JP3004155B2 - Manufacturing method of shaped steel with excellent toughness - Google Patents

Manufacturing method of shaped steel with excellent toughness

Info

Publication number
JP3004155B2
JP3004155B2 JP5226133A JP22613393A JP3004155B2 JP 3004155 B2 JP3004155 B2 JP 3004155B2 JP 5226133 A JP5226133 A JP 5226133A JP 22613393 A JP22613393 A JP 22613393A JP 3004155 B2 JP3004155 B2 JP 3004155B2
Authority
JP
Japan
Prior art keywords
rolling
steel
weight
toughness
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5226133A
Other languages
Japanese (ja)
Other versions
JPH0776725A (en
Inventor
卓 吉田
広一 山本
和彦 江田
雅文 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5226133A priority Critical patent/JP3004155B2/en
Publication of JPH0776725A publication Critical patent/JPH0776725A/en
Application granted granted Critical
Publication of JP3004155B2 publication Critical patent/JP3004155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる形鋼の製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a shaped steel used as a structural member of a building.

【0002】[0002]

【従来の技術】建築物の超高層化、安全基準の厳格化な
どから、柱、梁用に用いられるH形鋼には一層の高強度
化、高靭性化、低降伏点化が求められている。このよう
な要求特性を満たすために、従来は圧延−冷却終了後に
焼準処理などの熱処理を施すことが行われた。熱処理の
付加は、熱処理コストと生産効率の低下などで大幅なコ
スト上昇を招き、経済性に問題があった。特にフランジ
を有する形鋼、例えばH形鋼を連続鋳造スラブを素材と
してユニバーサル熱間圧延で製造すると、フィレット部
において靭性が著しく悪化する。この理由は、連続鋳造
スラブを素材とするユニバーサル圧延では素材中心偏析
部が圧延中に集積され、マクロ偏析が出現していない部
位よりもP,S等の不純物元素がフェライト結晶粒界に
濃化し、脆くなるためである。その結果、例えば、溶接
構造用圧延鋼材(JIS G3106)等の基準に満た
ない部位が生じる。特にフィレット部ではベイナイトや
島状マルテンサイトを生成し、一般鋼よりも一層靭性が
低下する。その結果、例えば、前記JIS規格等の基準
に満たない部位が生じるものである。
2. Description of the Related Art H-section steels used for columns and beams are required to have higher strength, higher toughness and lower yield point due to the increase in height of buildings and stricter safety standards. I have. In order to satisfy such required characteristics, conventionally, a heat treatment such as a normalizing process has been performed after the completion of rolling and cooling. The addition of heat treatment causes a significant increase in cost due to a decrease in heat treatment cost and production efficiency, and has a problem in economics. In particular, when a section steel having a flange, for example, an H-section steel is manufactured by continuous hot rolling using a continuous cast slab as a raw material, the toughness of the fillet portion is significantly deteriorated. The reason for this is that in the universal rolling using a continuous cast slab, the central segregation portion of the material is accumulated during rolling, and the impurity elements such as P and S are concentrated at the ferrite grain boundary from the portion where macro segregation does not appear. Because it becomes brittle. As a result, for example, a portion that does not meet the standard such as a rolled steel material for a welding structure (JIS G3106) is generated. In particular, bainite and island-like martensite are generated in the fillet portion, and the toughness is further reduced as compared with general steel. As a result, for example, a portion that does not satisfy the standards such as the JIS standard is generated.

【0003】この偏析の集積に対する対策については、
例えば、特開平2−46960号公報、特開平2−15
857号公報等にみられるように、素材製造段階の連続
鋳造時に、中心のマクロ偏析の生成そのものを抑制する
方法があるが、いずれも連続鋳造設備に特殊な圧下装置
の設置が必要なため、製造コストの上昇等、経済性に問
題があった。この課題を解決するためには圧延ままで高
性能の材質特性が得られるように、新しい製造法の開発
が必要となった。
[0003] Regarding measures against the accumulation of segregation,
For example, JP-A-2-46960, JP-A-2-15
As shown in Japanese Patent No. 857 and the like, there is a method of suppressing the generation of macrosegregation at the center during continuous casting in the material manufacturing stage, but since a special rolling reduction device is required for continuous casting equipment, There was a problem in economics such as an increase in manufacturing cost. To solve this problem, it was necessary to develop a new manufacturing method so that high-performance material properties could be obtained as-rolled.

【0004】TMCPによる細粒化法により高強度、高
靭性化も周知である造形上の制約から形鋼圧延では大圧
下圧延できないため、十分に細粒とはならなかった。ま
た、厚鋼板分野ではVNの析出効果を利用し高強度・高
靭性鋼を製造する、例えば特公昭62−50548号公
報、特公昭62−54862号公報の技術が提案されて
いる。しかしながら、この従来法での溶鋼の脱酸は溶存
酸素を下げ、鋼中の一次脱酸酸化物数を減らすかに重点
が置かれていたため、粒内フェライト生成核として、組
織の細粒化に効果を示す微細な複合酸化物が生成せず、
組織の細粒化が十分ではなかった。
Since high strength and high toughness are well known in the art by the fine graining method using TMCP, it is not possible to perform a large rolling reduction in the shape steel rolling due to restrictions on molding, and thus the grains were not sufficiently fine. Further, in the field of thick steel sheets, techniques for producing high-strength and high-toughness steels utilizing the effect of precipitation of VN, for example, Japanese Patent Publication No. Sho 62-50548 and Japanese Patent Publication No. Sho 62-54862 have been proposed. However, the deoxidation of molten steel in this conventional method focused on lowering the dissolved oxygen and reducing the number of primary deoxidized oxides in the steel. A fine composite oxide showing the effect is not generated,
The grain refinement of the tissue was not enough.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の課題
を解決するために、製鋼、圧延および冷却までの工程を
総合的に対象とした新規な製造方法により、圧延ままで
組織を細粒化し、強度・靭性の優れた圧延形鋼を低コス
トで提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a novel manufacturing method which comprehensively covers the processes from steelmaking, rolling and cooling to reducing the fine grain structure as it is rolled. It is intended to provide a rolled section steel excellent in strength and toughness at low cost.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、その特徴点は製鋼
過程において適正な脱酸処理を行い、溶鋼の清浄化、溶
存酸素濃度調整、合金元素のうちTiの添加順序の変更
等により、Ti添加量の制御を行い、鋼中の多数の微細
な複合酸化物を分散させることにより粒内フェライトを
生成させ、ミクロ組織を細粒化し、最終仕上げ圧延後の
冷却工程において徐冷却させることにある。さらに必要
に応じて中間圧延工程のパス間で鋼材表層部の温度をA
r3−20℃以下、Ar3−100℃以上に水冷し、その復
熱過程で少なくとも1回以上圧延し、ミクロ組織の細粒
化を行う。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the feature of the present invention is to perform appropriate deoxidation treatment in the steel making process, to clean the molten steel, and to solve the dissolved oxygen concentration. Controlling the amount of Ti by adjusting the order of addition of Ti among the alloying elements, etc., and dispersing a large number of fine composite oxides in the steel to generate intragranular ferrite and refine the microstructure In the cooling step after the final finish rolling. Further, if necessary, the temperature of the surface layer of the steel material may be adjusted between the passes of the intermediate rolling process by A
Water cooling to r3 -20 ° C or lower, Ar3 -100 ° C or higher, and rolling at least once in the recuperation process to refine the microstructure.

【0007】即ち、本発明は格別な設備を必要とせず経
済的で効率良く靭性の優れた高品質の鋼材の製造方法を
提供するものである。本発明の要旨は、 (1)重量%でC:0.04〜0.20%、Si:0.
05〜0.50%、Mn:0.4〜2.0%、N:0.
003〜0.015%、Al:≦0.005%を含み、
残部がFe、及び不可避不純物からなる溶鋼を予備脱酸
処理によって溶存酸素を重量%で0.003〜0.01
5%に調整後、さらにチタン脱酸し、該チタン含有量が
重量%で0.005〜0.025%で、かつ溶鋼の溶存
酸素〔O%〕に対し、−0.006≦〔Ti%〕−2
〔O%〕≦0.008の関係を満たす鋳片に連続鋳造で
鋳造し、該鋳片を1100〜1300℃の温度域に再加
熱後に圧延を開始し、750〜1050℃の温度範囲で
圧延を終了させ、圧延終了後に650〜400℃までの
冷却速度を0.01℃/s〜0.30℃/sの範囲内で
冷却して製造することを特徴とする靭性の優れた形鋼の
製造方法。 (2)重量%でC:0.04〜0.20%、Si:0.
05〜0.50%、Mn:0.4〜2.0%、N:0.
003〜0.015%、Al:≦0.005%を含み、
残部がFe、及び不可避不純物からなる溶鋼を予備脱酸
処理によって溶存酸素を重量%で0.003〜0.01
5%に調整後、さらにチタン脱酸し、該チタン含有量が
重量%で0.005〜0.025%で、かつ溶鋼の溶存
酸素〔O%〕に対し、−0.006≦〔Ti%〕−2
〔O%〕≦0.008の関係を満たす鋳片に連続鋳造で
鋳造し、該鋳片を1100〜1300℃の温度域に再加
熱後に圧延を開始し、中間圧延工程のパス間で鋼材表層
部の温度をAr3−20℃以下、Ar3−100℃以上に水
冷し、その復熱過程で少なくとも1回以上圧延し、75
0〜1050℃の温度範囲で圧延を終了させ、圧延終了
後に650〜400℃までの冷却速度を0.01℃/s
〜0.30℃/sの範囲内で冷却して製造することを特
徴とする靭性の優れた形鋼の製造方法。 (3)重量%でC:0.04〜0.20%、Si:0.
05〜0.50%、Mn:0.4〜2.0%、N:0.
003〜0.015%、Al:≦0.005%を含み、
加えてV≦0.20%、Cr≦0.7%、Nb≦0.0
5%、Ni≦1.0%、Cu≦1.0%、Mo≦0.3
%、の1種または2種以上を含み、残部がFe、及び不
可避不純物からなる溶鋼を予備脱酸処理によって溶存酸
素を重量%で0.003〜0.015%に調整後、さら
にチタン脱酸し、該チタン含有量が重量%で0.005
〜0.025%で、かつ溶鋼の溶存酸素〔O%〕に対
し、−0.006≦〔Ti%〕−2〔O%〕≦0.00
8の関係を満たす鋳片に連続鋳造で鋳造し、該鋳片を1
100〜1300℃の温度域に再加熱後に圧延を開始
し、750〜1050℃の温度範囲で圧延を終了させ、
圧延終了後に650〜400℃までの冷却速度を0.0
1℃/s〜0.30℃/sの範囲内で冷却して製造する
ことを特徴とする靭性の優れた形鋼の製造方法。 (4)重量%でC:0.04〜0.20%、Si:0.
05〜0.50%、Mn:0.4〜2.0%、N:0.
003〜0.015%、Al:≦0.005%を含み、
加えてV≦0.20%、Cr≦0.7%、Nb≦0.0
5%、Ni≦1.0%、Cu≦1.0%、Mo≦0.3
%、の1種または2種以上を含み、残部がFe、及び不
可避不純物からなる溶鋼を予備脱酸処理によって溶存酸
素を重量%で0.003〜0.015%に調整後、さら
にチタン脱酸し、該チタン含有量が重量%で0.005
〜0.025%で、かつ溶鋼の溶存酸素〔O%〕に対
し、−0.006≦〔Ti%〕−2〔O%〕≦0.00
8の関係を満たす鋳片に連続鋳造で鋳造し、該鋳片を1
100〜1300℃の温度域に再加熱後に圧延を開始
し、中間圧延工程のパス間で鋼材表層部の温度をAr3
20℃以下、Ar3−100℃以上に水冷し、その復熱過
程で少なくとも1回以上圧延し、750〜1050℃の
温度範囲で圧延を終了させ、圧延終了後に650〜40
0℃までの冷却速度を0.01℃/s〜0.30℃/s
の範囲内で冷却して製造することを特徴とする靭性の優
れた形鋼の製造方法。
That is, the present invention is to provide a method of manufacturing a high-quality steel material which is economical, efficiently and excellent in toughness without requiring special equipment. The gist of the present invention is as follows: (1) C: 0.04 to 0.20% by weight;
05-0.50%, Mn: 0.4-2.0%, N: 0.
003 to 0.015%, Al: ≤ 0.005%,
The balance of molten steel consisting of Fe and unavoidable impurities is reduced to 0.003 to 0.01% by weight of dissolved oxygen by preliminary deoxidation.
After adjusting to 5%, the titanium was further deoxidized, and the titanium content was 0.005 to 0.025% by weight, and -0.006 ≦ [Ti% based on the dissolved oxygen [O%] of the molten steel. ] -2
[O%] <= 0.008, cast into a slab by continuous casting, re-heated the slab to a temperature range of 1100 to 1300 ° C, started rolling, and rolled in a temperature range of 750 to 1050 ° C. After the end of the rolling, the cooling rate from 650 to 400 ° C. is cooled in the range of 0.01 ° C./s to 0.30 ° C./s to produce a section steel excellent in toughness characterized by being manufactured. Production method. (2) C: 0.04 to 0.20% by weight, Si: 0.
05-0.50%, Mn: 0.4-2.0%, N: 0.
003 to 0.015%, Al: ≤ 0.005%,
The balance of molten steel consisting of Fe and unavoidable impurities is reduced to 0.003 to 0.01% by weight of dissolved oxygen by preliminary deoxidation.
After adjusting to 5%, the titanium was further deoxidized, and the titanium content was 0.005 to 0.025% by weight, and -0.006 ≦ [Ti% based on the dissolved oxygen [O%] of the molten steel. ] -2
[O%] <= 0.008 Casting is performed by continuous casting on a slab that satisfies the relationship, the slab is reheated to a temperature range of 1100 to 1300 ° C, and rolling is started. The temperature of the section is water-cooled to Ar3 -20 ° C or lower and Ar3 -100 ° C or higher, and is rolled at least once in the recuperation process.
Rolling is completed in the temperature range of 0 to 1050 ° C, and after the rolling is completed, the cooling rate to 650 to 400 ° C is set to 0.01 ° C / s.
A method for producing a section steel excellent in toughness, characterized in that the section steel is produced by cooling within a range of 0.30C / s. (3) C: 0.04 to 0.20% by weight, Si: 0.
05-0.50%, Mn: 0.4-2.0%, N: 0.
003 to 0.015%, Al: ≤ 0.005%,
In addition, V ≦ 0.20%, Cr ≦ 0.7%, Nb ≦ 0.0
5%, Ni ≦ 1.0%, Cu ≦ 1.0%, Mo ≦ 0.3
%, And the balance of molten steel consisting of Fe and unavoidable impurities is adjusted to 0.003 to 0.015% by weight of dissolved oxygen by pre-deoxidation treatment. And the titanium content is 0.005% by weight.
0.025% to 0.0025 ≦ [Ti%] − 2 [O%] ≦ 0.00 with respect to the dissolved oxygen [O%] of the molten steel.
8 is cast by continuous casting, and
Rolling is started after reheating to a temperature range of 100 to 1300 ° C, and rolling is ended at a temperature range of 750 to 1050 ° C,
After the end of rolling, the cooling rate to
A method for producing a section steel having excellent toughness, characterized in that it is produced by cooling within a range of 1 ° C / s to 0.30 ° C / s. (4) C: 0.04 to 0.20% by weight, Si: 0.
05-0.50%, Mn: 0.4-2.0%, N: 0.
003 to 0.015%, Al: ≤ 0.005%,
In addition, V ≦ 0.20%, Cr ≦ 0.7%, Nb ≦ 0.0
5%, Ni ≦ 1.0%, Cu ≦ 1.0%, Mo ≦ 0.3
%, And the balance of molten steel containing Fe and inevitable impurities is adjusted to 0.003 to 0.015% by weight of dissolved oxygen by preliminary deoxidation treatment. And the titanium content is 0.005% by weight.
0.025% to 0.0025 ≦ [Ti%] − 2 [O%] ≦ 0.00 with respect to the dissolved oxygen [O%] of the molten steel.
8 is cast by continuous casting, and
Start the rolled after reheating to a temperature range of from 100 to 1,300 ° C., the temperature of the steel surface layer portion between the passes of the intermediate rolling step A r3 -
20 ° C. or less, and water-cooled to A r3 -100 ° C. or more, then rolling at least once in its recuperation process, to complete the rolling in a temperature range of from 750 to 1,050 ° C., after completion of rolling 650-40
The cooling rate to 0 ° C is 0.01 ° C / s to 0.30 ° C / s
A method for producing a section steel having excellent toughness, characterized in that the section is produced by cooling within the range described above.

【0008】[0008]

【作用】鋼材の靭性は、合金成分、結晶粒径による依存
性を有する。即ち、組織中に固溶する成分が少ないほ
ど、あるいは、組織中のフェライト粒が細粒であるほ
ど、靭性は向上する。連続鋳造スラブを素材としてユニ
バーサル熱間圧延により、フランジを有する形鋼、例え
ばH形鋼を製造する場合、フィレット部において素材の
中心偏析が集積され、偏析成分が著しく濃化する。ま
た、同時にフィレット部は他の部位と比較して圧延温度
が高いため、熱間圧延を行っても、例えばフランジ部や
ウェブ部よりもフェライト粒は粗粒化する。
The toughness of the steel depends on the alloy components and the crystal grain size. That is, the toughness is improved as the amount of the component that dissolves in the structure is smaller or the ferrite grains in the structure are finer. When a steel section having a flange, for example, an H-section steel is manufactured by universal hot rolling using a continuously cast slab as a raw material, central segregation of the raw material is accumulated in a fillet portion, and the segregated component is significantly concentrated. At the same time, since the fillet portion has a higher rolling temperature than other portions, even when hot rolling is performed, ferrite grains are coarsened more than, for example, a flange portion or a web portion.

【0009】また、強度の高い形鋼を製造する場合に
は、以下の強化機構を利用することが知られている。 フェライト結晶粒径の微細化 合金元素による固溶体強化 微細析出物による析出強化 このうち、の合金元素による固溶体強化が最も一般的
であるが、例えば、代表的な固溶体強化元素であるMn
の添加は著しく鋼材の焼入れ性を高め、フェライト+パ
ーライト組織をベイナイト組織に変化させる。ベイナイ
ト組織を生成し易い成分系鋼を圧延H形鋼に適用した場
合は、特に圧延工程で素材である連続鋳造スラブの中心
偏析部が集積されるように加工されるフィレット部にお
いて上記Mnが偏析成分として濃化し、ベイナイトおよ
び島状マルテンサイト組織分率が著しく高くなる。その
結果として特に靭性が低下し、場合によっては割れが発
生し、UT欠陥等が出現する。
[0009] It is known to use the following strengthening mechanism when manufacturing a high-strength section steel. Refinement of ferrite crystal grain size Solid solution strengthening by alloying elements Precipitation strengthening by fine precipitates Among them, solid solution strengthening by alloying elements is the most common, for example, Mn, a typical solid solution strengthening element
Addition significantly increases the hardenability of the steel material and changes the ferrite + pearlite structure to a bainite structure. When a component steel that easily forms a bainite structure is applied to a rolled H-section steel, Mn is segregated, particularly in a fillet portion processed so that the center segregation portion of a continuous cast slab as a material is integrated in a rolling process. It is concentrated as a component, and the bainite and island martensite structure fractions are significantly increased. As a result, the toughness is particularly reduced, cracks are generated in some cases, and UT defects and the like appear.

【0010】本発明の特徴は組織中に過飽和に固溶した
CやNを圧延終了後650〜400℃の温度域で徐冷す
ることにより、安定炭化物として析出させ、ベイナイト
あるいは島状マルテンサイトの生成を防止し、靭性の低
下を抑制させるところにある。つぎに本発明が対象とす
る基本成分範囲の限定理由について述べる。
[0010] The feature of the present invention is that C and N dissolved in a supersaturated solid solution in the structure are gradually cooled in a temperature range of 650 to 400 ° C after rolling to precipitate as stable carbides, thereby forming bainite or island-like martensite. The purpose is to prevent the formation and suppress the decrease in toughness. Next, the reasons for limiting the range of the basic components targeted by the present invention will be described.

【0011】まず、Cは鋼の強度を向上させる有効な成
分として添加するもので0.04%未満では、構造用鋼
として必要な強度が得られず、また0.20%を超える
過剰の添加は、母材靭性、耐溶接割れ性、溶接熱影響部
靭性等を著しく低下させるので、下限を0.04%、上
限を0.20%とした。Siは母材の強度確保、溶鋼の
予備脱酸等に必要であるが0.50%を超えると溶接熱
影響部内に硬化組織の高炭素マルテンサイトを生成し、
溶接継手部靭性を著しく低下させる。また、0.05%
未満では必要な溶鋼の予備脱酸ができないため、Si含
有量を0.05%〜0.50%の範囲に限定した。
First, C is added as an effective component for improving the strength of steel. If it is less than 0.04%, the strength required for structural steel cannot be obtained, and excessive addition exceeding 0.20%. , Significantly lowers the base metal toughness, weld cracking resistance, toughness of the weld heat affected zone, etc., so the lower limit was made 0.04% and the upper limit was made 0.20%. Si is necessary for securing the strength of the base material, preliminary deoxidation of molten steel, etc., but if it exceeds 0.50%, high carbon martensite of a hardened structure is generated in the heat affected zone,
Significantly lowers weld joint toughness. In addition, 0.05%
If it is less than the required value, the necessary pre-deoxidation of molten steel cannot be performed, so the Si content was limited to the range of 0.05% to 0.50%.

【0012】Mnは母材の強度、靭性の確保には0.4
%以上の添加が必要であるが、溶接部の靭性、割れ性等
の許容できる範囲内で上限を2.0%とした。Nは不可
避不純物として鋼中に混入する元素であり、過剰に固溶
すると靭性を低下させる元素であるため、できるだけ低
減することが望ましいが、0.003%未満とすると、
脱Nのためのコストがかかり、製造原価が高くなるの
で、下限を0.003%とした。他方0.015%を超
えると母材靭性が劣化し、連続鋳造時に鋼片に表面割れ
が生じるため0.015%を上限とした。
Mn is 0.4 to secure the strength and toughness of the base material.
% Or more is necessary, but the upper limit is set to 2.0% within an allowable range of toughness, cracking property and the like of the welded portion. N is an element mixed into steel as an unavoidable impurity, and is an element that lowers the toughness when it is dissolved excessively. Therefore, it is desirable to reduce N as much as possible.
Since the cost for denitrification is high and the manufacturing cost is high, the lower limit is made 0.003%. On the other hand, if it exceeds 0.015%, the base material toughness deteriorates and the steel slab undergoes surface cracking during continuous casting, so the upper limit was made 0.015%.

【0013】Alは強力な脱酸元素であるが、0.00
5%超の含有は粒内フェライト変態を促進する複合酸化
物が形成されず、靭性の低下がもたらされるため、0.
005%以下とした。不可避不純物として含有するP,
Sはその量について特に限定しないが、凝固時のマクロ
偏析により溶接割れや靭性の低下が生じるので、極力低
減すべきであり、また、本発明でP,S量が、目的とす
る量まで低減できるのは、それぞれ0.02%未満であ
る。
[0013] Al is a strong deoxidizing element, but 0.00
If the content exceeds 5%, a composite oxide that promotes intragranular ferrite transformation is not formed, resulting in a decrease in toughness.
005% or less. P contained as inevitable impurities,
Although the amount of S is not particularly limited, it should be reduced as much as possible because macrosegregation at the time of solidification causes welding cracks and a decrease in toughness. In the present invention, the amounts of P and S are reduced to target amounts. Only less than 0.02% can be achieved in each case.

【0014】以上が本発明の対象となる鋼の基本成分で
あるが、母材強度の上昇及び靭性向上の目的で、V、C
r、Ni、Nb、Cu、Moの1種または2種以上を含
有することができる。まず、VはVNとして粒内フェラ
イト組織の生成とその細粒化、高温強度の確保のために
極めて重要であるが、0.20%超では析出物が過剰に
なり、母材靭性溶接熱影響部靭性が劣化するため上限を
0.20%に制限した。
The above are the basic components of the steel which is the object of the present invention. However, in order to increase the strength of the base material and improve the toughness, V, C
One, two or more of r, Ni, Nb, Cu, and Mo can be contained. First, V is extremely important as VN for the formation of an intragranular ferrite structure, its grain refinement, and the securing of high-temperature strength. However, if it exceeds 0.20%, precipitates become excessive and the base metal toughness affects the welding heat. Since the toughness deteriorates, the upper limit is limited to 0.20%.

【0015】Niは、母材の強靱性を高める極めて有効
な元素であるが、1.0%超の添加は合金コストを増加
させ経済的でないので上限を1.0%とした。Crは焼
入れ性を向上させ、母材の強化、高温強化に有効であ
る。しかし、0.7%を超える過剰の添加は、靭性及び
硬化性の観点から有害となるため上限を0.7%とし
た。
[0015] Ni is a very effective element for increasing the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%. Cr improves the hardenability and is effective for strengthening the base material and strengthening at high temperatures. However, an excessive addition exceeding 0.7% is harmful from the viewpoint of toughness and curability, so the upper limit is set to 0.7%.

【0016】Nbは母材の強靱化には有効であるが、
0.05%を超える過剰の添加は靭性及び硬化性の観点
から有害となるため上限を0.05%とした。Cuは母
材の強化、耐候性に有効な元素であるが、応力除去焼鈍
による焼戻し脆性、溶接割れ、熱間加工割れなどを考慮
して、上限を1.0%とした。Moは母材の強化、耐候
性に有効な元素であるが、溶接割れを考慮して、上限を
0.3%とした。
Although Nb is effective for toughening the base material,
An excessive addition exceeding 0.05% is detrimental from the viewpoint of toughness and curability, so the upper limit was made 0.05%. Cu is an element effective for strengthening the base material and weather resistance, but the upper limit is set to 1.0% in consideration of temper brittleness due to stress relief annealing, welding cracks, hot working cracks, and the like. Mo is an element effective for strengthening the base material and weather resistance, but the upper limit is set to 0.3% in consideration of welding cracks.

【0017】溶鋼の予備脱酸処理を行い、溶存酸素を重
量%で0.003〜0.015%に制御するのは、溶鋼
を高清浄化すると同時に鋳片内に微細な酸化物を分散さ
せるために極めて重要だからである。予備脱酸後の
〔O〕濃度が0.003%未満では粒内フェライト変態
を促進する粒内フェライト生成核の複合酸化物が減少
し、細粒化できないため靭性は向上できない。一方、
0.015%を超える場合は、他の条件を満たしていて
も、酸化物が粗粒化し、脆性破壊の発生起点となり、靭
性を低下させる。以上の理由により、予備脱酸後の
〔O〕濃度を0.003〜0.015%に限定した。
Preliminary deoxidation treatment of the molten steel and control of the dissolved oxygen to 0.003 to 0.015% by weight are performed to purify the molten steel at the same time as dispersing fine oxides in the slab. Because it is extremely important. If the [O] concentration after the preliminary deoxidation is less than 0.003%, the composite oxide of the intragranular ferrite nucleus which promotes the intragranular ferrite transformation decreases, and the grain cannot be refined, so that the toughness cannot be improved. on the other hand,
If the content exceeds 0.015%, the oxide becomes coarse and becomes a starting point of brittle fracture even if other conditions are satisfied, and the toughness is reduced. For the above reasons, the [O] concentration after preliminary deoxidation was limited to 0.003 to 0.015%.

【0018】なお、予備脱酸処理は真空脱ガスとAl、
Si、Zr、Ca、Mg脱酸の1種あるいは2種以上の
組合せで行った。その理由は真空脱ガス処理は直接溶鋼
中の酸素をガス及びCOガスとして除去し、Al、S
i、Zr、Ca、Mg等の強脱酸により生成する酸化物
系介在物は浮上し除去しやすいため、溶鋼の清浄化に極
めて効果的だからである。
The preliminary deoxidizing treatment is performed by vacuum degassing and Al,
Deoxidation was performed using one or more of Si, Zr, Ca, and Mg deoxidation. The reason is that vacuum degassing directly removes oxygen in molten steel as gas and CO gas, and removes Al, S
This is because oxide-based inclusions generated by strong deoxidation such as i, Zr, Ca, and Mg float and are easily removed, and are extremely effective in cleaning molten steel.

【0019】Tiは脱酸材としてTi系酸化物を生成さ
せ、圧延時に粒内フェライトの生成を促進させ、また微
細なTiNを析出させ、オーステナイトの細粒化と粒内
フェライトの生成を促進し、母材及び溶接部の靭性を向
上させる効果があるが、0.005%未満では酸化物中
のTi含有量が不足し、粒内フェライト生成核としての
作用が低下し、他方0.025%を超えると過剰なTi
はTiCを生成し、析出硬化を生じ溶接熱影響部の靭性
を著しく低下させるため0.005〜0.025%に制
限した。
Ti forms a Ti-based oxide as a deoxidizer, promotes the formation of intragranular ferrite during rolling, and precipitates fine TiN to promote austenite grain refinement and the formation of intragranular ferrite. The effect of improving the toughness of the base material and the welded portion is less than 0.005%. However, if the content is less than 0.005%, the Ti content in the oxide becomes insufficient, and the effect as intragranular ferrite generation nuclei decreases. Exceeding excess Ti
Generates TiC, causes precipitation hardening, and significantly lowers the toughness of the weld heat affected zone, so the content is limited to 0.005 to 0.025%.

【0020】さらに溶鋼のTi含有量〔Ti%〕を溶鋼
の溶存酸素〔O%〕に対し−0.006≦〔Ti%〕−
2〔O%〕≦0.008%の関係を満たすように制限し
たのは、この関係において重量%でTiが〔O〕濃度に
対し過剰である場合は粒内フェライト生成核としては無
効なTi2 Oを多数生成して組織の細粒化ができず靭性
が低下し、重量%でTiが〔O〕濃度に対し過少である
場合は粒内フェライト核となる複合酸化物が著しく減少
するため組織の細粒化ができず靭性が低下するためであ
る。Tiの添加順序を最後とするのは製鋼の初期段階で
添加した場合には、Ti酸化物の量と組成の制御を容易
にするためである。
Further, the Ti content [Ti%] of the molten steel is defined as −0.006 ≦ [Ti%] − with respect to the dissolved oxygen [O%] of the molten steel.
2 [O%] ≦ 0.008% is limited to satisfy the relation that if Ti is excessive in weight [O] concentration relative to the [O] concentration, Ti is ineffective as an intragranular ferrite formation nucleus. Since a large amount of 2 O is generated and the structure cannot be refined, the toughness is reduced. If the content of Ti is too small relative to the [O] concentration by weight, the amount of composite oxides serving as intragranular ferrite nuclei is significantly reduced. This is because the structure cannot be refined and the toughness decreases. The reason why the order of addition of Ti is last is to facilitate the control of the amount and composition of Ti oxide when it is added in the initial stage of steelmaking.

【0021】上記の製造方法で溶製した溶鋼を連続鋳造
機により鋳片に製造した後、1100〜1300℃の温
度域に再加熱する。この温度域に再加熱温度を限定した
のは、熱間加工による形鋼の製造には塑性変形を容易に
するため1100℃以上の加熱が必要であり、また、加
熱炉の性能、経済性から上限を1300℃とした。加熱
した鋼材は、粗圧延、中間圧延、仕上圧延の各工程によ
って圧延成形を行う。圧延終了温度を750〜1050
℃としたのは、低温圧延ほど靭性は向上するが、形鋼の
造形上750℃未満での加工は困難であり、また105
0℃を超えての加工は粗粒組織を生成して靭性が低下す
るためである。
After the molten steel produced by the above-described production method is produced into a slab by a continuous casting machine, it is reheated to a temperature range of 1100 to 1300 ° C. The reason for limiting the reheating temperature to this temperature range is that the production of shaped steel by hot working requires heating at 1100 ° C. or higher to facilitate plastic deformation, and also from the performance and economy of the heating furnace. The upper limit was 1300 ° C. The heated steel material is roll-formed in each of the steps of rough rolling, intermediate rolling and finish rolling. Rolling end temperature 750-1050
The reason why the temperature is set to 0 ° C is that the lower the temperature, the more the toughness is improved.
Processing at a temperature exceeding 0 ° C. is because a coarse-grained structure is formed and toughness is reduced.

【0022】加熱した鋼材は、粗圧延、中間圧延、仕上
圧延の各工程によって圧延成形を行う。圧延終了温度を
750〜1050℃としたのは、低温圧延ほど靭性は向
上するが、形鋼の造形上750℃未満での加工は困難で
あり、また1050℃を超えての加工は粗粒組織を生成
して靭性が低下するためである。また、中間圧延工程で
の圧延パス間において鋼材表層部の温度をAr3−20℃
以下、Ar3−100℃以上に水冷し、その復熱過程で少
なくとも1回以上圧延し、750〜1050℃の温度範
囲で圧延を終了させるのは、低温圧延で表層部を極細粒
な組織とし、その後の復熱により、フェライトからオー
ステナイトへ再変態させ、加工歪を除去するためであ
る。この水冷と圧延パス、復熱の組み合わせにより、鋼
材表層部は歪のない極細粒なフェライト+パーライト組
織となり、靭性が向上する。
The heated steel material is roll-formed in each of the steps of rough rolling, intermediate rolling and finish rolling. The reason why the rolling end temperature is set to 750 to 1050 ° C. is that although the toughness is improved as the rolling is performed at a lower temperature, it is difficult to work at a temperature lower than 750 ° C. due to the shaping of the shaped steel. Is generated to lower the toughness. In addition, the temperature of the surface layer of the steel material during the rolling pass in the intermediate rolling process is Ar3-20 ° C.
Hereinafter, water cooled to A r3 -100 ° C. or more, then rolling at least once in its recuperation process, is to terminate the rolling at a temperature range of 750 to 1,050 ° C., the surface layer portion and ultrafine grain tissue at low temperature rolling The purpose is to re-transform the ferrite into austenite by the subsequent reheating to remove the processing strain. By the combination of the water cooling, the rolling pass, and the recuperation, the surface layer of the steel material has an ultrafine grained ferrite + pearlite structure without distortion, and the toughness is improved.

【0023】熱間圧延後に、650〜400℃までの温
度域での平均冷却速度を0.01〜0.30℃/sとし
たのはフィレット部内に過飽和に固溶し、靭性を低下さ
せるC、Nを徐冷却により、冷却過程で焼戻しさせるこ
とで炭化物、窒化物として析出させ、靭性を向上させる
ためである。炭化物、窒化物を充分に析出させるには、
空冷のような自然放冷に委ねるのではなく、適正な冷却
速度を選択して冷却を制御する必要があるが、0.01
℃/s未満では、充分に炭化物化、窒化物化が進行し、
靭性は充分に改善されるものの、冷却速度が遅すぎ生産
効率に支障をきたすため、下限値を0.01℃/sと
し、一方、0.30℃/s超では、炭化物化、窒化物化
が不充分となり、靭性の改善効果は小さいため、上限を
0.30℃/sとした。
After hot rolling, the average cooling rate in the temperature range from 650 to 400 ° C. was set to 0.01 to 0.30 ° C./s because supersaturated solid solution is formed in the fillet portion to reduce toughness. , N are gradually cooled and tempered in a cooling process to precipitate carbides and nitrides, thereby improving toughness . In order to sufficiently precipitate carbides and nitrides,
Rather than relying on natural cooling such as air cooling, proper cooling
It is necessary to control the cooling by selecting the speed, but 0.01
If the temperature is lower than ℃ / s, the carbide and nitride are sufficiently advanced,
Although the toughness is sufficiently improved, the cooling rate is too slow and hinders the production efficiency. Therefore, the lower limit is set to 0.01 ° C./s. On the other hand , if it exceeds 0.30 ° C./s, carbides and nitrides are formed. The upper limit was set to 0.30 ° C./s because the effect was insufficient and the effect of improving toughness was small.

【0024】以下本発明について、実施例に基づいて説
明する。
Hereinafter, the present invention will be described based on examples.

【0025】[0025]

【実施例】試作形鋼は転炉溶製し、成分調整後、連続鋳
造により240mm〜300mm厚鋳片に鋳造した後、図1
に示すレイアウトの加熱炉1で加熱し、粗圧延機2で粗
圧延した後、引き続いて、第1中間圧延機3、第2中間
圧延機4、仕上圧延機5で所定の寸法のH形鋼となるま
で成形を行う。圧延後の冷却速度は冷却床6またはオフ
ライン7において鋼材間隔を調整して冷却するかあるい
は保冷用のカバーにて鋼材を覆いつつ冷却することによ
り650〜400℃間の冷却速度を0.01〜0.30
℃/sに調整する。
EXAMPLE A prototype steel was melted from a converter, the components were adjusted, and then cast into a slab of 240 to 300 mm thick by continuous casting.
After being heated in the heating furnace 1 having the layout shown in FIG. 1 and coarsely rolled by the rough rolling mill 2, subsequently, the first intermediate rolling mill 3, the second intermediate rolling mill 4, and the finishing mill 5 form an H-shaped steel having a predetermined size. Forming is performed until The cooling rate after the rolling is adjusted by cooling the steel material on the cooling floor 6 or the off-line 7 or by cooling while covering the steel material with a cooling cover to reduce the cooling rate between 650 to 400 ° C to 0.01 to 400 ° C. 0.30
Adjust to ° C / s.

【0026】機械特性は、図2に示すH形鋼8のフラン
ジ9の板厚t2 の中心部(1/2t 2 )でフランジ幅全
長(B)の1/4幅(1/4B)、1/2幅(1/2
B)から、及び、ウェブ10の中心部で、ウェブ高さの
1/2部(1/2H)から試験片を採取して求めた。な
お、これらの箇所の特性を求めたのは、フランジ1/4
B部とウェブ1/2H部はフランジ部とウェブ部の各々
の平均的な機械特性を示し、フランジ1/2Bは靭性が
最も低下するフィレット部に相当するので、これら3箇
所によりH形鋼の機械試験特性を代表できるとしたため
である。
The mechanical properties of the H-shaped steel 8 shown in FIG.
Thickness t of J9TwoCenter (1 / 2t Two) At full flange width
(Width (1 / B), 1 / width (1 /) of length (B)
B) and at the center of the web 10, the web height
A test piece was sampled from 1/2 part (1 / 2H) and determined. What
The characteristics of these locations were determined by using the flange 1/4
B part and web 1 / 2H part are flange part and web part respectively
Shows the average mechanical properties of
These three points correspond to the lowest fillet part.
In some places, the mechanical test characteristics of H-section steel can be represented.
It is.

【0027】表1は、試作鋼の化学成分値を示し、表2
は圧延と冷却条件に対する機械試験特性を示す。なお、
加熱温度を1280℃に揃えたのは、一般的に加熱温度
の低減は、機械特性を向上させることは周知であり、高
温加熱条件は機械特性の最低値を示すと推定され、この
値がそれ以下の加熱温度での特性を代表できると判断し
たためである。
Table 1 shows the chemical component values of the prototype steel, and Table 2
Indicates mechanical test characteristics for rolling and cooling conditions. In addition,
It is well known that the heating temperature is adjusted to 1280 ° C., in general, it is well known that the reduction of the heating temperature improves the mechanical properties, and it is estimated that the high-temperature heating condition shows the lowest value of the mechanical properties. This is because it has been determined that the characteristics at the following heating temperatures can be represented.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示すように本発明による鋼1〜6
は、フランジ1/4B部、ウェブ1/2H部、フランジ
1/2Bで目標の母材強度(前記JISG3106)と
0℃でのシャルピー衝撃吸収エネルギー値120(J)
以上を充分に満たすと同時にフランジ1/4B部、ウェ
ブ1/2H部の0℃でのシャルピー衝撃吸収エネルギー
値と比較しても大きな差は発生していないので問題な
い。一方、比較鋼の鋼7は、圧延終了後650〜400
℃間の平均冷却速度は0.32℃/sであるが、母材強
度は規格を満たすものの、フィレット部に相当するフラ
ンジ1/2Bで0℃でのシャルピー衝撃吸収エネルギー
値が100(J)以下であり、本発明鋼よりもフランジ
1/2B部のシャルピー衝撃吸収エネルギーが低いのと
同時に、同一の鋼材に関して、フランジ1/4B部、ウ
ェブ1/2H部の0℃でのシャルピー衝撃吸収エネルギ
ー値と比較して著しく低い値となっている。鋼8は、フ
ランジ板厚が24mmで鋼7のフランジ板厚35mmよりも
11mm薄いサイズで圧延終了後650〜400℃間の平
均冷却速度は1.51℃/sであるが、フランジ1/2
Bで0℃でのシャルピー衝撃吸収エネルギー値は鋼7の
場合と同様にフィレット部に相当するフランジ1/2B
で0℃でのシャルピー衝撃吸収エネルギー値が102
(J)であり、本発明鋼よりもフランジ1/2B部のシ
ャルピー衝撃吸収エネルギーが低いのと同時に、同一の
鋼材に関して、フランジ1/4B部、ウェブ1/2H部
の0℃でのシャルピー衝撃吸収エネルギー値と比較して
著しく低い値となっている。さらに鋼9では、フランジ
板厚が60mmと厚く、圧延終了後650〜400℃間の
平均冷却速度は0.31℃/sであるが、フランジ1/
2での靭性の低下はさらに顕著となる。
As shown in Table 2, steels 1 to 6 according to the present invention
Is the target base metal strength (JIS G3106) at the flange 1 / 4B portion, web 1 / 2H portion, and flange 1 / 2B, and the Charpy impact absorption energy value at 0 ° C of 120 (J).
At the same time, the Charpy impact absorption energy values at 0 ° C. of the flange B B portion and the web ウ ェ ブ H portion at 0 ° C. satisfying the above conditions do not cause a large difference, so that there is no problem. On the other hand, the steel 7 of the comparative steel is 650 to 400 after the end of the rolling.
Although the average cooling rate between ° C is 0.32 ° C / s, the base metal strength satisfies the standard, but the Charpy impact absorption energy value at 0 ° C at the flange 1 / 2B corresponding to the fillet portion is 100 (J). The following shows that the Charpy impact absorption energy of the flange 1 / 2B portion is lower than that of the steel of the present invention, and at the same time, the Charpy impact absorption energy at 0 ° C. of the flange 1 / 4B portion and the web 1 / 2H portion for the same steel material. The value is significantly lower than the value. The steel 8 has a flange plate thickness of 24 mm and a size 11 mm thinner than the flange plate thickness of the steel 7 of 35 mm, and has an average cooling rate of 1.51 ° C./s between 650 ° C. and 400 ° C. after the completion of rolling.
B, the Charpy impact absorption energy value at 0 ° C. is the same as in the case of steel 7;
And Charpy impact absorption energy value at 0 ° C. is 102
(J), the Charpy impact absorption energy of the flange 1 / 2B portion is lower than that of the steel of the present invention, and at the same time, the Charpy impact of the flange 1 / 4B portion and the web 1 / 2H portion at 0 ° C. for the same steel material. The value is significantly lower than the absorbed energy value. Further, in steel 9, the flange plate thickness is as thick as 60 mm, and the average cooling rate between 650 and 400 ° C. after rolling is 0.31 ° C./s.
The decrease in toughness in No. 2 becomes even more remarkable.

【0031】即ち、本発明の要件が全て満たされた時
に、表2に示される鋼1〜6のように、圧延形鋼の機械
試験特性を最も満たしにくいフィレット部においても充
分な強度を有し、UT特性を有する圧延形鋼の製造が可
能になる。なお、本発明が対象とする圧延形鋼は、上記
のH形鋼のみならず、l形鋼、山形鋼、溝形鋼、不等辺
不等厚山形鋼等のフランジを有する形鋼にも適用できる
ことは勿論である。
That is, when all the requirements of the present invention are satisfied, the steel sheet has sufficient strength even in a fillet portion which hardly satisfies the mechanical test characteristics of the rolled section steel, as shown in steels 1 to 6 shown in Table 2. In addition, it becomes possible to produce a rolled steel section having UT characteristics. The rolled section steel to which the present invention is applied is applicable not only to the above-mentioned H-section steel, but also to section steels having flanges such as 1-section steel, angle steel, channel steel, and unequal thickness angle steel. Of course, you can.

【0032】[0032]

【発明の効果】本発明により、靭性の低いフィレット部
においても優れた材質特性を有する形鋼の製造が、効率
的に製造が可能となり、大型建造物の信頼性向上、安全
性確保、経済性の向上等の産業上の効果は極めて顕著な
ものがある。
Industrial Applicability According to the present invention, it is possible to efficiently manufacture a shaped steel having excellent material properties even in a low toughness fillet portion, thereby improving the reliability of a large building, ensuring safety, and economical efficiency. The industrial effects such as improvement of the quality are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法を実施する装置配置列例の説明略図で
ある。
FIG. 1 is an explanatory schematic view of an example of a device arrangement row for implementing the method of the present invention.

【図2】H形鋼の断面形状を示し、各部位の名称と機械
試験片の採取位置を示す図である。
FIG. 2 is a view showing a cross-sectional shape of an H-section steel, showing names of respective parts and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…加熱炉 2…粗圧延機 3…第1中間圧延機 4…第2中間圧延機 5…仕上圧延機 6…冷却床 7…オフライン 8…H形鋼 9…フランジ 10…ウェブ DESCRIPTION OF SYMBOLS 1 ... Heating furnace 2 ... Rough rolling mill 3 ... 1st intermediate rolling mill 4 ... 2nd intermediate rolling mill 5 ... Finishing rolling mill 6 ... Cooling floor 7 ... Offline 8 ... H-shaped steel 9 ... Flange 10 ... Web

フロントページの続き (72)発明者 芝田 雅文 大阪府堺市築港八幡町1番地 新日本製 鐵株式会社 堺製鐵所内 (56)参考文献 特開 平4−83821(JP,A) 特開 平3−249149(JP,A) 特開 昭64−57901(JP,A) 特開 平7−76724(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21D 8/00 G21D 9/00 Continuation of the front page (72) Inventor Masafumi Shibata 1, Sakai, Hachiman-cho, Sakai-shi, Osaka Nippon Steel Corporation Sakai Works (56) References JP-A-4-83821 (JP, A) JP-A-3 -249149 (JP, A) JP-A-64-57901 (JP, A) JP-A-7-76724 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G21D 8/00 G21D 9/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜2.0%、 N:0.003〜0.015%、 Al≦0.005% を含み、残部がFe、及び不可避不純物からなる溶鋼を
予備脱酸処理によって溶存酸素を重量%で0.003〜
0.015%に調整後、さらにチタン脱酸し、該チタン
含有量が重量%で0.005〜0.025%で、かつ溶
鋼の溶存酸素〔O%〕に対し、−0.006≦〔Ti
%〕−2〔O%〕≦0.008の関係を満たす鋳片に連
続鋳造で鋳造し、該鋳片を1100〜1300℃の温度
域に再加熱後に圧延を開始し、750〜1050℃の温
度範囲で圧延を終了させ、圧延終了後に650〜400
℃までの冷却速度を0.01℃/s〜0.30℃/sの
範囲内で冷却して製造することを特徴とする靭性の優れ
た形鋼の製造方法。
C .: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, N: 0.003 to 0.015 by weight%. %, Al ≦ 0.005%, with the balance being 0.003% by weight of dissolved oxygen by pre-deoxidation of molten steel consisting of Fe and unavoidable impurities.
After adjusting to 0.015%, titanium is further deoxidized, and the titanium content is 0.005 to 0.025% by weight, and -0.006 ≦ [with respect to the dissolved oxygen [O%] of the molten steel. Ti
%]-2 [O%] ≦ 0.008, cast by continuous casting, re-heated the slab to a temperature range of 1100 to 1300 ° C., and started rolling. Rolling is terminated in the temperature range, and after rolling is completed, 650 to 400
A method for producing a section steel excellent in toughness, characterized in that the steel is produced by cooling at a cooling rate to 0.01 ° C./s to 0.30 ° C./s.
【請求項2】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜2.0%、 N:0.003〜0.015%、 Al≦0.005% を含み、残部がFe、及び不可避不純物からなる溶鋼を
予備脱酸処理によって溶存酸素を重量%で0.003〜
0.015%に調整後、さらにチタン脱酸し、該チタン
含有量が重量%で0.005〜0.025%で、かつ溶
鋼の溶存酸素〔O%〕に対し、−0.006≦〔Ti
%〕−2〔O%〕≦0.008の関係を満たす鋳片に連
続鋳造で鋳造し、該鋳片を1100〜1300℃の温度
域に再加熱後に圧延を開始し、中間圧延工程のパス間で
鋼材表層部の温度をAr3−20℃以下、Ar3−100℃
以上に水冷し、その復熱過程で少なくとも1回以上圧延
し、750〜1050℃の温度範囲で圧延を終了させ、
圧延終了後に650〜400℃までの冷却速度を0.0
1℃/s〜0.30℃/sの範囲内で冷却して製造する
ことを特徴とする靭性の優れた形鋼の製造方法。
2. In% by weight, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, N: 0.003 to 0.015 %, Al ≦ 0.005%, with the balance being 0.003% by weight of dissolved oxygen by pre-deoxidation of molten steel consisting of Fe and unavoidable impurities.
After adjusting to 0.015%, titanium is further deoxidized, and the titanium content is 0.005 to 0.025% by weight, and -0.006 ≦ [with respect to the dissolved oxygen [O%] of the molten steel. Ti
%]-2 [O%] ≦ 0.008, cast by continuous casting, re-heated the slab to a temperature range of 1100 ° C. to 1300 ° C., and started rolling. The temperature of the surface layer of the steel material is Ar3 -20 ° C or less, and Ar3 -100 ° C
Water-cooling as above, rolling at least once in the recuperation process, terminating the rolling in a temperature range of 750 to 1050 ° C,
After the end of rolling, the cooling rate to
A method for producing a section steel having excellent toughness, characterized in that it is produced by cooling within a range of 1 ° C / s to 0.30 ° C / s.
【請求項3】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜2.0%、 N:0.003〜0.015%、 Al≦0.005% を含み、加えてV≦0.20%、Cr≦0.7%、Nb
≦0.05%、Ni≦1.0%、Cu≦1.0%、Mo
≦0.3%、の1種または2種以上を含み、残部がF
e、及び不可避不純物からなる溶鋼を予備脱酸処理によ
って溶存酸素を重量%で0.003〜0.015%に調
整後、さらにチタン脱酸し、該チタン含有量が重量%で
0.005〜0.025%で、かつ溶鋼の溶存酸素〔O
%〕に対し、−0.006≦〔Ti%〕−2〔O%〕≦
0.008の関係を満たす鋳片に連続鋳造で鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後に圧延
を開始し、750〜1050℃の温度範囲で圧延を終了
させ、圧延終了後に650〜400℃までの冷却速度を
0.01℃/s〜0.30℃/sの範囲内で冷却して製
造することを特徴とする靭性の優れた形鋼の製造方法。
3. In% by weight, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, N: 0.003 to 0.015 %, Al ≦ 0.005%, V ≦ 0.20%, Cr ≦ 0.7%, Nb
≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0%, Mo
≦ 0.3%, the balance being F
e, and the molten steel consisting of unavoidable impurities is adjusted to 0.003 to 0.015% by weight of dissolved oxygen by pre-deoxidation treatment, and is further deoxidized with titanium, and the titanium content is 0.005 to 0.005% by weight. 0.025% and dissolved oxygen [O
%], -0.006 ≦ [Ti%] − 2 [O%] ≦
The slab that satisfies the relationship of 0.008 is cast by continuous casting, the slab is reheated to a temperature range of 1100 to 1300 ° C, rolling is started, and rolling is completed in a temperature range of 750 to 1050 ° C. After completion, cool down to 650-400 ° C
A method for producing a section steel having excellent toughness, characterized by being produced by cooling within a range of 0.01 ° C./s to 0.30 ° C./s.
【請求項4】 重量%で C:0.04〜0.20%、 Si:0.05〜0.50%、 Mn:0.4〜2.0%、 N:0.003〜0.015%、 Al≦0.005% を含み、加えてV≦0.20%、Cr≦0.7%、Nb
≦0.05%、Ni≦1.0%、Cu≦1.0%、Mo
≦0.3%、の1種または2種以上を含み、残部がF
e、及び不可避不純物からなる溶鋼を予備脱酸処理によ
って溶存酸素を重量%で0.003〜0.015%に調
整後、さらにチタン脱酸し、該チタン含有量が重量%で
0.005〜0.025%で、かつ溶鋼の溶存酸素〔O
%〕に対し、−0.006≦〔Ti%〕−2〔O%〕≦
0.008の関係を満たす鋳片に連続鋳造で鋳造し、該
鋳片を1100〜1300℃の温度域に再加熱後に圧延
を開始し、中間圧延工程のパス間で鋼材表層部の温度を
r3−20℃以下、Ar3−100℃以上に水冷し、その
復熱過程で少なくとも1回以上圧延し、750〜105
0℃の温度範囲で圧延を終了させ、圧延終了後に650
〜400℃までの冷却速度を0.01℃/s〜0.30
℃/sの範囲内で冷却して製造することを特徴とする靭
性の優れた形鋼の製造方法。
4. In% by weight, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.4 to 2.0%, N: 0.003 to 0.015 %, Al ≦ 0.005%, V ≦ 0.20%, Cr ≦ 0.7%, Nb
≦ 0.05%, Ni ≦ 1.0%, Cu ≦ 1.0%, Mo
≦ 0.3%, the balance being F
e, and the molten steel consisting of unavoidable impurities is adjusted to 0.003 to 0.015% by weight of dissolved oxygen by pre-deoxidation treatment, and is further deoxidized with titanium, and the titanium content is 0.005 to 0.005% by weight. 0.025% and dissolved oxygen [O
%], -0.006 ≦ [Ti%] − 2 [O%] ≦
A slab satisfying the relationship of 0.008 is cast by continuous casting, the slab is reheated to a temperature range of 1100 to 1300 ° C., and rolling is started. Water cooling to r3 -20 ° C or less, Ar3 -100 ° C or more, and rolling at least once in the recuperation process, 750 to 105
Rolling is completed in a temperature range of 0 ° C.
The cooling rate from 0.01 to 400 ° C is 0.01 ° C / s to 0.30.
A method for producing a section steel having excellent toughness, characterized by being produced by cooling within a range of ° C / s.
JP5226133A 1993-09-10 1993-09-10 Manufacturing method of shaped steel with excellent toughness Expired - Lifetime JP3004155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5226133A JP3004155B2 (en) 1993-09-10 1993-09-10 Manufacturing method of shaped steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5226133A JP3004155B2 (en) 1993-09-10 1993-09-10 Manufacturing method of shaped steel with excellent toughness

Publications (2)

Publication Number Publication Date
JPH0776725A JPH0776725A (en) 1995-03-20
JP3004155B2 true JP3004155B2 (en) 2000-01-31

Family

ID=16840371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5226133A Expired - Lifetime JP3004155B2 (en) 1993-09-10 1993-09-10 Manufacturing method of shaped steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP3004155B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290389B1 (en) * 2011-09-28 2013-07-26 현대제철 주식회사 Shape steel and method of manufacturing the shape steel
WO2015093321A1 (en) 2013-12-16 2015-06-25 新日鐵住金株式会社 H-shaped steel and method for producing same
CN113528935A (en) * 2021-06-02 2021-10-22 包头钢铁(集团)有限责任公司 Al-containing low-temperature-resistant hot-rolled H-shaped steel for structure and production method thereof
CN113699441B (en) * 2021-07-29 2022-10-04 马鞍山钢铁股份有限公司 Flange super-thick hot-rolled H-shaped steel with good low-temperature impact toughness and production method thereof

Also Published As

Publication number Publication date
JPH0776725A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
KR101657847B1 (en) High strength cold rolled steel sheet having excellent surface quality of thin slab, weldability and bendability and method for manufacturing the same
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3385903B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent press formability
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3857875B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH10147835A (en) 590mpa class rolled shape steel and its production
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP2962629B2 (en) Manufacturing method of refractory section steel with excellent internal characteristics in ultrasonic testing
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
JPH09111397A (en) Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991012