JP3472017B2 - Refractory rolled steel and method for producing the same - Google Patents

Refractory rolled steel and method for producing the same

Info

Publication number
JP3472017B2
JP3472017B2 JP03624396A JP3624396A JP3472017B2 JP 3472017 B2 JP3472017 B2 JP 3472017B2 JP 03624396 A JP03624396 A JP 03624396A JP 3624396 A JP3624396 A JP 3624396A JP 3472017 B2 JP3472017 B2 JP 3472017B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel
added
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03624396A
Other languages
Japanese (ja)
Other versions
JPH09227985A (en
Inventor
広一 山本
卓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP03624396A priority Critical patent/JP3472017B2/en
Publication of JPH09227985A publication Critical patent/JPH09227985A/en
Application granted granted Critical
Publication of JP3472017B2 publication Critical patent/JP3472017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建造物の構造部材
として用いられる耐火性と靭性に優れた圧延H形鋼等フ
ランジを有する圧延形鋼と制御圧延による圧延形鋼の製
造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled shaped steel having a flange such as rolled H-shaped steel excellent in fire resistance and toughness, which is used as a structural member of a building, and a method for producing rolled shaped steel by controlled rolling. Is.

【0002】[0002]

【従来の技術】建築物の超高層化、建築設計技術の高度
化などから耐火設計の見直しが建設省総合プロジェクト
により行われ、昭和62年3月に「新耐火設計法」が制
定された。この規定により、旧法令による火災時に鋼材
の温度を350℃以下にするように耐火被覆するとした
制限が解除され、鋼材の高温強度と建築物の実荷重との
兼合により、それに適合する耐火被覆方法を決定できる
ようになった。即ち600℃での設計高温強度を確保で
きる場合はそれに見合い耐火被覆を削減できるようにな
った。
2. Description of the Related Art The fire resistant design was reviewed by a Ministry of Construction comprehensive project due to the super-rise of buildings and the sophistication of building design technology, and the "New Fire Resistant Design Law" was enacted in March 1987. Under this regulation, the restriction that fire-resistant coating was set to keep the temperature of steel materials to 350 ° C or less at the time of fire under the old law was lifted, and the fire-resistant coating that complies with the high temperature strength of steel materials and the actual load of buildings You can now decide how. That is, when the designed high temperature strength at 600 ° C. can be secured, the fireproof coating can be reduced accordingly.

【0003】このような動向に対応し、先に特開平2−
77523号公報の耐火性の優れた建築用低降伏比鋼お
よび鋼材並びにその製造方法が提案されている。この先
願発明の要旨は600℃での降伏点が常温時の2/3以
上となるようにMo、Nbを添加し高温強度を向上させ
たものである。鋼材の設計高温強度を600℃に設定し
たのは、合金元素による鋼材費の増加分と従来鋼材を耐
火被覆する施工費との兼ね合いから最も経済的であると
いう知見に基づいたものである。
In response to such a trend, Japanese Patent Laid-Open No. 2-
Japanese Patent No. 77523 discloses a low yield ratio steel for construction having excellent fire resistance, a steel material, and a manufacturing method thereof. The gist of the invention of this prior application is to improve the high temperature strength by adding Mo and Nb so that the yield point at 600 ° C. becomes 2/3 or more of that at room temperature. The reason why the design high temperature strength of the steel material is set to 600 ° C. is based on the finding that it is the most economical in view of the balance between the increase of the steel material cost due to the alloying element and the construction cost of the conventional steel material for fireproof coating.

【0004】また、従来は鋼のAl脱酸は溶製過程の初
期段階でAl添加され、溶鋼の脱酸と生成したAl2
3 を浮上分離し高清浄化することを目的にしていた。即
ち、如何に溶鋼の酸素濃度を下げ、鋼中の粗大な一次脱
酸酸化物個数を減らすかに主題がおかれていた。
Further, in the past, Al deoxidation of steel was performed by adding Al in the initial stage of the melting process to deoxidize molten steel and form Al 2 O.
The purpose was to float and separate 3 to make it highly clean. That is, the theme was how to reduce the oxygen concentration of the molten steel and reduce the number of coarse primary deoxidized oxides in the steel.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は前述の先
願技術によって製造された鋼材を各種の形鋼、特に複雑
な形上から厳しい圧延造形上の制約を有するH形鋼の素
材に適用することを試みた結果、ウエブ、フランジ、フ
ィレットの各部位での圧延仕上げ温度、圧下率、冷却速
度に差が生じることから、部位により組織、特にベイナ
イト組織割合が著しく異なり、常温・高温強度、延性、
靭性がばらつき、溶接構造用圧延鋼材(JISG3106)等の規
準に満たない部位が生じた。また、粒内フェライトの生
成による組織微細化では、フェライトの組織割合が比較
的高い成分では効果的であるが、ベイナイトの割合が高
くなると組織の微細化が困難となる欠点があった。
The inventors of the present invention have made the steel materials manufactured by the above-mentioned prior art into various shaped steels, particularly, H-shaped steels having complicated restrictions from severe shaping. As a result of trying to apply it, there is a difference in rolling finish temperature, rolling reduction, cooling rate at each part of the web, flange and fillet. , Ductility,
The toughness varied, and some parts of the rolled steel for welded structures (JIS G3106) did not meet the criteria. Further, in the refinement of the structure due to the formation of intragranular ferrite, it is effective in the component having a relatively high proportion of the structure of ferrite, but there is a defect that the refinement of the structure becomes difficult when the proportion of bainite is high.

【0006】上記の課題を解決するためには、圧延時の
加熱温度1200〜1300℃でもγ粒径をASTM N
o.で6番以上に細粒化できれば、ベイナイト組織割合が
高くても組織微細化が可能となる。したがって、この高
温加熱時のγ細粒化法の開発が課題となる。この目的を
達成するには高温で分解せず安定に存在する、微細な析
出物を分散させ、これにより成長するγ粒界をピンニン
グし、γ粒成長を抑制し細粒化する方法が考えられる。
本発明はこの析出物としてMg系酸化物およびMg系酸
化物とTiNの複合析出物が効果的であることを見出し
これらを微細晶出・析出させた鋼を開発することを指向
した。
In order to solve the above problems, the γ grain size can be adjusted to ASTM N even at a heating temperature of 1200 to 1300 ° C. during rolling.
If the grain size is 6 or more at o., it is possible to refine the structure even if the bainite structure ratio is high. Therefore, the development of the γ-fine graining method at the time of heating at high temperature is an issue. In order to achieve this purpose, it is possible to disperse fine precipitates that do not decompose at high temperatures and disperse, pin the growing γ grain boundaries, and suppress γ grain growth to reduce the grain size. .
The present invention has found that Mg-based oxides and composite precipitates of Mg-based oxides and TiN are effective as the precipitates, and aimed to develop a steel in which these are finely crystallized and precipitated.

【0007】加えて、従来の耐火鋼では600℃におけ
る高温強度を保証していたが、本発明では、建築物の耐
火被覆の非被覆化の適用範囲を広げることを目的とし
て、より高温(700℃)での高温強度を保証できる耐
火鋼を開発することが課題である。本発明は従来の発想
とは異なり、製鋼過程における脱酸材の選択、その添加
順序及び凝固過程の冷却制御により酸化物の組成とサイ
ズ、分散密度を制御し、生成させた酸化物を異相析出物
(TiN 等) の優先析出サイトとし活用する点にある。本
願出願人は先に特願平6−11705号で、前記酸化物
を粒内フェライト変態核として機能させ、粒内フェライ
トの生成により組織を微細し、H形鋼の部位間の材質特
性の均質化と高靭性化を達成する発明を提案した。本発
明はこれとは異なり、高温安定性の高い微細なMg系酸
化物(主としてMgO)およびMg系酸化物とTiN の複
合析出物を高密度分散させ、これらの析出物を圧延加熱
時の1200〜1300℃でのγ相の粒成長を抑制する
ためのピンニングサイトととして機能させ、γ相の細粒
化により組織を微細化を達成したものである。この組織
の微細化によりH形鋼の部位間の材質特性の均質化と高
靭性化を達成することと、微量Nb、V添加による焼入
性向上に加え、Cu添加によるCuの析出強化とにより
700℃での降伏強度がSM490鋼のJIS規格での
常温の降伏点の下限値325MPaの2/3の220M
Pa以上となる高温での高強度化を達成することを特徴
としている。さらに、ベイナイト組織での靭性を向上さ
せために、靭性低下の原因となる高炭素島状マルテンサ
イト(以下、M*と略記する)の生成抑制を極低ボロン
化とマイクロアロイングによる低炭素化により達成した
ことも本発明の特徴である。 また、製造法におけるT
MCPの特徴は厚鋼板で多く行われている低温・大圧下
圧延とは異なり、形鋼における軽圧下の熱間圧延におい
ても効率的に組織の細粒化が可能となるように圧延パス
間で水冷し、水冷、圧延、水冷とを繰り返す工程をとる
方法にある。
In addition, conventional high temperature steels guarantee high temperature strength at 600 ° C. However, in the present invention, higher temperature (700 ° C.) is applied for the purpose of expanding the range of application of non-refractory coatings for buildings. The challenge is to develop a refractory steel that can guarantee high-temperature strength at (° C). Unlike the conventional idea, the present invention controls the composition and size of oxides and the dispersion density by selecting the deoxidizing material in the steel making process, the addition order of the deoxidizing material, and the cooling control of the solidification process, and the produced oxide is heterophase precipitated. It is used as a preferential precipitation site for materials (TiN, etc.). The applicant of the present application has previously mentioned in Japanese Patent Application No. 6-11705 that the oxide is made to function as an intragranular ferrite transformation nucleus, the microstructure is made fine by the generation of intragranular ferrite, and the homogeneity of the material properties between the parts of the H-section steel. The invention has been proposed that achieves high strength and high toughness. In contrast to this, the present invention disperses fine Mg-based oxides (mainly MgO) having high high-temperature stability and composite precipitates of Mg-based oxides and TiN in high density, and these precipitates are heated at 1200 It functions as a pinning site for suppressing the grain growth of the γ phase at ˜1300 ° C., and the grain refinement of the γ phase achieves a finer structure. By miniaturizing this structure, homogenization of material properties between parts of H-section steel and high toughness are achieved, and in addition to improving hardenability by adding a trace amount of Nb and V, Cu precipitation strengthening by adding Cu The yield strength at 700 ° C is 220M, which is 2/3 of the lower limit of the yield point at room temperature according to JIS standard of SM490 steel, 325 MPa.
It is characterized by achieving high strength at a high temperature of Pa or higher. Furthermore, in order to improve the toughness in the bainite structure, the formation of high carbon island martensite (hereinafter abbreviated as M *), which causes the decrease in toughness, is suppressed by extremely low boron and low carbon by microalloying. It is also a characteristic of the present invention to be achieved by. In addition, T in the manufacturing method
The characteristic of MCP is different from the low temperature / large reduction rolling that is often performed on thick steel plates, and it is possible to efficiently refine the structure even in the hot rolling under light reduction in shaped steel so that the grain refinement of the structure can be performed efficiently. It is a method of taking a step of repeating water cooling, water cooling, rolling and water cooling.

【0008】[0008]

【課題を解決するための手段】本発明は、組織を微細化
することを目的とし、製鋼過程において適正な脱酸処理
を行い、溶鋼の高清浄化、溶存酸素濃度の調整、Ti添
加、最後にSi-Mg 合金及びNi-Mg 合金を添加する添加順
序とMg添加量の限定を行い、鋳片に微細なMg系酸化物
を微細分散させた鋳片と、この鋳片を素材として、熱間
圧延パス間で水冷することにより、H形鋼のフランジの
表面と内部に温度差を与え、軽圧下条件下においても、
より高温の板厚中央部への圧下浸透を高め、α生成核と
なる加工転位を導入し、板厚中央部での組織の微細化が
達成できる圧延中水冷方法を開発した。加えて、圧延後
のγ/α変態温度域を冷却制御することにより、核生成
させたフェライトの粒成長を抑制する方法によればミク
ロ組織の微細化ができ、高能率で製造コストの安価な耐
火用圧延形鋼の生産が可能であると言う知見に基づき前
記課題を解決したもので、その要旨とするところは、以
下のとおりである。 重量% でC:0.02〜0.06% 、Si: 0.05〜0.25% 、Mn:
0.8〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、N: 0.004〜
0.010%、 B: 0.0003% 以下、Nb:0.03%以下、V:0.1% 以
下、Al:0.005% 以下、を含み、残部がFeおよび不可避不
純物からなる溶鋼の酸素量を重量%で 0.003〜0.010%に
調整後、TiとNの比がTi/N: 3.0〜3.5となるよう
にTi:0.012〜0.030%を添加し、更にMg: 0.0005〜0.0050
% を添加して鋳造した鋼片中に大きさ3μm 以下のMg系
酸化物およびMg系酸化物とTiNの複合析出物を50個
/mm2以上含有させたことを特徴とする耐火圧延形鋼。 重量% でC:0.02〜0.06% 、Si: 0.05〜0.25% 、Mn:
0.8〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、N: 0.004〜
0.010%、 B: 0.0003% 以下、Nb:0.03%以下、V:0.1% 以
下、Al:0.005% 以下、を含み、かつCr:1.0% 以下、Ni:
2.0% 以下のいずれかの1種または2種以上を含有し残
部がFeおよび不可避不純物からなる溶鋼の酸素量を重量
%で 0.003〜0.010%に調整後、TiとNの比がTi/N:
3.0〜3.5 となるようにTi:0.012〜0.030%を添加し、更
にMg: 0.0005〜0.0050% を添加して鋳造した鋼片中に大
きさ3μm 以下のMg系酸化物およびMg系酸化物とTi
Nの複合析出物を50個/mm2以上含有させたことを特徴と
する耐火圧延形鋼。 重量% でC:0.02〜0.06% 、Si: 0.05〜0.25% 、Mn:
0.8〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、N: 0.004〜
0.010%、 B: 0.0003% 以下、Nb:0.03%以下、V:0.1% 以
下、Al:0.005% 以下、を含み、残部がFeおよび不可避不
純物からなる溶鋼の酸素量を重量%で 0.003〜0.010%に
調整後、TiとNの比がTi/N: 3.0〜3.5となるよう
にTi:0.012〜0.030%を添加し、更にMg: 0.0005〜0.0050
% を添加して成分調整した溶鋼を鋳造し、鋳片中に大き
さ3μm 以下のMg系酸化物およびMg系酸化物とTiN
の複合析出物を50個/mm2以上含有させた鋳片を1200〜13
00℃の温度域に再加熱した後に圧延を開始し、圧延工程
で形鋼のフランジ表面温度を 700℃以下に水冷し、以降
の圧延パス間の復熱過程で圧延する水冷・圧延工程を一
回以上繰り返し圧延し、圧延終了後に 0.5〜10℃/sの冷
却速度で 700〜400 ℃まで冷却し放冷することを特徴と
する耐火圧延形鋼の製造方法。 重量% でC:0.02〜0.06% 、Si: 0.05〜0.25% 、Mn:
0.8〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、N: 0.004〜
0.010%、 B: 0.0003% 以下、Nb:0.03%以下、V:0.1% 以
下、Al:0.005% 以下、を含み、かつCr:1.0% 以下、Ni:
2.0% 以下のいずれかの1種または2種以上を含有し残
部がFeおよび不可避不純物からなる溶鋼の酸素量を重量
%で 0.003〜0.010%に調整後、TiとNの比がTi/N:
3.0〜3.5 となるようにTi:0.012〜0.030%を添加し、更
にMg: 0.0005〜0.0050% を添加して成分調整した溶鋼を
鋳造し、鋳片中に大きさ3μm 以下のMg系酸化物および
Mg系酸化物とTiNの複合析出物を50個/mm2以上含有
させた鋳片を1200〜1300℃の温度域に再加熱した後に圧
延を開始し、圧延工程で形鋼のフランジ表面温度を 700
℃以下に水冷し、以降の圧延パス間の復熱過程で圧延す
る水冷・圧延工程を一回以上繰り返し圧延し、圧延終了
後に 0.5〜10℃/sの冷却速度で 700〜400 ℃まで冷却し
放冷することを特徴とする耐火圧延形鋼の製造方法。
Means for Solving the Problems The present invention aims at refining the microstructure, performs appropriate deoxidation treatment in the steelmaking process, and highly cleans molten steel, adjusts the dissolved oxygen concentration, adds Ti, and finally The casting order in which Si-Mg alloy and Ni-Mg alloy are added and the amount of Mg added are limited, and a cast piece in which fine Mg-based oxide is finely dispersed in the cast piece, and this cast piece as a raw material Water cooling between the rolling passes creates a temperature difference between the surface and inside of the H-section steel flange, and
We have developed a water-cooling method during rolling that can enhance the reduction penetration into the higher temperature central part of the plate thickness, introduce work dislocations that become α-forming nuclei, and achieve the refinement of the structure in the central part of the plate thickness. In addition, by controlling the cooling of the γ / α transformation temperature range after rolling, the method of suppressing the grain growth of nucleated ferrite can make the microstructure fine, which is highly efficient and inexpensive to manufacture. The above problems have been solved based on the finding that it is possible to produce fire-resistant rolled steel, and the gist thereof is as follows. C: 0.02-0.06% by weight%, Si: 0.05-0.25%, Mn:
0.8-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, N: 0.004-
0.010%, B: 0.0003% or less, Nb: 0.03% or less, V: 0.1% or less, Al: 0.005% or less, with the balance being 0.003 to 0.010% by weight of oxygen in molten steel consisting of Fe and unavoidable impurities. After adjusting to, Ti: 0.012 to 0.030% was added so that the ratio of Ti and N would be Ti / N: 3.0 to 3.5, and Mg: 0.0005 to 0.0050.
% Of Mg-based oxides and Mg-based oxides and TiN composite precipitates with a size of 3 μm or less in the cast steel with 50% added.
A fire-resistant rolled steel having a content of / mm 2 or more. C: 0.02-0.06% by weight%, Si: 0.05-0.25%, Mn:
0.8-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, N: 0.004-
0.010%, B: 0.0003% or less, Nb: 0.03% or less, V: 0.1% or less, Al: 0.005% or less, and Cr: 1.0% or less, Ni:
After adjusting the oxygen content of molten steel containing one or more of 2.0% or less and the balance being Fe and unavoidable impurities to 0.003 to 0.010% by weight, the ratio of Ti and N is Ti / N:
Ti: 0.012 to 0.030% was added so as to be 3.0 to 3.5, and Mg: 0.0005 to 0.0050% was further added to the cast steel slab to obtain Mg-based oxides and Mg-based oxides and Ti with a size of 3 μm or less.
A refractory rolled steel characterized by containing 50 or more composite precipitates of N / mm 2 . C: 0.02-0.06% by weight%, Si: 0.05-0.25%, Mn:
0.8-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, N: 0.004-
0.010%, B: 0.0003% or less, Nb: 0.03% or less, V: 0.1% or less, Al: 0.005% or less, with the balance being 0.003 to 0.010% by weight of oxygen in molten steel consisting of Fe and unavoidable impurities. After adjusting to, Ti: 0.012 to 0.030% was added so that the ratio of Ti and N would be Ti / N: 3.0 to 3.5, and Mg: 0.0005 to 0.0050.
% Of Mg-based oxide and Mg-based oxide and TiN
The composites were precipitate is contained 50 / mm 2 or more slab 1200-13
Rolling is started after reheating to a temperature range of 00 ° C, the flange surface temperature of shaped steel is water-cooled to 700 ° C or less in the rolling process, and rolling is performed in the subsequent reheating process between rolling passes. A method for producing a fire-resistant rolled steel shape, which comprises repeatedly rolling more than once, cooling to 700 to 400 ° C at a cooling rate of 0.5 to 10 ° C / s, and then leaving to cool after the rolling is completed. C: 0.02-0.06% by weight%, Si: 0.05-0.25%, Mn:
0.8-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, N: 0.004-
0.010%, B: 0.0003% or less, Nb: 0.03% or less, V: 0.1% or less, Al: 0.005% or less, and Cr: 1.0% or less, Ni:
After adjusting the oxygen content of molten steel containing one or more of 2.0% or less and the balance being Fe and unavoidable impurities to 0.003 to 0.010% by weight, the ratio of Ti and N is Ti / N:
Ti: 0.012 to 0.030% was added so as to be 3.0 to 3.5, and Mg: 0.0005 to 0.0050% was further added to cast a molten steel with the composition adjusted. A slab containing 50 or more composite precipitates of Mg-based oxide and TiN / mm 2 is reheated to a temperature range of 1200 to 1300 ° C, then rolling is started, and the flange surface temperature of the shaped steel is controlled in the rolling process. 700
Water-cooling to below ℃ and rolling in the recuperation process between rolling passes thereafter are repeated one or more times, and after completion of rolling, cooling to 700-400 ℃ at a cooling rate of 0.5-10 ℃ / s. A method for producing a fire-resistant rolled steel shape, which comprises allowing to cool.

【0009】[0009]

【発明の実施の形態】鋼材の高温強度は鉄の融点のほぼ
1/2 の温度の 700℃以下では常温での強化機構とほぼ同
様であり、フェライト結晶粒径の微細化、合金元素
による固溶体強化、硬化相による分散強化、微細析
出物による析出強化等によって支配される。一般に高温
強度の上昇にはMo、Crの添加による析出強化と転位
の消失抑制による高温軟化抵抗を増加させることにより
達成されている。しかしMo、Crの添加は著しく焼入
性を上昇させ、添加なしでのフェライト+パーライト組
織から硬化相のベイナイト組織に変化させる。また、ベ
イナイト組織を優先生成する成分系鋼を圧延H形鋼に適
用した場合は、その特異な形状からウェブ、フランジ、
フィレットの各部位で、圧延仕上げ温度、圧下率、冷却
速度に差を生じるため、各部位間で生成するベイナイト
組織の割合が大きく変化する。この結果、部位により常
温・高温強度、延性、靭性が異なった値となり部位間で
のばらつきとなる。また、部位によっては規準に満たな
い特性を示す部位が生じる。加えて、これらの元素の添
加により溶接部を著しく硬化させ、溶接熱影響部の靭性
を低下させる。
BEST MODE FOR CARRYING OUT THE INVENTION The high temperature strength of steel is almost equal to the melting point of iron.
At a temperature of 1/2 of 700 ° C or less, it is almost the same as the strengthening mechanism at room temperature, and it is controlled by the refinement of ferrite crystal grain size, solid solution strengthening by alloying elements, dispersion strengthening by the hardening phase, precipitation strengthening by fine precipitates, etc. To be done. Generally, the increase in high temperature strength is achieved by increasing precipitation resistance by adding Mo and Cr and increasing high temperature softening resistance by suppressing dislocation disappearance. However, the addition of Mo and Cr markedly increases the hardenability, and changes from the ferrite + pearlite structure without addition to the bainite structure in the hardened phase. Further, when a component steel that preferentially produces a bainite structure is applied to a rolled H-section steel, the web, flange,
Since there are differences in the rolling finish temperature, the rolling reduction, and the cooling rate at each part of the fillet, the proportion of the bainite structure generated between each part greatly changes. As a result, room temperature / high temperature strength, ductility, and toughness have different values depending on the site, resulting in variations between sites. In addition, depending on the part, some parts exhibit characteristics that do not meet the criteria. In addition, the addition of these elements significantly hardens the weld and reduces the toughness of the weld heat affected zone.

【0010】本発明の特徴は、製鋼工程において、溶鋼
酸素の調整、脱酸元素の選択と添加手順の適正化によ
り、鋳片中に多数の微細なMg系酸化物およびMg系酸
化物とTiN の複合析出物を分散させることにより、形鋼
圧延での高温加熱条件下においてもγ相の粗粒化を抑制
する効果を有する鋳片を製造することにある。この鋳片
を素材とすることにより、高温加熱・圧延によっても組
織の微細化が達成でき、耐火性・靭性に優れた形鋼の製
造が可能となる。
A feature of the present invention is that in the steelmaking process, a large number of fine Mg-based oxides and Mg-based oxides and TiN are contained in a cast piece by adjusting molten steel oxygen, selecting deoxidizing elements and optimizing the addition procedure. Dispersing the composite precipitate of (3) is to produce a slab having an effect of suppressing coarsening of the γ phase even under high-temperature heating conditions in the shape rolling. By using this slab as a raw material, it is possible to achieve a finer structure even by high-temperature heating / rolling, and it is possible to manufacture a shaped steel having excellent fire resistance and toughness.

【0011】加えて本発明では、熱間圧延工程におい
て、熱間圧延パス間でフランジ表面を水冷し、その復熱
時に圧延することを繰り返すことによりフランジの板厚
中心部に圧下浸透効果を付与し、この部位においてもT
MCPによる組織微細化効果を高め、この組織微細化に
よりH形鋼の各部位における母材の機械特性を向上させ
るとともにバラツキを低減し均質化を達成するものであ
る。
In addition, in the present invention, in the hot rolling step, the flange surface is water-cooled between hot rolling passes, and rolling is repeated at the time of recuperation of the hot rolling, thereby repeating the rolling to impart a reduction infiltration effect to the central portion of the flange thickness. However, even in this part, T
The effect of microstructure refinement by MCP is enhanced, and the microstructure refinement improves the mechanical properties of the base material in each portion of the H-section steel and reduces variations to achieve homogenization.

【0012】以下に本発明形鋼の成分範囲と制御条件の
限定理由について述べる。まず、Cは鋼を強化するため
に添加するもので、0.02% 未満では構造用鋼として必要
な強度が得られず。また、ベイナイト組織鋼においては
0.06% を超える過剰の添加は、M*を生成し、母材靭
性、耐溶接割れ性、溶接熱影響部(以下HAZと略記)
靭性などを著しく低下させるので、下限を0.02% 、上限
を0.06% とした。
The reasons for limiting the composition range and control conditions of the shaped steel of the present invention will be described below. First, C is added to strengthen the steel. If it is less than 0.02%, the strength required for structural steel cannot be obtained. In addition, in bainite structure steel
Excessive addition exceeding 0.06% produces M *, toughness of base material, weld crack resistance, and weld heat affected zone (abbreviated as HAZ below).
The lower limit was set to 0.02% and the upper limit was set to 0.06% because it significantly reduces toughness.

【0013】次に、Siは母材の強度確保、溶鋼の脱酸
などに必要であるが、0.25% を超えるとHAZ内に硬化
組織の高炭素島状マルテンサイトを生成し、溶接継手部
靭性を著しく低下させる。また、0.05% 未満では溶鋼の
予備脱酸が十分にできないためSi含有量を0.05〜0.25
% の範囲に限定した。Mnは母材の強度、靭性の確保に
は0.8%以上の添加が必要であるが、溶接部の靭性、割れ
性などに対する許容濃度の上限から1.6%とした。
Next, Si is necessary for securing the strength of the base metal and deoxidizing molten steel, but if it exceeds 0.25%, high carbon island martensite with a hardened structure is formed in the HAZ, and the toughness of the welded joint is increased. Is significantly reduced. On the other hand, if it is less than 0.05%, the pre-deoxidation of molten steel cannot be sufficiently performed, so that the Si content is 0.05 to 0.25.
Limited to the range of%. Mn needs to be added in an amount of 0.8% or more in order to secure the strength and toughness of the base metal, but it is set to 1.6% from the upper limit of the allowable concentration for the toughness and crackability of the welded portion.

【0014】Moは母材強度および高温強度の確保に有
効な元素である。0.4%未満ではMo炭化物(Mo2C)の析
出が不十分で強化作用を発揮できないため十分な高温強
度が確保できず、0.8%超では、焼入性の上昇により母材
及びHAZが過剰に硬化し、靭性が劣化するため 0.4〜
0.8%に限定した。Cuはα温度域での保持及び緩冷却に
よりα相中の転位上にCu相を析出し、その析出硬化に
より母材の常温強度を増加させる。さらに耐火鋼として
の保証温度700℃加熱時における強度低下を抑制す
る。ただし、このα中でのCu相の析出は0.7%未満では
α中でのCuの固溶限内であり、析出が生じないためC
u析出による強化は得られない。また1.5%を超えるとそ
の析出強化は飽和するのでCu:0.7〜1.5%に限定した。
Mo is an element effective in securing the strength of the base material and the high temperature strength. If it is less than 0.4%, the precipitation of Mo carbide (Mo2C) is insufficient and the strengthening effect cannot be exhibited, so that sufficient high temperature strength cannot be secured, and if it exceeds 0.8%, the base metal and HAZ are excessively hardened due to the increase in hardenability. , Toughness deteriorates 0.4 ~
Limited to 0.8%. Cu retains in the α temperature range and is slowly cooled to precipitate a Cu phase on the dislocations in the α phase, and the precipitation hardening increases the room temperature strength of the base material. Further, it suppresses the decrease in strength during heating at a guaranteed temperature of 700 ° C as refractory steel. However, if the precipitation of the Cu phase in α is less than 0.7%, it is within the solid solubility limit of Cu in α, and since precipitation does not occur, C
No strengthening due to u precipitation is obtained. Further, when the content exceeds 1.5%, the precipitation strengthening is saturated, so the Cu content is limited to 0.7 to 1.5%.

【0015】Nはα中に固溶し、強度を上昇させるが、
上部ベイナイト組織では、M*を生成し靭性を劣化させ
るので、固溶Nはできるだけ低減する必要がある。しか
し、本発明でのNはTiと化合させ鋼中にTiNを微細
析出させ、固溶Nを低減させた上で、TiNによる結晶
の粒成長を抑制し組織微細化を達成させるために添加し
ている。従って、この効果の発現には、N量が0.004%未
満ではTiNの析出量が不足し、0.010%超では析出量は
十分となるが、粗大なTiNが析出し、靭性を損ねるの
でN: 0.004〜0.010%に限定した。
N dissolves in α to increase its strength,
In the upper bainite structure, M * is generated and the toughness is deteriorated, so it is necessary to reduce the solute N as much as possible. However, N in the present invention is compounded with Ti to finely precipitate TiN in the steel to reduce solid solution N, and then added in order to suppress grain growth of crystals due to TiN and achieve microstructure refinement. ing. Therefore, in order to achieve this effect, if the N content is less than 0.004%, the precipitation amount of TiN is insufficient, and if it exceeds 0.010%, the precipitation amount is sufficient, but coarse TiN is precipitated and the toughness is impaired. Limited to ~ 0.010%.

【0016】Bは微量添加で焼入性を上昇させ強度増加
に寄与するが、0.0003% 超のBを含有すると上部ベイナ
イト組織中にM*を生成し靭性を著しく低下させること
が判明したので0.0003% 以下に制限した。NbはNb炭
窒化物の析出による強化と焼入性の上昇による強化を有
し、常温・高温強度の増加を目的に添加される。ただ
し、Nb:0.03%越える添加では、粗大なNbTi炭窒化物
を生成し、母材及び溶接部靭性を低下させるために 0.0
3%以下に制限した。
Although a small amount of B increases the hardenability and contributes to the increase in strength, it was found that when more than 0.0003% B is contained, M * is formed in the upper bainite structure and the toughness is remarkably reduced. Limited to less than%. Nb has strengthening due to precipitation of Nb carbonitride and strengthening due to increase in hardenability, and is added for the purpose of increasing room temperature / high temperature strength. However, if Nb is added in excess of 0.03%, coarse NbTi carbonitrides are generated, and the toughness of the base metal and weld zone is reduced to 0.0%.
Limited to 3% or less.

【0017】Vは微量添加により圧延組織を微細化で
き、バナジン炭窒化物の析出により強化することから低
合金化でき溶接特性を向上できる。しかしながら、Vの
過剰な添加は溶接部の硬化や、母材の高降伏点化をもた
らすので、含有量の上限をV:0.1%とした。加えて、「Ti
とNの量比がTi/N: 3.0〜3.5 となるTi,N量を含有
し」としたのは、添加Ti、Nのほぼ全量を化学量論的
にTiNとして析出させ、靭性低下の原因となる固溶T
i、Nをできるだけ低減させるためにTiとNの含有量比
を限定したものである。
The addition of a small amount of V makes it possible to make the rolling structure finer and strengthens it by the precipitation of vanadium carbonitride, so that it can be made into a low alloy and the welding characteristics can be improved. However, excessive addition of V causes hardening of the weld and higher yield point of the base metal, so the upper limit of the content was made V: 0.1%. In addition, "Ti
The ratio of N and Ti is Ti / N: 3.0 to 3.5 is included. The reason is that almost all the added Ti and N are stoichiometrically precipitated as TiN, which causes the toughness to decrease. Solid solution T
The content ratio of Ti and N is limited in order to reduce i and N as much as possible.

【0018】Alを0.005%以下としたのは、Alは強力
な脱酸元素であり、0.005%超の含有では、MgO の生成が
阻害され、微細な分散ができないため0.005%以下に制限
した。次いで、成分を調整した溶鋼の酸素量を重量%で
0.003〜0.010%に調整するのは、溶鋼の高清浄化および
鋳片中に微細なMg系酸化物を晶出させるために行うも
のである。この溶鋼の[O] 濃度が0.003%未満では微細な
酸化物が減少し、圧延再加熱時のγ細粒化ができない。
一方、0.010%を超える場合は、他の条件を満たしていて
も、酸化物は3μm以上の大きさに凝集粗大化し、脆性
破壊の起点となり、靭性の劣化をまねくため、溶鋼の
[O] 濃度を重量%で 0.003〜0.010%に限定した。
Al is set to 0.005% or less because Al is a strong deoxidizing element. If the content of Al exceeds 0.005%, the production of MgO is hindered and fine dispersion cannot be achieved, so the content is limited to 0.005% or less. Next, the oxygen content of the molten steel with adjusted composition is expressed in weight percent.
The adjustment to 0.003 to 0.010% is carried out in order to highly clean the molten steel and crystallize fine Mg-based oxide in the cast slab. If the [O] concentration of this molten steel is less than 0.003%, fine oxides are reduced, and γ-fine graining cannot be performed during rolling reheating.
On the other hand, if it exceeds 0.010%, even if the other conditions are satisfied, the oxides agglomerate and coarsen to a size of 3 μm or more, and become the starting point of brittle fracture, leading to deterioration of toughness.
[O] concentration was limited to 0.003-0.010% by weight.

【0019】この溶鋼の酸素量の調整は酸素量が0.010%
を超える場合は、真空脱ガス、Al、Si、Mg添加に
より0.010%以下に低減し、0.003%未満の場合は、酸化鉄
を添加し増加させる方法で行った。次に上述の溶鋼にT
i、Mgと順次添加するのは、 Mgは強力脱酸元素で
あり、先に生成したTi酸化物とMgを反応させ酸素を
奪い微細なMgOを形成させるためである。
The oxygen content of this molten steel is adjusted by adjusting the oxygen content to 0.010%.
When it exceeds 0.003%, it is reduced to 0.010% or less by vacuum degassing and addition of Al, Si, and Mg, and when it is less than 0.003%, iron oxide is added to increase it. Next, T
The reason why i and Mg are sequentially added is that Mg is a strong deoxidizing element and reacts with the Ti oxide previously formed and Mg to deprive oxygen to form fine MgO.

【0020】さらに、Mg合金の添加により重量%でMg:
0.001〜0.005%に調整した溶鋼を後述する一定の鋳造冷
却速度で鋳込む。TiはTiNを析出し、固溶Nを低減
することによりM*の生成を抑制する。また、微細析出
したTiNはγ相の細粒化にも寄与する。これらのTi
の作用により組織を微細化し強度・靭性を向上させる。
従って、0.012%未満ではTiNの析出量が不足し、これ
らの効果を発現しないためTi量の下限値を0.012%とし
た。しかし0.030%を超えると過剰なTiはTiCを析出
し、その析出硬化により母材および溶接熱影響部の靭性
を劣化させるため0.030%以下に制限した。
Furthermore, the addition of the Mg alloy makes Mg:
Molten steel adjusted to 0.001 to 0.005% is cast at a constant casting cooling rate described later. Ti precipitates TiN and suppresses the formation of M * by reducing the solid solution N. The finely precipitated TiN also contributes to the grain refinement of the γ phase. These Ti
By the action of, the structure is refined and the strength and toughness are improved.
Therefore, if it is less than 0.012%, the precipitation amount of TiN will be insufficient and these effects will not be exhibited, so the lower limit of the Ti amount was made 0.012%. However, if it exceeds 0.030%, excessive Ti precipitates TiC, and the precipitation hardening deteriorates the toughness of the base material and the weld heat affected zone, so the content was limited to 0.030% or less.

【0021】Mg添加に使用したMg合金はSi-Mg-Al及び
Ni-Mg である。Mg合金を用いた理由は合金化によりM
g含有濃度を低減し、溶鋼への添加時の脱酸反応を抑制
し、添加時の安全性の確保とMgの歩留を向上させるた
めである。Mgを0.0005〜0.0050% に限定するのは、M
gも強力な脱酸元素であり、晶出したMg酸化物は溶鋼
中で容易に浮上分離されるため0.005%を超えて添加して
も、これ以上は歩留まらないため上限を0.0050% とし
た。また、0.0005% 未満では目的のMg系酸化物の分散
密度が不足するため下限を0.0005% とした。なお、ここ
でのMg系酸化物は、主にMgOと表記しているが、電
子顕微鏡解析などによると、この酸化物はTi、微量の
Alおよび不純物として含まれているCaなどとの複合
酸化物を形成している。
The Mg alloy used for adding Mg is Si-Mg-Al and
It is Ni-Mg. The reason for using Mg alloy is M
This is because the g-containing concentration is reduced, the deoxidation reaction during addition to molten steel is suppressed, the safety during addition is ensured, and the Mg yield is improved. Limiting Mg to 0.0005 to 0.0050% is M
g is also a strong deoxidizing element, and the crystallized Mg oxide is easily floated and separated in the molten steel, so even if it is added in excess of 0.005%, the yield does not rise any further, so the upper limit was made 0.0050%. . If it is less than 0.0005%, the dispersion density of the target Mg-based oxide is insufficient, so the lower limit was made 0.0005%. Note that the Mg-based oxide here is mainly described as MgO, but according to electron microscope analysis and the like, this oxide is a composite oxide with Ti, a trace amount of Al, and Ca contained as impurities. Is forming a thing.

【0022】不可避不純物として含有するP、Sについ
ては、それらの量を特に限定しないが凝固偏析による溶
接割れ、靭性の低下を生じるので、極力低減すべきであ
りP、S量はそれぞれ0.02% 未満に制限することが望ま
しい。以上の元素に加えて、母材強度の上昇、および母
材の靭性向上の目的で、Cr、Niの1種または2種以
上を含有することができる。
The amounts of P and S contained as unavoidable impurities are not particularly limited, but since weld cracking due to solidification segregation and deterioration of toughness occur, they should be reduced as much as possible, and the amounts of P and S each are less than 0.02%. It is desirable to limit to. In addition to the above elements, one or more of Cr and Ni can be contained for the purpose of increasing the strength of the base material and improving the toughness of the base material.

【0023】Crは焼入性の向上により、母材の強化に
有効である。しかし1.0%を超える過剰の添加は、靭性お
よび硬化性の観点から有害となるため、上限を1.0%とし
た。Niは母材の強靭性を高める極めて有効な元素であ
るが2.0%を超える添加は合金コストを増加させ経済的で
ないので上限を2.0%とした。成分調整を完了した溶鋼を
鋳込む際の冷却速度は、Mg系酸化物粒子の個数の増加
とその粒成長を抑制するため、鋳込み開始から 900℃ま
での冷却速度を 0.5〜20℃/sで冷却するのが望ましい。
すなわち、過冷却により晶出する複合酸化物の核生成数
を増加させると同時に冷却中の粒成長を抑制し、大きさ
3μm以下にした酸化物を鋳片に50個/mm2以上含有さ
せるために行うものである。この温度間の冷却速度が
0.5℃/s未満の緩冷却では複合酸化物は凝集粗大化
し、50個/mm2未満となり靭性、延性を低下させるから
である。一方、冷却速度の上限は現状の鋳造技術での冷
却速度の限界である20℃/s以下とする。
Cr is effective in strengthening the base material by improving the hardenability. However, excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.0%. Ni is an extremely effective element that enhances the toughness of the base metal, but the addition of more than 2.0% increases the alloy cost and is not economical, so the upper limit was made 2.0%. The cooling rate when pouring molten steel after the composition adjustment is controlled is 0.5 to 20 ℃ / s from the start of casting to 900 ℃ in order to suppress the increase in the number of Mg-based oxide particles and the particle growth. Cooling is desirable.
That is, to suppress the grain growth during the same time increasing the number of nuclei generating the composite oxide crystallized cooled by supercooling, for inclusion 50 / mm 2 or more oxides below size 3μm cast slab Is what you do. This is because in slow cooling at a cooling rate of less than 0.5 ° C./s between these temperatures, the composite oxide aggregates and coarsens to less than 50 pieces / mm 2 , which reduces toughness and ductility. On the other hand, the upper limit of the cooling rate is 20 ° C./s or less, which is the limit of the cooling rate in the current casting technology.

【0024】次に、鋳片中にMg系酸化物およびMg系酸化
物とTiNの複合析出物が50個/mm2以上含む必要があ
る理由について述べる。製品の材質特性は製鋼、鋳造工
程に支配される先天的因子の鋳片の凝固組織、成分偏
析、本発明の微細複合酸化物、析出物等と圧延、TMC
P、熱処理工程等により支配される後天的因子のミクロ
組織により決定される。当然、この先天的因子である鋳
片の性質は後の工程に継承される。本発明の特徴は、こ
の鋳片の先天的因子の1つを制御することにあり、鋳片
中に高温でのγ粒成長の抑制機能を発揮する微細なMg
系酸化物を分散晶出させることにある。これらの粒子の
分散個数が50個/mm2未満では、1200〜1300℃
加熱におけるγ粒径がASTM No.6番以上の細粒を得
ることはできないため下限を50個/mm2とする。
Next, described why Mg-based oxides and Mg-based oxides and complex precipitates of TiN in the slab has to contain 50 / mm 2 or more. The material properties of the product are steelmaking, solidification structure of cast slab which is an innate factor governed by the casting process, component segregation, fine composite oxide of the present invention, rolling with precipitate, etc., TMC
P, determined by the microstructure of the acquired factors governed by the heat treatment process, etc. Naturally, the property of the slab, which is an innate factor, is inherited in the subsequent process. The feature of the present invention resides in controlling one of the innate factors of this slab, and in the slab, fine Mg particles exhibiting a function of suppressing γ grain growth at high temperature.
The purpose is to crystallize dispersed oxides. If the number of dispersed particles is less than 50 particles / mm 2 , 1200 to 1300 ° C
Since it is not possible to obtain fine particles having a γ particle size of more than ASTM No. 6 in heating, the lower limit is set to 50 particles / mm 2 .

【0025】なお、Mg系酸化物個数はX線マイクロア
ナライザー(EPMA)で測定し決定したものである。
上記の処理を経た鋳片は、次いで1200〜1300℃
の温度域に再加熱する。この温度域に再加熱温度を限定
したのは、熱間加工による形鋼の製造には塑性変形を容
易にするため1200℃以上の加熱が必要であり、且つ
V、Nb、Moなどの元素を十分に固溶させる必要があ
るため再加熱温度の下限を1200℃とした。その上限
は加熱炉の性能、経済性から1300℃とした。
The number of Mg-based oxides is determined by measuring with an X-ray microanalyzer (EPMA).
The cast piece that has been subjected to the above treatment is then 1200 to 1300 ° C.
Reheat to the temperature range. The reason for limiting the reheating temperature to this temperature range is that in the production of shaped steel by hot working, heating at 1200 ° C. or higher is required to facilitate plastic deformation, and elements such as V, Nb and Mo are added. The lower limit of the reheating temperature was set to 1200 ° C because it was necessary to form a sufficient solid solution. The upper limit was set to 1300 ° C. in view of the performance and economical efficiency of the heating furnace.

【0026】熱間圧延のパス間で水冷し、圧延中に一回
以上、フランジ表面温度を700℃以下に冷却し、次の
圧延パス間の復熱過程で圧延する水冷・圧延工程を1回
以上繰り返し行うとしたのは、圧延パス間の水冷によ
り、フランジの表層部と内部とに温度差を付与し、軽圧
下条件においても内部への加工歪みを浸透させるため
と、水冷により短時間で低温圧延を実現させTMCPを
効率的に行うためである。
One water-cooling / rolling step is carried out in which water is cooled between hot-rolling passes, the flange surface temperature is cooled to 700 ° C. or less during rolling once, and rolling is performed in the reheat process between the next rolling passes. The reason for repeating the above is to impart a temperature difference between the surface layer portion and the inside of the flange by water cooling between rolling passes, and to permeate the processing strain into the inside even under a light reduction condition, and in a short time by water cooling. This is because low-temperature rolling is realized and TMCP is efficiently performed.

【0027】フランジ表面温度を700℃以下に冷却し
た後、復熱過程で圧延するのは、仕上げ圧延後の加速冷
却による表面の焼入れ硬化を抑制し厚み方向の硬さ分布
を均一にさせるために行うものである。その理由は、フ
ランジ表面温度を700℃以下に冷却すれば、表層部で
は、一旦γ/α変態温度を切り、次の圧延までに表層部
は復熱昇温し、γ/αの二相共存温度域での加工とな
り、γ細粒化と加工された微細αとの混合組織を形成す
る。これにより表層部の焼入性は著しく低減でき、加速
冷却により生じる表面層の焼入れ硬化を抑制できるから
である。
After the flange surface temperature is cooled to 700 ° C. or lower, rolling is performed in the recuperating process in order to suppress quench hardening of the surface due to accelerated cooling after finish rolling and to make the hardness distribution uniform in the thickness direction. It is something to do. The reason is that if the flange surface temperature is cooled to 700 ° C or less, the γ / α transformation temperature is temporarily cut in the surface layer portion, and the surface layer portion is reheated by the next rolling, and the γ / α two-phase coexistence occurs. Processing is performed in the temperature range, and a mixed structure of γ-fine graining and processed fine α is formed. This is because the hardenability of the surface layer portion can be remarkably reduced, and quench hardening of the surface layer caused by accelerated cooling can be suppressed.

【0028】また、圧延終了後、引続き、0.5〜10
℃/sの冷却速度で700〜400℃まで冷却し放冷す
るとしたのは、加速冷却によりフェライトの粒成長抑制
とベイナイト組織を微細化し高強度・高靭性を得るため
である。次いで、加速冷却を700〜400℃で停止す
るのは、700℃を超える温度で停止した場合は、表層
部の一部がAr1 点以上となりγ相を残存し、これを核に
フェライトが成長し粗粒化するため加速冷却の停止温度
を700℃以下とした。また、400℃未満の冷却で
は、その後の放冷中にベイナイト相のラス間に生成する
M*が、冷却中に焼戻されセメンタイトを析出すること
により分解できず、硬化相として存在することになる。
このM*は脆性破壊の起点として作用し、靭性低下を招
く。これらの理由により、加速冷却の停止温度を700
〜400℃に限定した。
After the rolling is finished, 0.5-10
The reason for cooling to 700 to 400 ° C at a cooling rate of ° C / s and allowing to cool is to suppress grain growth of ferrite and refine the bainite structure by accelerated cooling to obtain high strength and high toughness. Then, the accelerated cooling is stopped at 700 to 400 ° C. When it is stopped at a temperature higher than 700 ° C, a part of the surface layer portion becomes Ar1 point or more and the γ phase remains, and ferrite grows with this as a nucleus. The accelerating cooling stop temperature was set to 700 ° C. or lower in order to coarsen the grains. Further, in the case of cooling below 400 ° C., M * generated between laths of the bainite phase during subsequent cooling cannot be decomposed by being tempered during precipitation and precipitating cementite, so that it exists as a hardening phase. Become.
This M * acts as a starting point of brittle fracture, leading to a decrease in toughness. For these reasons, the stop temperature of accelerated cooling is set to 700
Limited to ~ 400 ° C.

【0029】[0029]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Ti、B、
次いでMg合金を添加し、連続鋳造により 250〜300mm
厚鋳片に鋳造した。鋳片の冷却速度はモールド下方の二
次冷却帯の水量と鋳片の引き抜き速度の選択によりおよ
そ5℃/sに制御した。該鋳片を加熱し、粗圧延工程の
図示は省略するが、図1に示すユニバーサル圧延装置列
でH形鋼に圧延した。圧延パス間水冷は中間ユニバーサ
ル圧延機4の前後に水冷装置5aを設け、フランジ外側
面のスプレー冷却とリバース圧延の繰り返しにより行
い、圧延後の加速冷却は仕上げユニバーサル圧延機6で
圧延終了後にその後面に設置した冷却装置5bでフラン
ジ外側面をスプレー冷却した。
[Examples] Prototype shaped steel was melted in a converter, added with an alloy, and then pre-deoxidized to adjust the oxygen concentration in the molten steel.
Next, add Mg alloy and 250-300mm by continuous casting
It was cast into a thick slab. The cooling rate of the slab was controlled to about 5 ° C./s by selecting the amount of water in the secondary cooling zone below the mold and the withdrawal rate of the slab. The slab was heated and rolled into H-section steel by the universal rolling apparatus train shown in FIG. 1, although the rough rolling step is not shown. Water cooling between rolling passes is performed by providing water cooling devices 5a before and after the intermediate universal rolling mill 4 and repeating spray cooling and reverse rolling on the outer surface of the flange. The outer side surface of the flange was spray-cooled by the cooling device 5b installed in.

【0030】機械特性は図2に示す、フランジ2の板厚
t2 の中心部(1/2t2 )でフランジ幅全長(B) の1/4,1/
2 幅(1/4B,1/2B) から、採集した試験片を用い求めた。
なお、これらの箇所についての特性を求めたのは、フラ
ンジ1/4F部はH形鋼の平均的な機械特性を示し、フラン
ジ1/2F部はその特性が最も低下するので、これらの2箇
所によりH形鋼の機械試験特性を代表できると判断した
ためである。
The mechanical characteristics are shown in FIG. 2, which is 1 / 4,1 / of the total flange width (B) at the center (1 / 2t2) of the plate thickness t2 of the flange 2.
2 From the width (1 / 4B, 1 / 2B), it was determined using the collected test pieces.
The characteristics of these points were determined because the flange 1 / 4F shows the average mechanical characteristics of H-section steel and the flange 1 / 2F has the lowest deterioration of these characteristics. This is because it was judged that the mechanical test characteristics of H-section steel can be represented by.

【0031】表1、表3には、本発明鋼及び比較鋼の化
学成分値を、表2、表4には、これらの鋼におけるTi
添加前の酸素濃度および鋳片中のMg系酸化物およびこ
れとTiNとの複合体の分布密度を示す。表5、表6に
は、圧延加熱時のγ粒度、圧延・加速冷却条件を,次い
で表7、表8には、これらのH形鋼の機械試験特性値を
示す。なお、圧延加熱温度を1300℃に揃えたのは、
一般的に加熱温度の低下によりγ粒は細粒化し、機械試
験特性を向上させることは周知であり、高温加熱条件で
は機械特性の最低値を示すと推定され、この値がそれ以
下の加熱温度での機械試験特性を代表できると判断した
ためである。
Tables 1 and 3 show the chemical composition values of the invention steels and comparative steels, and Tables 2 and 4 show the Ti content of these steels.
The oxygen concentration before addition and the distribution density of the Mg-based oxide in the slab and the composite thereof with TiN are shown. Tables 5 and 6 show the γ grain size during rolling heating, rolling and accelerated cooling conditions, and Tables 7 and 8 show the mechanical test characteristic values of these H-section steels. The reason why the rolling heating temperature is set to 1300 ° C is that
It is well known that γ-grains become finer and generally improve mechanical test properties due to a decrease in heating temperature, and it is estimated that the minimum value of mechanical properties is exhibited under high temperature heating conditions. This is because it was determined that the mechanical test characteristics in

【0032】表7、8に示すように、本発明によるH形
鋼1〜5、A1〜A3では、SM490級鋼でのJIS規格
の降伏強度の下限値+120N/mm2以内(YP=325〜445N/m
m2)に制御され、しかも、降伏比(YP/TS )も0.8 以下
の低YR値を満たし、抗張力(前記JISG3106)及
び700℃での降伏強度が220N/mm2以上を満たしてい
る。シャルピー衝撃吸収エネルギー値についても−10
℃で47(J) 以上でありJIS規格値を十分に満たして
いる。
As shown in Tables 7 and 8, in the H-section steels 1 to 5 and A1 to A3 according to the present invention, the lower limit value of the JIS standard yield strength of SM490 grade steel is within 120 N / mm 2 (YP = 325 to 445N / m
m 2 ), the yield ratio (YP / TS) also satisfies the low YR value of 0.8 or less, and the tensile strength (JISG3106 described above) and the yield strength at 700 ° C. satisfy 220 N / mm 2 or more. Charpy impact absorption energy value is also -10
It is 47 (J) or more at ℃, and it sufficiently satisfies the JIS standard value.

【0033】一方、比較鋼のH形鋼6では、Mo含有量
が、H形鋼7では、Cu含有量が、下限値以下であり、
700℃での高温強度の目標値を満たさない。加えて、
H形鋼7では、Siが上限値を超えているため靭性値が
目標値以下となる。H形鋼8では、N量の不足に加え、
Ti/Nの値が3.5を超えるためγ粒径は粗粒化し靭
性が目標値以下となる。
On the other hand, the Mo content in the H-section steel 6 of the comparative steel and the Cu content in the H-section steel 7 are below the lower limit value,
The target value of the high temperature strength at 700 ° C is not satisfied. in addition,
In H-section steel 7, since Si exceeds the upper limit value, the toughness value becomes equal to or less than the target value. In H-section steel 8, in addition to lack of N content,
Since the Ti / N value exceeds 3.5, the γ grain size becomes coarse and the toughness becomes less than the target value.

【0034】H形鋼9では、N、Tiが過剰で、しかも
Ti/Nの値が過小であるため、固溶NによるM*と粗
大TiNの生成により靭性が低下する。H形鋼10で
は、Bが、H形鋼11ではAlが過剰であるために、靭
性値がクリアできない。また、H形鋼では、Mg量が不
足し、Mg酸化物の生成個数が不足し、γ粒径が粗粒と
なり、組織微細化が達成できず靭性値がクリアできな
い。
In the H-section steel 9, since N and Ti are excessive and the value of Ti / N is too small, the toughness is lowered by the formation of M * and coarse TiN by the solute N. The toughness value cannot be cleared in the H-section steel 10 because B is in excess and in the H-section steel 11 is excessive in Al. Further, in the H-section steel, the amount of Mg is insufficient, the number of generated Mg oxides is insufficient, the γ grain size becomes coarse grain, and the refinement of the structure cannot be achieved, and the toughness value cannot be cleared.

【0035】比較鋼のH形鋼A4では、Ti添加前の溶
鋼の酸素濃度が本発明の下限値以下となっているために
Mg系酸化物の個数が不足し、それに反し、比較鋼のH
形鋼A5では、この酸素濃度の上限値を超えているため
に3μm以上の大きさの粗大な酸化物が形成され、これ
らにより何れもシャルピー衝撃値が開発目標の−10℃
で47J以上を達成できない。H形鋼A6では、圧延中
の水冷がなされていず、十分な組織微細化が達成でき
ず、700℃での降伏強度および−10℃でのシャルピ
ー衝撃値の目標値を達成できない。
In the H-section steel A4 of the comparative steel, the oxygen concentration of the molten steel before the addition of Ti is below the lower limit value of the present invention, and therefore the number of Mg-based oxides is insufficient.
In the shaped steel A5, a coarse oxide having a size of 3 μm or more is formed because the oxygen concentration exceeds the upper limit value.
Can't achieve more than 47J. In H-section steel A6, water cooling is not performed during rolling, sufficient microstructure refinement cannot be achieved, and target values of yield strength at 700 ° C and Charpy impact value at -10 ° C cannot be achieved.

【0036】即ち、本発明の製造法の要件が総て満たさ
れた時に、表7、8に示されるH形鋼1〜5、A1〜A
3のように、圧延形鋼の機械試験特性の最も保証しにく
いフランジ板厚1/2,幅1/2 部においても十分な常温・高
温強度、低温靭性を有する、耐火性及び靭性の優れた圧
延形鋼の生産が可能になる。なお、本発明が対象とする
圧延形鋼は上記実施例のH形鋼に限らずI形鋼、山形
鋼、溝形鋼、不等辺不等厚山形鋼等のフランジを有する
形鋼にも適用できることは勿論である。
That is, when all the requirements of the manufacturing method of the present invention are satisfied, H-section steels 1 to 5 and A1 to A shown in Tables 7 and 8 are obtained.
As shown in Fig. 3, the mechanical test characteristics of rolled steel, which are the most difficult to guarantee, have sufficient room temperature / high temperature strength and low temperature toughness even at a flange plate thickness of 1/2 and width of 1/2, and have excellent fire resistance and toughness. Allows production of rolled steel. The rolled shaped steel to which the present invention is applied is not limited to the H-shaped steel of the above-described embodiment, but is also applicable to shaped steel having a flange such as I-shaped steel, chevron steel, grooved steel, and unequal-thickness chevron steel. Of course you can.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】[0045]

【発明の効果】本発明による圧延形鋼は機械試験特性の
最も保証しにくいフランジ板厚1/2,幅1/2 部においても
十分な強度、靭性を有し、高温特性に優れ、耐火材の被
覆を大幅に省略できる、優れた耐火性及び靭性を持つ形
鋼が圧延ままで製造可能になり、施工コスト低減、工期
の短縮による大幅なコスト削減が図られ、大型建造物の
信頼性向上、安全性の確保、経済性等の産業上の効果は
極めて顕著なものがある。
EFFECTS OF THE INVENTION The rolled steel according to the present invention has sufficient strength and toughness even in the flange plate thickness 1/2 and width 1/2 part where the mechanical test characteristics are the most difficult to guarantee, and has excellent high temperature characteristics and is a refractory material. Shaped steel with excellent fire resistance and toughness that can largely omit the coating can be manufactured as it is rolled, reducing the construction cost and the cost by shortening the construction period, and improving the reliability of large buildings The industrial effects such as ensuring safety and economic efficiency are extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施する装置配置例の略図である。FIG. 1 is a schematic diagram of an example of device arrangement for carrying out the method of the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図である。
FIG. 2 is a view showing a cross-sectional shape of H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機 1 ... H section steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water cooling device on front and rear surfaces of intermediate rolling mill 5b ... Cooling device for rear surface of finishing rolling mill 6 ... Finishing rolling mill

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量% で C:0.02〜0.06% 、 Si: 0.05〜0.25% 、 Mn:0.8〜1.6%、 Mo:0.4〜0.8%、 Cu:0.7〜1.5%、 N: 0.004〜0.010%、 B:0.0003% 以下、 Nb:0.03%以下、 V:0.1% 以下、 Al:0.005% 以下、 を含み、残部がFeおよび不可避不純物からなる溶鋼の酸
素量を重量%で 0.003〜0.010%に調整後、TiとNの比が
Ti/N: 3.0〜3.5 となるようにTi:0.012〜0.030%を
添加し、更にMg: 0.0005〜0.0050% を添加して鋳造した
鋼片中に大きさ3μm 以下のMg系酸化物およびMg系酸
化物とTiNの複合析出物を50個/mm2以上含有させたこ
とを特徴とする耐火圧延形鋼。
1. C: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Mo: 0.4 to 0.8%, Cu: 0.7 to 1.5%, N: 0.004 to 0.010% by weight. B: 0.0003% or less, Nb: 0.03% or less, V: 0.1% or less, Al: 0.005% or less, and the balance of molten steel consisting of Fe and unavoidable impurities, after adjusting the oxygen content to 0.003 to 0.010% by weight. , Ti: N ratio of Ti / N: 3.0-3.5, Ti: 0.012-0.030% was added, and further Mg: 0.0005-0.0050% was added. A fire-resistant rolled steel comprising a Mg-based oxide and a composite precipitate of Mg-based oxide and TiN of 50 or more / mm 2 .
【請求項2】 重量% で C:0.02〜0.06% 、 Si: 0.05〜0.25% 、 Mn:0.8〜1.6%、 Mo:0.4〜0.8%、 Cu:0.7〜1.5%、 N :0.004〜0.010%、 B: 0.0003%以下、 Nb:0.03%以下、 V:0.1% 以下、 Al:0.005% 以下、 を含み、かつCr:1.0% 以下、Ni:2.0% 以下のいずれかの
1種または2種以上を含有し残部がFeおよび不可避不純
物からなる溶鋼の酸素量を重量%で 0.003〜0.010%に調
整後、TiとNの比がTi/N: 3.0〜3.5 となるように
Ti:0.012〜0.030%添加し、更にMg: 0.0005〜0.0050% を
添加して鋳造した鋼片中に大きさ3μm以下のMg系酸化
物およびMg系酸化物とTiNの複合析出物を50個/mm2
以上含有させたことを特徴とする耐火圧延形鋼。
2. C: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Mo: 0.4 to 0.8%, Cu: 0.7 to 1.5%, N: 0.004 to 0.010% by weight%. B: 0.0003% or less, Nb: 0.03% or less, V: 0.1% or less, Al: 0.005% or less, and one or more of Cr: 1.0% or less and Ni: 2.0% or less. After adjusting the oxygen content of the molten steel containing the balance Fe and unavoidable impurities to 0.003 to 0.010% by weight, the ratio of Ti and N should be Ti / N: 3.0 to 3.5.
Ti: 0.012 to 0.030% was added, and further, Mg: 0.0005 to 0.0050% was added, and 50 or less composite precipitates of Mg-based oxide and Mg-based oxide and TiN with a size of 3 μm or less were cast in the cast steel slab. mm 2
A refractory rolled steel characterized by containing the above.
【請求項3】 重量% で C:0.02〜0.06% 、 Si: 0.05〜0.25% 、 Mn:0.8〜1.6%、 Mo:0.4〜0.8%、 Cu:0.7〜1.5%、 N: 0.004〜0.010%、 B: 0.0003%以下、 Nb:0.03%以下、 V:0.1% 以下、 Al:0.005% 以下、 を含み、残部がFeおよび不可避不純物からなる溶鋼の酸
素量を重量%で 0.003〜0.010%に調整後、TiとNの比が
Ti/N: 3.0〜3.5 となるようにTi:0.012〜0.030%を
添加し、更にMg: 0.0005〜0.0050% を添加して成分調整
した溶鋼を鋳造し、鋳片中に大きさ3μm 以下のMg系酸
化物およびMg系酸化物とTiNの複合析出物を50個/m
m2以上含有させた鋳片を1200〜1300℃の温度域に再加熱
した後に圧延を開始し、圧延工程で形鋼のフランジ表面
温度を 700℃以下に水冷し、以降の圧延パス間の復熱過
程で圧延する水冷・圧延工程を一回以上繰り返し圧延
し、圧延終了後に 0.5〜10℃/sの冷却速度で 700〜400
℃まで冷却し放冷することを特徴とする耐火圧延形鋼の
製造方法。
3. C: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Mo: 0.4 to 0.8%, Cu: 0.7 to 1.5%, N: 0.004 to 0.010% by weight%. B: 0.0003% or less, Nb: 0.03% or less, V: 0.1% or less, Al: 0.005% or less, and the balance of oxygen of molten steel consisting of Fe and unavoidable impurities after adjusting to 0.003 to 0.010% by weight , Ti: N ratio of Ti / N: 3.0-3.5 was added, Ti: 0.012-0.030% was added, and further Mg: 0.0005-0.0050% was added to cast the molten steel in which the composition was adjusted. 50 μm / m of composite precipitate of Mg-based oxide and Mg-based oxide and TiN with a size of 3 μm or less.
After reheating the slab containing m 2 or more to a temperature range of 1200 to 1300 ° C, rolling is started, the flange surface temperature of the shaped steel is water-cooled to 700 ° C or less in the rolling process, and the temperature between the subsequent rolling passes is restored. The water-cooling / rolling process of rolling in the heat process is repeated one or more times, and after completion of rolling, 700-400 at a cooling rate of 0.5-10 ° C / s.
A method for producing a fire-resistant rolled steel shape, which comprises cooling to ℃ and allowing to cool.
【請求項4】 重量% で C:0.02〜0.06% 、 Si: 0.05〜0.25% 、 Mn:0.8〜1.6%、 Mo:0.4〜0.8%、 Cu:0.7〜1.5%、 N: 0.004〜0.010%、 B: 0.0003%以下、 Nb:0.03%以下、 V:0.1% 以下、 Al:0.005% 以下、 を含み、かつCr:1.0% 以下、Ni:2.0% 以下のいずれかの
1種または2種以上を含有し残部がFeおよび不可避不純
物からなる溶鋼の酸素量を重量%で 0.003〜0.010%に調
整後、TiとNの比がTi/N: 3.0〜3.5 となるように
Ti:0.012〜0.030%を添加し、更にMg: 0.0005〜0.0050%
を添加して成分調整した溶鋼を鋳造し、鋳片中に大きさ
3μm 以下のMg系酸化物およびMg系酸化物とTiNの
複合析出物を50個/mm2以上含有させた鋳片を1200〜1300
℃の温度域に再加熱した後に圧延を開始し、圧延工程で
形鋼のフランジ表面温度を 700℃以下に水冷し、以降の
圧延パス間の復熱過程で圧延する水冷・圧延工程を一回
以上繰り返し圧延し、圧延終了後に 0.5〜10℃/sの冷却
速度で 700〜400 ℃まで冷却し放冷することを特徴とす
る耐火圧延形鋼の製造方法。
4. C .: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.8 to 1.6%, Mo: 0.4 to 0.8%, Cu: 0.7 to 1.5%, N: 0.004 to 0.010% by weight%. B: 0.0003% or less, Nb: 0.03% or less, V: 0.1% or less, Al: 0.005% or less, and one or more of Cr: 1.0% or less and Ni: 2.0% or less. After adjusting the oxygen content of the molten steel containing the balance Fe and unavoidable impurities to 0.003 to 0.010% by weight, the ratio of Ti and N should be Ti / N: 3.0 to 3.5.
Ti: 0.012 to 0.030% added, and Mg: 0.0005 to 0.0050%
The molten steel with the composition adjusted by adding is cast, and the cast piece containing the Mg-based oxide and the composite precipitate of Mg-based oxide and TiN of 3 μm or less in size of 50 pieces / mm 2 or more is cast in the cast piece. ~ 1300
Rolling is started after reheating to the temperature range of ℃, water temperature of flange surface of shaped steel is cooled to 700 ℃ or less in the rolling process, and rolling is performed once in the reheat process between rolling passes. A method for producing a fire-resistant rolled shape steel, which comprises repeatedly rolling the above and cooling to 700 to 400 ° C at a cooling rate of 0.5 to 10 ° C / s and then leaving to cool.
JP03624396A 1996-02-23 1996-02-23 Refractory rolled steel and method for producing the same Expired - Lifetime JP3472017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03624396A JP3472017B2 (en) 1996-02-23 1996-02-23 Refractory rolled steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03624396A JP3472017B2 (en) 1996-02-23 1996-02-23 Refractory rolled steel and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09227985A JPH09227985A (en) 1997-09-02
JP3472017B2 true JP3472017B2 (en) 2003-12-02

Family

ID=12464340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03624396A Expired - Lifetime JP3472017B2 (en) 1996-02-23 1996-02-23 Refractory rolled steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3472017B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425080A4 (en) * 2016-03-02 2019-10-30 Nippon Steel Corporation H-shaped steel for low temperatures and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733727B2 (en) * 1997-12-26 2006-01-11 Jfeスチール株式会社 Method for producing ultra-thick H-section steel for building structures having a tensile strength of 590 MPa that is excellent in toughness in the flange thickness direction as it is rolled
US6451134B1 (en) 1999-06-24 2002-09-17 Kawasaki Steel Corporation 590MPa class heavy gauge H-shaped steel having excellent toughness and method of producing the same
JP5168045B2 (en) * 2008-02-15 2013-03-21 新日鐵住金株式会社 Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425080A4 (en) * 2016-03-02 2019-10-30 Nippon Steel Corporation H-shaped steel for low temperatures and method for manufacturing same
US10900099B2 (en) 2016-03-02 2021-01-26 Nippon Steel Corporation Steel H-shape for low temperature service and manufacturing method therefor

Also Published As

Publication number Publication date
JPH09227985A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
EP0589424B1 (en) Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
KR101563929B1 (en) 800 Steel plate with yield strength of 800MPa grade and low weld cracking sensitivity and manufacture method thereof
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2004515653A5 (en)
EP0589435B1 (en) Refractory shape steel material containing oxide and process for producing rolled shape steel of said material
JP5098210B2 (en) Refractory steel and method for producing the same
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP3507258B2 (en) 590 MPa class rolled section steel and method for producing the same
KR102089167B1 (en) Shape steel and method of manufacturing the same
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JPH0483821A (en) Production of wide flange shape excellent in refractoriness and toughness in weld zone
JPH04279247A (en) Manufacture of transgranular ferrite system rolled shapes with excellent fire resistance and toughness
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3507259B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JP3285731B2 (en) Rolled section steel for refractory and method for producing the same
JPH07252586A (en) Steel for welding structure excellent in ctod in multilayer build-up weld heat-affected zone and toughness in high heat input weld heat-affected zone
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term