JP2936235B2 - Rolled section steel with excellent toughness and method for producing the same - Google Patents
Rolled section steel with excellent toughness and method for producing the sameInfo
- Publication number
- JP2936235B2 JP2936235B2 JP25294090A JP25294090A JP2936235B2 JP 2936235 B2 JP2936235 B2 JP 2936235B2 JP 25294090 A JP25294090 A JP 25294090A JP 25294090 A JP25294090 A JP 25294090A JP 2936235 B2 JP2936235 B2 JP 2936235B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- toughness
- section steel
- rolling
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
(産業上の利用分野) 本発明は、建造物の構造部材として用いられる靭性の
優れた圧延形鋼およびその製造方法に係わるものであ
る。 (従来の技術) 建築物の超高層化、安全基準の厳格化などから、柱用
に用いられる鋼材、例えば特に板厚の大きなサイズのH
形鋼(以下、極厚H形鋼と言う)には、一層の高強度
化、高靭性化、低降伏比化が求められている。このよう
な要求特性を満たすために、従来は圧延終了後に焼準処
理などの熱処理を施すことが行われた。この熱処理方法
では熱処理コストの付加、生産効率の低下等大幅なコス
ト上昇を招き、経済性の観点から問題があった。この課
題を解決するため、圧延ままで高性能の材質特性が得ら
れるように、新しい合金設計、製造法の開発が必要とな
ってきた。 一般に、フランジを有する形鋼、例えばH形鋼をユニ
バーサル圧延により製造すると、圧延造形上の制約およ
びその形状の特異性からウェブ、フランジ、フィレット
の各部位で圧延仕上げ温度、圧下率、冷却速度に差を生
じる。この結果、強度・延性・靭性がバラつき、例えば
溶接構造用圧延鋼材(JIS G3106)等の基準に満たない
部位が生じる。特に極厚H形鋼を連続鋳造スラブを素材
として圧延する場合には連続鋳造設備で製造可能なスラ
ブ最大厚に限界があるため、低圧下比となる。さらに圧
延造形上から厚みの厚いフランジ部は高温圧延となり、
圧延終了後の鋼材冷却は徐冷状態となってミクロ組成は
粗粒化してしまい、厚鋼板分野で行われている制御圧延
法によっても細粒化効果は殆ど期待できない。一方、厚
板分野ではVNの析出効果を利用し高強度・高靭性鋼を製
造する、例えば特公昭62−50548号公報、特公昭62−548
62号公報に開示された技術が提案されているが、この厚
板での従来技術では溶鋼をAl脱酸しているため、粒内フ
ェライト生成核として組織の微細化に効果を持つ微細な
Si酸化物などが生成せず、高強度・高靭性形鋼の製造は
困難である。 (発明の解決しようとする課題) 本発明は上述したような形鋼独特の圧延条件下におい
ても、オーステナイト粒内から粒内フェライト(以下IG
Fと言う)を生成させ、ミクロ組織の細粒化により降伏
強度が35kgf/mm2以上で引張強さ50kgf/mm2以上の高強度
で、且つ0℃における2mmVノッチシャルピー値が3.5kgf
−m以上の機械特性を有する靭性の優れた形鋼を圧延ま
まで製造可能な形鋼およびその製造方法を提供すること
を目的とするものである。 (課題を解決するための手段) 本発明は、前述の課題を解決するためになされたもの
であり、圧延冷却途上のオーステナイトからのフェライ
ト変態時にオーステナイト粒内に粒内フェライトを生成
させ、組織を細粒化する方法により、高能率で製造コス
トの安価な形鋼の製造が可能であると言う知見に基づき
課題を解決したもので、その要旨とするところは下記の
とおりである。 (1)重量%でC:0.04〜0.20%、Si:0.05〜0.50%、Mn:
0.8〜1.8%、V:0.05〜0.20%、N:0.006〜0.015%、Al<
0.005%を含み、残部がFeおよび不可避不純物からなる
こと特徴とする靭性の優れた圧延形鋼。 (2)溶鉄を予備脱酸により溶存酸素を重量%で0.003
〜0.015%に溶製し、合金添加により、重量%でC:0.04
〜0.20%、Si:0.05〜0.50%、Mn:0.8〜1.8%、V:0.05〜
0.20%、N:0.006〜0.015%、Al<0.005%を含み、残部
がFeおよび不可避不純物からなる鋼片とし、該鋼片を11
00〜1300℃の温度域に再加熱後、熱間圧延を750〜1050
℃の温度範囲で終了することを特徴とする靭性の優れた
圧延形鋼の製造方法。 (作 用) 以下、本発明について詳細に説明する。 鋼の高強度化はフェライト結晶の細粒化、合金元
素による固溶体強化、硬化相による分散強化、微細
析出物による析出強化等によって達成される。また、高
靭性化は結晶の細粒化、母相(フェライト)の固溶
N,Cの低減、破壊の発生起点となる硬化相の高炭素マ
ルテンサイト(以下M*と称す)および粗大な酸化物、
析出物の低減と微細化等により達成される。 一般的には鋼の高強度化により靭性は低下し、高強度
化と高靭性化は相反する対処が必要である。両者を同時
に満たす冶金因子は唯一、結晶の細粒化である。 本発明は圧延形鋼の製造時の制約下の低圧下比、高温
圧延、徐冷条件のもとで、結晶の細粒化、即ち、フェラ
イトの細粒化を行うものである。その方法は鋳片に分散
させた酸化物、MnSなどを核に圧延中およびその後の冷
却時にVNを析出させ、これをフェライト変態核にオース
テナイト粒内から粒内フェライトを生成させ、細粒フェ
ライト組織を得ることである。 まず本発明形鋼の基本成分範囲の限定理由について述
べる。 まず、Cは鋼の強度を向上させる有効な成分として添
加するもので、0.04%未満では構造用鋼として必要な強
度が得られず、また0.20%を超える過剰の添加は、母材
靭性、耐溶接割れ性、溶接熱影響部(以下HAZと称す)
靭性などを著しく低下させるので、下限を0.04%、上限
を0.20%とした。 次に、Siは母材の強度確保、溶鋼の予備脱酸などに必
要であるが、0.50%を超えるとHAZ組織内に硬化組織の
M*を生成し、溶接継手部靭性を著しく低下させる。ま
た、0.05%未満では必要な溶鋼の予備脱酸ができないた
め、Si含有量を0.05〜0.50%の範囲に制限した。 Mnは母材の強度、靭性の確保には0.8%以上の添加が
必要であるが、溶接部の靭性、耐割れ性などの許容でき
る範囲で上限を1.8%とした。 Alは強力な脱酸元素であり、0.005%以上の添加は粒
内フェライト変態を促進するマンガン・シリコン酸化物
などが形成されず、靭性の低下がもたらされるのと、過
剰の固溶AlはNと化合しAlNを形成し本発明鋼の特徴で
あるVNの析出量を低減させるため0.005%未満に制限し
た。 NはVNの析出には極めて重要な元素であり、0.006%
未満ではVNの析出量が不足し、粒内フェライト組織の十
分な生成量が得られないための0.006%以上とした。含
有量が0.015%を超えると母材靭性を低下させ、連続鋳
造時の鋼片の表面割れを生じさせるため0.015%以下に
制限した。 VはVNとして粒内フェライト組織の生成による細粒
化、析出強化による高強度化のために極めて重要であ
り、0.05%未満ではVNの析出量が不十分であり、0.20%
を超えると析出量が過剰になり母材靭性が低下するため
0.05〜0.20%に制限した。 不可避不純物として含有するP,Sはその量について特
に限定しないが、凝固偏析による溶接割れ、靭性の低下
を生じるので極力低減すべきであり、望ましくはP,S量
はそれぞれ0.02%以下である。 溶鉄を予備脱酸により溶存酸素を重量%で0.003〜0.0
15%に溶製した後、合金添加により成分調整するのは、
脱酸前の(Industrial application field) The present invention relates to a rolled section steel excellent in toughness used as a structural member of a building and a method for producing the same. (Prior Art) Due to the increase in height of buildings and stricter safety standards, steel materials used for columns, such as H
For a section steel (hereinafter, referred to as an extremely thick H section steel), higher strength, higher toughness, and lower yield ratio are required. In order to satisfy such required characteristics, conventionally, a heat treatment such as a normalizing process has been performed after the completion of rolling. This heat treatment method causes a significant increase in cost such as an increase in heat treatment cost and a decrease in production efficiency, and has a problem from the viewpoint of economy. In order to solve this problem, it has become necessary to develop a new alloy design and manufacturing method so that high-performance material properties can be obtained as-rolled. In general, when a shaped steel having a flange, for example, an H-shaped steel, is manufactured by universal rolling, the rolling finish temperature, rolling reduction, and cooling rate are reduced at each part of the web, flange, and fillet due to limitations in rolling molding and the specificity of the shape. Make a difference. As a result, the strength, ductility, and toughness vary, and a portion that does not meet the standards such as a rolled steel material for a welding structure (JIS G3106) is generated. In particular, when rolling an extremely thick H-section steel using a continuously cast slab as a raw material, there is a limit to the maximum slab thickness that can be manufactured by the continuous casting facility, so that the reduction ratio is low. In addition, the thicker flange part is hot rolled from the top of the roll molding,
After the rolling is completed, the cooling of the steel material is gradually cooled and the micro-composition is coarsened, so that the effect of fine-graining can hardly be expected even by the controlled rolling method used in the field of thick steel plates. On the other hand, in the field of thick plates, high-strength and high-toughness steels are manufactured by utilizing the precipitation effect of VN. For example, Japanese Patent Publication No. Sho 62-50548, Japanese Patent Publication No. Sho 62-548
Although the technology disclosed in Japanese Patent No. 62 has been proposed, in the prior art with this thick plate, since molten steel is deoxidized with Al, a fine grain having an effect on grain refinement as an intragranular ferrite generation nucleus.
Since Si oxides and the like are not generated, it is difficult to produce a high-strength and high-toughness section steel. (Problems to be Solved by the Invention) The present invention provides a method for producing ferrite (hereinafter referred to as IG) from within austenite grains even under the rolling conditions unique to the shape steel as described above.
Say F) to produce a, a high strength yield strength and tensile strength at 35 kgf / mm 2 or more 50 kgf / mm 2 or more by grain refinement of the microstructure, 2 mm V-notch Charpy value at and 0 ° C. 3.5 kgf
It is an object of the present invention to provide a shaped steel capable of producing as-rolled shaped steel having excellent toughness having mechanical properties of −m or more and a method for producing the same. (Means for Solving the Problems) The present invention has been made to solve the above-described problems, and generates intragranular ferrite in austenite grains during ferrite transformation from austenite during rolling and cooling, thereby changing the structure. The problem has been solved based on the finding that it is possible to produce a shaped steel with high efficiency and low production cost by the method of grain refinement, and the gist thereof is as follows. (1) C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn:
0.8 to 1.8%, V: 0.05 to 0.20%, N: 0.006 to 0.015%, Al <
A rolled section steel with excellent toughness, containing 0.005%, with the balance being Fe and unavoidable impurities. (2) Preliminary deoxidation of molten iron to reduce dissolved oxygen to 0.003% by weight.
Melted to ~ 0.015%, C: 0.04 by weight% by alloy addition
~ 0.20%, Si: 0.05 ~ 0.50%, Mn: 0.8 ~ 1.8%, V: 0.05 ~
A steel slab containing 0.20%, N: 0.006 to 0.015%, and Al <0.005%, with the balance being Fe and unavoidable impurities.
After reheating to the temperature range of 00 to 1300 ° C, hot rolling is performed at 750 to 1,050
A method for producing a rolled section steel having excellent toughness, which is completed in a temperature range of ° C. (Operation) Hereinafter, the present invention will be described in detail. Higher strength of steel is achieved by finer ferrite crystals, solid solution strengthening by alloying elements, dispersion strengthening by hardened phases, and precipitation strengthening by fine precipitates. Higher toughness is achieved by crystal grain refinement and solid solution of parent phase (ferrite).
High carbon martensite (hereinafter referred to as M * ) and coarse oxides in the hardened phase, which are the starting points of N and C reduction and fracture,
Achieved by reducing precipitates and miniaturizing. In general, toughness is reduced by increasing the strength of steel, and contradictory measures must be taken to increase strength and toughness. The only metallurgical factor that satisfies both at the same time is grain refinement. The present invention performs grain refinement, that is, ferrite refinement, under the conditions of low rolling reduction, high-temperature rolling, and slow cooling under the constraints of the production of rolled steel bars. The method uses the oxides and MnS dispersed in the slab to precipitate VN during rolling and during subsequent cooling, and then transforms this into ferrite transformation nuclei to form intragranular ferrite from within austenite grains, resulting in a fine-grained ferrite structure. It is to get. First, reasons for limiting the range of the basic components of the shaped steel according to the present invention will be described. First, C is added as an effective component to improve the strength of the steel. If it is less than 0.04%, the strength required for structural steel cannot be obtained. Weld cracking, heat affected zone (hereinafter referred to as HAZ)
Since the toughness and the like are significantly reduced, the lower limit is set to 0.04% and the upper limit is set to 0.20%. Next, Si is necessary for securing the strength of the base material, preliminary deoxidation of molten steel, and the like. However, if it exceeds 0.50%, M * of a hardened structure is generated in the HAZ structure, and the toughness of the welded joint is significantly reduced. If the content is less than 0.05%, the necessary preliminary deoxidation of molten steel cannot be performed, so the Si content is limited to the range of 0.05 to 0.50%. Mn must be added in an amount of 0.8% or more to ensure the strength and toughness of the base material, but the upper limit is set to 1.8% in the allowable range of the toughness and crack resistance of the welded portion. Al is a strong deoxidizing element, and if added over 0.005%, manganese / silicon oxide that promotes intragranular ferrite transformation is not formed, resulting in a decrease in toughness. In order to reduce the amount of precipitation of VN, which is a feature of the steel of the present invention, the content is limited to less than 0.005%. N is an extremely important element for VN precipitation, and 0.006%
If it is less than 0.006%, the amount of precipitation of VN is insufficient and a sufficient amount of intragranular ferrite structure cannot be obtained. If the content exceeds 0.015%, the toughness of the base material is reduced, and the surface slab of the steel slab during continuous casting is limited to 0.015% or less. V is extremely important as VN for grain refinement due to formation of intragranular ferrite structure and high strength due to precipitation strengthening. If less than 0.05%, the amount of VN precipitated is insufficient, and 0.20%
If the amount exceeds, the precipitation amount becomes excessive and the base material toughness decreases.
Limited to 0.05-0.20%. The amounts of P and S contained as unavoidable impurities are not particularly limited, but should be reduced as much as possible because welding cracks and lowering of toughness are caused by solidification segregation, and the contents of P and S are desirably 0.02% or less. Preliminary deoxidation of the molten iron to bring the dissolved oxygen to 0.003 to 0.0% by weight
After smelting to 15%, the component adjustment by alloy addition is
Before deoxidation
〔0〕濃度が0.003%未満では粒内フェライト
変態を促進するマンガン・シリコン酸化物などの粒内フ
ェライト生成核が減少し、細粒化できず靭性を向上でき
ない。0.015%を超える場合は、他の条件を満たしてい
ても酸化物が粗粒化し、脆性破壊の起点となり、靭性を
低下させるため、合金添加前の溶鉄の溶存酸素を重量%
で0.003〜0.015%に制限した。 再加熱温度を1100〜1300℃の温度域に規制したのは、
熱間加工による形鋼の製造には塑性変形を容易にするた
め1100℃以上の加熱が必要であり、且つV,Nbなどの元素
を十分に固溶させる必要があるため、再加熱温度の下限
を1100℃とした。その上限は加熱炉の性能、経済性から
1300℃とした。 熱間圧延終了温度を750〜1050℃としたのは、低温圧
延ほど靭性は向上するが、形鋼の造形上750℃未満の加
工は困難であり、また1050℃を超えての加工は粗粒組織
を形成し靭性が低下するためである。 以下に実施例によりさらに本発明の効果を示す。 (実施例) 試作形鋼は転炉溶製し、連続鋳造により250〜300mm厚
鋳片に鋳造した後、圧延造形によりフランジ厚み毎に第
1表に示す種々の寸法のH形鋼を製造した。機械特性は
第1図に示すフランジ2の板厚t2の中心部(1/2t2)で
フランジ幅全長(B)の1/4,1/2幅(1/4B,1/2B)から採
集し求めた。なお、これらの箇所の特性を求めたのはフ
ランジ1/4F部はH形鋼のほぼ平均的な機械特性を示し、
フランジ1/2F部はその特性が最も低下するため、この二
箇所によりH形鋼の機械試験特性を代表できるとしたた
めである。第2表は、試作鋼の化学成分、第3表は圧延
条件および機械試験特性を示す。なお、圧延加熱温度を
1280℃に揃えたのは、一般的に加熱温度の低下は機械特
性を向上させることは周知であり、高温加熱条件は機械
特性の最低値を示すと推定され、この値がそれ以下の加
熱温度での特性を代表できると判断したためである。 第3表に示すように、本発明による鋼1の形鋼は圧延
仕上げ温度、圧下率、フランジ板厚(冷却速度)、フラ
ンジの部位の変化に対して、目標の強度(前記JIS G310
6)と0℃でのシャルピー値3.5kgf−m以上を十分に満
たしている。一方、比較鋼の形鋼10〜12は強度特性は満
たすものの、フランジ1/2部の靭性が著しく低下し目標
値を達成できない。それはAl脱酸処理とV,Nの無添加及
び添加量不足から、IGF核生成サイトとして働く微細酸
化物+MnS+VNの個数が不足し、IGFが生成せず、細粒化
による靭性改善ができないためである。 即ち、本発明の要件が総て満たされた時に、第3表に
示される形鋼1のように、圧延形鋼の機械試験特性を最
も満たしにくいフランジ板厚1/2,幅1/2部においても十
分な強度を有し、優れた靭性を持つ圧延形鋼およびその
製造が可能になる。なお、本発明が対象とする圧延形鋼
は上記実施例のH形鋼に限らずI形鋼、山形鋼、溝形
鋼、不等辺不等厚山形鋼等のフランジを有する形鋼にも
適用できることは勿論である。 (発明の効果) 本発明により圧延形鋼は機械試験特性を最も保証しに
くいフランジ板厚1/2、幅1/2部においても十分な強度を
有し、優れた靭性を持つ圧延形鋼の製造が圧延ままで可
能になり、大型建造物の信頼性向上、安全性の確保、経
済性等の産業上の効果は極めて顕著なものがある。[0] If the concentration is less than 0.003%, intragranular ferrite generation nuclei such as manganese / silicon oxide which promotes intragranular ferrite transformation are reduced, so that fine grains cannot be formed and toughness cannot be improved. If it exceeds 0.015%, even if other conditions are satisfied, the oxides become coarse and become the starting point of brittle fracture, which lowers the toughness.
At 0.003 to 0.015%. The reason for restricting the reheating temperature to the temperature range of 1100 to 1300 ° C is
Production of shaped steel by hot working requires heating at 1100 ° C or higher to facilitate plastic deformation, and it is necessary to sufficiently dissolve elements such as V and Nb. Was set to 1100 ° C. The upper limit is based on heating furnace performance and economy.
It was 1300 ° C. The reason for setting the hot rolling end temperature to 750 to 1,050 ° C is that the lower the temperature, the more the toughness is improved.However, processing below 750 ° C is difficult due to the shaping of the shaped steel. This is because a structure is formed and toughness is reduced. Hereinafter, the effects of the present invention will be further shown by examples. (Example) The prototype steel was melted from a converter and cast into 250-300 mm thick slabs by continuous casting, and then H-shaped steels of various dimensions shown in Table 1 were manufactured by rolling molding for each flange thickness. . Mechanical properties in the center of the plate thickness t 2 of the flange 2 shown in Figure 1 from (1 / 2t 2) at 1 / 4,1 / 2 width of the flange width total length (B) (1 / 4B, 1 / 2B) Collected and asked. The characteristics of these locations were determined as follows: The flange 1 / 4F shows almost the average mechanical properties of H-section steel,
The reason for this is that the mechanical test characteristics of the H-section steel can be represented by these two locations because the characteristics of the flange 1 / 2F portion are most deteriorated. Table 2 shows the chemical composition of the prototype steel, and Table 3 shows the rolling conditions and mechanical test characteristics. In addition, the rolling heating temperature
It is well-known that the lowering of the heating temperature generally improves the mechanical properties, and the high-temperature heating condition is estimated to indicate the lowest value of the mechanical properties. This is because it was determined that the characteristics of the above can be represented. As shown in Table 3, the shape steel of the steel 1 according to the present invention has a target strength (the above-mentioned JIS G310) with respect to changes in the rolling finish temperature, rolling reduction, flange plate thickness (cooling rate), and flange portion.
6) and the Charpy value at 0 ° C of 3.5 kgf-m or more is sufficiently satisfied. On the other hand, although the sectional steels 10 to 12 of the comparative steel satisfy the strength characteristics, the toughness of the flange 1/2 part is remarkably reduced and the target value cannot be achieved. The reason is that the number of fine oxides + MnS + VN acting as IGF nucleation sites is insufficient due to the Al deoxidation treatment and the non-addition and insufficient amounts of V and N, the IGF is not generated, and the toughness cannot be improved by grain refinement. is there. That is, when all the requirements of the present invention are satisfied, as in the section steel 1 shown in Table 3, the flange plate thickness 1/2 and width 1/2 section which are most difficult to satisfy the mechanical test characteristics of the rolled section steel. Thus, a rolled section steel having sufficient strength and excellent toughness and its production can be provided. The rolled section steel to which the present invention is applied is not limited to the H section steel of the above embodiment, but is also applicable to section steels having flanges such as I section steel, angle steel, channel steel, and unequal thickness angle steel. Of course, you can. (Effect of the Invention) According to the present invention, the rolled section steel has sufficient strength even at a flange plate thickness of 1/2 and a width of 1/2 section where mechanical test characteristics are most difficult to be guaranteed, and has excellent toughness. Manufacturing can be performed as it is rolled, and industrial effects such as improvement in reliability of large buildings, safety assurance, and economic efficiency are extremely remarkable.
第1図はH形鋼の断面形状を示し、各部位の名称と機械
試験片の採取位置を示す図である。 1;H形鋼、2;フランジ、3;ウェブ。FIG. 1 is a diagram showing a cross-sectional shape of an H-section steel, showing names of respective parts and a sampling position of a mechanical test piece. 1; H-section, 2; flange, 3; web.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小田 直樹 大阪府堺市築港八幡町1番地 新日本製 鐵株式會社堺製鐵所内 (56)参考文献 特開 平3−191020(JP,A) 特公 平7−37657(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60 C21D 8/00 - 8/10 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Naoki Oda, inventor, Sakai Works, Sakai City, Osaka 1st place, Nippon Steel Corporation Sakai Works (56) References JP-A-3-191020 (JP, A) Kohei 7-37657 (JP, B2) (58) Field surveyed (Int. Cl. 6 , DB name) C22C 38/00-38/60 C21D 8/00-8/10
Claims (2)
%、Mn:0.8〜1.8%、V:0.05〜0.20%、N:0.006〜0.015
%、Al<0.005%を含み、残部がFeおよび不可避不純物
からなることを特徴とする靭性の優れた圧延形鋼。C: 0.04 to 0.20% by weight, Si: 0.05 to 0.50% by weight
%, Mn: 0.8 to 1.8%, V: 0.05 to 0.20%, N: 0.006 to 0.015
%, Al <0.005%, with the balance being Fe and unavoidable impurities.
0.003〜0.015%に溶製し、合金添加により、重量%でC:
0.04〜0.20%、Si:0.05〜0.50%、Mn:0.8〜1.8%、V:0.
05〜0.20%、N:0.006〜0.015%、Al<0.005%を含み、
残部がFeおよび不可避不純物からなる鋼片とし、該鋼片
を1100〜1300℃の温度域に再加熱後、熱間圧延を750〜1
050℃の温度範囲で終了することを特徴とする靭性の優
れた圧延形鋼その製造方法。2. The dissolved oxygen is preliminarily deoxidized to dissolve oxygen in weight%.
Melted to 0.003 to 0.015%, and by alloy addition, C:
0.04-0.20%, Si: 0.05-0.50%, Mn: 0.8-1.8%, V: 0.
05-0.20%, N: 0.006-0.015%, including Al <0.005%,
The remainder is a slab consisting of Fe and unavoidable impurities, and after reheating the slab to a temperature range of 1100 to 1300 ° C., hot rolling is performed to 750 to 1
A method for producing a rolled section steel having excellent toughness, which is completed in a temperature range of 050 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25294090A JP2936235B2 (en) | 1990-09-22 | 1990-09-22 | Rolled section steel with excellent toughness and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25294090A JP2936235B2 (en) | 1990-09-22 | 1990-09-22 | Rolled section steel with excellent toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04131356A JPH04131356A (en) | 1992-05-06 |
JP2936235B2 true JP2936235B2 (en) | 1999-08-23 |
Family
ID=17244276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25294090A Expired - Lifetime JP2936235B2 (en) | 1990-09-22 | 1990-09-22 | Rolled section steel with excellent toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2936235B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4648843B2 (en) * | 2006-01-27 | 2011-03-09 | 新日本製鐵株式会社 | H-section steel excellent in fire resistance and method for producing the same |
-
1990
- 1990-09-22 JP JP25294090A patent/JP2936235B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04131356A (en) | 1992-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2760713B2 (en) | Method for producing controlled rolled steel with excellent fire resistance and toughness | |
JP3718348B2 (en) | High-strength and high-toughness rolled section steel and its manufacturing method | |
JP4464486B2 (en) | High-strength and high-toughness rolled section steel and its manufacturing method | |
JP2661845B2 (en) | Manufacturing method of oxide-containing refractory section steel by controlled rolling | |
JP2607796B2 (en) | Method for producing low alloy rolled section steel with excellent toughness | |
JP2579841B2 (en) | Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness | |
JPH0765097B2 (en) | Method for producing H-section steel excellent in fire resistance and weld toughness | |
JP2596853B2 (en) | Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness | |
JP2579842B2 (en) | Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness | |
JP2647314B2 (en) | Yield point controlled rolled section steel and method for producing the same | |
JP2936235B2 (en) | Rolled section steel with excellent toughness and method for producing the same | |
JP2601961B2 (en) | Manufacturing method of rolled section steel with excellent toughness | |
JP3319222B2 (en) | Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint | |
JP3397271B2 (en) | Rolled section steel for refractory and method for producing the same | |
JP3181448B2 (en) | Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab | |
JP3241199B2 (en) | Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab | |
JPH10147835A (en) | 590mpa class rolled shape steel and its production | |
JPH0737657B2 (en) | H-section steel excellent in fire resistance and toughness and method for producing the same | |
JP4837171B2 (en) | Manufacturing method of fireproof H-section steel with low yield ratio and high toughness | |
JP2543282B2 (en) | Method for producing controlled rolled steel with excellent toughness | |
JP3107697B2 (en) | Method for producing shaped steel having flange with excellent strength, toughness and weldability | |
JP3426425B2 (en) | Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same | |
JP3107698B2 (en) | Method for producing shaped steel having flange excellent in strength, toughness and fire resistance | |
JP2834500B2 (en) | Manufacturing method of high-strength steel sheet with excellent thermal toughness | |
JP2647313B2 (en) | Oxide-containing rolled steel with controlled yield point and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080611 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090611 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090611 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100611 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100611 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 12 |