JPH10204572A - 700×c fire resistant rolled shape steel and its production - Google Patents

700×c fire resistant rolled shape steel and its production

Info

Publication number
JPH10204572A
JPH10204572A JP1171197A JP1171197A JPH10204572A JP H10204572 A JPH10204572 A JP H10204572A JP 1171197 A JP1171197 A JP 1171197A JP 1171197 A JP1171197 A JP 1171197A JP H10204572 A JPH10204572 A JP H10204572A
Authority
JP
Japan
Prior art keywords
rolling
less
content
steel
section steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1171197A
Other languages
Japanese (ja)
Inventor
Koichi Yamamoto
広一 山本
Hiroaki Satou
寛哲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1171197A priority Critical patent/JPH10204572A/en
Publication of JPH10204572A publication Critical patent/JPH10204572A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a 700 deg.C fire resistant rolled shape steel having high strength and excellent in toughness for the structural member of a building at a low cost by specifying the compsn. composed of C, Si, Mn, Ti, Mg, Nb, V, Mo, N, O and Fe and the contents of B and Al in impurities and forming its microstructure into the specified one contg. fine bainite. SOLUTION: A slab having a compsn. contg., by weight, 0.01 to 0.08% C, 0.05 to 0.25% Si, 0.8 to 1.6% Mn, 0.05 to 0.025% Ti, 0.0005 to 0.0050% Mg, 0.05 to 0.15% Nb, 0.05 to 0.20% V, 0.7 to 1.0% Mo, 0.002 to 0.006% N and 0.003 to 0.006 O, contg., at need, prescribed amounts of Cr, Ni and Cu, and the balance Fe with inevitable impurities in which the content of B is limited to <=0.0003% and the content Al is limited to <=0.005% is subjected to controlled water cooling rolling. Its microstructure is formed into the one composed of, by area, 40 to 80% beinite, and the balance ferrite-pearlite and <=5% high carbon insulator martensite, and in which the grain size of old γimmediately after the completion of hot rolling is regulated to <=40μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建造物の構造部材
として用いられる耐火性と靭性の優れた圧延形鋼および
その製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled section steel having excellent fire resistance and toughness used as a structural member of a building and a method for producing the same.

【0002】[0002]

【従来の技術】建築物の超高層化、建築設計技術の高度
化などから、耐火設計の見直しが建設省総合プロジェク
トにより行われ、昭和62年3月に「新耐火設計法」が
制定された。この規定により、旧法令による火災時に鋼
材の温度を350℃以下にするように耐火被覆するとし
た制限が解除され、鋼材の高温強度と建築物の実荷重と
の兼ね合いにより、それに適合する耐火被覆方法を決定
できるようになった。すなわち600℃での設計強度を
確保できる場合には、それに見合い耐火被覆を削減でき
るようになった。
2. Description of the Related Art Due to the increase in height of buildings and the advancement of building design techniques, review of fire-resistant design was conducted by the Ministry of Construction's comprehensive project, and the "New Fire-resistant Design Law" was enacted in March 1987. . According to this regulation, the restriction on fire-resistant coating to keep the temperature of steel at 350 ° C or less in the event of a fire under the old law is lifted, and the fire-resistant coating method adapted to the high-temperature strength of steel and the actual load of the building is taken into account. Can now be determined. That is, when the design strength at 600 ° C. can be secured, the refractory coating can be reduced accordingly.

【0003】このような動向に対応し、先に特開平2−
77523号公報に耐火性の優れた建築用低降伏比鋼お
よび鋼材並びにその製造方法が提案されている。この先
行技術は、600℃での降伏比が常温時の2/3以上と
なるようにMoおよびNbを添加して高温強度を向上さ
せるものである。鋼材の設計高温強度を600℃に設定
したのは、合金元素による鋼材費の増加分と従来鋼材を
耐火被覆する施工費との兼ね合いから最も経済的である
という知見に基づいたものである。
In response to such a trend, Japanese Patent Laid-Open No.
No. 77523 proposes a low yield ratio steel and a steel material for building having excellent fire resistance and a method for producing the same. In this prior art, high-temperature strength is improved by adding Mo and Nb so that the yield ratio at 600 ° C. becomes 2/3 or more of that at normal temperature. The reason for setting the design high-temperature strength of the steel material to 600 ° C. is based on the finding that it is the most economical in view of a balance between the increase in the cost of the steel material due to the alloying element and the construction cost for the refractory coating of the conventional steel material.

【0004】また、建築物の超高層化に伴い、安全規準
の厳格化等により、柱用に用いられる鋼材、例えば特に
板厚の大きなサイズのH形鋼(以下、極厚H形鋼と称
す)には、一層の高強度化、高靭性化、低降伏比化が求
められている。このような要求特性を満たすために、従
来は圧延終了後に焼準処理などの熱処理を施すことが行
われた。熱処理の付加は熱処理コストと生産効率の低下
など大幅なコスト上昇を招き、経済性に問題があった。
この問題を解決するために、圧延ままで高性能の材質特
性が得られるような新しい合金設計による鋳片と製造法
の開発が必要となった。
[0004] In addition, as buildings become ultra-high-rise, due to stricter safety standards and the like, steel materials used for columns, for example, H-shaped steel having a particularly large plate thickness (hereinafter referred to as extra-thick H-shaped steel). ) Requires higher strength, higher toughness, and lower yield ratio. In order to satisfy such required characteristics, conventionally, a heat treatment such as a normalizing process has been performed after the completion of rolling. The addition of heat treatment causes a significant increase in cost, such as a decrease in heat treatment cost and production efficiency, and has a problem in economy.
In order to solve this problem, it is necessary to develop a slab and a manufacturing method by a new alloy design that can obtain high-performance material properties as rolled.

【0005】一般に、フランジを有する形鋼、例えばH
形鋼をユニバーサル圧延により製造すると、圧延造形上
からの圧延条件(温度、圧下率)の制限およびその形状
の特異性からウエブ、フランジ、フィレットの各部位で
圧延仕上げ温度、圧下率、冷却速度に差を生じる。その
結果、部位間に強度、延性、靭性のバラツキが発生し、
例えば溶接構造用圧延鋼材(JIS G3106) 等の規準に満た
ない部位が生じる。特に極厚H形鋼を連続鋳造鋳片を素
材とし圧延製造する場合には、連続鋳造設備での製造可
能な鋳片最大厚みに限界があり、造形に必要な十分な鋳
片断面積が得られないため、その圧延は低圧下比圧延と
なる。さらに、圧延造形により製品の寸法精度を得るた
めに高温圧延を指向するので板厚の厚いフランジ部は高
温圧延となり、圧延終了後の鋼材冷却も徐冷となる。そ
の結果、ミクロ組織は粗粒化し、強度・靭性が低下す
る。
In general, a section steel having a flange, for example, H
When a section steel is manufactured by universal rolling, the rolling conditions (temperature, rolling reduction) from the roll molding and the uniqueness of the shape limit the rolling finish temperature, rolling reduction, and cooling rate at each part of the web, flange, and fillet. Make a difference. As a result, variations in strength, ductility and toughness occur between the parts,
For example, there are portions that do not meet the standards such as rolled steel materials for welded structures (JIS G3106). In particular, when rolling an extremely thick H-beam using a continuous cast slab as a raw material, there is a limit to the maximum thickness of a slab that can be produced by a continuous casting facility, and a sufficient slab cross-sectional area required for molding can be obtained. Therefore, the rolling is a low reduction ratio rolling. Furthermore, since high-temperature rolling is performed in order to obtain the dimensional accuracy of the product by rolling molding, the flange portion having a large thickness is subjected to high-temperature rolling, and the steel material after rolling is also gradually cooled. As a result, the microstructure becomes coarse and the strength and toughness are reduced.

【0006】圧延プロセスでの組織微細化法として、T
MCP(Thermo-Mechanical-Controlled Process)があ
るが、形鋼圧延では、圧延条件に制限があるので、鋼板
でのTMCPのような低温・大圧下圧延の適用は困難で
ある。また、厚鋼板分野ではVNの析出効果を利用し高
強度・高靭性鋼を製造する、例えば特公昭62−505
48号公報、特公昭62−54862号公報の技術が提
案されている。しかし、この方法を490MPa (50kg
f/mm2)級の製造に適用した場合には、高濃度の固溶Nを
含有することから、生成するベイナイト組織内に高炭素
島状マルテンサイト(以降M*と称する)を生成し、靭
性が著しく低下して規格値をクリアーすることは困難で
あるという問題があった。
As a method of refining the structure in the rolling process, T
Although there is MCP (Thermo-Mechanical-Controlled Process), since rolling conditions are limited in section steel rolling, it is difficult to apply low-temperature / high-pressure rolling such as TMCP to a steel sheet. In the field of heavy steel plates, high strength and high toughness steels are produced by utilizing the precipitation effect of VN. For example, Japanese Patent Publication No. Sho 62-505
No. 48, and Japanese Patent Publication No. 62-54862 have been proposed. However, this method requires 490MPa (50kg
When applied to the production of f / mm 2 ) grade, since it contains a high concentration of solute N, high-carbon island-like martensite (hereinafter referred to as M *) is generated in the generated bainite structure, There was a problem that it was difficult to clear the standard value because the toughness was significantly reduced.

【0007】[0007]

【発明が解決しようとする課題】前記の問題を解決する
ためには、形鋼圧延ままでM*生成量の少ない低炭素ベ
イナイトを生成させ組織を微細化する必要がある。それ
には圧延加熱時のγ粒径を細粒化するために製鋼過程に
おいて、鋳片中に予めMgOおよびTi酸化物(Ti−
O)を微細晶出させ、これらを核にTiNを微細析出さ
せ、加えて、低炭素化するために、微量で高強度が得ら
れるマイクロアロイの微量添加した鋳片を製造する必要
がある。また、H形鋼のフランジとウェブの結合部のフ
ィレット部はCC鋳片の中心偏析帯と一致し、この偏析
帯内のMnSは圧延により著しく延伸する。ここでの高
濃度の元素偏析帯と延伸MnSは板厚方向の絞り値・靭
性を著しく低下させ、さらに溶接時にラメラテイ ア割れ
を生じさせる場合もあり、この有害な作用を持つMnS
の生成を阻止することも大きな課題である。このように
従来の技術では目的の信頼性の高い高強度・高靭性の圧
延形鋼をオンラインで製造し安価に提供することは困難
である。
In order to solve the above-mentioned problems, it is necessary to form a low-carbon bainite with a small amount of M * generated as it is in the form of rolled steel to refine the structure. For this purpose, in order to reduce the γ grain size at the time of rolling and heating, MgO and Ti oxide (Ti-
In order to finely crystallize O), finely precipitate TiN using these as nuclei, and further reduce the carbon content, it is necessary to produce a slab to which a small amount of microalloy, which has a small amount and high strength, is added. The fillet at the joint between the flange of the H-section steel and the web coincides with the central segregation zone of the CC slab, and MnS in this segregation zone is significantly elongated by rolling. The high-concentration elemental segregation zone and stretched MnS here significantly reduce the drawing value and toughness in the sheet thickness direction, and may cause lamella tear cracking during welding.
It is also a major challenge to prevent the generation of. As described above, it is difficult for the conventional technology to manufacture a rolled section steel having high reliability and high strength with high reliability on-line and to provide it at low cost.

【0008】また、従来の耐火鋼では600℃における
高温強度を保証していたが、建築物の耐火被覆を省略で
きる範囲を更に拡大できれば施工費低減等の上で非常に
有利なため、より高温の700℃での高温強度が保証で
きる耐火圧延形鋼が求められていた。そこで本発明は、
従来の焼準処理などの熱処理を施すことなく低コスト
で、すなわち圧延ままで高張力圧延形鋼の製造を可能と
し、建造物の構造部材に用いる、700℃での耐火性を
有しかつ490MPa 級の高強度で靱性の優れた700℃
耐火圧延形鋼およびその製造方法を提供すること目的と
する。
[0008] In addition, the conventional fire-resistant steel guarantees high-temperature strength at 600 ° C. However, if the range in which the fire-resistant coating of a building can be omitted can be further expanded, it is very advantageous in terms of construction cost reduction and the like. There has been a demand for a refractory rolled steel capable of guaranteeing high-temperature strength at 700 ° C. Therefore, the present invention
It is possible to produce high-strength rolled section steel at low cost without performing heat treatment such as conventional normalizing treatment, that is, as-rolled, and has fire resistance at 700 ° C. and 490 MPa used for structural members of buildings. 700 ° C with high strength and excellent toughness
An object of the present invention is to provide a refractory rolled steel and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明の特徴は従来の発
想とは異なり、Moを添加してMo炭化物の析出により
700℃での高温強度を確保すると共に、MgおよびT
iを添加し、これにより生成させた微細なMg系酸化物
(以下「MgO」とも略記する)およびTi酸化物とT
iNの微細分散およびマイクロアロイの微量添加による
低炭素ベイナイト組織の生成とによる組織の微細化によ
り高強度でかつ高靭性の700℃耐火圧延形鋼を実現し
た点にある。
The feature of the present invention is different from the conventional idea, in that Mo is added to secure the high-temperature strength at 700 ° C. by the precipitation of Mo carbide, and that Mg and T are added.
i, and the resulting fine Mg-based oxide (hereinafter abbreviated as “MgO”), Ti oxide and T
The point is that a 700 ° C. refractory rolled steel of high strength and high toughness is realized by making the structure fine by the fine dispersion of iN and the formation of a low carbon bainite structure by adding a small amount of microalloy.

【0010】加えて採用したTMCPの特徴は厚鋼板で
実施されている大圧下圧延に代わる形鋼圧延での軽圧下
の熱間圧延においても効率的に組織の細粒化が可能なよ
うに圧延パス間で水冷し、圧延と水冷を繰り返す方法に
ある。本発明は、圧延ままでM*含有量の少ない低炭素
ベイナイトの微細組織が得られる鋳片を鋳造し、この鋳
片を用い、形鋼圧延において効率的なTMCPを行い高
強度かつ高靭性を有する形鋼を製造することを特徴とし
ている。
In addition, the feature of the TMCP adopted is that the structure can be efficiently refined even in the hot rolling under light reduction in the shape steel rolling instead of the large reduction rolling performed in the thick steel plate. There is a method of cooling with water between passes and repeating rolling and water cooling. The present invention casts a slab in which a low-carbon bainite microstructure with a low M * content is obtained as-rolled, and using this slab, performs efficient TMCP in rolling of a section steel to achieve high strength and high toughness. It is characterized by producing a shaped steel having.

【0011】その鋳片は、製鋼過程において、圧延加熱
時のγ細粒化のために鋳片内にMgおよびTiの添加に
より微細なMgOおよびTi酸化物の晶出とTiNを微
細分散させ、同時に700℃耐火性を確保するためにM
o添加によりMo炭化物を生成させ、加えて、圧延後の
組織内M*を低減できる適正な焼入性を確保するために
合金元素を微量のNb、V添加で代替し、さらに極低B
化を行ない製造する。
In the steelmaking process, in the steelmaking process, Mg and Ti are added to the slab to finely crystallize MgO and Ti oxides and finely disperse TiN in order to reduce γ during rolling and heating. At the same time, M
Mo carbide is generated by the addition of o, and in addition, in order to secure appropriate hardenability that can reduce M * in the structure after rolling, the alloy element is replaced with a small amount of Nb and V, and the extremely low B
And manufacture.

【0012】次いで、この鋳片を圧延造形し形鋼を製造
するが、この圧延形鋼圧延プロセスでは、熱間圧延パス
間で鋼材を水冷することにより、鋼材の表層部と内部に
温度差を与え、軽圧下条件下においても、より高温の鋼
材内部への圧下浸透を高め、γ粒内でのベイナイト生成
核となる加工転位を導入し、その生成核を増加させる。
この方法によればミクロ組織の微細化ができ、高能率で
製造コストの安価な制御圧延形鋼の製造が可能であると
言う知見に基づき前記課題を解決したもので、その要旨
とするところは、以下のとおりである。
Next, the cast slab is rolled and shaped to produce a shaped steel. In this rolled shaped steel rolling process, the temperature difference between the surface layer and the inside of the steel is reduced by water-cooling the steel between hot rolling passes. In addition, even under light rolling conditions, the rolling penetration into the steel material at a higher temperature is increased, and working dislocations that become bainite forming nuclei in γ grains are introduced to increase the number of formed nuclei.
According to this method, the microstructure can be refined, and the above-mentioned problem has been solved based on the finding that it is possible to produce a controlled rolled steel with a high efficiency and a low production cost. It is as follows.

【0013】重量% で、C:0.01〜0.08% 、Si:0.05 〜0.
25% 、Mn:0.8〜1.6%、Ti:0.005〜0.025%、Mg:0.0005 〜
0.0050% 、Nb:0.05 〜0.15% 、V :0.05 〜0.20% 、Mo:
0.7〜1.0%、N :0.002〜0.006%、およびO :0.003〜0.006
%を含み、残部がFeおよび不可避不純物からなり、該不
可避不純物のうち B含有量を0.0003% 以下およびAl含有
量を0.005%以下に制限した化学組成を有し、かつ、ベイ
ナイトの面積率が40〜80%で、残部がフェライト・
パーライトおよび高炭素島状マルテンサイトから成り、
該高炭素島状マルテンサイトの面積率が5%以下であっ
て、熱間圧延完了直後の旧γ粒径が40μm以下である
ミクロ組織を有することを特徴とする700℃耐火圧延
形鋼。
In weight%, C: 0.01-0.08%, Si: 0.05-0.
25%, Mn: 0.8 to 1.6%, Ti: 0.005 to 0.025%, Mg: 0.0005 to
0.0050%, Nb: 0.05-0.15%, V: 0.05-0.20%, Mo:
0.7-1.0%, N: 0.002-0.006%, and O: 0.003-0.006
%, The balance being Fe and unavoidable impurities, the unavoidable impurities having a chemical composition in which the B content was limited to 0.0003% or less and the Al content to 0.005% or less, and the area ratio of bainite was 40%. ~ 80%, the remainder is ferrite
Consisting of perlite and high carbon island martensite,
700 ° C. refractory rolled steel having a microstructure in which the area ratio of the high-carbon island martensite is 5% or less and the old γ grain size immediately after completion of hot rolling is 40 μm or less.

【0014】重量% で、C:0.01〜0.08% 、Si:0.05 〜0.
25% 、Mn:0.8〜1.6%、Ti:0.005〜0.025%、Mg:0.0005 〜
0.0050% 、Nb:0.05 〜0.15% 、V :0.05 〜0.20% 、Mo:
0.7〜1.0%、N :0.002〜0.006%、O :0.003〜0.006%、お
よび Cr:0.1〜1.0%、Ni:0.1〜1.0%およびCu:0.1〜1.0%
のうちの少なくとも1種を含み、残部がFeおよび不可避
不純物からなり、該不可避不純物のうち B含有量を0.00
03% 以下およびAl含有量を0.005%以下に制限した化学組
成を有し、かつ、ベイナイトの面積率が50〜90%
で、残部がフェライト・パーライトおよび高炭素島状マ
ルテンサイトから成り、該高炭素島状マルテンサイトの
面積率が5%以下であって、熱間圧延完了直後の旧γ粒
径が40μm以下であるミクロ組織を有することを特徴
とする700℃耐火圧延形鋼。
In weight%, C: 0.01 to 0.08%, Si: 0.05 to 0.
25%, Mn: 0.8 to 1.6%, Ti: 0.005 to 0.025%, Mg: 0.0005 to
0.0050%, Nb: 0.05-0.15%, V: 0.05-0.20%, Mo:
0.7-1.0%, N: 0.002-0.006%, O: 0.003-0.006%, and Cr: 0.1-1.0%, Ni: 0.1-1.0% and Cu: 0.1-1.0%
And the balance consists of Fe and inevitable impurities, and the B content of the inevitable impurities is 0.00
It has a chemical composition in which the content of Al is limited to not more than 03% and the content of Al is not more than 0.005%, and the area ratio of bainite is 50 to 90%.
The balance is composed of ferrite / pearlite and high carbon island martensite, the area ratio of the high carbon island martensite is 5% or less, and the old γ grain size immediately after completion of hot rolling is 40 μm or less. 700 ° C. refractory rolled section steel having a microstructure.

【0015】重量% で、C:0.01〜0.08% 、Si:0.05 〜0.
25% 、Mn:0.8〜1.6%、Ti:0.005〜0.025%、Mg:0.0005 〜
0.0050% 、Nb:0.05 〜0.15% 、V :0.05 〜0.20% 、Mo:
0.7〜1.0%、N :0.002〜0.006%、およびO :0.003〜0.006
%を含み、残部がFeおよび不可避不純物からなり、該不
可避不純物のうち B含有量を0.0003% 以下およびAl含有
量を0.005%以下に制限した鋳片を、1200〜1300℃の温度
域に加熱した後に圧延を開始し、圧延工程で形鋼のフラ
ンジ表面を700 ℃以下にまで水冷し復熱過程で圧延する
水冷・圧延サイクルを一回以上行い、圧延終了後に放冷
することを特徴とする700℃耐火圧延形鋼の製造方
法。
In weight%, C: 0.01-0.08%, Si: 0.05-0.
25%, Mn: 0.8 to 1.6%, Ti: 0.005 to 0.025%, Mg: 0.0005 to
0.0050%, Nb: 0.05-0.15%, V: 0.05-0.20%, Mo:
0.7-1.0%, N: 0.002-0.006%, and O: 0.003-0.006
%, And the balance consisted of Fe and inevitable impurities, and among the inevitable impurities, a slab having a B content of 0.0003% or less and an Al content of 0.005% or less was heated to a temperature range of 1200 to 1300 ° C. Rolling is started later, and the flange surface of the section steel is water-cooled to 700 ° C. or less in a rolling process, and a water-cooling / rolling cycle of rolling in a recuperation process is performed at least once, and then cooled after finishing the rolling. Method of manufacturing refractory rolled steel.

【0016】重量% で、C:0.01〜0.08% 、Si:0.05 〜0.
25% 、Mn:0.8〜1.6%、Ti:0.005〜0.025%、Mg:0.0005 〜
0.0050% 、Nb:0.05 〜0.15% 、V :0.05 〜0.20% 、Mo:
0.7〜1.0%、N :0.002〜0.006%、O :0.003〜0.006%、お
よびCr:0.1〜1.0%、Ni:0.1〜1.0%およびCu:0.1〜1.0%の
うちの少なくとも1種を含み、残部がFeおよび不可避不
純物からなり、該不可避不純物のうち B含有量を0.0003
% 以下およびAl含有量を0.005%以下に制限した鋳片を、
1200〜1300℃の温度域に加熱した後に圧延を開始し、圧
延工程で形鋼のフランジ表面を700 ℃以下にまで水冷し
復熱過程で圧延する水冷・圧延サイクルを一回以上行
い、圧延終了後に放冷することを特徴とする700℃耐
火圧延形鋼の製造方法。
By weight%, C: 0.01-0.08%, Si: 0.05-0.
25%, Mn: 0.8 to 1.6%, Ti: 0.005 to 0.025%, Mg: 0.0005 to
0.0050%, Nb: 0.05-0.15%, V: 0.05-0.20%, Mo:
0.7 to 1.0%, N: 0.002 to 0.006%, O: 0.003 to 0.006%, and Cr: 0.1 to 1.0%, Ni: 0.1 to 1.0%, and Cu: 0.1 to 1.0% Consists of Fe and inevitable impurities, and the B content of the inevitable impurities is 0.0003.
% Or less and the slab whose Al content is limited to 0.005% or less,
Rolling is started after heating to a temperature range of 1200 to 1300 ° C, and at least one water-cooling / rolling cycle is performed, in which the flange surface of the section steel is water-cooled to 700 ° C or less in the rolling process and rolled in the reheating process. A method for producing a 700 ° C. refractory rolled steel, wherein the steel is allowed to cool later.

【0017】本発明による700℃耐火圧延形鋼は、7
00℃での0.2%耐力が220MPa 以上、常温での表
面から深さ3mm以内の表層硬さがHv210以下であ
ることが望ましい。
The 700 ° C. refractory rolled steel according to the present invention has
Desirably, the 0.2% proof stress at 00 ° C. is 220 MPa or more, and the surface hardness at a depth of 3 mm or less from the surface at room temperature is Hv 210 or less.

【0018】[0018]

【発明の実施の形態】以下、本発明について詳細に説明
する。鋼の高強度化はフェライト結晶の微細化、合
金元素による固溶体強化、硬化相による分散強化、微
細析出物による析出強化等によって達成される。また、
高靭性化は、結晶の微細化、母相(フェライト)の
固溶N、Cの低減、破壊の発生起点となる硬化相の高
炭素マルテンサイト及び粗大な酸化物、析出物の低減と
微小化等により達成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. Strengthening of steel is achieved by refinement of ferrite crystals, solid solution strengthening by alloying elements, dispersion strengthening by hardened phases, precipitation strengthening by fine precipitates, and the like. Also,
Higher toughness is achieved by miniaturization of crystal, reduction of solid solution N and C of mother phase (ferrite), reduction and miniaturization of high carbon martensite and coarse oxides and precipitates of hardened phase which is a starting point of fracture. And so on.

【0019】一般的には鋼の高強度化により靭性は低下
し、高強度化と高靭性化は相反する対処が必要である。
両者を同時に満たす冶金因子は唯一、結晶の微細化であ
る。本発明の特徴は、製鋼工程における、MgおよびT
iの添加による微細なMgOおよびTi酸化物とTiN
の分散およびマイクロアロイング合金設計に基づく低炭
素ベイナイト組織化による組織微細化により高強度・高
靭性化を達成するものである。
In general, the toughness is reduced by increasing the strength of the steel, and it is necessary to contradict high strength and toughness.
The only metallurgical factor that satisfies both at the same time is crystal refinement. A feature of the present invention is that Mg and T
MgO and Ti oxide and TiN by adding i
It achieves high strength and high toughness by microstructural refinement by low carbon bainite microstructure based on the dispersion and microalloying alloy design.

【0020】また鋼の高温強度は、鉄の融点のおよそ1
/2に相当する700℃以下ではほぼ上記常温での強化
機構によって得られる。従来、高温強度の向上
は、一般的にMoおよびCrの添加により析出強化と転
位の消失抑制による高温軟化抵抗を高めることにより行
われていた。しかしMoおよびCrの添加は焼入性を著
しく上昇させ、前記のように形鋼の各部位間で圧延条件
・冷却条件が異なることによりベイナイト生成量が大き
く変動し、常温および高温の強度、延性、靱性が部位間
でばらついて必要値を安定して確保できず、また溶接部
の著しい硬化により溶接熱影響部の靱性が低下するとい
う欠点があった。
The high-temperature strength of steel is about 1 of the melting point of iron.
At 700 ° C. or less, which is equivalent to / 2, it can be obtained by the above-described strengthening mechanism at room temperature. Hitherto, improvement of high-temperature strength has been generally performed by adding Mo and Cr to increase the high-temperature softening resistance due to precipitation strengthening and suppression of dislocation loss. However, the addition of Mo and Cr significantly increases the hardenability, and as described above, the rolling and cooling conditions differ between the sections of the section steel, which greatly changes the amount of bainite formation, and increases the strength and ductility at ordinary and high temperatures. However, the required value cannot be stably secured due to the variation in toughness between the portions, and the toughness of the weld heat affected zone is reduced due to remarkable hardening of the welded portion.

【0021】本発明においては、高温強度をMo炭化物
の析出により確保する。しかしMo添加量を限定したこ
とにより、上記従来のような焼入性の部位間変動による
強度や靱延性のばらつきも溶接熱影響部の靱性低下も起
きることがない。加えて本発明では、熱間圧延工程にお
いて、熱間圧延パス間でフランジ表面を水冷し、その復
熱時に圧延する工程を繰り返すことによりフランジの板
厚中心部に圧下浸透効果を付与し、この部位においても
TMCPによる組織微細化効果を高め、この組織微細化
によりH形鋼の各部位における母材の機械特性を向上さ
せるとともにバラツキを低減し均質化を達成するもので
ある。
In the present invention, high-temperature strength is ensured by precipitation of Mo carbide. However, by limiting the amount of Mo added, there is no variation in the strength and toughness due to the variation in hardenability between the parts as described above and no decrease in the toughness of the heat affected zone. In addition, in the present invention, in the hot rolling step, the flange surface is water-cooled between hot rolling passes, and the rolling process is repeated at the time of reheating to impart a rolling reduction effect to the center of the flange thickness. The microstructure refinement effect of the TMCP is also enhanced in the parts, and the refinement of the microstructure improves the mechanical properties of the base material in each part of the H-section steel, reduces the variation, and achieves homogeneity.

【0022】以下に本発明形鋼の成分範囲と制御条件の
限定理由について述べる。まず、Cは鋼を強化するため
に添加するもので、0.01% 未満では構造用鋼として必要
な強度が得られず、また、0.08% を超える添加では、母
材靭性、耐溶接割れ性、溶接熱影響部(以下HAZと略
記)靭性などを著しく低下させるので、下限を0.01% 、
上限を0.08% とした。
The reasons for limiting the composition range and the control conditions of the section steel of the present invention will be described below. First, C is added to strengthen the steel. If it is less than 0.01%, the strength required for structural steel cannot be obtained, and if it exceeds 0.08%, base metal toughness, weld crack resistance, The heat affected zone (hereinafter abbreviated as HAZ) significantly lowers the toughness and the like, so the lower limit is 0.01%.
The upper limit is set to 0.08%.

【0023】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.25% を超えると母材および
HAZの硬化組織中に高炭素島状マルテンサイトを生成
し、母材および溶接継手部靭性を著しく低下させる。ま
た、0.05% 未満では溶鋼の予備脱酸が十分にできないた
めSi含有量を0.05〜0.25% の範囲に限定した。Mnは
母材の強度確保には0.8%以上の添加が必要であるが、母
材および溶接部の靭性、割れ性などに対する許容濃度か
ら上限を1.6%とした。
Next, Si is necessary for securing the strength of the base material, pre-deoxidizing the molten steel, etc. When it exceeds 0.25%, high-carbon island-like martensite is formed in the hardened structure of the base material and HAZ, It significantly reduces the toughness of the base metal and the welded joint. If the content is less than 0.05%, the preliminary deoxidation of the molten steel cannot be sufficiently performed, so the Si content is limited to the range of 0.05 to 0.25%. Mn must be added at 0.8% or more to secure the strength of the base material, but the upper limit is set to 1.6% from the allowable concentration for the toughness, cracking, and the like of the base material and the welded portion.

【0024】TiはTi酸化物を生成して粒界ピンニン
グによりγ粒を微細化するとともに、TiNを析出して
固溶Nを低減することによりM*の生成を抑制する。ま
た、微細析出したTiNはγ相の細粒化にも寄与する。
これらのTiの作用により組織を微細化し強度・靭性を
向上させる。従って、0.005%未満ではTi酸化物および
TiNの析出量が不足し、これらの効果を発現し得ない
ためTi量の下限値を0.005%とした。しかし0.025%を超
えると過剰なTiはTiCを析出し、その析出硬化によ
り母材および溶接熱影響部の靭性を劣化させるため0.02
5%以下に制限した。
Ti forms Ti oxides to refine γ grains by grain boundary pinning, and suppresses generation of M * by precipitating TiN to reduce solid solution N. The finely precipitated TiN also contributes to the refinement of the γ phase.
By the action of these Tis, the structure is refined and the strength and toughness are improved. Therefore, if the content is less than 0.005%, the precipitation amounts of Ti oxide and TiN are insufficient, and these effects cannot be exerted. Therefore, the lower limit of the Ti content is set to 0.005%. However, if it exceeds 0.025%, excessive Ti precipitates TiC, and the precipitation hardening deteriorates the toughness of the base metal and the weld heat affected zone.
Limited to 5% or less.

【0025】Mgは、Mg系酸化物による粒界ピンニン
グ作用により、熱間圧延直後の旧γ粒径を40μm以下
に微細化するために必要である。Mg添加に使用するM
g合金はSi-Mg-Fe及びNi-Mg が好ましい。Mg合金を用
いる理由は合金化によりMg含有濃度を低減し、溶鋼へ
の添加時の脱酸反応を抑制し、添加時の安全性を確保し
且つMgの歩留りを向上させるためである。Mgを0.00
05〜0.0050% に限定するのは、Mgが強力な脱酸元素で
あり、晶出したMgOは溶鋼中で容易に浮上分離される
ため0.0050% を超えて添加してもこれ以上は歩留らず、
一方0.0005% 未満では旧γ粒径微細化のためのMg系酸
化物の分散密度が不足するためである。なお本明細書中
でMg系酸化物はMgOとも略記してあるが、電子顕微
鏡解析等によると、MgOを主体とし、Ti、微量のA
l、および不純物として含まれているCa等との複合酸
化物である。
Mg is necessary to reduce the old γ grain size immediately after hot rolling to 40 μm or less by the grain boundary pinning action of the Mg-based oxide. M used for Mg addition
The g alloy is preferably Si-Mg-Fe and Ni-Mg. The reason for using the Mg alloy is to reduce the Mg content by alloying, suppress the deoxidation reaction at the time of addition to molten steel, ensure the safety at the time of addition, and improve the yield of Mg. Mg 0.00
The reason for limiting the content to 05 to 0.0050% is that Mg is a strong deoxidizing element, and the crystallized MgO is easily floated and separated in molten steel. Without
On the other hand, if it is less than 0.0005%, the dispersion density of the Mg-based oxide for refining the prior γ particle size becomes insufficient. In this specification, the Mg-based oxide is also abbreviated as MgO, but according to electron microscopic analysis and the like, it is mainly composed of MgO, Ti, and a small amount of A.
1 and a composite oxide with Ca and the like contained as impurities.

【0026】Nbは焼入性を上昇させ強度を増加させる
目的で添加している。この効果の発現には、Nb含有量
は0.05% 以上が必要である。しかし0.15% 超では、Nb
炭窒化物の析出量が増加し固溶Nbとしての効果が飽和
するので0.15% 以下に制限した。Vは微量添加により圧
延組織を微細化でき、バナジン炭窒化物の析出により強
化することから低合金化でき溶接特性を向上できる。こ
の効果の発現には、V含有量は0.05% 以上が必要であ
る。しかしながら、Vの過剰な添加は溶接部の硬化や、
母材の高降伏点化をもたらすので、含有量の上限をV:0.
20% とした。
Nb is added for the purpose of increasing hardenability and increasing strength. To achieve this effect, the Nb content needs to be 0.05% or more. However, if it exceeds 0.15%, Nb
Since the amount of precipitated carbonitride increases and the effect as solid solution Nb saturates, it is limited to 0.15% or less. The addition of a small amount of V can make the rolling structure finer and strengthening it by precipitation of vanadium carbonitride, so that a lower alloy can be obtained and welding characteristics can be improved. To achieve this effect, the V content must be 0.05% or more. However, excessive addition of V hardens the weld and
Since the base material has a high yield point, the upper limit of the content is set to V: 0.
20%.

【0027】Moは、焼入性の向上により常温強度を確
保するとともに、Mo炭化物の析出により高温強度を高
めるために必要な元素である。特に、700 ℃における高
温強度の向上に有効な量のMo炭化物の析出には、Mo
含有量は0.7%以上が必要である。しかし1.0%超では、析
出するMo炭化物が粗大化して靱性が低下するので1.0%
以下に制限した。
Mo is an element necessary to secure normal-temperature strength by improving hardenability and to increase high-temperature strength by precipitation of Mo carbide. In particular, for the precipitation of an effective amount of Mo carbide at 700 ° C.,
The content must be 0.7% or more. However, if it exceeds 1.0%, the precipitated Mo carbides are coarsened and the toughness is reduced.
Limited to:

【0028】Nはα中に固溶し、強度を上昇させるが、
上部ベイナイト組織では、M*を生成し、靭性を劣化さ
せるので、固溶Nはできるだけ低減する必要がある。し
かし、本発明でのNはTiと化合させ鋼中にTiNを微
細析出させ、固溶Nを低減させた上で、TiNによる結
晶の粒成長を抑制し組織微細化効果を発揮させる目的で
添加している。従って、この効果の発現には、N量が0.
002%未満ではTiNの析出量が不足し、0.006%超では析
出量は十分となるが、粗大なTiNが析出し、靭性を損
ねるのでN:0.002 〜0.006%に限定した。
N forms a solid solution in α and increases the strength.
In the upper bainite structure, M * is generated and the toughness is degraded, so that the solute N must be reduced as much as possible. However, in the present invention, N is combined with Ti to finely precipitate TiN in steel to reduce solid solution N, and is added for the purpose of suppressing crystal grain growth by TiN and exerting a structure refinement effect. doing. Therefore, in order for this effect to be manifested, the amount of N should be 0.
If it is less than 002%, the amount of TiN precipitated is insufficient, and if it exceeds 0.006%, the amount of precipitation is sufficient. However, coarse TiN is precipitated and the toughness is impaired, so N was limited to 0.002 to 0.006%.

【0029】Bは微量添加で焼入性を上昇させ強度増加
に寄与する。しかし、0.0003% 超のBを含有すると上部
ベイナイト組織中にM*を生成し靭性を著しく低下させ
ることが判明したので、Bはむしろ不純物として0.0003
% 以下に制限した。Alを0.005%以下としたのは、Al
は強力な脱酸元素であり、0.005%超の含有では、Ti酸
化物の生成が阻害され、微細な分散ができないため、A
lも不純物として0.005%以下に制限した。
B, when added in a small amount, increases the hardenability and contributes to an increase in strength. However, it has been found that when B is contained in excess of 0.0003%, M * is formed in the upper bainite structure and the toughness is significantly reduced.
%. The reason why the content of Al is set to 0.005% or less is that Al
Is a strong deoxidizing element, and if its content exceeds 0.005%, the formation of Ti oxide is inhibited and fine dispersion cannot be performed.
l was also limited to 0.005% or less as an impurity.

【0030】O(酸素)はTi酸化物の生成に不可欠で
あり、それには0.003 %を超える含有が必要であるが、
0.006%を超えて含有すると、生成するTi酸化物粒子は
粗大化し、靭性を低下させるため、O含有量を 0.003〜
0.006%に限定した。不可避不純物として含有するP、S
については、それらの量を特に限定しないが凝固偏析に
よる溶接割れ、靭性低下の原因となるので、極力低減す
べきでありP、S量はそれぞれ0.02% 未満に制限するこ
とが望ましい。
O (oxygen) is indispensable for the formation of Ti oxide, and its content needs to be more than 0.003%.
When the content exceeds 0.006%, the generated Ti oxide particles are coarsened, and the toughness is reduced.
Limited to 0.006%. P and S contained as unavoidable impurities
The amounts of P and S are not particularly limited, but may cause welding cracks and decrease in toughness due to solidification segregation. Therefore, the contents of P and S should be reduced as much as possible.

【0031】以上の元素に加えて、母材強度の上昇、お
よび母材の靭性向上の目的で、Cr、NiおよびCuの
うちの少なくとも1種を含有することができる。Crは
焼入性の向上により、母材の強化に有効である。この効
果の発現にはCr含有量は0.1%以上が必要である。しか
し1.0%を超える過剰の添加は、靭性および硬化性の観点
から有害となるため、上限を1.0%とした。
In addition to the above elements, at least one of Cr, Ni and Cu can be contained for the purpose of increasing the strength of the base material and improving the toughness of the base material. Cr is effective in strengthening the base material by improving the hardenability. In order to achieve this effect, the Cr content must be 0.1% or more. However, an excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.0%.

【0032】Niは母材の強靭性を高める極めて有効な
元素である。この効果の発現にはNi含有量は0.1%以上
が必要である。しかし、1.0%を超える添加は合金コスト
を増加させ経済的でないので上限を1.0%とした。Cuは
α温度域での保持及び緩冷却によりα相中の転位上にC
u相を析出し、その析出硬化により母材の常温強度を増
加させる。ただし、このα中でのCu相の析出は0.1%未
満ではα中でのCuの固溶限内であり、析出が生じない
ためCu析出による強化は得られない。また1.0%以上で
はその析出強化は飽和するのでCu:0.1〜1.0%に限定し
た。
Ni is an extremely effective element for increasing the toughness of the base material. To achieve this effect, the Ni content must be 0.1% or more. However, the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%. Cu forms C on dislocations in the α phase by holding in the α temperature range and slowly cooling.
The u phase is precipitated, and the room temperature strength of the base material is increased by the precipitation hardening. However, if the precipitation of the Cu phase in α is less than 0.1%, it is within the solid solubility limit of Cu in α, and since precipitation does not occur, strengthening by Cu precipitation cannot be obtained. At 1.0% or more, the precipitation strengthening saturates, so Cu was limited to 0.1 to 1.0%.

【0033】本発明の圧延形鋼は、490MPa (50kg
f/mm2)級の引張強さと靱性とを同時に確保するために、
ベイナイトの面積率が50〜90%で、残部がフェライ
ト・パーライトおよび高炭素島状マルテンサイトから成
り、該高炭素島状マルテンサイトの面積率が5%以下で
あるミクロ組織を有することが必要である。また、本発
明の耐火圧延形鋼は490MPa 級の引張強さを有する
が、梁材として用いる際のボルト穴を開けるために、表
面から深さ3mm以内の表層硬さがHv210以下であ
ることが望ましい。
The rolled section steel of the present invention has a capacity of 490 MPa (50 kg).
f / mm 2 ) class tensile strength and toughness at the same time,
It is necessary to have a microstructure in which the area ratio of bainite is 50 to 90% and the balance is composed of ferrite pearlite and high carbon island martensite, and the area ratio of the high carbon island martensite is 5% or less. is there. Further, although the fire-resistant rolled section steel of the present invention has a tensile strength of 490 MPa class, the surface hardness within a depth of 3 mm from the surface is not more than Hv210 in order to drill bolt holes when used as a beam. desirable.

【0034】上記のミクロ組織および表層硬さは、本発
明の方法によって実現できる。すなわち、上記の化学組
成を有する鋳片を1200〜1300℃の温度域に再加
熱する。この温度域に再加熱温度を限定したのは、熱間
加工による形鋼の製造には塑性変形を容易にするため1
200℃以上の加熱が必要であり、且つMo、V、Nb
などの元素を十分に固溶させる必要があるため再加熱温
度の下限を1200℃とした。その上限は加熱炉の性
能、経済性から1300℃とした。
The above microstructure and surface hardness can be realized by the method of the present invention. That is, the slab having the above chemical composition is reheated to a temperature range of 1200 to 1300 ° C. The reason for limiting the reheating temperature to this temperature range is that in the production of shaped steel by hot working, plastic deformation is easily performed.
Heating of 200 ° C or more is required, and Mo, V, Nb
Since it is necessary to sufficiently dissolve such elements as a solid solution, the lower limit of the reheating temperature is set to 1200 ° C. The upper limit was set to 1300 ° C. in view of the performance and economy of the heating furnace.

【0035】熱間圧延のパス間で水冷し、圧延中に、フ
ランジ表面温度を700℃以下に冷却し、次の圧延パス
間の復熱過程で圧延する水冷・圧延サイクルを1回以上
行うとしたのは、圧延パス間の水冷により、フランジの
表層部と内部とに温度差を付与し、軽圧下条件において
も内部への加工歪みを浸透させるためと、水冷により短
時間で低温圧延を実現させTMCPを効率的に行うため
である。
Water-cooling between hot rolling passes, the surface temperature of the flange is reduced to 700 ° C. or less during rolling, and a water-cooling / rolling cycle of rolling in the reheating process between the next rolling passes is performed at least once. Water cooling between the rolling passes gives a temperature difference between the surface layer and the inside of the flange to penetrate the processing strain into the interior even under light rolling conditions. This is for performing the TMCP efficiently.

【0036】フランジ表面温度を700℃以下に冷却し
た後、復熱過程で圧延するのは、仕上げ圧延後の加速冷
却による表面の焼入れ硬化を抑制し軟化させるために行
うものである。その理由はフランジ表面温度を700℃
以下に冷却すれば一旦γ/α変態温度を切り、次の圧延
までに表層部は復熱昇温し、圧延はγ/αの二相共存温
度域での加工となり、γ細粒化と加工された微細αとの
混合組織を形成する。これにより表層部の焼入性を著し
く低減でき、加速冷却により生じる表面層の硬化を防止
できるからである。
Rolling in the reheating process after the flange surface temperature is cooled to 700 ° C. or lower is performed in order to suppress quenching and hardening of the surface due to accelerated cooling after finish rolling and to soften the surface. The reason is that the flange surface temperature is 700 ° C
Once cooled, the γ / α transformation temperature is temporarily cut off, and the surface layer is reheated and heated by the next rolling. Rolling is performed in the γ / α two-phase coexisting temperature range. A mixed structure with the fine α thus formed is formed. Thereby, the hardenability of the surface layer can be significantly reduced, and the hardening of the surface layer caused by accelerated cooling can be prevented.

【0037】[0037]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Ti、Mg
合金を順次添加し、連続鋳造により250 〜300mm 厚鋳片
に鋳造した。鋳片の冷却はモールド下方の二次冷却帯の
水量と鋳片の引き抜き速度の選択により制御した。該鋳
片を加熱し、粗圧延工程の図示は省略するが、図1に示
す、ユニバーサル圧延装置列でH形鋼に圧延した。圧延
パス間水冷は中間ユニバーサル圧延機4の前後に水冷装
置5を設け、フランジ外側面のスプレー冷却とリバース
圧延の繰り返しにより行い、圧延後の加速冷却は仕上げ
ユニバーサル圧延機6で圧延終了後に放冷した。
EXAMPLE A prototype steel was melted in a converter, an alloy was added, preliminary deoxidation was performed, and the oxygen concentration of the molten steel was adjusted.
Alloys were sequentially added and cast into 250-300 mm thick slabs by continuous casting. The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the speed of drawing the slab. The slab was heated and rolled into an H-beam by a universal rolling mill row shown in FIG. 1, although illustration of the rough rolling step was omitted. Water cooling between rolling passes is provided with a water cooling device 5 before and after the intermediate universal rolling mill 4, and spray cooling and reverse rolling are repeatedly performed on the outer surface of the flange. Accelerated cooling after rolling is finished by the finishing universal rolling mill 6 and then cooled after finishing rolling. did.

【0038】機械特性は図2に示す、フランジ2の板厚
t2 の中心部(1/2t2 )でフランジ幅全長(B) の1/4,1/
2 幅(1/4B,1/2B) から、採集した試験片を用い求めた。
なお、これらの箇所についての特性を求めたのは、フラ
ンジ1/4F部はH形鋼の平均的な機械特性を示し、フラン
ジ1/2F部はその特性が最も低下するので、これらの2箇
所によりH形鋼の機械試験特性を代表できると判断した
ためである。
The mechanical characteristics are shown in FIG. 2 at the center (1 / 2t2) of the thickness t2 of the flange 2 at 1 / 4,1 / of the overall flange width (B).
2 From the width (1 / 4B, 1 / 2B), it was determined using test specimens collected.
The properties of these parts were determined as follows: The flange 1 / 4F shows the average mechanical properties of the H-section steel, and the flange 1 / 2F has the lowest properties. This is because it was judged that the mechanical test characteristics of the H-section steel could be represented by the above.

【0039】表1、表2には、本発明鋼及び比較鋼の化
学成分値を、表3、表4には、それらの鋼の圧延中の水
冷回数および圧延仕上げ温度を示す。次いで表5、表6
には、それらのH形鋼の機械試験特性値、フランジ側面
の表面硬さおよびベイナイト、M*の面積率を示す。な
お、圧延加熱温度は1300℃に揃えた。この温度に設定し
たのは、一般的に加熱温度の低下によりγ粒は細粒化
し、機械試験特性を向上させることは周知であり、高温
加熱条件では機械特性の最低値を示すと推定され、この
値がそれ以下の加熱温度での機械試験特性を代表できる
と判断したためである。また、各表中で下線を付した数
値は本発明の範囲外である。
Tables 1 and 2 show the chemical composition values of the steels of the present invention and the comparative steels, and Tables 3 and 4 show the water cooling times and rolling finishing temperatures of these steels during rolling. Next, Tables 5 and 6
Shows the mechanical test characteristic values of these H-section steels, the surface hardness of the flange side surfaces, and the bainite and M * area ratios. Note that the rolling heating temperature was adjusted to 1300 ° C. It is well-known that the temperature is set to a value that generally lowers the heating temperature so that the γ grains are refined to improve the mechanical test characteristics. This is because it was determined that this value could represent the mechanical test characteristics at a lower heating temperature. The underlined numerical values in each table are outside the scope of the present invention.

【0040】表5、表6に示すように、本発明によるH
形鋼1〜3、H形鋼A1,A2では、降伏強度、抗張力とも
に490MPa級鋼でのJIS 規格値を満たしている。すなわち
降伏強度はその下限値の320MPaを超え、抗張力も490MPa
を超えており、またこれらの降伏比(YS/TS) は0.8 以下
の低YR値を満たしている。シャルピー衝撃値についても
−10℃で47(J) を超えておりJIS 規格値を十分に満たし
ている。
As shown in Tables 5 and 6, H according to the present invention was
Shape steels 1 to 3 and H-shapes A1 and A2 both meet the JIS standard values of 490 MPa grade steel for both yield strength and tensile strength. In other words, the yield strength exceeds the lower limit of 320 MPa, and the tensile strength is 490 MPa.
And their yield ratio (YS / TS) satisfies the low YR value of 0.8 or less. The Charpy impact value also exceeds 47 (J) at -10 ° C, sufficiently meeting the JIS standard value.

【0041】一方、H形鋼4では、Mo含有量および酸素
含有量が、各々の上限値を超えるため、常温強度および
表面硬さの上限を超え、加えてベイナト面積率が80% の
上限値を、M*面積率が5% の上限値を超えるため−10℃
でのシャルピー吸収エネルギー値が、目標の47J 以上を
クリアできない。H形鋼5では炭素、Si、窒素、ボロン
およびTi含有量が各々の上限値を超えるため、M*面積率
の上限値を超え、−10℃でのシャルピー吸収エネルギー
値がクリアできない。加えて、Mo含有量が下限値未満で
あるため、高温強度がクリアできない。
On the other hand, in the H-section steel 4, since the Mo content and the oxygen content exceed the respective upper limits, they exceed the upper limits of the room temperature strength and the surface hardness, and in addition, the upper limit of the bainato area ratio of 80%. -10 ° C because M * area ratio exceeds the upper limit of 5%
Can not meet the target 47J or more. In the H-section steel 5, the contents of carbon, Si, nitrogen, boron and Ti exceed the respective upper limits, so that the M * area ratio exceeds the upper limit and the Charpy absorbed energy value at −10 ° C. cannot be cleared. In addition, since the Mo content is less than the lower limit, the high temperature strength cannot be cleared.

【0042】H形鋼6では、Nb,VおよびAl含有量が、
各々の上限値を超えるため、Nb,V炭窒化物の析出硬化
により常温強度の上限値を超え、加えてMgを添加してい
ないのでMg系の微細酸化物による組織微細化が達成でき
ず、シャルピー吸収エネルギー値をクリアできない。H
形鋼A3では、Mo含有量が、H形鋼A4では、Nb含有量が、
各々下限値未満であり、高温での析出強化ができず、高
温強度が不足する。加えて、H形鋼A4では、圧延中水冷
処理を行っていないので、表面の焼入性が上昇し、表面
硬さが上限値を超える。
In the H-section steel 6, the Nb, V and Al contents are
Since the respective upper limits are exceeded, the precipitation hardening of Nb and V carbonitrides exceeds the upper limit of the room temperature strength, and since Mg is not added, it is not possible to achieve the structure refinement by the Mg-based fine oxide, The Charpy absorbed energy value cannot be cleared. H
In the section steel A3, the Mo content, in the H section steel A4, the Nb content,
Each is less than the lower limit, and precipitation strengthening at high temperatures cannot be performed, and the high-temperature strength is insufficient. In addition, since the H-section steel A4 is not subjected to water cooling during rolling, the hardenability of the surface increases, and the surface hardness exceeds the upper limit.

【0043】すなわち、本発明の製造法の要件が総て満
たされた時に、表5、表6に示されるH形鋼1〜3、H
形鋼A1,A2のように、圧延形鋼の機械試験特性の最も保
証しにくいフランジ板厚1/2 、幅1/2 部においても十分
な強度、低温靱性を有する、高張力圧延形鋼の生産が可
能になる。なお、本発明が対象とする圧延形鋼は上記実
施例のH形鋼に限らずI形鋼、山形鋼、溝形鋼、不等辺
不等厚山形鋼等のフランジを有する形鋼にも適用できる
ことは勿論である。
That is, when all the requirements of the production method of the present invention are satisfied, H-section steels 1 to 3 and H
Like the section steels A1 and A2, high strength rolled section steels with sufficient strength and low temperature toughness even at the flange plate thickness 1/2 and width 1/2 where the mechanical test characteristics of the rolled section steel are the least guaranteed. Production becomes possible. The rolled section steel to which the present invention is applied is not limited to the H section steel of the above embodiment, but is also applicable to section steels having flanges such as I section steel, angle steel, channel steel, and unequal thickness angle steel. Of course, you can.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】[0050]

【発明の効果】本発明による合金設計された鋳片と制御
圧延法を適用した圧延形鋼は、700℃での耐火性を保
証するとともに、機械試験特性の最も保証しにくいフラ
ンジ板厚1/2、幅1/2部においても十分な強度を有
し、優れた靭性を持つ形鋼の製造が圧延ままで可能とな
り、大型鋼構造物の信頼性の向上、安全性の確保、経済
性等の産業上の効果は極めて顕著なものである。
According to the present invention, the alloy-designed cast slab and the rolled section steel to which the controlled rolling method is applied guarantee the fire resistance at 700 ° C., and the flange thickness 1/100 at which the mechanical test characteristics are most difficult to guarantee. 2. It has sufficient strength even in the width of 1/2 part, and it is possible to produce shaped steel with excellent toughness as it is rolled, improving the reliability of large steel structures, ensuring safety, economy, etc. The industrial effects of are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明法を実施する装置配置例の略図
である。
FIG. 1 is a schematic view of an example of an apparatus arrangement for performing the method of the present invention.

【図2】図2は、H形鋼の断面形状および機械試験片の
採取位置を示す図である。
FIG. 2 is a diagram illustrating a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5…中間圧延機前後面の水冷装置 6…仕上げ圧延機 DESCRIPTION OF SYMBOLS 1 ... H-shaped steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5 ... Water cooling device of the front and rear surface of intermediate rolling mill 6 ... Finishing rolling mill

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/58 C22C 38/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/58 C22C 38/58

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量% で C:0.01〜0.08% 、 Si:0.05 〜0.25% 、 Mn:0.8〜1.6%、 Ti:0.005〜0.025%、 Mg:0.0005 〜0.0050% 、 Nb:0.05 〜0.15% 、 V :0.05 〜0.20% 、 Mo:0.7〜1.0%、 N :0.002〜0.006%、および O :0.003〜0.006%、を含み、残部がFeおよび不可避不純
物からなり、該不可避不純物のうち B含有量を0.0003%
以下およびAl含有量を0.005%以下に制限した化学組成を
有し、かつベイナイトの面積率が40〜80%で、残部
がフェライト・パーライトおよび高炭素島状マルテンサ
イトから成り、該高炭素島状マルテンサイトの面積率が
5%以下であって、熱間圧延完了直後の旧γ粒径が40
μm以下であるミクロ組織を有することを特徴とする7
00℃耐火圧延形鋼。
(Claim 1) C: 0.01 to 0.08%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Ti: 0.005 to 0.025%, Mg: 0.0005 to 0.0050%, Nb: 0.05 to 0.15% by weight%, V: 0.05 to 0.20%, Mo: 0.7 to 1.0%, N: 0.002 to 0.006%, and O: 0.003 to 0.006%, with the balance being Fe and inevitable impurities, and the B content of the inevitable impurities 0.0003%
And the chemical composition of which the Al content is limited to 0.005% or less, the bainite area ratio is 40 to 80%, and the balance is composed of ferrite / pearlite and high carbon island martensite. The area ratio of martensite is 5% or less, and the old γ grain size immediately after completion of hot rolling is 40%.
7 having a microstructure of not more than μm
00 ° C refractory rolled section steel.
【請求項2】 700℃での0.2%耐力が217MPa
以上であり、常温での表面から深さ3mm以内の表層硬
さがHv210以下であることを特徴とする請求項1記
載の700℃耐火圧延形鋼。
2. The 0.2% proof stress at 700 ° C. is 217 MPa.
The 700 ° C. refractory rolled steel according to claim 1, wherein the surface hardness at a depth of 3 mm or less from the surface at room temperature is Hv210 or less.
【請求項3】 重量% で C:0.01〜0.08% 、 Si:0.05 〜0.25% 、 Mn:0.8〜1.6%、 Ti:0.005〜0.025%、 Mg:0.0005 〜0.0050% 、 Nb:0.05 〜0.15% 、 V :0.05 〜0.20% 、 Mo:0.7〜1.0%、 N :0.002〜0.006%、 O :0.003〜0.006%、および Cr:0.1〜1.0%、Ni:0.1〜1.0%およびCu:0.1〜1.0%のうち
の少なくとも1種、を含み、残部がFeおよび不可避不純
物からなり、該不可避不純物のうち B含有量を0.0003%
以下およびAl含有量を0.005%以下に制限した化学組成を
有し、かつベイナイトの面積率が50〜90%で、残部
がフェライト・パーライトおよび高炭素島状マルテンサ
イトから成り、該高炭素島状マルテンサイトの面積率が
5%以下であって、熱間圧延完了直後の旧γ粒径が40
μm以下であるミクロ組織を有することを特徴とする7
00℃耐火圧延形鋼。
3% by weight C: 0.01 to 0.08%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Ti: 0.005 to 0.025%, Mg: 0.0005 to 0.0050%, Nb: 0.05 to 0.15%, V: 0.05-0.20%, Mo: 0.7-1.0%, N: 0.002-0.006%, O: 0.003-0.006%, and Cr: 0.1-1.0%, Ni: 0.1-1.0% and Cu: 0.1-1.0% At least one of them, and the balance consists of Fe and inevitable impurities, and the B content of the inevitable impurities is 0.0003%.
And a chemical composition in which the Al content is limited to 0.005% or less, the area ratio of bainite is 50 to 90%, and the balance is composed of ferrite / pearlite and high carbon island martensite. The area ratio of martensite is 5% or less, and the old γ grain size immediately after completion of hot rolling is 40%.
7 having a microstructure of not more than μm
00 ° C refractory rolled section steel.
【請求項4】 700℃での0.2%耐力が217MPa
以上であり、常温での表面から深さ3mm以内の表層硬
さがHv210以下であることを特徴とする請求項1記
載の700℃耐火圧延形鋼。
4. The 0.2% proof stress at 700 ° C. is 217 MPa.
The 700 ° C. refractory rolled steel according to claim 1, wherein the surface hardness at a depth of 3 mm or less from the surface at room temperature is Hv210 or less.
【請求項5】 重量% で C:0.01〜0.08% 、 Si:0.05 〜0.25% 、 Mn:0.8〜1.6%、 Ti:0.005〜0.025%、 Mg:0.0005 〜0.0050% 、 Nb:0.05 〜0.15% 、 V :0.05 〜0.20% 、 Mo:0.7〜1.0%、 N :0.002〜0.006%、および O :0.003〜0.006%、を含み、残部がFeおよび不可避不純
物からなり、該不可避不純物のうち B含有量を0.0003%
以下およびAl含有量を0.005%以下に制限した鋳片を1200
〜1300℃の温度域に加熱した後に圧延を開始し、圧延工
程で形鋼のフランジ表面を700 ℃以下にまで水冷し復熱
過程で圧延する水冷・圧延サイクルを一回以上行い、圧
延終了後に放冷することを特徴とする700℃耐火圧延
形鋼の製造方法。
5% by weight C: 0.01 to 0.08%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Ti: 0.005 to 0.025%, Mg: 0.0005 to 0.0050%, Nb: 0.05 to 0.15%, V: 0.05 to 0.20%, Mo: 0.7 to 1.0%, N: 0.002 to 0.006%, and O: 0.003 to 0.006%, with the balance being Fe and inevitable impurities, and the B content of the inevitable impurities 0.0003%
Below and the slab with the Al content limited to 0.005% or less is 1200
Rolling is started after heating to a temperature range of ~ 1300 ° C, and at least one water-cooling / rolling cycle is performed, in which the flange surface of the section steel is water-cooled to 700 ° C or less in the rolling process and rolled in the recuperation process. A method for producing a 700 ° C. refractory rolled section steel, which is left to cool.
【請求項6】 重量% で C:0.01〜0.08% 、 Si:0.05 〜0.25% 、 Mn:0.8〜1.6%、 Ti:0.005〜0.025%、 Mg:0.0005 〜0.0050% 、 Nb:0.05 〜0.15% 、 V :0.05 〜0.20% 、 Mo:0.7〜1.0%、 N :0.002〜0.006%、 O :0.003〜0.006%、および Cr:0.1〜1.0%、Ni:0.1〜1.0%およびCu:0.1〜1.0%のうち
の少なくとも1種、を含み、残部がFeおよび不可避不純
物からなり、該不可避不純物のうち B含有量を0.0003%
以下およびAl含有量を0.005%以下に制限した鋳片を1200
〜1300℃の温度域に加熱した後に圧延を開始し、圧延工
程で形鋼のフランジ表面を700 ℃以下にまで水冷し復熱
過程で圧延する水冷・圧延サイクルを一回以上行い、圧
延終了後に放冷することを特徴とする700℃耐火圧延
形鋼の製造方法。
6% by weight C: 0.01 to 0.08%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Ti: 0.005 to 0.025%, Mg: 0.0005 to 0.0050%, Nb: 0.05 to 0.15%, V: 0.05-0.20%, Mo: 0.7-1.0%, N: 0.002-0.006%, O: 0.003-0.006%, and Cr: 0.1-1.0%, Ni: 0.1-1.0% and Cu: 0.1-1.0% At least one of them, and the balance consists of Fe and inevitable impurities, and the B content of the inevitable impurities is 0.0003%.
Below and the slab with the Al content limited to 0.005% or less is 1200
Rolling is started after heating to a temperature range of ~ 1300 ° C, and at least one water-cooling / rolling cycle is performed, in which the flange surface of the section steel is water-cooled to 700 ° C or less in the rolling process and rolled in the recuperation process. A method for producing a 700 ° C. refractory rolled section steel, which is left to cool.
JP1171197A 1997-01-24 1997-01-24 700×c fire resistant rolled shape steel and its production Withdrawn JPH10204572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171197A JPH10204572A (en) 1997-01-24 1997-01-24 700×c fire resistant rolled shape steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171197A JPH10204572A (en) 1997-01-24 1997-01-24 700×c fire resistant rolled shape steel and its production

Publications (1)

Publication Number Publication Date
JPH10204572A true JPH10204572A (en) 1998-08-04

Family

ID=11785639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171197A Withdrawn JPH10204572A (en) 1997-01-24 1997-01-24 700×c fire resistant rolled shape steel and its production

Country Status (1)

Country Link
JP (1) JPH10204572A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419647B1 (en) * 1999-10-12 2004-02-25 주식회사 포스코 A METHOD FOR MANUFACTURING 50kgf/㎟ GRADE BUILDING STEEL PLATE WITH HIGH TEMPERATURE STRENGTH
KR100435437B1 (en) * 1999-12-20 2004-06-10 주식회사 포스코 A METHOD FOR MANUFACTURING HIGH TS 50kgf/㎟ GRADE TEMPERATURE FIRE RESISTANT STEEL
US6818072B2 (en) * 2001-07-19 2004-11-16 Mitsubishi Heavy Industries, Ltd. High-strength heat-resistant steel, process for producing the same, and process for producing high-strength heat-resistant pipe
JP2007211278A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Fire-resistant thick steel plate and manufacturing method therefor
KR101290382B1 (en) * 2011-06-28 2013-07-26 현대제철 주식회사 High strength structural steel and method of manufacturing the structural steel
WO2015159793A1 (en) * 2014-04-15 2015-10-22 新日鐵住金株式会社 Steel h-beam and method for manufacturing same
CN114480955A (en) * 2021-12-14 2022-05-13 唐山不锈钢有限责任公司 Steel strip and production method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419647B1 (en) * 1999-10-12 2004-02-25 주식회사 포스코 A METHOD FOR MANUFACTURING 50kgf/㎟ GRADE BUILDING STEEL PLATE WITH HIGH TEMPERATURE STRENGTH
KR100435437B1 (en) * 1999-12-20 2004-06-10 주식회사 포스코 A METHOD FOR MANUFACTURING HIGH TS 50kgf/㎟ GRADE TEMPERATURE FIRE RESISTANT STEEL
US6818072B2 (en) * 2001-07-19 2004-11-16 Mitsubishi Heavy Industries, Ltd. High-strength heat-resistant steel, process for producing the same, and process for producing high-strength heat-resistant pipe
JP2007211278A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Fire-resistant thick steel plate and manufacturing method therefor
KR101290382B1 (en) * 2011-06-28 2013-07-26 현대제철 주식회사 High strength structural steel and method of manufacturing the structural steel
WO2015159793A1 (en) * 2014-04-15 2015-10-22 新日鐵住金株式会社 Steel h-beam and method for manufacturing same
JPWO2015159793A1 (en) * 2014-04-15 2017-04-13 新日鐵住金株式会社 H-section steel and its manufacturing method
US10280476B2 (en) 2014-04-15 2019-05-07 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
CN114480955A (en) * 2021-12-14 2022-05-13 唐山不锈钢有限责任公司 Steel strip and production method thereof

Similar Documents

Publication Publication Date Title
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP4464486B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JPH06100923A (en) Production of oxide-containing fire resistant shape steel by controlled rolling
JP3507258B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3507259B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JPH10204573A (en) 700×c fire resistant rolled shape steel and its production
JPH09111397A (en) Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab
JP3426433B2 (en) High tensile rolled steel and method of manufacturing the same
JP3285731B2 (en) Rolled section steel for refractory and method for producing the same
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH07238318A (en) Production of shape steel excellent in strength, toughness, and weldability and having flange

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406