economic efficiency are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はH形鋼の断面形状及び機械試験片の採取
位置を示す図である。
FIG. 1 is a diagram showing a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece.

【図2】図2は溶接継手部のレ型開先形状及び溶接形状
の概略図である。
FIG. 2 is a schematic view of a groove shape and a welding shape of a weld joint part.

【図3】図3は溶接継手部のK型開先形状及び溶接形状
の概略図である。
FIG. 3 is a schematic view of a K-shaped groove shape and a welded shape of a weld joint.

【符号の説明】[Explanation of symbols]

1 H形鋼 2 フランジ 3 ウェブ 1 H-section steel 2 Flange 3 Web

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 301 C22C 38/00 301A 38/14 38/14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C22C 38/00 301 C22C 38/00 301A 38/14 38/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶鉄に真空脱ガス処理に加え脱酸元素A
l,Si,Ca,Mgの単独かそれらの合金併用添加に
よる予備脱酸処理を施し、溶存酸素を重量%で0.00
3〜0.015%に溶製後、合金添加により、重量%で
C:0.04〜0.20%、Si:0.05〜0.50
%、Mn:0.4〜2.0%、Mo:0.3〜0.7
%、V:0.05〜0.20%、N:0.006〜0.
015%、Al≦0.005%を含み、残部がFe及び
不可避不純物からなる溶鋼に調整し、さらに連続鋳造モ
ールド内で該溶鋼にTi−Cu、Ti−Ni、Ti−F
e合金のいずれかを連続添加して最終脱酸し、Ti含有
量が溶鋼の溶存酸素〔O%〕に対し−0.006≦〔T
i%〕−2〔O%〕≦0.008の関係を満たす重量%
の鋳片に鋳造し、その際該鋳片は粒内フェライト核とな
るTi系酸化物及びSi・Mn系酸化物粒子を分散含有
してなり、該鋳片を1100〜1300℃の温度域に再
加熱後、熱間圧延を行い750〜1050℃の温度範囲
で圧延を終了し、かくして前記圧延条件下において前記
酸化物粒子を核にしたMnS、TiN、VNの複合析出
によるオーステナイト粒内からの粒内フェライトの生成
によりミクロ組織の細粒化を行わせることを特徴とする
圧延ままで耐火性及び靱性の優れた粒内フェライト系形
鋼の製造方法。
1. Deoxidizing element A in addition to vacuum degassing of molten iron
Preliminary deoxidation treatment is performed by adding l, Si, Ca, Mg alone or in combination with their alloys, and the dissolved oxygen is reduced to 0.00% by weight.
After smelting to 3 to 0.015%, by alloy addition, C: 0.04 to 0.20% by weight, Si: 0.05 to 0.50% by weight.
%, Mn: 0.4 to 2.0%, Mo: 0.3 to 0.7
%, V: 0.05-0.20%, N: 0.006-0.
015%, Al ≦ 0.005%, the balance being adjusted to molten steel consisting of Fe and unavoidable impurities, and further adding Ti-Cu, Ti-Ni, Ti-F to the molten steel in a continuous casting mold.
e alloy is continuously added for final deoxidation, and the Ti content is -0.006 ≦ [T
i%]-2 [O%] ≦ 0.008% by weight
Slabs , and the slabs serve as intragranular ferrite nuclei.
Contains dispersed Ti-based oxide and Si-Mn-based oxide particles
After the slab is reheated to a temperature range of 1100 to 1300 ° C, hot rolling is performed and rolling is completed in a temperature range of 750 to 1050 ° C.
Complex precipitation of MnS, TiN and VN with oxide particles as nuclei
Of Intragranular Ferrite from Austenitic Grains by Alumina
Characterized in that the microstructure is refined by
A method for producing an intragranular ferritic section steel excellent in fire resistance and toughness as rolled .
【請求項2】 溶鉄に真空脱ガス処理に加え脱酸元素A
l,Si,Ca,Mgの単独かそれらの合金併用添加に
よる予備脱酸処理を施し、溶存酸素を重量%で0.00
3〜0.015%に溶製後、合金添加により、重量%で
C:0.04〜0.20%、Si:0.05〜0.50
%、Mn:0.4〜2.0%、Mo:0.3〜0.7
%、V:0.05〜0.20%、N:0.006〜0.
015%、Al≦0.005%を含み、加えてCr≦
0.7%、Ni≦1.0%、Nb≦0.05%、Cu≦
1.0%の1種または2種以上を含み、残部がFe及び
不可避不純物からなる溶鋼に調整し、さらに連続鋳造モ
ールド内で該溶鋼にTi−Cu、Ti−Ni、Ti−F
e合金のいずれかを連続添加して最終脱酸し、Ti含有
量が溶鋼の溶存酸素〔O%〕に対し−0.006≦〔T
i%〕−2〔O%〕≦0.008の関係を満たす重量%
の鋳片に鋳造し、その際該鋳片は粒内フェライト核とな
るTi系酸化物及びSi・Mn系酸化物粒子を分散含有
してなり、該鋳片を1100〜1300℃の温度域に再
加熱後、熱間圧延を行い750〜1050℃の温度範囲
で圧延を終了し、かくして前記圧延条件下において前記
酸化物粒子を核にしたMnS、TiN、VNの複合析出
によるオーステナイト粒内からの粒内フェライトの生成
によりミクロ組織の細粒化を行わせることを特徴とする
圧延ままで耐火性及び靱性の優れた粒内フェライト系形
鋼の製造方法。
2. Deoxidizing element A in addition to vacuum degassing of molten iron
Preliminary deoxidation treatment is performed by adding l, Si, Ca, Mg alone or in combination with their alloys, and the dissolved oxygen is reduced to 0.00% by weight.
After smelting to 3 to 0.015%, by alloy addition, C: 0.04 to 0.20% by weight, Si: 0.05 to 0.50% by weight.
%, Mn: 0.4 to 2.0%, Mo: 0.3 to 0.7
%, V: 0.05-0.20%, N: 0.006-0.
015%, Al ≤ 0.005%, plus Cr ≤
0.7%, Ni ≦ 1.0%, Nb ≦ 0.05%, Cu ≦
1.0% of one or more kinds, the balance being adjusted to molten steel consisting of Fe and unavoidable impurities, and further adding Ti-Cu, Ti-Ni, Ti-F to the molten steel in a continuous casting mold.
one of e alloy continuously added to final deoxidation, Ti content to the molten steel of dissolved oxygen [O%] -0.006 ≦ [T
i%]-2 [O%] ≦ 0.008% by weight
Slabs , and the slabs serve as intragranular ferrite nuclei.
Contains dispersed Ti-based oxide and Si-Mn-based oxide particles
After the slab is reheated to a temperature range of 1100 to 1300 ° C, hot rolling is performed and rolling is completed in a temperature range of 750 to 1050 ° C.
Complex precipitation of MnS, TiN and VN with oxide particles as nuclei
Of Intragranular Ferrite from Austenitic Grains by Alumina
Characterized in that the microstructure is refined by
A method for producing an intragranular ferritic section steel excellent in fire resistance and toughness as rolled .
JP3043855A 1991-03-08 1991-03-08 Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness Expired - Lifetime JP2579841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3043855A JP2579841B2 (en) 1991-03-08 1991-03-08 Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043855A JP2579841B2 (en) 1991-03-08 1991-03-08 Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness

Publications (2)

Publication Number Publication Date
JPH04279247A JPH04279247A (en) 1992-10-05
JP2579841B2 true JP2579841B2 (en) 1997-02-12

Family

ID=12675324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043855A Expired - Lifetime JP2579841B2 (en) 1991-03-08 1991-03-08 Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness

Country Status (1)

Country Link
JP (1) JP2579841B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798004A (en) * 1995-01-26 1998-08-25 Nippon Steel Corporation Weldable high strength steel having excellent low temperature toughness
JP3718348B2 (en) * 1998-07-31 2005-11-24 新日本製鐵株式会社 High-strength and high-toughness rolled section steel and its manufacturing method
JP5565531B2 (en) * 2011-12-15 2014-08-06 新日鐵住金株式会社 High strength extra thick H-section steel
MY167068A (en) 2012-11-26 2018-08-09 Nippon Steel & Sumitomo Metal Corp H-section steel
JP5867651B2 (en) 2013-03-14 2016-02-24 新日鐵住金株式会社 H-section steel and its manufacturing method
WO2015093321A1 (en) * 2013-12-16 2015-06-25 新日鐵住金株式会社 H-shaped steel and method for producing same
CN104399945A (en) * 2014-11-14 2015-03-11 柳州市中配橡塑配件制造有限公司 Manufacturing process for roll-shaped structural member
CN106834906B (en) * 2017-01-10 2019-04-12 首钢京唐钢铁联合有限责任公司 The production method of ultra-low-carbon steel
CN108893675B (en) * 2018-06-19 2020-02-18 山东钢铁股份有限公司 Thick-specification hot-rolled H-shaped steel with yield strength of 500MPa and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness
JPH01191765A (en) * 1988-01-26 1989-08-01 Nippon Steel Corp High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide
JPH0277523A (en) * 1988-06-13 1990-03-16 Nippon Steel Corp Production of building low yield ratio steel having excellent fire resistance and building steel material using same steel
JPH0642979B2 (en) * 1989-02-20 1994-06-08 新日本製鐵株式会社 Manufacturing method of high strength steel for welding and low temperature containing titanium oxide

Also Published As

Publication number Publication date
JPH04279247A (en) 1992-10-05

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
CN110578085A (en) Hot-rolled steel plate with yield strength of 500MPa and atmospheric corrosion resistance
JP2579841B2 (en) Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP2596853B2 (en) Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JPH03249149A (en) H-shape steel excellent in fire resistance and toughness and its manufacture
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP2936235B2 (en) Rolled section steel with excellent toughness and method for producing the same
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH0739606B2 (en) Method for producing rolled steel having excellent fire resistance and toughness
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15