JPH09111397A - Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock - Google Patents

Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock

Info

Publication number
JPH09111397A
JPH09111397A JP26964095A JP26964095A JPH09111397A JP H09111397 A JPH09111397 A JP H09111397A JP 26964095 A JP26964095 A JP 26964095A JP 26964095 A JP26964095 A JP 26964095A JP H09111397 A JPH09111397 A JP H09111397A
Authority
JP
Japan
Prior art keywords
less
rolling
steel
maeq
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26964095A
Other languages
Japanese (ja)
Inventor
Koichi Yamamoto
広一 山本
Taku Yoshida
卓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26964095A priority Critical patent/JPH09111397A/en
Publication of JPH09111397A publication Critical patent/JPH09111397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily produce a high tensile strength rolled shape steel by rolling a low carbon bainitic steel bloom, containing specific amounts of Mg, Nb, V, Mo, B, etc., under specific conditions. SOLUTION: A steel bloom for 590N/mm<2> class shape steel, which has a composition containing, by weight, 0.02-0.10% C, 0.05-0.50% Si, 0.4-1.6% Mn, 0.005-0.025% Ti, 0.0005-0.005% Mg, <0.04% Nb, <0.1% V, <0.4% Mo, <0.003% B, <0.004% N, and <0.1% Al or further containing <1% Cr and/or <2% Ni and also containing Nb, V, Mo, and B so that the value of MAEQ, represented by 10[Nb%]+5[V%]+[Mo%]+100[B%], becomes 0.4-1.0, is used. This steel bloom is reheated to 1200-1300 deg.C, hot-rolled, and subjected, one or more times, to a repetition of a water cooling and rolling process in which water cooling is performed between rolling passes to cool the flange surface temp. of a rolled shape steel down to <=700 deg.C one or more times during rolling and rolling is done in the course of recuperation between the following rolling passes. After rolling is finished, slow cooling is successively performed down to 700-400 deg.C at (0.5 to 10) deg.C/sec cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建造物の構造部材
として用いられる靭性の優れた高張力圧延形鋼用の鋳
片、およびそれを素材とする高張力圧延形鋼の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab for high-tensile rolled steel having excellent toughness which is used as a structural member of a building, and a method for producing a high-tensile rolled steel using the slab. is there.

【0002】[0002]

【従来の技術】建築物の超高層化、安全規準の厳格化な
どから、柱用に用いられる鋼材、例えば特に板厚の大き
なサイズのH形鋼(以下、極厚H形鋼と称す)には、一
層の高強度化、高靭性化、低降伏比化が求められてい
る。このような要求特性を満たすために、従来は圧延終
了後に焼準処理などの熱処理を施すことが行われた。熱
処理の付加は熱処理コストと生産効率の低下など大幅な
コスト上昇を招き、経済性に問題があった。この問題を
解決するためには圧延ままで高性能の材質特性を得られ
るように、新しい合金設計による鋳片と製造法の開発が
必要となった。
2. Description of the Related Art Due to the increase in height of buildings and stricter safety standards, steel materials used for pillars, for example, H-beams having a particularly large thickness (hereinafter referred to as extra-thick H-beams) have been developed. There is a demand for higher strength, higher toughness, and lower yield ratio. In order to satisfy such required characteristics, conventionally, a heat treatment such as a normalizing process has been performed after the completion of rolling. The addition of heat treatment causes a significant increase in cost, such as a decrease in heat treatment cost and production efficiency, and has a problem in economy. In order to solve this problem, it was necessary to develop a slab with a new alloy design and a manufacturing method so that high-performance material properties could be obtained as rolled.

【0003】一般に、フランジを有する形鋼、例えばH
形鋼をユニバーサル圧延により製造すると、圧延造形上
の制約およびその形状の特異性からウエブ、フランジ、
フィレットの各部位で圧延仕上げ温度、圧下率、冷却速
度に差を生じる。その結果、部位間に強度、延性、靭性
のバラつきが発生し、例えば溶接構造用圧延鋼材(JISG3
106) 等の規準に満たない部位が生じる。特に、極厚H
形鋼を連続鋳造スラブを素材とし圧延する場合には連続
鋳造設備で製造可能なスラブ最大厚みに限界があるた
め、低圧下比となる。さらに、圧延造形上の寸法精度の
制約から板厚の厚いフランジ部は高温圧延となり、圧延
終了後の鋼材冷却は徐冷となって、ミクロ組織は粗粒化
する。
Generally, a section steel having a flange, for example, H
When a section steel is manufactured by universal rolling, the web, flange,
Differences occur in the rolling finish temperature, rolling reduction, and cooling rate at each part of the fillet. As a result, variations in strength, ductility, and toughness occur between parts, for example, rolled steel for welded structures (JIS G3
106) Some parts do not meet the criteria such as. Especially, extremely thick H
When a shaped steel is rolled from a continuously cast slab, there is a limit to the maximum thickness of the slab that can be produced by a continuous casting facility, so the lower pressure ratio is used. Further, the flange portion having a large thickness is subjected to high-temperature rolling due to the restriction of dimensional accuracy in the rolling molding, and the steel material after the rolling is gradually cooled, and the microstructure is coarsened.

【0004】TMCP(加工熱処理)による細粒化法が
あるが,造形上の制約から形鋼圧延は鋼板の製造法のよ
うな熱間圧延時に大圧下はできない。また,厚鋼板分野
ではVNの析出効果を利用し高強度・高靭性鋼を製造す
る、例えば特公昭62−50548号公報、特公昭62
−54862号公報の技術が提案されているが。しか
し、この方法は590N/mm2 級の高強度材になるとベイ
ナイト組織を含むようになり、このベイナイト組織で
は、高濃度の固溶Nによる高炭素島状マルテンサイトを
生成し靭性を著しく低下させるため高強度化鋼には適用
できない。
Although there is a grain refining method using TMCP (work heat treatment), the shape rolling cannot be greatly reduced during hot rolling as in the method for manufacturing a steel sheet because of restrictions in shaping. Further, in the field of thick steel plates, high strength and high toughness steel is manufactured by utilizing the precipitation effect of VN, for example, Japanese Patent Publication Nos. 62-50548 and 62.
Although the technology of Japanese Patent No. 54862 is proposed. However, this method includes a bainite structure in the case of a high strength material of 590 N / mm 2 grade, and in this bainite structure, high carbon island martensite is generated by a high concentration of solute N, and the toughness is remarkably reduced. Therefore, it cannot be applied to high strength steel.

【0005】[0005]

【発明が解決しようとする課題】前記の課題を解決する
ためには、圧延ままで低炭素ベイナイトを生成させ組織
を微細化する必要がある。それには製鋼過程でのMgお
よびマイクロアロイの微量添加制御による成分調整した
鋳片の製造が必須である。その他に、H形鋼のフランジ
とウェブの結合部のフィレット部はCCスラブの中心偏
析部と一致し、この部位に存在するMnSは低温圧延条
件下では著しく延伸し、板厚方向の絞り値を低下させ、
溶接時にラメラテイ アを生じる場合がある。Mg添加に
よりMgSを生成させ、有害なMnSの生成を阻止しラ
メラテイ アの発生を防止する必要がある。このように従
来の技術では目的の信頼性の高い高強度高靭性の圧延形
鋼をオンラインで製造し安価に提供することは困難であ
る。
In order to solve the above-mentioned problems, it is necessary to generate low carbon bainite as it is rolled to make the structure fine. For that purpose, it is essential to manufacture a slab whose composition is adjusted by controlling a small amount of addition of Mg and microalloy in the steelmaking process. In addition, the fillet part of the joint between the flange of H-section steel and the web coincides with the center segregation part of the CC slab, and MnS present in this part is remarkably stretched under the low temperature rolling condition, and the drawing value in the plate thickness direction is reduced. Lower,
May cause lamellae during welding. It is necessary to generate MgS by adding Mg, prevent harmful MnS from being generated, and prevent lamella formation. As described above, it is difficult for the conventional technique to manufacture the desired highly reliable rolled steel having high strength and high toughness online and to provide it at low cost.

【0006】本発明は従来の発想とは異なり、Mgを添
加し、これにより生成させた微細酸化物とマイクロアロ
イの微量制御添加による低炭素ベイナイト組織の生成と
による組織の微細化により、高強度でかつ高靭性の圧延
形鋼を実現した点にある。加えて採用したTMCPの特
徴は厚鋼板で実施されている強圧下圧延に代わる形鋼圧
延での軽圧下の熱間圧延においても効率的に組織の細粒
化が可能なように圧延パス間で水冷し、圧延と水冷を繰
り返す方法にある。
The present invention is different from the conventional idea in that it has a high strength due to the refinement of the structure by the addition of Mg and the formation of a low carbon bainite structure by the minute control of the fine oxide and the microalloy produced by the addition of Mg. This is the point of achieving a rolled steel with high toughness. In addition, the feature of TMCP adopted is that between rolling passes, it is possible to efficiently refine the structure even in hot rolling under light reduction in shaped steel rolling instead of strong reduction rolling performed for thick steel plates. It is a method of repeating water cooling, rolling and water cooling.

【0007】[0007]

【課題を解決するための手段】本発明は、高強度かつ高
靭性を得ることを目的とし,低炭素ベイナイトの生成に
よる組織微細化を製鋼過程においてのMg添加とN
b、V、Mo、Bの微量添加と高Cu添加による合金設
計および熱間圧延パス間で水冷することにより、鋼板
の表層部と内部に温度差を与え,軽圧下条件下において
も,より高温の内部への圧下浸透を高め,粒内ベイナイ
ト生成核となる加工転位を導入し,粒内ベイナイト生成
核を増加させる。加えて、圧延後のγ/α変態温度域を
冷却制御することにより,その核生成させたベイナイト
の粒成長を抑制する方法によればミクロ組織の細粒化が
でき,高能率で製造コストの安価な制御圧延形鋼の製造
が可能であると言う知見に基づき前記課題を解決したも
ので、その要旨とするところは、以下のとおりである。 重量% で、C:0.02〜0.10% 、Si:0.05 〜0.50% 、Mn:
0.4〜1.6%、Cu:0.7〜1.5%、Ti:0.005〜0.025%、Mg:0.00
05 〜0.005%、Nb:0.04%以下、V :0.1% 以下、Mo:0.4%
以下、B :0.003% 以下、N :0.004% 以下、Al:0.1% 以
下、を含み、かつMAEQ=10[Nb%]+5[V%]+[Mo%]+100[B%]の
式で示すMAEQが0.4 〜1.0 %となるNb,V,Mo,B量を含有
し、残部がFeおよび不可避不純物からなることを特徴と
する590N/mm 2 級形鋼用鋳片。 重量% で、C:0.02〜0.10% 、Si:0.05 〜0.50% 、Mn:
0.4〜1.6%、Cu:0.7〜1.5%、Ti:0.005〜0.025%、Mg:0.00
05 〜0.005%、Nb:0.04%以下、V :0.1% 以下、Mo:0.4%
以下、B :0.003% 以下、N :0.004% 以下、Al:0.1% 以
下、を含み、かつMAEQ=10[Nb%]+5[V%]+[Mo%]+100[B%]の
式で示すMAEQが0.4 〜1.0 %となるNb,V,Mo,B量を含有
し、加えてCr:1.0% 以下、Ni:2.0% 以下、のいずれかの
1種または2種以上を含有し残部がFeおよび不可避不純
物からなることを特徴とする590N/mm 2 級形鋼用鋳
片。 重量% で、C:0.02〜0.10% 、Si:0.05 〜0.50% 、Mn:
0.4〜1.6%、Cu:0.7〜1.5%、Ti:0.005〜0.025%、Mg:0.00
05 〜0.005%、Nb:0.04%以下、V :0.1% 以下、Mo:0.4%
以下、B :0.003% 以下、N :0.004% 以下、Al:0.1% 以
下、を含み、かつMAEQ=10[Nb%]+5[V%]+[Mo%]+100[B%]の
式で示すMAEQが0.4 〜1.0 %となるNb,V,Mo,B量を含有
し、残部がFeおよび不可避不純物からなる鋳片を1200〜
1300℃の温度域に再加熱した後に圧延を開始し、圧延工
程で形鋼のフランジ表面温度を700 ℃以下に水冷し、以
降の圧延パス間の復熱過程で圧延する水冷・圧延工程を
一回以上繰り返し圧延し、圧延終了後に0.5 〜10℃/sの
冷却速度で700 〜400 ℃まで冷却し放冷することを特徴
とする590N/mm2 級高張力圧延形鋼の製造方法。 重量% で、C:0.02〜0.10% 、Si:0.05 〜0.50% 、Mn:
0.4〜1.6%、Cu:0.7〜1.5%、Ti:0.005〜0.025%、Mg:0.00
05 〜0.005%、Nb:0.04%以下、V :0.1% 以下、Mo:0.4%
以下、B :0.003% 以下、N :0.004% 以下、Al:0.1% 以
下、を含み、かつMAEQ=10[Nb%]+5[V%]+[Mo%]+100[B%]の
式で示すMAEQが0.4 〜1.0 %となるNb,V,Mo,B量を含有
し、加えてCr:1.0% 以下、Ni:2.0% 以下、のいずれかの
1種または2種以上を含有し残部がFeおよび不可避不純
物からなる鋳片を1200〜1300℃の温度域に再加熱した後
に圧延を開始し、圧延工程で形鋼のフランジ表面温度を
700 ℃以下に水冷し、以降の圧延パス間の復熱過程で圧
延する水冷・圧延工程を一回以上繰り返し圧延し、圧延
終了後に0.5 〜10℃/sの冷却速度で700 〜400 ℃まで冷
却し放冷することを特徴とする590N/mm2 級高張力圧
延形鋼の製造方法。
The present invention is of high strength and high strength.
For the formation of low carbon bainite for the purpose of obtaining toughness
Microstructure refinement by adding Mg and N in the steelmaking process
Alloying by adding trace amounts of b, V, Mo, B and high Cu
Steel plate by water cooling between the gauge and hot rolling pass
A temperature difference is applied between the surface layer and the inside of the
In addition, it enhances the pressure reduction penetration into the inside at higher temperature,
Intragranular bainite formation by introducing dislocations that become nuclei
Increase the nucleus. In addition, the γ / α transformation temperature range after rolling
Bainite nucleated by cooling control
According to the method of suppressing the grain growth of
Manufacture of controlled rolled steel that can be manufactured with high efficiency and low manufacturing cost
The above problems were solved based on the finding that
Therefore, the main points are as follows. % By weight, C: 0.02-0.10%, Si: 0.05-0.50%, Mn:
0.4-1.6%, Cu: 0.7-1.5%, Ti: 0.005-0.025%, Mg: 0.00
05 to 0.005%, Nb: 0.04% or less, V: 0.1% or less, Mo: 0.4%
B: 0.003% or less, N: 0.004% or less, Al: 0.1% or less
Including below, and MAEQ = 10 [Nb%] + 5 [V%] + [Mo%] + 100 [B%]
Contains the amount of Nb, V, Mo, B that makes the MAEQ in the formula 0.4 to 1.0%
However, the balance is Fe and inevitable impurities.
590N / mm TwoSlab for grade steel. % By weight, C: 0.02-0.10%, Si: 0.05-0.50%, Mn:
0.4-1.6%, Cu: 0.7-1.5%, Ti: 0.005-0.025%, Mg: 0.00
05 to 0.005%, Nb: 0.04% or less, V: 0.1% or less, Mo: 0.4%
B: 0.003% or less, N: 0.004% or less, Al: 0.1% or less
Including below, and MAEQ = 10 [Nb%] + 5 [V%] + [Mo%] + 100 [B%]
Contains the amount of Nb, V, Mo, B that makes the MAEQ in the formula 0.4 to 1.0%
In addition, Cr: 1.0% or less, Ni: 2.0% or less, either
Contains 1 or 2 or more with the balance being Fe and unavoidable impurities
590 N / mm characterized by being composed of TwoCasting for grade steel
Pieces. % By weight, C: 0.02-0.10%, Si: 0.05-0.50%, Mn:
0.4-1.6%, Cu: 0.7-1.5%, Ti: 0.005-0.025%, Mg: 0.00
05 to 0.005%, Nb: 0.04% or less, V: 0.1% or less, Mo: 0.4%
B: 0.003% or less, N: 0.004% or less, Al: 0.1% or less
Including below, and MAEQ = 10 [Nb%] + 5 [V%] + [Mo%] + 100 [B%]
Contains the amount of Nb, V, Mo, B that makes the MAEQ in the formula 0.4 to 1.0%
However, the slab with the balance Fe and unavoidable impurities is 1200-
After reheating to the temperature range of 1300 ℃, start rolling and
After cooling the flange surface temperature of the shaped steel to 700 ° C or less,
The water-cooling / rolling process that is performed in the recuperation process between the descending rolling passes
Repeat rolling one or more times, and after rolling finishes 0.5 ~ 10 ℃ / s
Characterized by cooling to 700 to 400 ° C at the cooling rate and allowing to cool
590N / mmTwoOf high grade rolled steel of high grade. % By weight, C: 0.02-0.10%, Si: 0.05-0.50%, Mn:
0.4-1.6%, Cu: 0.7-1.5%, Ti: 0.005-0.025%, Mg: 0.00
05 to 0.005%, Nb: 0.04% or less, V: 0.1% or less, Mo: 0.4%
B: 0.003% or less, N: 0.004% or less, Al: 0.1% or less
Including below, and MAEQ = 10 [Nb%] + 5 [V%] + [Mo%] + 100 [B%]
Contains the amount of Nb, V, Mo, B that makes the MAEQ in the formula 0.4 to 1.0%
In addition, Cr: 1.0% or less, Ni: 2.0% or less, either
Contains 1 or 2 or more with the balance being Fe and unavoidable impurities
After reheating the slab made of material to the temperature range of 1200 to 1300 ℃
Rolling is started and the flange surface temperature of shaped steel is
Water-cool to 700 ℃ or less and pressurize during subsequent reheating between rolling passes.
Repeat the water-cooling / rolling process by rolling once or more
After completion, cool to 700-400 ℃ at a cooling rate of 0.5-10 ℃ / s.
590 N / mm, characterized by being left to coolTwoHigh tension pressure
Method for manufacturing rolled steel.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。鋼の高強度化はフェライト結晶の微細化合金
元素による固溶体強化、硬化相による分散強化微細
析出物による析出強化等によって達成される。また、高
靭性化は結晶の微細化母相(フェライト)の固溶
N,Cの低減破壊の発生起点となる硬化相の高炭素マ
ルテンサイト及び粗大な酸化物、析出物の低減と微細化
等により達成される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. Higher strength of steel is achieved by solid solution strengthening by ferrite alloy refinement alloying elements, precipitation strengthening by dispersion strengthening fine precipitates by hardening phase, and the like. Higher toughness is the refinement of crystals. Reduction of solid solution N and C in the parent phase (ferrite). Origin of reduced fracture. High carbon martensite and coarse oxides in the hardened phase, reduction and refinement of precipitates, etc. Achieved by

【0009】一般的には鋼の高強度化により靭性は低下
し、高強度化と高靭性化は相反する対処が必要である。
両者を同時に満たす冶金因子は唯一、結晶の微細化であ
る。本発明の特徴は,製鋼工程における,Mg添加によ
る微細Mg酸化物の分散とマイクロアロイング合金設計
に基づく低炭素ベイナイト組織化による組織微細化によ
る高強度・高靭性化を達成するものである。
In general, toughness is reduced by increasing the strength of steel, and it is necessary to contradict high strength and toughness.
The only metallurgical factor that satisfies both at the same time is crystal refinement. The feature of the present invention is to achieve high strength and high toughness by fine grain structure refinement by dispersion of fine Mg oxide by addition of Mg and low carbon bainite microstructure based on microalloying alloy design in the steelmaking process.

【0010】更に本発明では、熱間圧延工程において、
熱間圧延パス間でフランジ表面を水冷し、その復熱時に
圧延することを繰り返すことによりフランジの板厚中心
部に圧下浸透効果を付与し、この部位においてもTMC
Pによる組織微細化効果を高め、この組織微細化により
H形鋼の各部位における母材の機械特性を向上させると
ともにバラツキを低減し均質化を達成するものである。
Further, in the present invention, in the hot rolling step,
By repeatedly cooling the surface of the flange between the hot rolling passes with water and rolling at the time of recuperation, a reduction infiltration effect is imparted to the central portion of the flange thickness, and TMC is also applied to this portion.
The effect of refinement of the structure by P is enhanced, and the refinement of the structure improves the mechanical properties of the base material in each part of the H-section steel and reduces variations to achieve homogenization.

【0011】以下に本発明形鋼の成分範囲と制御条件の
限定理由について述べる。まず、Cは鋼を強化するため
に添加するもので、0.02% 未満では構造用鋼として必要
な強度が得られず。また、0.10% を超える過剰の添加
は、母材靭性、耐溶接割れ性、溶接熱影響部(以下HA
Zと略記)靭性などを著しく低下させるので、下限を0.
02% 、上限を0.10% とした。
The reasons for limiting the composition range and control conditions of the shaped steel of the present invention will be described below. First, C is added to strengthen the steel. If it is less than 0.02%, the strength required for structural steel cannot be obtained. In addition, if added in excess of 0.10%, the base metal toughness, weld crack resistance, and weld heat affected zone (hereinafter HA
(It is abbreviated as Z) It significantly reduces the toughness, etc., so the lower limit is 0.
02% and the upper limit was 0.10%.

【0012】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50% を超えるとHAZ内に
硬化組織の高炭素島状マルテンサイトを生成し、溶接継
手部靭性を著しく低下させる。また、0.05% 未満では溶
鋼の予備脱酸が十分にできないためSi含有量を0.05〜
0.50% の範囲に限定した。Mnは母材の強度、靭性の確
保には0.4%以上の添加が必要であるが、溶接部の靭性、
割れ性などに対する許容濃度の上限から1.6%とした。
Next, Si is necessary for securing the strength of the base metal and pre-deoxidizing molten steel, but if it exceeds 0.50%, high carbon island martensite with a hardened structure is formed in the HAZ and the welded joint part is formed. Remarkably reduces toughness. On the other hand, if it is less than 0.05%, the pre-deoxidation of molten steel cannot be sufficiently performed, so that the Si content is 0.05 to
It was limited to the range of 0.50%. Mn must be added in an amount of 0.4% or more to secure the strength and toughness of the base metal, but
It was set to 1.6% from the upper limit of the allowable concentration for cracking.

【0013】Cuはα温度域での保持及び緩冷却により
α相中の転位上にCu相を析出し,その析出硬化により
母材の常温強度を増加させる。ただし,このα中でのC
u相の析出は0.7%未満ではα中でのCuの固溶限内であ
り,析出が生じないためCu析出による強化は得られな
い。また1.5%以上ではその析出強化は飽和するのでCu:
0.7〜1.5%に限定した。
Cu retains in the α temperature range and is slowly cooled to precipitate a Cu phase on dislocations in the α phase, and the precipitation hardening increases the room temperature strength of the base material. However, C in this α
If the precipitation of u phase is less than 0.7%, it is within the solid solubility limit of Cu in α, and since precipitation does not occur, strengthening by Cu precipitation cannot be obtained. At 1.5% or more, the precipitation strengthening is saturated, so Cu:
Limited to 0.7-1.5%.

【0014】TiはTiNを析出し、固溶Nを低減す
る。このことにより、BNの析出を抑制し、固溶B量を
増加させBによる焼入性上昇効果を高めるために添加す
るものである。また、微細析出したTiNはγ相の細粒
化にも寄与する。これらのTiの作用により強度を上昇
させる。従って、0.005%未満ではTiNの析出量が不足
し、これらの効果を発揮しないためTi量の下限値をO.
005%とした。しかし0.025%を超えると過剰なTiはTi
Cを析出し、その析出硬化により母材および溶接熱影響
部の靭性を劣化させるため0.025%以下に制限した。
Ti precipitates TiN and reduces solid solution N. As a result, it is added to suppress the precipitation of BN, increase the amount of solid solution B, and enhance the hardenability increasing effect of B. The finely precipitated TiN also contributes to the refinement of the γ phase. The action of these Ti increases the strength. Therefore, if less than 0.005%, the precipitation amount of TiN is insufficient, and these effects are not exhibited, so the lower limit of the Ti amount is O.
It was set to 005%. However, if it exceeds 0.025%, excess Ti becomes Ti
C was precipitated, and its precipitation hardening deteriorates the toughness of the base material and the weld heat affected zone, so the content was limited to 0.025% or less.

【0015】Mg添加に使用したMg合金はSi-Mg-Al及び
Ni-Mg である。Mg合金を用いた理由は合金化によりM
g含有濃度を低減し、溶鋼への添加時の脱酸反応を抑制
し、添加時の安全性の確保とMgの歩留を向上させるた
めである。Mgを0.0005〜0.005%に限定するのは、Mg
も強力な脱酸元素であり、晶出したMg酸化物は溶鋼中
で容易に浮上分離されるため0.005%を超えて添加して
も、これ以上は歩留まらないため上限を0.005%とした。
また、0.0005% 未満では目的のMg系酸化物の分散密度
が不足するため下限を0.0005% とした。なお、ここでの
Mg系酸化物は、主にMgOと表記しているが、電子顕
微鏡解析などによると、この酸化物はTi、微量のAl
および不純物として含まれているCaなどとの複合酸化
物を形成している。
The Mg alloy used for adding Mg is Si-Mg-Al and
Ni-Mg. The reason for using Mg alloy is that M
This is because the content of g is reduced, the deoxidation reaction at the time of addition to molten steel is suppressed, the safety at the time of addition and the yield of Mg are improved. Mg is limited to 0.0005-0.005% because Mg
Is also a strong deoxidizing element, and the Mg oxide crystallized is easily floated and separated in molten steel. Therefore, even if it is added in excess of 0.005%, the yield does not exceed this value, so the upper limit was made 0.005%.
If it is less than 0.0005%, the dispersion density of the target Mg-based oxide is insufficient, so the lower limit was made 0.0005%. Although the Mg-based oxide here is mainly described as MgO, according to electron microscopic analysis and the like, this oxide is Ti, a trace amount of Al.
And a complex oxide with Ca and the like contained as impurities.

【0016】Nbは固溶NbとBの共存により著しく焼
入性を上昇させ強度を増加させる目的で添加している。
0.04% 超ではNb炭窒化物を析出量が増加し固溶Nbと
しての効果が飽和するので0.04% 以下に制限した。Vは
微量添加により圧延組織を微細化でき、バナジン炭窒化
物の析出により強化することから低合金化でき溶接特性
を向上できる。しかしながら、Vの過剰な添加は溶接部
の硬化や、母材の高降伏点化をもたらすので、含有量の
上限をV:0.1%とした。
Nb is added for the purpose of significantly increasing hardenability and increasing strength by coexistence of solid solution Nb and B.
If it exceeds 0.04%, the precipitation amount of Nb carbonitride increases and the effect as solid solution Nb is saturated, so it was limited to 0.04% or less. The addition of a small amount of V can make the rolling structure finer and strengthening it by precipitation of vanadium carbonitride, so that a lower alloy can be obtained and welding characteristics can be improved. However, excessive addition of V causes hardening of the weld and higher yield point of the base metal, so the upper limit of the content was made V: 0.1%.

【0017】Moは母材強度および高温強度の確保に有
効な元素である。0.4%超ではMo炭化物(Mo2 C)を
析出し固溶Moとしての焼入性向上効果が飽和するので
0.4%以下に制限した。Bは微量添加で焼入性を上昇させ
強度増加に寄与する。またBは0.003%を超えると鉄ボロ
ン化合物を生成し焼入性を低減させるので0.003%以下に
制限した。
Mo is an element effective for securing the strength of the base material and the high temperature strength. If it exceeds 0.4%, Mo carbide (Mo2 C) will precipitate and the effect of improving the hardenability as solid solution Mo will be saturated.
Limited to 0.4% or less. B increases hardenability by adding a small amount and contributes to an increase in strength. Further, when B exceeds 0.003%, an iron boron compound is formed and hardenability is reduced, so the content is limited to 0.003% or less.

【0018】Nは窒化物を生成し、析出強化および粒成
長を抑制するが、固溶Nはフェライトを強化し、またベ
イナイト相のラス境界に高炭素島状マルテンサイトの生
成を促進し靭性を劣化させるためN含有量を0.004%以下
に制限した。Alを0.1%以下としたのは、Alは強力な
脱酸元素であり、0.1%超の含有では粗大な介在物の生成
および鋳込み時のノズル詰まりをなどを生じるため0.1%
以下に制限した。
N forms nitrides and suppresses precipitation strengthening and grain growth, while solute N strengthens ferrite and promotes formation of high carbon island martensite at lath boundaries of bainite phase to improve toughness. The N content was limited to 0.004% or less for deterioration. Al is set to 0.1% or less because Al is a strong deoxidizing element, and if the content exceeds 0.1%, the formation of coarse inclusions and the nozzle clogging at the time of casting cause 0.1%.
Limited to:

【0019】次にマイクロアロイのなかでNb、V、M
o、Bの含有量について、MAEQ=10[Nb%]+5[V%]+[Mo%]+1
00[B%]の式で示すMAEQが0.4 〜1.0 %となるよう規定し
た。前述のように、本発明においては焼入性を向上さ
せ、かつベーナイト組織を得るために固溶Nb,V,M
oおよびBを添加し、それら各元素の相互の含有量と上
述の焼入性に対する寄与に一定の関係があることを見い
出し、これをマイクロアロイ当量(Micro alloy Equiva
lent:MAEQと定義する。)で整理することができた。こ
の式でのMAEQが0.4 %未満では目標のベイナイト組織割
合が得られず、また1.0 %超ではベイナイトは得られる
ものの過剰元素が炭窒化物として析出し、靭性低下もた
らすため0.4 〜1.0 %の範囲に限定した。
Next, among the micro alloys, Nb, V, M
Regarding the content of o and B, MAEQ = 10 [Nb%] + 5 [V%] + [Mo%] + 1
The MAEQ expressed by the formula of 00 [B%] was specified to be 0.4 to 1.0%. As described above, in the present invention, in order to improve the hardenability and to obtain the bainite structure, solid solution Nb, V, M
By adding o and B, it was found that there was a certain relationship between the mutual contents of these elements and the contribution to the above-mentioned hardenability, and this was found to be the microalloy equivalent (Micro alloy Equiva
lent: Defined as MAEQ. ). If the MAEQ in this formula is less than 0.4%, the target bainite structure ratio cannot be obtained, and if it exceeds 1.0%, bainite can be obtained, but excess elements precipitate as carbonitrides and lead to a decrease in toughness, so the range of 0.4-1.0%. Limited to.

【0020】不可避不純物として含有するP、Sについ
ては、それらの量を特に限定しないが凝固偏析による溶
接割れ、靭性の低下を生じるので、極力低減すべきであ
り、望ましくはP、S量はそれぞれ0.02% 未満に制限す
ることが望ましい。以上の元素に加えて、母材強度の上
昇、および母材の靭性向上の目的で、Cr、Niの1種
または2種以上を含有することができる。
The amounts of P and S contained as unavoidable impurities are not particularly limited, but since weld cracking due to solidification segregation and deterioration of toughness occur, they should be reduced as much as possible, preferably the amounts of P and S respectively. It is desirable to limit it to less than 0.02%. In addition to the above elements, one or more of Cr and Ni can be contained for the purpose of increasing the strength of the base material and improving the toughness of the base material.

【0021】Crは焼入性の向上により、母材の強化に
有効である。しかし1.0%を超える過剰の添加は、靭性お
よび硬化性の観点から有害となるため、上限を1.0%とし
た。Niは母材の強靭性を高める極めて有効な元素であ
るが2.0%を超える添加は合金コストを増加させ経済的で
ないので上限を2.0%とした。上記の処理を経た鋳片は次
に1200〜1300℃の温度域に再加熱する。この温
度域に再加熱温度を限定したのは、熱間加工による形鋼
の製造には塑性変形を容易にするため1200℃以上の
加熱が必要であり、且つV、Nbなどの元素を十分に固
溶させる必要があるため再加熱温度の下限を1200℃
とした。その上限は加熱炉の性能、経済性から1300
℃とした。
[0021] Cr is effective in strengthening the base material by improving the hardenability. However, an excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.0%. Ni is an extremely effective element that enhances the toughness of the base metal, but the addition of more than 2.0% increases the alloy cost and is not economical, so the upper limit was made 2.0%. The slab that has undergone the above treatment is then reheated to a temperature range of 1200 to 1300 ° C. The reason why the reheating temperature is limited to this temperature range is that the manufacturing of shaped steel by hot working requires heating of 1200 ° C. or higher to facilitate plastic deformation, and that elements such as V and Nb are sufficiently added. Since it is necessary to form a solid solution, the lower limit of the reheating temperature is 1200 ° C.
And The upper limit is 1300 from the performance and economical efficiency of the heating furnace.
° C.

【0022】熱間圧延のパス間で水冷し、圧延中に一回
以上、フランジ表面温度を700℃以下に冷却し、次の
圧延パス間の復熱過程で圧延する水冷・圧延工程を1回
以上繰り返し行うとしたのは、圧延パス間の水冷によ
り、フランジの表層部と内部とに温度差を付与し、軽圧
下条件においても内部への加工歪みを浸透させるため
と、水冷により短時間で低温圧延を実現させTMCPを
効率的に行うためである。
One water-cooling / rolling step is performed in which water is cooled between hot rolling passes, the flange surface temperature is cooled to 700 ° C. or less during rolling once, and rolling is performed in the reheat process between the next rolling passes. The reason for repeating the above is to impart a temperature difference between the surface layer portion and the inside of the flange by water cooling between rolling passes, and to permeate the processing strain into the inside even under a light reduction condition, and in a short time by water cooling. This is because low-temperature rolling is realized and TMCP is efficiently performed.

【0023】フランジ表面温度を700℃以下に冷却し
た後、復熱過程で圧延するのは、仕上げ圧延後の加速冷
却による表面の焼入れ硬化を抑制し軟化させるために行
うものである。その理由はフランジ表面温度を700℃
以下に冷却すれば一旦γ/α変態温度を切り、次の圧延
までに表層部は復熱昇温し、圧延はγ/αの二相共存温
度域での加工となり、γ細粒化と加工された微細αとの
混合組織を形成する。これにより表層部の焼入性を著し
く低減でき、加速冷却により生じる表面層の硬化を防止
できるからである。
After the flange surface temperature is cooled to 700 ° C. or lower, rolling in the recuperating process is carried out in order to suppress quench hardening and soften the surface due to accelerated cooling after finish rolling. The reason is that the flange surface temperature is 700 ° C
Once cooled, the γ / α transformation temperature is temporarily cut off, and the surface layer is reheated and heated by the next rolling. Rolling is performed in the γ / α two-phase coexisting temperature range. A mixed structure with the fine α thus formed is formed. Thereby, the hardenability of the surface layer can be significantly reduced, and the hardening of the surface layer caused by accelerated cooling can be prevented.

【0024】また、圧延終了後、引続き、0.5 〜10℃/s
の冷却速度で700〜400℃まで冷却し放冷するとし
たのは、加速冷却によりフェライトの粒成長抑制とベイ
ナイト組織を微細化し高強度・高靭性を得るためであ
る。次いで、加速冷却を700〜400℃で停止するの
は、700℃を超える温度で停止した場合には、表層部
の一部がAr1 点以上となりγ相を残存し、このγ相が、
共存するフェライトを核にフェライト変態し、さらにフ
ェライトが成長し粗粒化するため加速冷却の停止温度を
700℃以下とした。また、400℃未満の冷却では、
その後の放冷中にベイナイト相のラス間に生成する高炭
素マルテンサイトが、冷却中にセメンタイトを析出する
ことにより分解できず、硬化相として存在することにな
る。この高炭素マルテンサイトは脆性破壊の起点として
作用し、靭性の低下を招くことになる。これらの理由に
より、加速冷却の停止温度を700〜400℃に限定し
た。
After the rolling is completed, 0.5 to 10 ° C./s continues.
The reason for cooling to 700 to 400 ° C. at the cooling rate and allowing to cool is to suppress the grain growth of ferrite and refine the bainite structure by accelerated cooling to obtain high strength and high toughness. Next, the accelerated cooling is stopped at 700 to 400 ° C. When the cooling is stopped at a temperature higher than 700 ° C., a part of the surface layer becomes an Ar1 point or more and a γ phase remains.
The stop temperature of the accelerated cooling was set to 700 ° C. or lower because ferrite transformation was performed with the coexisting ferrite as a nucleus. Also, with cooling below 400 ° C.,
The high carbon martensite generated between the laths of the bainite phase during the subsequent cooling can not be decomposed due to the precipitation of cementite during the cooling, and exists as a hardened phase. This high carbon martensite acts as a starting point of brittle fracture, resulting in a decrease in toughness. For these reasons, the stop temperature of the accelerated cooling was limited to 700 to 400 ° C.

【0025】[0025]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Ti、B、
次いでMg合金を添加し、連続鋳造により250 〜300mm
厚鋳片に鋳造した。鋳片の冷却はモールド下方の二次冷
却帯の水量と鋳片の引き抜き速度の選択により制御し
た。該鋳片を加熱し、粗圧延工程の図示は省略するが、
図1に示す、ユニバーサル圧延装置列でH形鋼に圧延し
た。圧延パス間水冷は中間ユニバーサル圧延機4の前後
に水冷装置5aを設け、フランジ外側面のスプレー冷却
とリバース圧延の繰り返しにより行い、圧延後の加速冷
却は仕上げユニバーサル圧延機6で圧延終了後にその後
面に設置した冷却装置5bでフランジ外側面をスプレー
冷却した。
[Examples] Prototype shaped steel was melted in a converter, added with an alloy, and then pre-deoxidized to adjust the oxygen concentration in the molten steel.
Next, add Mg alloy and 250-300mm by continuous casting
It was cast into a thick slab. The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the speed of drawing the slab. Although the slab is heated and the rough rolling step is not shown,
It was rolled into an H-section steel by the universal rolling apparatus train shown in FIG. Water cooling between rolling passes is provided with a water cooling device 5a before and after the intermediate universal rolling mill 4, and spray cooling and reverse rolling are repeated on the outer surface of the flange. Accelerated cooling after rolling is performed after finishing rolling by the finishing universal rolling mill 6. The outer surface of the flange was spray-cooled by the cooling device 5b installed in the above.

【0026】機械的特性は図2に示す、フランジ2の板
厚t2 の中心部(1/2t2 )でフランジ幅全長(B) の1/4,
1/2 幅(1/4B,1/2B) から、採集した試験片を用い求め
た。なお、これらの箇所についての特性を求めたのは、
フランジ1/4F部はH形鋼の平均的な機械的特性を示し、
フランジ1/2F部はその特性が最も低下するので、これら
の2箇所によりH形鋼の機械試験特性を代表できると判
断したためである。
The mechanical characteristics are shown in FIG. 2, which is 1/4 of the overall flange width (B) at the center (1 / 2t2) of the plate thickness t2 of the flange 2.
From the 1/2 width (1 / 4B, 1 / 2B), it was determined using the collected test piece. The characteristics of these points were calculated as
Flange 1 / 4F shows the average mechanical properties of H-section steel,
This is because the properties of the flange 1 / 2F part are most deteriorated, and it was judged that these two points can represent the mechanical test properties of the H-section steel.

【0027】表1、表2には、本発明鋼及び比較鋼の化
学成分値を、表3、表4には、それらの鋼の圧延・加速
冷却条件を,次いで表5、表6には、それらのH形鋼の
機械試験特性値およびAl−Mg系酸化物個数、MAEQ値
を示す。なお、圧延加熱温度を1300℃に揃えたの
は、一般的に加熱温度の低下によりγ粒は細粒化し、機
械試験特性を向上させることは周知であり、高温加熱条
件では機械的特性の最低値を示すと推定され、この値が
それ以下の加熱温度での機械試験特性を代表できると判
断したためである。
Tables 1 and 2 show the chemical composition values of the steels of the present invention and comparative steels, Tables 3 and 4 show the rolling and accelerated cooling conditions of those steels, and Tables 5 and 6 show them. The mechanical test characteristic values, the number of Al-Mg-based oxides, and the MAEQ values of these H-section steels are shown. It is well known that the rolling heating temperature is set to 1300 ° C. It is generally known that the γ grains become finer and the mechanical test characteristics are improved by lowering the heating temperature. This is because it is estimated that the value shows a value, and it is judged that this value can represent the mechanical test characteristics at a heating temperature lower than that.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】表5、6に示すように、本発明によるH形
鋼1〜5、A1〜A2では、降伏強度、抗張力ともに59
0N/mm2級鋼でのJIS規格値を満たしている。すなわち
降伏強度はその下限値の445N/mm2を超え、抗張力も590N
/mm2を超えており、またこれらの降伏比(YS/TS )は0.
8 以下の低YR値を満たしている。シャルピー衝撃値につ
いても−10℃で47(J) を超えておりJIS規格値を
十分に満たしている。
As shown in Tables 5 and 6, in the H-section steels 1 to 5 and A1 to A2 according to the present invention, both the yield strength and the tensile strength are 59.
Meets JIS standard values for 0 N / mm 2 grade steel. That is, the yield strength exceeds its lower limit of 445 N / mm 2 , and the tensile strength is 590 N.
/ mm 2 and their yield ratio (YS / TS) is 0.
A low YR value of 8 or less is satisfied. The Charpy impact value also exceeds 47 (J) at -10 ° C, which sufficiently meets the JIS standard value.

【0035】一方、比較鋼のH形鋼6では、Mo含有量
が、H形鋼6では、Cu含有量が、H形鋼7ではTi含
有量が下限値未満であり、強度が低下し規格値を満たさ
ない。H形鋼8では、Mgが無添加で、組織の微細化が
達成されないため強度は十分であるが、靭性が規格値を
満たしていない。H形鋼9はNが過剰であるため、固溶
BがBNとして無効となり焼入性が低下し強度不足とな
る。またH形鋼10、H形鋼A3では、MAEQ値が本発明
の下限値未満であるため、強度不足を生じる。一方H形
鋼11、H形鋼A4では、MAEQ値が上限値1.0 を超える
ため析出強化を生じ靭性値低下をもたらしその規格値を
満たすことができない。
On the other hand, the H content steel 6 of the comparative steel has a Mo content, the H content steel 6 has a Cu content, and the H shape steel 7 has a Ti content less than the lower limit value. Does not meet the value. In the H-section steel 8, since Mg is not added and the refinement of the structure is not achieved, the strength is sufficient, but the toughness does not satisfy the standard value. Since the H-section steel 9 has an excessive amount of N, the solid solution B becomes ineffective as BN, so that the hardenability decreases and the strength becomes insufficient. Further, in the H-section steel 10 and the H-section steel A3, the MAEQ value is less than the lower limit value of the present invention, so that insufficient strength occurs. On the other hand, in H-section steel 11 and H-section steel A4, since the MAEQ value exceeds the upper limit value of 1.0, precipitation strengthening occurs, the toughness value is lowered, and the standard value cannot be satisfied.

【0036】すなわち、本発明の製造法の要件が総て満
たされた時に、表5、6に示されるH形鋼1〜5、A1
〜A2のように、圧延形鋼の機械試験特性の最も保証し
にくいフランジ板厚1/2,幅1/2 部においても十分な強
度、低温靭性を有する、高張力圧延形鋼の生産が可能に
なる。なお、本発明が対象とする圧延形鋼は上記実施例
のH形鋼に限らずI形鋼、山形鋼、溝形鋼、不等辺不等
厚山形鋼等のフランジを有する形鋼にも適用できること
は勿論である。
That is, when all the requirements of the manufacturing method of the present invention are satisfied, H-section steels 1 to 5 and A1 shown in Tables 5 and 6 are obtained.
It is possible to produce a high-strength rolled steel having sufficient strength and low temperature toughness even at a flange plate thickness of 1/2 and width of 1/2, which is the most difficult to guarantee the mechanical test characteristics of rolled steel, as shown by A2. become. The rolled section steel to which the present invention is applied is not limited to the H section steel of the above embodiment, but is also applicable to section steels having flanges such as I section steel, angle steel, channel steel, and unequal thickness angle steel. Of course, you can.

【0037】[0037]

【発明の効果】本発明による合金設計された鋳片と制御
圧延法を適用した圧延形鋼は機械試験特性の最も保証し
にくいフランジ板厚1/2、幅1/2部においても十分
な強度を有し、優れた靭性を持つ形鋼の製造が圧延まま
で可能となり、大型鋼構造物の信頼性の向上、安全性の
確保、経済性等の産業上の効果は極めて顕著なものであ
る。
According to the present invention, the alloy-designed cast slab and the rolled section steel to which the controlled rolling method is applied have sufficient strength even in a flange plate thickness 1/2 and a width 1/2 part where mechanical test characteristics are hardly guaranteed. The production of shaped steel with excellent toughness becomes possible as it is rolled, and the industrial effects such as improvement of reliability, safety and economical efficiency of large steel structures are extremely remarkable. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法を実施する装置配置例の略図である。FIG. 1 is a schematic view of an example of an apparatus arrangement for performing the method of the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図である。
FIG. 2 is a diagram illustrating a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機 DESCRIPTION OF SYMBOLS 1 ... H-shaped steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water cooling device of the front and rear surface of an intermediate rolling mill 5b ... Finishing rolling machine rear surface cooling device 6 ... Finishing rolling mill

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量% で C:0.02〜0.10% 、 Si:0.05 〜0.50% 、 Mn:0.4〜1.6%、 Cu:0.7〜1.5%、 Ti:0.005〜0.025%、 Mg:0.0005 〜0.005%、 Nb:0.04%以下、 V :0.1% 以下、 Mo:0.4% 以下、 B :0.003% 以下、 N :0.004% 以下、 Al:0.1% 以下、を含み、かつ、MAEQ=10[Nb%]+5[V%]+[Mo
%]+100[B%]の式で示すMAEQが0.4 〜1.0 %となるNb,V,M
o,B 量を含有し、残部がFeおよび不可避不純物からなる
ことを特徴とする590N/mm2 級形鋼用鋳片。
1. By weight%, C: 0.02 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.4 to 1.6%, Cu: 0.7 to 1.5%, Ti: 0.005 to 0.025%, Mg: 0.0005 to 0.005%, Nb: 0.04% or less, V: 0.1% or less, Mo: 0.4% or less, B: 0.003% or less, N: 0.004% or less, Al: 0.1% or less, and MAEQ = 10 [Nb%] + 5 [V%] + [Mo
%] + 100 [B%] MAEQ is 0.4-1.0% Nb, V, M
A slab for 590 N / mm 2 grade steel, containing o and B contents and the balance being Fe and inevitable impurities.
【請求項2】 重量% で C:0.02〜0.10% 、 Si:0.05 〜0.50% 、 Mn:0.4〜1.6%、 Cu:0.7〜1.5%、 Ti:0.005〜0.025%、 Mg:0.0005 〜0.005%、 Nb:0.04%以下、 V :0.1% 以下、 Mo:0.4% 以下、 B :0.003% 以下、 N :0.004% 以下、 Al:0.1% 以下、を含み、かつ、 MAEQ=10[Nb%]+5[V%]+[Mo%]+100[B%]の式で示すMAEQが0.
4 〜1.0 %となるNb,V,Mo,B 量を含有し、更に、Cr:1.0
% 以下、Ni:2.0% 以下、のいずれかの1種または2種以
上を含有し残部がFeおよび不可避不純物からなることを
特徴とする590N/mm2 級形鋼用鋳片。
2. C: 0.02 to 0.10% by weight%, Si: 0.05 to 0.50%, Mn: 0.4 to 1.6%, Cu: 0.7 to 1.5%, Ti: 0.005 to 0.025%, Mg: 0.0005 to 0.005%, Nb: 0.04% or less, V: 0.1% or less, Mo: 0.4% or less, B: 0.003% or less, N: 0.004% or less, Al: 0.1% or less, and MAEQ = 10 [Nb%] + 5 MAEQ shown by the formula of [V%] + [Mo%] + 100 [B%] is 0.
It contains 4 to 1.0% of Nb, V, Mo and B, and Cr: 1.0
%, Ni: 2.0% or less, a 590 N / mm 2 grade steel slab containing any one or more of Ni and 2.0 or more, and the balance being Fe and inevitable impurities.
【請求項3】 重量% で C:0.02〜0.10% 、 Si:0.05 〜0.50% 、 Mn:0.4〜1.6%、 Cu:0.7〜1.5%、 Ti:0.005〜0.025%、 Mg:0.0005 〜0.005%、 Nb:0.04%以下、 V :0.1% 以下、 Mo:0.4% 以下、 B :0.003% 以下、 N :0.004% 以下、 Al:0.1% 以下、を含み、かつ、MAEQ=10[Nb%]+5[V%]+[Mo
%]+100[B%]の式で示すMAEQが0.4 〜1.0 %となるNb,V,M
o,B 量を含有し、残部がFeおよび不可避不純物からなる
鋳片を1200〜1300℃の温度域に再加熱した後に圧延を開
始し、圧延工程で形鋼のフランジ表面温度を700 ℃以下
に水冷し、以降の圧延パス間の復熱過程で圧延する水冷
・圧延工程を一回以上繰り返し圧延し、圧延終了後に0.
5 〜10℃/sの冷却速度で700 〜400 ℃まで冷却し放冷す
ることを特徴とする590N/mm2級高張力圧延形鋼の製
造方法。
3. C: 0.02 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.4 to 1.6%, Cu: 0.7 to 1.5%, Ti: 0.005 to 0.025%, Mg: 0.0005 to 0.005%, in weight%. Nb: 0.04% or less, V: 0.1% or less, Mo: 0.4% or less, B: 0.003% or less, N: 0.004% or less, Al: 0.1% or less, and MAEQ = 10 [Nb%] + 5 [V%] + [Mo
%] + 100 [B%] MAEQ is 0.4-1.0% Nb, V, M
The slab containing O and B and the balance of Fe and unavoidable impurities is reheated to a temperature range of 1200 to 1300 ° C, and then rolling is started to reduce the flange surface temperature of the shaped steel to 700 ° C or less during the rolling process. Water cooling, rolling in the recuperation process between the subsequent rolling passes, the water cooling / rolling process is repeatedly rolled once or more, and after the rolling is completed, 0.
A method for producing a 590 N / mm 2 class high-strength rolled shaped steel, which comprises cooling to 700 to 400 ° C at a cooling rate of 5 to 10 ° C / s and allowing to cool.
【請求項4】 重量% で C:0.02〜0.10% 、 Si:0.05 〜0.50% 、 Mn:0.4〜1.6%、 Cu:0.7〜1.5%、 Ti:0.005〜0.025%、 Mg:0.0005 〜0.005%、 Nb:0.04%以下、 V :0.1% 以下、 Mo:0.4% 以下、 B :0.003% 以下、 N :0.004% 以下、 Al:0.1% 以下、を含み、かつ、MAEQ=10[Nb%]+5[V%]+[Mo
%]+100[B%]の式で示すMAEQが0.4 〜1.0 %となるNb,V,M
o,B 量を含有し、更に、Cr:1.0% 以下、Ni:2.0% 以下の
いずれかの1種または2種以上を含有し残部がFeおよび
不可避不純物からなる鋳片を1200〜1300℃の温度域に再
加熱した後に圧延を開始し、圧延工程で形鋼のフランジ
表面温度を700 ℃以下に水冷し、以降の圧延パス間の復
熱過程で圧延する水冷・圧延工程を一回以上繰り返し圧
延し、圧延終了後に0.5 〜10℃/sの冷却速度で700 〜40
0 ℃まで冷却し放冷することを特徴とする590N/mm2
級高張力圧延形鋼の製造方法。
4. C: 0.02 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.4 to 1.6%, Cu: 0.7 to 1.5%, Ti: 0.005 to 0.025%, Mg: 0.0005 to 0.005% by weight%. Nb: 0.04% or less, V: 0.1% or less, Mo: 0.4% or less, B: 0.003% or less, N: 0.004% or less, Al: 0.1% or less, and MAEQ = 10 [Nb%] + 5 [V%] + [Mo
%] + 100 [B%] MAEQ is 0.4-1.0% Nb, V, M
A slab containing 1 or 2 or more of Cr: 1.0% or less and Ni: 2.0% or less and the balance consisting of Fe and unavoidable impurities at 1200 to 1300 ° C. Rolling is started after reheating to the temperature range, the flange surface temperature of shaped steel is water-cooled to 700 ° C or less in the rolling process, and the water-cooling / rolling process is repeated at least once in the reheating process between rolling passes. After rolling, after finishing rolling 700 ~ 40 at 0.5-10 ℃ / s cooling rate
590N / mm 2 characterized by cooling to 0 ℃ and allowing to cool
Of high grade rolled steel of high grade.
JP26964095A 1995-10-18 1995-10-18 Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock Pending JPH09111397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26964095A JPH09111397A (en) 1995-10-18 1995-10-18 Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26964095A JPH09111397A (en) 1995-10-18 1995-10-18 Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock

Publications (1)

Publication Number Publication Date
JPH09111397A true JPH09111397A (en) 1997-04-28

Family

ID=17475169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26964095A Pending JPH09111397A (en) 1995-10-18 1995-10-18 Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock

Country Status (1)

Country Link
JP (1) JPH09111397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000894A1 (en) * 1997-12-26 2001-01-04 Kawasaki Steel Corporation 590MPa CLASS VERY THICK H-STEEL EXCELLENT IN TOUGHNESS AND PRODUCTION METHOD THEREOF
US6451134B1 (en) 1999-06-24 2002-09-17 Kawasaki Steel Corporation 590MPa class heavy gauge H-shaped steel having excellent toughness and method of producing the same
JPWO2015159793A1 (en) * 2014-04-15 2017-04-13 新日鐵住金株式会社 H-section steel and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000894A1 (en) * 1997-12-26 2001-01-04 Kawasaki Steel Corporation 590MPa CLASS VERY THICK H-STEEL EXCELLENT IN TOUGHNESS AND PRODUCTION METHOD THEREOF
US6451134B1 (en) 1999-06-24 2002-09-17 Kawasaki Steel Corporation 590MPa class heavy gauge H-shaped steel having excellent toughness and method of producing the same
JPWO2015159793A1 (en) * 2014-04-15 2017-04-13 新日鐵住金株式会社 H-section steel and its manufacturing method
US10280476B2 (en) 2014-04-15 2019-05-07 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same

Similar Documents

Publication Publication Date Title
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP3507258B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP3507259B2 (en) 590 MPa class rolled section steel and method for producing the same
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP6295632B2 (en) High strength H-section steel with excellent toughness
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH09111397A (en) Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3426433B2 (en) High tensile rolled steel and method of manufacturing the same
JP2647313B2 (en) Oxide-containing rolled steel with controlled yield point and method for producing the same
JPH09227985A (en) Fire resistant rolled shape steel and its production
JPH10204573A (en) 700×c fire resistant rolled shape steel and its production
JPH0776725A (en) Production of shape steel excellent in toughness
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3285731B2 (en) Rolled section steel for refractory and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020129