JP3107695B2 - Method for producing shaped steel having flange with excellent strength, toughness and weldability - Google Patents

Method for producing shaped steel having flange with excellent strength, toughness and weldability

Info

Publication number
JP3107695B2
JP3107695B2 JP06028280A JP2828094A JP3107695B2 JP 3107695 B2 JP3107695 B2 JP 3107695B2 JP 06028280 A JP06028280 A JP 06028280A JP 2828094 A JP2828094 A JP 2828094A JP 3107695 B2 JP3107695 B2 JP 3107695B2
Authority
JP
Japan
Prior art keywords
steel
temperature range
rolling
cooling
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06028280A
Other languages
Japanese (ja)
Other versions
JPH07238316A (en
Inventor
卓 吉田
広一 山本
征男 黒川
和彦 江田
紀昭 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06028280A priority Critical patent/JP3107695B2/en
Publication of JPH07238316A publication Critical patent/JPH07238316A/en
Application granted granted Critical
Publication of JP3107695B2 publication Critical patent/JP3107695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる形鋼の製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a shaped steel used as a structural member of a building.

【0002】[0002]

【従来の技術】建築物の超高層化、安全基準の厳格化な
どから、柱、梁用に用いられるフランジを有する形鋼、
例えばH形鋼には一層の高強度化、高靱性化、低降伏点
化、良溶接性が求められている。特に、厚肉フランジを
有するH形鋼では、強度を確保するために多量の合金元
素を添加することが1つの方策であるが、この場合は同
時に靱性の低下、溶接性の悪化をもたらし、一方、靱
性、溶接性を確保するためには、低合金成分であること
が必要条件であるために、アズロールでは強度を確保で
きない。低合金成分で且つ強度を満足させる方法とし
て、圧延終了後の鋼材の加速冷却法(TMCP法)が周
知であるが、厚肉フランジを有するH形鋼の場合、仕上
圧延直後の鋼材温度がAr3 点以上のγ域からの冷却で
は必要強度を確保するまでの加速冷却を行うとベイナイ
ト相あるいはマルテンサイト相の組織分率が上昇し、靱
性を著しく損なう。また、厚鋼板分野ではVNの析出効
果を利用し高強度・高靱性鋼を製造する、例えば特公昭
62−50548号公報、特公昭62−54862号公
報の技術が提案されている。しかしながら、この従来法
では、V添加による製造原価の上昇、Nの成分コントロ
ールが困難なため、安価で安定した製造ができなかっ
た。また、一方では、強度、靱性、溶接性を同時に確保
させるために、従来は圧延−冷却終了後に焼準処理など
の熱処理を施すことも行われた。しかし、熱処理の付加
は熱処理コストと生産効率の低下など大幅なコスト上昇
を招き、経済性に問題があった。
2. Description of the Related Art Due to the heightening of buildings and stricter safety standards, structural steel with flanges used for columns and beams has been developed.
For example, H-section steel is required to have higher strength, higher toughness, lower yield point, and better weldability. In particular, in the case of an H-section steel having a thick flange, one measure is to add a large amount of alloying elements in order to secure the strength. In this case, however, at the same time, the toughness is reduced and the weldability is deteriorated. In order to ensure high toughness and weldability, a low alloy component is a necessary condition. As a method of satisfying the strength with a low alloy component, an accelerated cooling method (TMCP method) of a steel material after rolling is well known, but in the case of an H-section steel having a thick flange, the steel material temperature immediately after finish rolling is Ar When cooling from three or more gamma regions is performed, accelerated cooling until the required strength is ensured increases the structure fraction of the bainite phase or martensite phase and significantly impairs toughness. Further, in the field of thick steel sheets, techniques for producing high-strength and high-toughness steel utilizing the effect of precipitation of VN, for example, Japanese Patent Publication No. Sho 62-50548 and Japanese Patent Publication No. Sho 62-54862 have been proposed. However, in this conventional method, the production cost is increased due to the addition of V, and it is difficult to control the N component. On the other hand, in order to secure the strength, toughness, and weldability at the same time, conventionally, a heat treatment such as a normalizing process has been performed after the completion of the rolling and cooling. However, the addition of heat treatment causes a significant increase in cost, such as a decrease in heat treatment cost and production efficiency, and there is a problem in economy.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の課題
を解決するために、製鋼、圧延および冷却までの工程を
総合的に対象とした新規の製造方法により、強度・靱性
・溶接性の優れたフランジを有する形鋼を低コストで提
供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a novel manufacturing method which comprehensively covers the steps from steelmaking, rolling and cooling to strength, toughness and weldability. An object of the present invention is to provide a shaped steel having an excellent flange at low cost.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、その特徴点は製鋼
過程において適正な脱酸処理を行い、溶鋼の清浄化、溶
存酸素濃度調整、合金元素のうちTiの添加順序の変更
等により、Ti添加量の制御を行い、鋼中に多数の微細
な複合酸化物を分散させることにより粒内フェライトを
生成させたうえで、加速冷却を行い、ベイナイト相ある
いはマルテンサイト相の組織分率の上昇を防止し、細粒
なフェライト組織とし、強度、靱性を確保することにあ
る。更に必要に応じて中間圧延工程のパス間で鋼材表層
部の温度をAr3 −20℃以下、Ar3 −100℃以上
に水冷し、その復熱過程で少なくとも1回以上圧延し、
さらにミクロ組織の細粒化を行い、特にH形鋼におい
て、高温圧延、低冷却速度となるフィレット部の靱性を
向上させる。即ち、本発明は格別な設備を必要とせず経
済的で効率良く靱性の優れた高品質の鋼材の製造方法を
提供するものである。本発明の要旨は、下記(1)〜
(4)に記載のとおりである。 (1)質量%で、C:0.05〜0.15%、Si:
0.05〜0.50%、Mn:0.8 〜2.0%、
N:0.003〜0.012%を含み、残部Feおよび
不可避的不純物からなる溶鋼を、予備脱酸処理によって
溶存酸素を質量%で0.003〜0.015%に調整
後、さらにチタン脱酸し、該チタン含有量が質量%で
0.005〜0.025%で、かつ溶鋼の溶存酸素〔O
%〕に対し、−0.006≦〔Ti%〕−2〔O%〕≦
0.008の関係を満たす鋳片に連続鋳造で鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後に圧延
を開始した後、以下の(a)、(b)のいずれかの製造
工程を経ることを特徴とする強度・靱性および溶接性の
優れたフランジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。 (2)質量%で、C:0.05〜0.15%、Si:
0.05〜0.50%、Mn:0.8 〜2.0%、
N:0.003〜0.012%を含み、残部Feおよび
不可避的不純物からなる溶鋼を、予備脱酸処理によって
溶存酸素を質量%で0.003〜0.015%に調整
後、さらにチタン脱酸し、該チタン含有量が質量%で
0.005〜0.025%で、かつ溶鋼の溶存酸素〔O
%〕に対し、−0.006≦〔Ti%〕−2〔O%〕≦
0.008の関係を満たす鋳片に連続鋳造で鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後に圧延
を開始し、中間圧延工程のパス間で鋼材表層部の温度を
Ar3 −20℃以下、Ar3 −100℃以上に水冷し、
その復熱過程で少なくとも1回以上圧延した後、以下の
(a)、(b)のいずれかの製造工程を経ることを特徴
とする強度・靱性および溶接性の優れたフランジを有す
る形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。 (3)質量%で、C:0.05〜0.15%、Si:
0.05〜0.50%、Mn:0.8 〜2.0%、
N:0.003〜0.012%を含み、加えて、V≦
0.20%、Cr≦0.7%、Nb≦0.05%、Ni
≦1.0%、Cu≦1.0%、Mo≦0.3%の1種ま
たは2種以上を含み、残部Feおよび不可避的不純物か
らなる溶鋼を、予備脱酸処理によって溶存酸素を質量%
で0.003〜0.015%に調整後、さらにチタン脱
酸し、該チタン含有量が質量%で0.005〜0.02
5%で、かつ溶鋼の溶存酸素〔O%〕に対し、−0.0
06≦〔Ti%〕−2〔O%〕≦0.008の関係を満
たす鋳片に連続鋳造で鋳造し、該鋳片を1100〜13
00℃の温度域に再加熱後に圧延を開始した後、以下の
(a)、(b)のいずれかの製造工程を経ることを特徴
とする強度・靱性および溶接性の優れたフランジを有す
る形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。 (4)質量%で、C:0.05〜0.15%、Si:
0.05〜0.50%、Mn:0.8 〜2.0%、
N:0.003〜0.012%を含み、加えて、V≦
0.20%、Cr≦0.7%、Nb≦0.05%、Ni
≦1.0%、Cu≦1.0%、Mo≦0.3%の1種ま
たは2種以上を含み、残部Feおよび不可避的不純物か
らなる溶鋼を、予備脱酸処理によって溶存酸素を質量%
で0.003〜0.015%に調整後、さらにチタン脱
酸し、該チタン含有量が質量%で0.005〜0.02
5%で、かつ溶鋼の溶存酸素〔O%〕に対し、−0.0
06≦〔Ti%〕−2〔O%〕≦0.008の関係を満
たす鋳片に連続鋳造で鋳造し、該鋳片を1100〜13
00℃の温度域に再加熱後に圧延を開始し、中間圧延工
程のパス間で鋼材表層部の温度をAr3 −20℃以下、
Ar3 −100℃以上に水冷し、その復熱過程で少なく
とも1回以上圧延した後、以下の(a)、(b)のいず
れかの製造工程を経ることを特徴とする強度・靱性およ
び溶接性の優れたフランジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the feature of the present invention is to perform appropriate deoxidation treatment in the steel making process, to clean the molten steel, and to solve the dissolved oxygen concentration. Adjustment, change of the order of addition of Ti among alloying elements, etc., control the amount of Ti added, disperse a large number of fine composite oxides in steel to generate intragranular ferrite, and then accelerate cooling To prevent an increase in the structure fraction of the bainite phase or the martensite phase, form a fine-grained ferrite structure, and secure strength and toughness. Further, if necessary, the temperature of the surface layer portion of the steel material between the passes of the intermediate rolling step is Ar 3 −20 ° C. or less, water-cooled to Ar 3 −100 ° C. or more, and rolled at least once in the recuperation process,
Further, the microstructure is refined, and particularly in an H-section steel, the toughness of a fillet portion at a high temperature rolling and a low cooling rate is improved. That is, the present invention is to provide a method for producing a high-quality steel material which is economical, efficiently and excellent in toughness without requiring special equipment. The gist of the present invention is the following (1) to
It is as described in (4). (1) In mass%, C: 0.05 to 0.15%, Si:
0.05-0.50%, Mn: 0.8-2.0%,
N: The molten steel containing 0.003 to 0.012%, the balance being Fe and unavoidable impurities is adjusted to 0.003 to 0.015% by mass of dissolved oxygen by preliminary deoxidation treatment, and then titanium is removed. The titanium content is 0.005 to 0.025% by mass and the dissolved oxygen [O
%], -0.006 ≦ [Ti%] − 2 [O%] ≦
After casting the slab which satisfies the relationship of 0.008 by continuous casting, re-heating the slab to a temperature range of 1100 to 1300 ° C. and then starting rolling, one of the following (a) and (b) A method for producing a shaped steel having a flange excellent in strength, toughness and weldability, which is characterized by undergoing a production process. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s. (2) In mass%, C: 0.05 to 0.15%, Si:
0.05-0.50%, Mn: 0.8-2.0%,
N: The molten steel containing 0.003 to 0.012%, the balance being Fe and unavoidable impurities is adjusted to 0.003 to 0.015% by mass of dissolved oxygen by preliminary deoxidation treatment, and then titanium is removed. The titanium content is 0.005 to 0.025% by mass and the dissolved oxygen [O
%], -0.006 ≦ [Ti%] − 2 [O%] ≦
The slab which satisfies the relationship of 0.008 is cast by continuous casting, the slab is reheated to a temperature range of 1100 to 1300 ° C., and rolling is started. 3 -20 ° C. or less, and water-cooled in Ar 3 -100 ° C. or more,
After rolling at least once in the recuperation process, a shaped steel having a flange excellent in strength, toughness and weldability characterized by passing through one of the following manufacturing processes (a) and (b): Production method. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s. (3) In mass%, C: 0.05 to 0.15%, Si:
0.05-0.50%, Mn: 0.8-2.0%,
N: 0.003 to 0.012%, plus V ≦
0.20%, Cr ≦ 0.7%, Nb ≦ 0.05%, Ni
≦ 1.0%, Cu ≦ 1.0%, Mo ≦ 0.3%, the molten steel containing one or more of the remaining Fe and unavoidable impurities is dissolved by preliminary deoxidation to reduce dissolved oxygen by mass%.
After adjusting to 0.003 to 0.015% with titanium, the titanium is further deoxidized, and the titanium content is 0.005 to 0.02% by mass.
5% and -0.0% with respect to the dissolved oxygen [O%] of the molten steel.
Continuous casting is performed on a slab satisfying the relationship of 0.6 ≦ [Ti%] − 2 [O%] ≦ 0.008.
A shape having a flange excellent in strength, toughness and weldability, characterized in that after rolling is started after reheating to a temperature range of 00 ° C., any one of the following manufacturing processes (a) and (b) is performed. Steel production method. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s. (4) In mass%, C: 0.05 to 0.15%, Si:
0.05-0.50%, Mn: 0.8-2.0%,
N: 0.003 to 0.012%, plus V ≦
0.20%, Cr ≦ 0.7%, Nb ≦ 0.05%, Ni
≦ 1.0%, Cu ≦ 1.0%, Mo ≦ 0.3%, the molten steel containing one or more of the remaining Fe and unavoidable impurities is dissolved by preliminary deoxidation to reduce dissolved oxygen by mass%.
After adjusting to 0.003 to 0.015% with titanium, the titanium is further deoxidized, and the titanium content is 0.005 to 0.02% by mass.
5% and -0.0% with respect to the dissolved oxygen [O%] of the molten steel.
Continuous casting is performed on a slab satisfying the relationship of 0.6 ≦ [Ti%] − 2 [O%] ≦ 0.008.
Rolling was started after reheating to a temperature range of 00 ° C., and the temperature of the surface layer of the steel material was reduced to Ar 3 −20 ° C. or less between passes of the intermediate rolling step,
Ar 3 −100 ° C. or higher, and at least one rolling in the reheating process, and then undergoing any one of the following manufacturing steps (a) and (b): strength, toughness, and welding For producing shaped steel having a flange with excellent heat resistance. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.

【0005】[0005]

【作用】以下、本発明の作用を実施例に基づき詳細に説
明する。鋼材の靱性は、合金成分、結晶粒径による依存
性を有する。即ち、組織中に固溶する成分が少ないほ
ど、あるいは、組織中のフェライト粒が細粒であるほ
ど、靱性は向上する。連続鋳造スラブを素材としてユニ
バーサル熱間圧延により、フランジを有する形鋼、例え
ばH形鋼を製造する場合、フィレット部において素材の
中心偏析が集積され、偏析成分が著しく濃化する。ま
た、同時にフィレット部は他の部位と比較して圧延温度
が高いため、熱間圧延を行っても、例えばフランジ部や
ウェブ部よりもフェライト粒は粗粒化する。
Hereinafter, the operation of the present invention will be described in detail based on embodiments. The toughness of the steel depends on the alloy components and the crystal grain size. That is, the toughness improves as the amount of the component that dissolves in the structure is smaller or the ferrite grains in the structure are finer. When a steel section having a flange, for example, an H-section steel is manufactured by universal hot rolling using a continuously cast slab as a raw material, central segregation of the raw material is accumulated in a fillet portion, and the segregated component is significantly concentrated. At the same time, since the fillet portion has a higher rolling temperature than other portions, even when hot rolling is performed, ferrite grains are coarsened more than, for example, a flange portion or a web portion.

【0006】また、強度の高い形鋼を製造する場合に
は、以下の強化機構を利用することが知られている。 フェライト結晶粒径の微細化 合金元素による固溶体強化 微細析出物による析出強化 このうち、の合金元素による固溶体強化が最も一般的
であるが、例えば、代表的な固溶体強化元素であるMn
の添加は著しく鋼材の焼入れ性を高め、フェライト+パ
ーライト組織をベイナイト組織に変化させる。ベイナイ
ト組織を生成し易い成分系鋼を圧延H形鋼に適用した場
合は、特に圧延工程で素材である連続鋳造スラブの中心
偏析部が集積されるように加工されるフィレット部にお
いて上記Mnが偏析成分として濃化し、ベイナイトおよ
び島状マルテンサイト組織分率が著しく高くなる。その
結果として特に靱性が低下し、場合によっては割れが発
生し、UT欠陥等が出現する。また、の微細析出物に
よる析出強化も靱性を低下させる。従って、靱性を確保
しつつ強度を上昇させることが可能なのはのフェライ
ト結晶粒径の微細化のみである。
[0006] It is known to use the following strengthening mechanism when manufacturing a high-strength section steel. Refinement of ferrite crystal grain size Solid solution strengthening by alloying elements Precipitation strengthening by fine precipitates Among them, solid solution strengthening by alloying elements is the most common, for example, Mn, a typical solid solution strengthening element
Addition significantly increases the hardenability of the steel material and changes the ferrite + pearlite structure to a bainite structure. When a component steel that easily forms a bainite structure is applied to a rolled H-section steel, Mn is segregated, particularly in a fillet portion processed so that the center segregation portion of a continuous cast slab as a material is integrated in a rolling process. It is concentrated as a component, and the bainite and island martensite structure fractions are significantly increased. As a result, the toughness is particularly reduced, cracks are generated in some cases, and UT defects and the like appear. In addition, precipitation strengthening by fine precipitates also reduces toughness. Therefore, only the refinement of the ferrite crystal grain size can increase the strength while securing the toughness.

【0007】また、溶接性に関しては日本溶接協会で定
義された溶接性評価式(以下WES式と略称する)によ
れば以下に示すようになり、C,Mn等の合金元素の増
加とともに溶接性が損なわれる。良溶接性を確保するた
めには、少なくともWES式を0.40以下とすること
が必要である。本発明の特徴は例えば、厚肉フランジを
有するH形鋼の熱間圧延での製造時に仕上圧延前あるい
は後に空冷して一部にフェライトを出現させたのち、加
速冷却して、ベイナイト相あるいは、フェライト相の組
織分率の上昇を防止し、細粒なフェライト組織とし、強
度、靱性、溶接性の全てを満足させるところにある。
According to the weldability evaluation formula (hereinafter abbreviated as WES formula) defined by the Japan Welding Society, the weldability is as shown below. The weldability increases with the increase of alloying elements such as C and Mn. Is impaired. In order to ensure good weldability, it is necessary that the WES equation is at least 0.40 or less. The features of the present invention, for example, during the production of the H-section steel having a thick flange by hot rolling, after air cooling before or after finish rolling to make a part of ferrite appear, accelerated cooling, bainite phase, The object is to prevent a rise in the structure fraction of the ferrite phase, to provide a fine-grained ferrite structure, and to satisfy all of the strength, toughness, and weldability.

【0008】つぎに本発明が対象とする基本成分範囲の
限定理由について述べる。まず、Cは鋼の強度を向上さ
せる有効な成分として添加するもので0.05%未満で
は、構造用鋼として必要な強度が得られず、また0.1
5%を超える過剰の添加は、母材靱性、耐溶接割れ性、
溶接熱影響部靱性等を著しく低下させるので、下限を
0.05%、上限を0.15%とした。
Next, the reasons for limiting the range of the basic components targeted by the present invention will be described. First, C is added as an effective component for improving the strength of steel. If it is less than 0.05%, the strength required for structural steel cannot be obtained.
Excessive addition of more than 5% results in base metal toughness, weld cracking resistance,
The lower limit was set to 0.05% and the upper limit was set to 0.15% because the toughness of the heat-affected zone of the weld was significantly reduced.

【0009】Siは母材の強度確保、溶鋼の予備脱酸等
に必要であるが0.50%を超えると溶接熱影響部内に
硬化組織の高炭素マルテンサイトを生成し、溶接継手部
靱性を著しく低下させる。また、0.05%未満では必
要な溶鋼の予備脱酸ができないため、Si含有量を0.
05%〜0.50%の範囲に限定した。Mnは母材の強
度、靱性の確保には0.8%以上の添加が必要である
が、溶接部の靱性、割れ性等の許容できる範囲内で上限
を2.0%とした。
[0009] Si is necessary for securing the strength of the base material, pre-deoxidizing the molten steel, etc. If it exceeds 0.50%, high carbon martensite of a hardened structure is generated in the heat affected zone of the weld, and the toughness of the weld joint is reduced. Significantly lowers. If the content is less than 0.05%, the necessary pre-deoxidation of molten steel cannot be performed.
It was limited to the range of 05% to 0.50%. Mn needs to be added in an amount of 0.8% or more to ensure the strength and toughness of the base material, but the upper limit is set to 2.0% within an acceptable range of the toughness, cracking, and the like of the welded portion.

【0010】Nは不可避不純物として鋼中に混入する元
素であり、過剰に固溶すると靱性を低下させる元素であ
るため、できるだけ低減することが望ましいが、0.0
03%未満とすると、脱Nのためのコストがかかり、製
造原価が高くなるので、下限を0.003%とした。他
方0.015%を超えると母材靱性が劣化し、連続鋳造
時に鋼片に表面割れが生じるため0.015%を上限と
した。
[0010] N is an element that is mixed into steel as an unavoidable impurity, and is an element that reduces toughness when it is dissolved excessively. Therefore, it is desirable to reduce N as much as possible.
If it is less than 03%, the cost for denitrification will be high and the production cost will be high, so the lower limit was made 0.003%. On the other hand, if it exceeds 0.015%, the base material toughness deteriorates and the steel slab undergoes surface cracking during continuous casting, so the upper limit was made 0.015%.

【0011】不可避的不純物として含有するP,Sはそ
の量について特に限定しないが、凝固時のマクロ偏析に
より溶接割れや靱性の低下が生じるので、極力低減すべ
きであり、また、本発明でP,S量が、目的とする量ま
で低減できるのは、それぞれ0.02%未満である。
Although the amounts of P and S contained as inevitable impurities are not particularly limited, they should be reduced as much as possible because macrosegregation at the time of solidification causes welding cracks and a decrease in toughness. , And S can be reduced to the target amounts by less than 0.02%, respectively.

【0012】以上が本発明の対象となる鋼の基本成分で
あるが、母材強度の上昇及び靱性向上の目的で、V,C
r,Ni,Nb,Cu,Moの1種または2種以上を含
有することができる。まず、VはVNとして粒内フェラ
イト組織の生成とその細粒化、高温強度の確保のために
極めて重要であるが、0.20%超では析出物が過剰に
なり、母材靱性や溶接熱影響部靱性が劣化するため上限
を0.20%に制限した。
The above are the basic components of the steel which is an object of the present invention. However, in order to increase the strength of the base material and improve the toughness, V, C
One or more of r, Ni, Nb, Cu, and Mo can be contained. First, V is extremely important as VN for the formation of intragranular ferrite structure, its grain refinement and high-temperature strength, but if it exceeds 0.20%, the precipitates become excessive and the base material toughness and welding heat Since the toughness of the affected zone deteriorates, the upper limit is limited to 0.20%.

【0013】Niは、母材の強靱性を高める極めて有効
な元素であるが、1.0%超の添加は合金コストを増加
させ経済的でないので上限を1.0%とした。Crは焼
入れ性を向上させ、母材の強化、高温強化に有効であ
る。しかし、0.7%を超える過剰の添加は、靱性及び
硬化性の観点から有害となるため上限を0.7%とし
た。
[0013] Ni is a very effective element for increasing the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%. Cr improves the hardenability and is effective for strengthening the base material and strengthening at high temperatures. However, an excessive addition exceeding 0.7% is harmful from the viewpoint of toughness and curability, so the upper limit is set to 0.7%.

【0014】Nbは母材の強靱化には有効であるが、
0.05%を超える過剰の添加は靱性及び硬化性の観点
から有害となるため上限を0.05%とした。Cuは母
材の強化、耐候性に有効な元素であるが、応力除去焼鈍
による焼戻し脆性、溶接割れ、熱間加工割れなどを考慮
して、上限を1.0%とした。Moは母材の強化に有効
な元素であるが、溶接割れ、熱間加工割れなどを考慮し
て、上限を0.3%とした。
Nb is effective for toughening the base material,
An excessive addition exceeding 0.05% is harmful from the viewpoint of toughness and hardenability, so the upper limit was made 0.05%. Cu is an element effective for strengthening the base material and weather resistance, but the upper limit is set to 1.0% in consideration of temper brittleness due to stress relief annealing, welding cracks, hot working cracks, and the like. Mo is an element effective for strengthening the base material, but the upper limit is set to 0.3% in consideration of welding cracks, hot working cracks and the like.

【0015】溶鉄の予備脱酸処理を行い、溶存酸素を重
量%で0.003〜0.015%に制御するのは、溶鉄
を高清浄化すると同時に鋳片内に微細な酸化物を分散さ
せるために極めて重要だからである。予備脱酸後の
〔O〕濃度が0.003%未満では粒内フェライト変態
を促進する粒内フェライト生成核の複合酸化物が減少
し、細粒化できないため靱性は向上できない。一方、
0.015%を超える場合は、他の条件を満たしていて
も、酸化物が粗粒化し、脆性破壊の発生起点となり、靱
性を低下させる。以上の理由により、予備脱酸後の
〔O〕濃度を0.003〜0.015%に限定した。
The reason why the molten iron is preliminarily deoxidized and the dissolved oxygen is controlled to 0.003 to 0.015% by weight is to purify the molten iron at the same time as dispersing fine oxides in the slab. Because it is extremely important. If the [O] concentration after the pre-deoxidation is less than 0.003%, the amount of the composite oxide of the intragranular ferrite nucleus which promotes the intragranular ferrite transformation decreases, and the grain cannot be refined, so that the toughness cannot be improved. on the other hand,
When the content exceeds 0.015%, the oxide becomes coarse and becomes a starting point of brittle fracture even if other conditions are satisfied, and the toughness is reduced. For the above reasons, the [O] concentration after preliminary deoxidation was limited to 0.003 to 0.015%.

【0016】なお、予備脱酸処理は真空脱ガスとAl,
Si,Zr,Ca,Mg脱酸の1種あるいは2種以上の
組合せで行った。その理由は真空脱ガス処理は直接溶鋼
中の酸素をガス及びCOガスとして除去し、Al,S
i,Zr,Ca,Mg等の強脱酸により生成する酸化物
系介在物は浮上し除去しやすいため、溶鋼の清浄化に極
めて効果的だからである。
The preliminary deoxidizing treatment is performed by vacuum degassing and Al,
The deoxidation was performed by one or more of Si, Zr, Ca, and Mg deoxidation. The reason is that vacuum degassing directly removes oxygen in molten steel as gas and CO gas,
This is because oxide-based inclusions generated by strong deoxidation such as i, Zr, Ca, and Mg easily float and are easily removed, and are extremely effective in cleaning molten steel.

【0017】Tiは脱酸材としてTi系酸化物を生成さ
せ、圧延時に粒内フェライトの生成を促進させ、また微
細なTiNを析出させ、オーステナイトの細粒化と粒内
フェライトの生成を促進し、母材及び溶接部の靱性を向
上させる効果があるが、0.005%未満では酸化物中
のTi含有量が不足し、粒内フェライト生成核としての
作用が低下し、他方0.025%を超えると過剰なTi
はTiCを生成し、析出硬化を生じ溶接熱影響部の靱性
を著しく低下させるため0.005〜0.025%に制
限した。
Ti forms a Ti-based oxide as a deoxidizing material, promotes the formation of intragranular ferrite during rolling, and precipitates fine TiN, thereby promoting the reduction of austenite and the formation of intragranular ferrite. The effect of improving the toughness of the base material and the welded portion is less than 0.005%. However, if the content is less than 0.005%, the Ti content in the oxide becomes insufficient, and the effect as intragranular ferrite generation nuclei is reduced. Exceeding excess Ti
Generates TiC, causes precipitation hardening, and significantly reduces the toughness of the heat affected zone by welding, so the content is limited to 0.005 to 0.025%.

【0018】さらに溶鋼のTi含有量〔Ti%〕を溶鋼
の溶存酸素〔O%〕に対し−0.006≦〔Ti%〕−
2〔O%〕≦0.008%の関係を満たすように制限し
たのは、この関係において重量%でTiが〔O〕濃度に
対し過剰である場合は粒内フェライト生成核としては無
効なTi2 Oを多数生成して組織の細粒化ができず靱性
が低下し、重量%でTiが〔O〕濃度に対し過小である
場合は粒内フェライト核となる複合酸化物が著しく減少
するため組織の細粒化ができず靱性が低下するためであ
る。Tiの添加順序を最後とするのは製鋼の初期段階で
添加した場合には、Ti酸化物の量と組成の制御を容易
にするためである。
Further, the Ti content [Ti%] of the molten steel is set to -0.006 ≦ [Ti%]-based on the dissolved oxygen [O%] of the molten steel.
2 [O%] ≦ 0.008% is limited to satisfy the relation that if Ti is excessive in weight [O] concentration relative to the [O] concentration, Ti is ineffective as an intragranular ferrite formation nucleus. Since a large amount of 2 O is generated and the structure cannot be refined, the toughness is reduced. If the content of Ti is too small relative to the [O] concentration by weight%, the amount of composite oxides serving as intragranular ferrite nuclei is significantly reduced. This is because the grain cannot be refined and the toughness decreases. The reason why the order of addition of Ti is last is to facilitate the control of the amount and composition of Ti oxide when it is added in the initial stage of steelmaking.

【0019】上記の製造方法で溶製した溶鋼を連続鋳造
機により鋳片に製造した後、1100〜1300℃の温
度域に再加熱する。この温度域に再加熱温度を限定した
のは、熱間加工による形鋼の製造には塑性変形を容易に
するため1100℃以上の加熱が必要であり、また、加
熱炉の性能、経済性から上限を1300℃とした。加熱
した鋼材は、粗圧延、中間圧延、仕上圧延の各工程によ
って圧延成形を行う。圧延終了時間を750〜1050
℃としたのは、低温圧延ほど靱性は向上するが、形鋼の
造形上750℃未満での加工は困難であり、また105
0℃を超えての加工は粗粒組織を生成して靱性が低下す
るためである。
After the molten steel produced by the above-described production method is produced into a slab by a continuous casting machine, it is reheated to a temperature range of 1100 to 1300 ° C. The reason for limiting the reheating temperature to this temperature range is that the production of shaped steel by hot working requires heating at 1100 ° C. or higher to facilitate plastic deformation, and also from the performance and economy of the heating furnace. The upper limit was 1300 ° C. The heated steel material is roll-formed in each of the steps of rough rolling, intermediate rolling and finish rolling. Rolling end time is 750-1050
The reason why the temperature was set to 0 ° C is that the lower the temperature, the better the toughness is, but the processing at less than 750 ° C is difficult due to the shaping of the shaped steel.
This is because processing at a temperature exceeding 0 ° C. generates a coarse-grained structure and lowers toughness.

【0020】また、中間圧延工程での圧延パス間におい
て鋼材表層部の温度をAr3 −20℃以下、Ar3 −1
00℃以上に水冷し、その復熱過程で少なくとも1回以
上圧延し、750〜1050℃の温度範囲で圧延を終了
させるのは、低温圧延で表層部を極細粒な組織とし、そ
の後の復熱により、フェライトからオーステナイトへ再
変態させ、加工歪を除去するためである。この水冷と圧
延パス、復熱の組み合わせにより、鋼材表層部は歪のな
い極細粒なフェライト+パーライト組織となり、靱性が
向上する。
Further, the temperature of the steel surface layer portion between rolling passes in the intermediate rolling step Ar 3 -20 ° C. or less, Ar 3 -1
Water cooling to at least 00 ° C., rolling at least once in the recuperation process, and terminating the rolling at a temperature in the range of 750 to 1050 ° C. are performed by low-temperature rolling so that the surface layer has an ultrafine-grained structure. Thereby, the ferrite is transformed again to austenite to remove working strain. Due to the combination of the water cooling, the rolling pass, and the recuperation, the surface layer of the steel material has an ultrafine grained ferrite + pearlite structure without distortion, and the toughness is improved.

【0021】中間圧延終了後、仕上圧延前あるいは後に
表面温度をAr3 −20℃以下、Ar1 以上まで放冷す
るのは表面から約20mm程度の厚みまでフェライト変態
を進行させるためであり、このフェライトの生成によ
り、ベイナイト相あるいはマルテンサイト相の生成が抑
制されるためである。この温度域よりも高温域で放冷を
停止し加速冷却を行うとベイナイト相あるいはマルテン
サイト相の組織分率が顕著に上昇し、靱性が低下する。
また、この温度域よりも低温域まで放冷すると、加速冷
却によるフェライト細粒化の効果がみられなくなり、強
度が低下する。また、上述の最適な温度域までの放冷
は、仕上圧延前あるいは後のいずれでも構わない。その
理由は、仕上圧延での圧下量は小さく、仕上圧延の有無
による材質変動は無視できるためである。
After completion of the intermediate rolling and before or after finish rolling, the surface temperature is allowed to cool to Ar 3 -20 ° C. or lower and Ar 1 or higher because the ferrite transformation proceeds to a thickness of about 20 mm from the surface. This is because the formation of a ferrite suppresses the formation of a bainite phase or a martensite phase. When the cooling is stopped in a temperature range higher than this temperature range and accelerated cooling is performed, the structure fraction of the bainite phase or the martensite phase is significantly increased, and the toughness is reduced.
Further, if the temperature is allowed to cool to a temperature lower than this temperature range, the effect of ferrite fine graining by accelerated cooling is not seen, and the strength is reduced. The cooling to the above-mentioned optimum temperature range may be performed before or after finish rolling. The reason is that the amount of reduction in the finish rolling is small, and the material variation due to the presence or absence of the finish rolling can be ignored.

【0022】仕上圧延前に放冷した鋼材は仕上圧延後、
仕上圧延後に放冷した鋼材はただちに加速冷却を行う。
700℃から400℃までの平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で冷却して製造するとしたの
は、この冷却速度範囲よりも高冷却速度で加速冷却する
と、ベイナイト相やマルテンサイト相の組織分率が上昇
し、靱性が低下する。また、この冷却速度範囲よりも低
冷却速度で加速冷却しても、加速冷却によるフェライト
細粒化の効果がみられなくなり、強度が低下する。従っ
て、上述の冷却速度の範囲を最適な冷却速度範囲とす
る。
The steel material that has been allowed to cool before finish rolling is
The steel that has been cooled after finish rolling is immediately subjected to accelerated cooling.
The average cooling rate from 700 ° C to 400 ° C is 0.5 ° C /
The reason why the cooling is performed within the range of s to 3.0 ° C./s is that when accelerated cooling is performed at a higher cooling rate than this cooling rate range, the structural fraction of the bainite phase or the martensite phase increases, and the toughness increases. Decrease. In addition, even if accelerated cooling is performed at a cooling rate lower than this cooling rate range, the effect of ferrite grain refinement by accelerated cooling is not observed, and strength is reduced. Therefore, the above-described range of the cooling rate is set as the optimum cooling rate range.

【0023】[0023]

【実施例】試作形鋼は転炉溶製し、成分調整後、連続鋳
造により240mm〜300mm厚鋳片に鋳造した後、図1
に示すレイアウトの加熱炉1で加熱し、粗圧延機2で粗
圧延した後、引き続いて、第1中間圧延機3、第2中間
圧延機4で所定の寸法のH形鋼となるまで成形を行う。
このとき、必要に応じて第2中間圧延機4での圧延パス
間で、鋼材表層部の温度をAr3 −20℃以下、Ar3
−100℃以上に水冷し、その復熱過程で少なくとも1
回以上圧延し、750〜1050℃の温度範囲で中間圧
延を終了させる。その後、仕上圧延機5による仕上圧延
前に第2中間圧延機4と仕上圧延機5との間の任意の場
所において所定の温度域、即ち鋼材表面がAr3 −20
℃以下、Ar1 以上の温度域まで放冷させる。その後、
仕上圧延を経て、仕上圧延機5の下流側に設置された水
冷による鋼材の加速冷却装置6により、所定の冷却速
度、即ち700℃から400℃までの冷却速度を0.5
℃/s〜3.0℃/sの範囲内に確保できるように加速
冷却を行う。冷却後は冷却床7で次工程の矯正まで放冷
される。
EXAMPLE A prototype steel was melted from a converter, the components were adjusted, and then cast into a slab of 240 to 300 mm thick by continuous casting.
After being heated in the heating furnace 1 having the layout shown in FIG. 1 and rough-rolled by the rough rolling mill 2, subsequently, the first intermediate rolling mill 3 and the second intermediate rolling mill 4 form the steel until it becomes an H-shaped steel having a predetermined size. Do.
In this case, among the rolling passes of the second intermediate rolling mill 4 as required, the temperature of the steel surface layer portion Ar 3 -20 ° C. or less, Ar 3
Water cooling to -100 ° C or higher, and at least 1
Rolling more than once and finishing the intermediate rolling in a temperature range of 750 to 1050 ° C. After that, before the finish rolling by the finish rolling mill 5, the predetermined temperature range, that is, the steel material surface is Ar 3 -20 at an arbitrary position between the second intermediate rolling mill 4 and the finish rolling mill 5.
℃ below, it is allowed to cool to Ar 1 or more temperature region. afterwards,
After the finish rolling, a predetermined cooling rate, that is, a cooling rate from 700 ° C. to 400 ° C. by 0.5 is accelerated by a water-cooled accelerated cooling device 6 for steel material installed downstream of the finishing mill 5.
Accelerated cooling is performed so that the temperature can be maintained in the range of ° C / s to 3.0 ° C / s. After cooling, it is allowed to cool on the cooling floor 7 until it is corrected in the next step.

【0024】機械特性は、図2に示すH形鋼8のフラン
ジ9の板厚t2 の中心部(1/2t 2 )でフランジ幅全
長(B)の1/4幅(1/4B)から試験片を採取して
求めた。なお、この箇所の特性を求めたのは、フランジ
1/4B部は母材の平均的な機械特性を示すので、この
部位でH形鋼の機械試験特性を代表できるとしたためで
ある。
The mechanical properties of the H-section steel 8 shown in FIG.
Thickness t of J9TwoCenter (1 / 2t Two) At full flange width
Take a test piece from 1/4 width (1 / 4B) of length (B)
I asked. The characteristics of this location were determined by the flange
Since the 1 / 4B section shows the average mechanical properties of the base material,
Because it was possible to represent the mechanical test characteristics of H-section steel
is there.

【0025】表1および表2は、試作鋼の化学成分値を
示し、表3は圧延と冷却条件に対する機械試験特性を示
す。なお、加熱温度を1280℃に揃えたのは、一般的
に加熱温度の低減は、機械特性を向上させることは周知
であり、高温加熱条件は機械特性の最低値を示すと推定
され、この値がそれ以下の加熱温度での特性を代表でき
ると判断したためである。また、表1および表2での成
分範囲においてはAr 3 点は860℃から800℃の
間、Ar1 点は700℃から650℃の間にあるため、
放冷停止温度をAr1 点以上、Ar3 点−20℃以下と
するには、少なくとも700℃以上780℃以下とする
必要がある。
Tables 1 and 2 show the chemical composition values of the prototype steel.
Table 3 shows mechanical test characteristics for rolling and cooling conditions.
You. The reason why the heating temperature is set to 1280 ° C. is generally
It is well known that reducing the heating temperature improves the mechanical properties
It is estimated that high-temperature heating conditions show the lowest value of mechanical properties
This value can represent the characteristics at the lower heating temperature.
This is because it was determined to be. Tables 1 and 2
Ar in the minute range ThreeThe point is between 860 ° C and 800 ° C
Between, Ar1Since the point is between 700 ° C and 650 ° C,
Ar cooling stop temperature1Ar pointsThreePoint -20 ℃ or less
To at least 700 ° C and 780 ° C
There is a need.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】表3に示すように本発明による鋼1〜6
は、母材を代表する部位であるフランジ1/4B部、で
目標の母材強度(前記JISG3106,SM490)
と0℃でのシャルピー衝撃吸収エネルギーの目標値(前
記JISG3106,SM490C)である45(J)
以上を充分に満足する。一方、比較鋼の鋼7では、T
i,O以外の成分、放冷停止温度、700℃から400
℃までの冷却速度は本発明における条件に適合している
が、TiとOの濃度バランスが、〔Ti%〕−2〔O〕
が0.0090で、本発明での条件である、−0.00
6以上、0.008以下の範囲に逸脱するため、強度は
目標値よりも、低い値となっている。鋼8では放冷停止
温度、400℃までの冷却速度は本発明における製造条
件の範囲内であるが、Mnの濃度が2.04%であり、
0℃でのシャルピー衝撃吸収エネルギーの目標値を満足
しない。鋼9では成分、700℃から400℃までの冷
却速度はともに本発明の製造条件を満足するものの、放
冷停止温度が610℃であり、Ar1 点よりも低い温度
であるため、強度は目標値を下回る。鋼10では成分、
放冷後700℃から400℃までの冷却速度はともに本
発明の製造条件を満足するものの、放冷停止温度が86
0℃でAr3 点−20℃以上となり、0℃でのシャルピ
ー衝撃吸収エネルギーが著しく低く目標値以下となる。
鋼11では成分、放冷停止温度はともに本発明における
製造条件を満たすものの、700℃から400℃までの
冷却速度が0.4℃/sであり、本発明における冷却速
度の下限値0.5℃/sを下回るため、強度は目標値よ
りも、低い値となる。鋼12は、成分、放冷停止温度は
ともに本発明における製造条件を満たすものの、700
℃から400℃までの冷却速度が3.2℃/sであり、
本発明における冷却速度の上限値3.0℃/sを上回る
ため、0℃でのシャルピー衝撃吸収エネルギーが低く、
目標値を満足しない。
As shown in Table 3, steels 1 to 6 according to the present invention
Is the target base metal strength at the flange 1 / 4B portion, which is a portion representative of the base material (the above-mentioned JISG3106, SM490)
And the target value of the Charpy impact absorbed energy at 0 ° C. (JISG3106, SM490C) and 45 (J)
The above is fully satisfied. On the other hand, in Comparative Steel No. 7, T
Components other than i and O, cooling stop temperature, 700 ° C to 400
Although the cooling rate up to ° C. conforms to the conditions in the present invention, the concentration balance between Ti and O is [Ti%]-2 [O].
Is 0.0090, which is the condition in the present invention, -0.00
Since the intensity deviates from the range of 6 or more and 0.008 or less, the intensity is lower than the target value. In the steel 8, the cooling stop temperature and the cooling rate up to 400 ° C. are within the range of the production conditions in the present invention, but the Mn concentration is 2.04%,
The target value of the Charpy impact absorption energy at 0 ° C. is not satisfied. In steel 9, although the components, the cooling rate from 700 ° C. to 400 ° C., both satisfy the production conditions of the present invention, the cooling stop temperature is 610 ° C., and since the temperature is lower than the Ar 1 point, the strength is the target. Below the value. In steel 10, the components
The cooling rate from 700 ° C. to 400 ° C. after cooling both satisfies the production conditions of the present invention, but the cooling stop temperature is 86 ° C.
At 0 ° C., the Ar temperature is 3 ° C. or higher, −20 ° C., and the Charpy impact absorption energy at 0 ° C. is extremely low and is lower than the target value.
In steel 11, both the components and the cooling stop temperature satisfy the manufacturing conditions in the present invention, but the cooling rate from 700 ° C. to 400 ° C. is 0.4 ° C./s, and the lower limit of the cooling rate in the present invention is 0.5. Since the temperature is lower than ° C./s, the intensity is lower than the target value. Although the steel 12 satisfies the production conditions in the present invention in terms of both the composition and the cooling stop temperature,
Cooling rate from 3.2 ° C to 400 ° C is 3.2 ° C / s,
Because the cooling rate in the present invention exceeds the upper limit of 3.0 ° C./s, the Charpy impact absorption energy at 0 ° C. is low,
The target value is not satisfied.

【0030】また、溶接性に関しては、WES式におい
て0.40以下であれば優れた溶接性を確保することが
可能であり、鋼1〜6はその条件を満足しているので良
溶接性を有していると判断できる。即ち、本発明の要件
が全て満たされた時に、表3に示される鋼1〜6のよう
に、母材強度、靱性、溶接性の優れた厚肉フランジH形
鋼の熱間圧延による製造が可能になる。なお、本発明が
対象とする圧延形鋼は、上述のH形鋼のみならず、I形
鋼、山形鋼、溝形鋼、不等辺不等厚山形鋼等のフランジ
を有する形鋼にも適用できることは勿論である。
Regarding the weldability, if the WES formula is 0.40 or less, excellent weldability can be ensured. Steels 1 to 6 satisfy the conditions, so that good weldability is obtained. You can judge that you have. That is, when all the requirements of the present invention are satisfied, the production by hot rolling of a thick-walled flange H-section steel excellent in base material strength, toughness, and weldability as in steels 1 to 6 shown in Table 3 is performed. Will be possible. The rolled section steel to which the present invention is applied is applicable not only to the above-mentioned H-section steel, but also to section steels having flanges such as I-section steel, angle steel, channel steel, and unequal thickness angle steel. Of course, you can.

【0031】なお、上記実施例における製鋼法は転炉で
の製造を前提にしているが、予備脱酸処理がより行い易
い電気炉、もしくはそれらとその補助的溶融処理炉との
組合せ工程を採用して本発明の溶存酸素に調整してもよ
い。また、圧延パス間の復熱過程はリバース圧延もしく
は連続圧延の当該圧延開始より終了までのパス間で実施
するが、この復熱を強制的に急速加熱手段によってもよ
い。
The steel making method in the above embodiment is premised on the production in a converter, but employs an electric furnace in which the pre-deoxidation treatment is more easily performed, or a step of combining them with an auxiliary melting furnace. Then, the dissolved oxygen of the present invention may be adjusted. In addition, the recuperation process between the rolling passes is performed during the pass from the start to the end of the reverse rolling or the continuous rolling, but the recuperation may be forcibly performed by the rapid heating means.

【0032】[0032]

【発明の効果】本発明により、母材強度、靱性、溶接性
の優れた厚肉フランジH形鋼の熱間圧延による製造が可
能となり、大型建造物の信頼性向上、安全性確保、経済
性の向上等の産業上の効果は極めて顕著なものがある。
According to the present invention, it is possible to manufacture a thick flange H-section steel having excellent base material strength, toughness, and weldability by hot rolling, thereby improving the reliability of a large building, ensuring safety, and economical efficiency. The industrial effects such as improvement of the quality are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法を実施する装置配置列例の説明略図で
ある。
FIG. 1 is an explanatory schematic view of an example of a device arrangement row for implementing the method of the present invention.

【図2】H形鋼の断面形状を示し、各部位の名称と機械
試験片の採取位置を示す図である。
FIG. 2 is a view showing a cross-sectional shape of an H-section steel, showing names of respective parts and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…加熱炉 2…粗圧延機 3…第1中間圧延機 4…第2中間圧延機 5…仕上圧延機 6…鋼材冷却装置 7…冷却床 8…H形鋼 9…フランジ 10…ウェブ 11…フィレット部 DESCRIPTION OF SYMBOLS 1 ... Heating furnace 2 ... Rough rolling mill 3 ... 1st intermediate rolling mill 4 ... 2nd intermediate rolling mill 5 ... Finishing rolling mill 6 ... Steel cooling device 7 ... Cooling floor 8 ... H-shaped steel 9 ... Flange 10 ... Web 11 ... Fillet part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 和彦 大阪府堺市築港八幡町1番地 新日本製 鐵株式会社 堺製鐵所内 (72)発明者 小野寺 紀昭 大阪府堺市築港八幡町1番地 新日本製 鐵株式会社 堺製鐵所内 (56)参考文献 特開 平5−263182(JP,A) 特開 平4−157117(JP,A) 特開 平2−163341(JP,A) 特開 平6−122922(JP,A) 特開 平7−76725(JP,A) 特開 平6−100924(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kazuhiko Eda 1 Chikuko Hachimancho, Sakai City, Osaka Prefecture Nippon Steel Corporation Sakai Works (72) Inventor Noriaki Onodera 1 Chikuko Hachimancho Sakai City, Osaka New Nippon Steel Corporation Sakai Works (56) References JP-A-5-263182 (JP, A) JP-A-4-157117 (JP, A) JP-A-2-163341 (JP, A) JP 6-122922 (JP, A) JP-A-7-76725 (JP, A) JP-A-6-100924 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/00 -8/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、C :0.05〜0.15
%、 Si:0.05〜0.50%、 Mn:0.8 〜2.0%、 N :0.003〜0.012%、 を含み、残部Feおよび不可避的不純物からなる溶鋼
を、予備脱酸処理によって溶存酸素を質量%で0.00
3〜0.015%に調整後、さらにチタン脱酸し、該チ
タン含有量が質量%で0.005〜0.025%で、か
つ溶鋼の溶存酸素〔O%〕に対し、−0.006≦〔T
i%〕−2〔O%〕≦0.008の関係を満たす鋳片に
連続鋳造で鋳造し、該鋳片を1100〜1300℃の温
度域に再加熱後に圧延を開始した後、以下の(a)、
(b)のいずれかの製造工程を経ることを特徴とする強
度・靱性および溶接性の優れたフランジを有する形鋼の
製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
1. C: 0.05 to 0.15 by mass%
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.012%, and the molten steel consisting of the balance Fe and inevitable impurities is Dissolved oxygen by deoxidation treatment is 0.00% by mass.
After adjusting the content to 3 to 0.015%, the titanium is further deoxidized. The titanium content is 0.005 to 0.025% in mass%, and -0.006 with respect to the dissolved oxygen [O%] of the molten steel. ≤ [T
i%]-2 [O%] ≦ 0.008, cast continuously by casting, and after reheating the cast piece to a temperature range of 1100 ° C. to 1300 ° C., start rolling. a),
A method for producing a shaped steel having a flange excellent in strength, toughness and weldability, which is characterized by passing through any one of the production steps (b). (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.
【請求項2】 質量%で、C :0.05〜0.15
%、 Si:0.05〜0.50%、 Mn:0.8 〜2.0%、 N :0.003〜0.012%、 を含み、残部Feおよび不可避的不純物からなる溶鋼
を、予備脱酸処理によって溶存酸素を質量%で0.00
3〜0.015%に調整後、さらにチタン脱酸し、該チ
タン含有量が質量%で0.005〜0.025%で、か
つ溶鋼の溶存酸素〔O%〕に対し、−0.006≦〔T
i%〕−2〔O%〕≦0.008の関係を満たす鋳片に
連続鋳造で鋳造し、該鋳片を1100〜1300℃の温
度域に再加熱後に圧延を開始し、中間圧延工程のパス間
で鋼材表層部の温度をAr3 −20℃以下、Ar3 −1
00℃以上に水冷し、その復熱過程で少なくとも1回以
上圧延した後、以下の(a)、(b)のいずれかの製造
工程を経ることを特徴とする強度・靱性および溶接性の
優れたフランジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
2. C: 0.05 to 0.15 by mass%
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.012%, and the molten steel consisting of the balance Fe and inevitable impurities is Dissolved oxygen by deoxidation treatment is 0.00% by mass.
After adjusting the content to 3 to 0.015%, the titanium is further deoxidized. The titanium content is 0.005 to 0.025% in mass%, and -0.006 with respect to the dissolved oxygen [O%] of the molten steel. ≤ [T
i%]-2 [O%] ≤ 0.008, which is cast by continuous casting, and after reheating the slab to a temperature range of 1100 to 1300 ° C, rolling is started. the temperature of the steel surface layer portion Ar 3 -20 ° C. or less between the passes, Ar 3 -1
Excellent in strength, toughness and weldability, characterized in that it is water-cooled to a temperature of at least 00 ° C., rolled at least once in the recuperation process, and then subjected to one of the following manufacturing steps (a) and (b): Of manufacturing a shaped steel having a bent flange. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.
【請求項3】 質量%で、C :0.05〜0.15
%、 Si:0.05〜0.50%、 Mn:0.8 〜2.0%、 N :0.003〜0.012%、 を含み、加えて、V≦0.20%、Cr≦0.7%、N
b≦0.05%、Ni≦1.0%、Cu≦1.0%、M
o≦0.3%の1種または2種以上を含み、残部Feお
よび不可避的不純物からなる溶鋼を、予備脱酸処理によ
って溶存酸素を質量%で0.003〜0.015%に調
整後、さらにチタン脱酸し、該チタン含有量が質量%で
0.005〜0.025%で、かつ溶鋼の溶存酸素〔O
%〕に対し、−0.006≦〔Ti%〕−2〔O%〕≦
0.008の関係を満たす鋳片に連続鋳造で鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後に圧延
を開始した後、以下の(a)、(b)のいずれかの製造
工程を経ることを特徴とする強度・靱性および溶接性の
優れたフランジを有する形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
3. C: 0.05 to 0.15 by mass%
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.012%, and in addition, V ≦ 0.20%, Cr ≦ 0.7%, N
b ≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0%, M
After the molten steel containing one or more kinds of o ≦ 0.3%, the balance being Fe and inevitable impurities, the dissolved oxygen is adjusted to 0.003 to 0.015% by mass% by preliminary deoxidation treatment, Titanium is further deoxidized, the titanium content is 0.005 to 0.025% by mass, and the dissolved oxygen [O
%], -0.006 ≦ [Ti%] − 2 [O%] ≦
After casting the slab which satisfies the relationship of 0.008 by continuous casting, re-heating the slab to a temperature range of 1100 to 1300 ° C. and then starting rolling, one of the following (a) and (b) A method for producing a shaped steel having a flange excellent in strength, toughness and weldability, which is characterized by undergoing a production process. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.
【請求項4】 質量%で、C :0.05〜0.15
%、 Si:0.05〜0.50%、 Mn:0.8 〜2.0%、 N :0.003〜0.012%、 を含み、加えて、V≦0.20%、Cr≦0.7%、N
b≦0.05%、Ni≦1.0%、Cu≦1.0%、M
o≦0.3%の1種または2種以上を含み、残部Feお
よび不可避的不純物からなる溶鋼を、予備脱酸処理によ
って溶存酸素を質量%で0.003〜0.015%に調
整後、さらにチタン脱酸し、該チタン含有量が質量%で
0.005〜0.025%で、かつ溶鋼の溶存酸素〔O
%〕に対し、−0.006≦〔Ti%〕−2〔O%〕≦
0.008の関係を満たす鋳片に連続鋳造で鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後に圧延
を開始し、中間圧延工程のパス間で鋼材表層部の温度を
Ar3 −20℃以下、Ar3−100℃以上に水冷し、
その復熱過程で少なくとも1回以上圧延した後、以下の
(a)、(b)のいずれかの製造工程を経ることを特徴
とする強度・靱性および溶接性の優れたフランジを有す
る形鋼の製造方法。 (a)750〜1050℃の温度範囲で中間圧延を終了
させ、仕上げ圧延前に鋼材表面がAr3 −20℃以下、
Ar1 以上の温度域まで放冷した後仕上げ圧延を行い、
その後、直ちに700℃から400℃までの鋼材平均冷
却速度を0.5℃/s〜3.0℃/sの範囲内で加速冷
却する。 (b)750〜1050℃の温度範囲で中間圧延および
仕上げ圧延を終了させた後、鋼材表面がAr3 −20℃
以下、Ar1 以上の温度域まで放冷した後、直ちに70
0℃から400℃までの鋼材平均冷却速度を0.5℃/
s〜3.0℃/sの範囲内で加速冷却する。
4. C: 0.05 to 0.15 by mass%
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.012%, and in addition, V ≦ 0.20%, Cr ≦ 0.7%, N
b ≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0%, M
After the molten steel containing one or more kinds of o ≦ 0.3%, the balance being Fe and inevitable impurities, the dissolved oxygen is adjusted to 0.003 to 0.015% by mass% by preliminary deoxidation treatment, Titanium is further deoxidized, the titanium content is 0.005 to 0.025% by mass, and the dissolved oxygen [O
%], -0.006 ≦ [Ti%] − 2 [O%] ≦
The slab which satisfies the relationship of 0.008 is cast by continuous casting, the slab is reheated to a temperature range of 1100 to 1300 ° C., and rolling is started. 3 -20 ° C. or less, and water-cooled in Ar 3 -100 ° C. or more,
After rolling at least once in the recuperation process, a shaped steel having a flange excellent in strength, toughness and weldability characterized by passing through one of the following manufacturing processes (a) and (b): Production method. (A) The intermediate rolling is completed in a temperature range of 750 to 1050 ° C., and the surface of the steel material is Ar 3 −20 ° C. or less before finish rolling,
After finishing cooling to a temperature range of Ar 1 or more, finish rolling is performed,
Then, the steel is immediately cooled at an average cooling rate of 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 3.0 ° C./s. (B) After finishing the intermediate rolling and the finish rolling in the temperature range of 750 to 1050 ° C., the surface of the steel material is Ar 3 −20 ° C.
Thereafter, after cooling to a temperature range of Ar 1 or more, immediately
The average cooling rate of steel from 0 ° C to 400 ° C is 0.5 ° C /
Accelerated cooling is performed within the range of s to 3.0 ° C./s.
JP06028280A 1994-02-25 1994-02-25 Method for producing shaped steel having flange with excellent strength, toughness and weldability Expired - Lifetime JP3107695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06028280A JP3107695B2 (en) 1994-02-25 1994-02-25 Method for producing shaped steel having flange with excellent strength, toughness and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06028280A JP3107695B2 (en) 1994-02-25 1994-02-25 Method for producing shaped steel having flange with excellent strength, toughness and weldability

Publications (2)

Publication Number Publication Date
JPH07238316A JPH07238316A (en) 1995-09-12
JP3107695B2 true JP3107695B2 (en) 2000-11-13

Family

ID=12244193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06028280A Expired - Lifetime JP3107695B2 (en) 1994-02-25 1994-02-25 Method for producing shaped steel having flange with excellent strength, toughness and weldability

Country Status (1)

Country Link
JP (1) JP3107695B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093321A1 (en) 2013-12-16 2015-06-25 新日鐵住金株式会社 H-shaped steel and method for producing same
CN109234619A (en) * 2018-09-18 2019-01-18 石横特钢集团有限公司 A kind of production method of high tenacity MG600 hot rolling anchor pole reinforcing bar

Also Published As

Publication number Publication date
JPH07238316A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JPH04279247A (en) Manufacture of transgranular ferrite system rolled shapes with excellent fire resistance and toughness
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP6295632B2 (en) High strength H-section steel with excellent toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH10147835A (en) 590mpa class rolled shape steel and its production
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
JP2962629B2 (en) Manufacturing method of refractory section steel with excellent internal characteristics in ultrasonic testing
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term