JPH0483821A - Production of wide flange shape excellent in refractoriness and toughness in weld zone - Google Patents

Production of wide flange shape excellent in refractoriness and toughness in weld zone

Info

Publication number
JPH0483821A
JPH0483821A JP20030590A JP20030590A JPH0483821A JP H0483821 A JPH0483821 A JP H0483821A JP 20030590 A JP20030590 A JP 20030590A JP 20030590 A JP20030590 A JP 20030590A JP H0483821 A JPH0483821 A JP H0483821A
Authority
JP
Japan
Prior art keywords
steel
toughness
molten steel
weight
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20030590A
Other languages
Japanese (ja)
Other versions
JPH0765097B2 (en
Inventor
Koichi Yamamoto
広一 山本
Koji Takeshima
竹島 康志
Takeshi Fujimoto
武 藤本
Naoki Oda
直樹 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2200305A priority Critical patent/JPH0765097B2/en
Publication of JPH0483821A publication Critical patent/JPH0483821A/en
Publication of JPH0765097B2 publication Critical patent/JPH0765097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve base material characteristics, refractoriness, and toughness in weld zone by controlling the amount of dissolved oxygen in a molten steel and carrying out hot rolling while specifying finishing temp. CONSTITUTION:A liquid iron is refined so that the amount of dissolved oxygen is regulated, by weight, to 0.003-0.015% by means of vacuum degassing treatment and preliminary deoxidizing treatment by indepent addition of pure metal, such as Al, Si, Ca, and Mg as deoxidizing elements, or combined addition of alloys thereof or by means of vacuum degassing treatment alone. By means of alloy addition, the liquid iron is regulated into a molten steel having a composition consisting of, by weight, 0.05-0.20% C, 0.05-0.50% Si, 0.4-2.0% Mn, 0.3-0.7% Mo, 0.05-0.20% V, 0.0070-0.0150% N, <0.005% Al, and the balance Fe with inevitable impurities, and further, by means of final deoxidation, this molten steel is regulated into a molten steel containing Ti by the amount, by weight percentage, satisfying the relation in -0.006<=[Ti%]-2[0%]<=0.008 based on the amount of dissolved oxygen [0%] in the molten steel. A steel slab prepared from this molten steel is reheated to 1100-1300 deg.C and hot-rolled, and finishing temp. is regulated to 750-1050 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建造物の構造部材として用いられる耐火性及
び溶接部靭性の優れたH形鋼の製造方法に係わるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing H-beam steel having excellent fire resistance and weld zone toughness and used as a structural member of buildings.

(従来の技術) 建築物の超高層化、建築設計技術の高度化などから耐火
設計の見直しが建設省総合プロジェクトにより行われ、
昭和62年3月に「新耐火設計法」が制定された。この
規定により、旧法令による火災時に綱材の温度を350
℃以下にするように耐火被覆するとした制限が解除され
、鋼材の高温強度と建築物の実荷重との兼ね合いにより
、それに適合する耐火被覆方法を決定できるようになっ
た。
(Conventional technology) Due to the rise in the height of buildings and the sophistication of architectural design technology, a review of fire resistance design was carried out under a comprehensive project by the Ministry of Construction.
In March 1988, the "New Fireproof Design Law" was enacted. According to this regulation, the temperature of the rope should be reduced to 350 in the event of a fire under the old law.
The restriction that fireproof coatings must be applied to temperatures below ℃ has been lifted, and it is now possible to determine the appropriate fireproof coating method based on the balance between the high-temperature strength of the steel and the actual load of the building.

即ち600℃での設計高温強度を確保できる場合はそれ
に見合い耐火被覆を削減できるようになった。
That is, if the design high temperature strength at 600°C can be secured, the fireproof coating can be reduced accordingly.

このような動向に対応し、先に特願昭63−14374
0号により耐火性の優れた建築用低陣伏比鋼および鋼材
並びにその製造方法が提案されている。この先願発明の
要旨は600℃での降伏点が常温時の70%以上となる
ようにMo、Nbを添加し、高温強度を向上させたもの
である。鋼材の設計高温強度を600″Cに設定したの
は、合金元素による鋼材費の上昇とそれによる耐火被覆
施工費との兼ね合いから最も経済的であるという知見に
基づいたものである。
In response to these trends, we first filed a patent application No. 14374 (1983).
No. 0 proposes a low-strength ratio steel for construction with excellent fire resistance, a steel material, and a method for producing the same. The gist of this prior invention is to improve high-temperature strength by adding Mo and Nb so that the yield point at 600° C. is 70% or more of that at room temperature. The design high-temperature strength of the steel material was set at 600''C based on the knowledge that it is the most economical option considering the increase in steel material cost due to alloying elements and the resulting fireproof coating construction cost.

(発明が解決しようとしている課題) 本発明等者は前述の先願技術によって製造された鋼材を
各種の形鋼、特に複雑な彫型から厳しい圧延造形上の制
約を有するH形鋼の素材に適用することを試みた結果、
ウェブ、フランジ、フィレットの各部位で、圧延仕上げ
温度、圧下率、冷却速度に差を生じ、常温・高温強度、
延性、靭性がバラツキ、規準に満たない部位が生じた。
(Problems to be Solved by the Invention) The present inventors have used the steel manufactured by the above-mentioned prior art technology to produce various shapes, especially H-beams with complicated shapes and severe rolling forming restrictions. As a result of trying to apply
Differences occur in rolling finishing temperature, rolling reduction rate, and cooling rate at each part of the web, flange, and fillet, resulting in differences in room temperature and high temperature strength,
The ductility and toughness varied, and some parts did not meet the standards.

さらに、建材用鋼材には、建築物の高層化、インテリジ
ェント化などから、より高い信転性、高能率化のための
溶接性能の向上などが要望されでいる。
Furthermore, as buildings become taller and more intelligent, steel materials for building materials are required to have higher reliability and improved welding performance for higher efficiency.

本発明の目的は上記の課題を解決するために、高温強度
特性、材質特性に対し圧延仕上げ温度。
The purpose of the present invention is to solve the above-mentioned problems by improving the rolling finishing temperature for high temperature strength properties and material properties.

圧延圧下比、鋼板厚(冷却速度)依存性が少ない、母材
特性に優れ、加えて、優れた溶接部靭性を有する、安価
で経済的な耐火性及び溶接部靭性に優れたH形鋼の製造
方法を提供することにある。
A low-cost, economical H-beam steel with excellent fire resistance and weld toughness that has low dependence on rolling reduction ratio and steel sheet thickness (cooling rate), excellent base metal properties, and excellent weld toughness. The purpose is to provide a manufacturing method.

(課題を解決するための手段) 本発明は、前述の課題を解決するためになされたもので
あり、その要旨とするところは下記のとおりである。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows.

(1)溶鉄を真空脱ガス処理及び脱酸元素A/、5iC
a、Mgの純金属単独かそれらの合金併用添加による予
備脱酸処理を行うか、もしくは真空脱ガス処理のみによ
り、溶存酸素を重量%で0.003〜0、015%に溶
製後、合金添加により、重量%でC: 0.05〜0.
20% Si:0.05〜0.50%Mn : 0.4
〜2.0%、 Mo: 0.3〜0.7%、V:0.0
5〜0.20% N : 0.0070〜0.0150
%、 、AI<O,OO5%を含み、残部がFe及び不
可避不純物からなる溶鋼に調整し、さらに最終脱酸によ
り溶鋼の溶存酸素10%]に対し−0,006≦〔Ti
%]−2〔O%〕≦0.008の関係を満たす重量%の
Tiを含有する溶鋼に調整し、同溶鋼から得られた鋼片
を1100〜1300℃の温度域に再加熱後、熱間圧延
を行い圧延仕上げ温度を750〜1050℃の範囲とす
ることを特徴とする耐火性及び溶接部靭性の優れたH形
鋼の製造方法。
(1) Vacuum degassing treatment of molten iron and deoxidizing element A/, 5iC
a. Perform preliminary deoxidation treatment by adding pure metal Mg alone or a combination of these alloys, or by vacuum degassing treatment alone to reduce the dissolved oxygen to 0.003 to 0.015% by weight, and then prepare the alloy. By addition, C in weight %: 0.05-0.
20% Si: 0.05-0.50% Mn: 0.4
~2.0%, Mo: 0.3~0.7%, V: 0.0
5-0.20% N: 0.0070-0.0150
%, , AI<O, OO 5%, the remainder is Fe and unavoidable impurities, and final deoxidation is performed to obtain -0,006≦[Ti
%]-2[O%]≦0.008, and after reheating the slab obtained from the molten steel to a temperature range of 1100 to 1300°C, A method for producing an H-section steel having excellent fire resistance and weld toughness, characterized by performing intermediate rolling and setting the finishing temperature in the range of 750 to 1050°C.

(2)溶鉄を真空脱ガス処理及び脱酸元素A/、Si。(2) Vacuum degassing treatment of molten iron and deoxidizing element A/, Si.

Ca、Mgの純金属単独かそれらの合金併用添加による
予備脱酸処理を行うか、もしくは真空脱ガス処理のみに
より、溶存酸素を重量%で0.003〜0.015%に
溶製後、合金添加により、重量%でC: 0.05〜0
.20%、Si:0.05〜0.50%。
After performing preliminary deoxidation treatment by adding pure metals such as Ca and Mg alone or in combination with their alloys, or by vacuum degassing treatment alone, dissolved oxygen is reduced to 0.003 to 0.015% by weight, and then the alloy is prepared. By addition, C in weight%: 0.05-0
.. 20%, Si: 0.05-0.50%.

門n  :  0. 4 〜2. 0  %、  Mo
:  0.3 〜0.7  %、v:o、os〜0.2
0%、 N : 0.0070〜0.0150%、A4
<0.005%に加えてCr≦0.7%、 Ni≦1.
0%、 Nb≦0.05%、 Cu≦1.0%の1種ま
たは2種以上を含み、残部がFe及び不可避不純物から
なる溶鋼に調製し、さらに最終脱酸により溶鋼の溶存酸
素〔O%〕に対し−0,006≦(Ti%)−2〔O%
〕≦o、 o o sの関係を満たす重量%のTiを含
有する溶鋼に調整し、同溶鋼から得られた鋼片を110
0〜1300″Cの温度域に再加熱後、熱間圧延を行い
圧延仕上げ温度を750〜1050℃の範囲とすること
を特徴とする耐火性及び溶接部靭性の優れたH形鋼の製
造方法。
Gate n: 0. 4-2. 0%, Mo
: 0.3 to 0.7%, v:o, os to 0.2
0%, N: 0.0070-0.0150%, A4
<0.005% plus Cr≦0.7%, Ni≦1.
0%, Nb≦0.05%, Cu≦1.0%, and the remainder is Fe and unavoidable impurities. %] -0,006≦(Ti%)-2[O%
] ≦o, oos
A method for manufacturing an H-beam steel with excellent fire resistance and weld toughness, characterized by reheating to a temperature range of 0 to 1300"C, followed by hot rolling to a finishing rolling temperature of 750 to 1050"C. .

(作 用) 以下、本発明について詳細に説明する。(for production) The present invention will be explained in detail below.

鋼材の高温強度は鉄の融点のほぼ1/2の温度の700
℃以下では常温での強化機構とほぼ同様であり、■フェ
ライト結晶粒径の微細化、■合金元素による固溶体強化
、■硬化相による分散強化、■微細析出物による析出強
化等によって支配される。一般に高温強度の上昇にはM
o、Crの添加による析出強化と転位の消失軽減による
高温での軟化抵抗を高めることにより達成されている。
The high temperature strength of steel is 700, which is approximately 1/2 the melting point of iron.
At temperatures below ℃, the strengthening mechanism is almost the same as that at room temperature, and is dominated by (1) refinement of ferrite crystal grain size, (2) solid solution strengthening by alloying elements, (2) dispersion strengthening by hardening phases, and (2) precipitation strengthening by fine precipitates. In general, to increase high temperature strength, M
This is achieved by increasing the softening resistance at high temperatures by adding precipitation strengthening and reducing the disappearance of dislocations by adding o, Cr.

しかしMo、Crの添加は著しく焼き入れ性を上げ、母
材のフェライト+パーライト組織がベーナイト組織化し
易くなる。ベーナイト組織を生成し易い成分をH形鋼に
適応した場合は、その形状からウェブ、フランジ、フィ
レットの各部位で、圧延仕上げ温度、圧下率、冷却速度
に差を生しるため、各部位によりベーナイト組織割合が
大きく変化する。その結果として常温・高温強度、延性
、靭性がバラツキ、規準に満たない部位が生しる。加え
て、これらの元素の添加により溶接部を著しく硬化させ
、靭性を低下させる。
However, the addition of Mo and Cr significantly increases the hardenability, and the ferrite+pearlite structure of the base material becomes easier to form into a bainite structure. When a component that easily generates a bainitic structure is applied to an H-beam steel, the rolling finish temperature, rolling reduction rate, and cooling rate will vary depending on the shape of the web, flange, and fillet. The bainite structure ratio changes significantly. As a result, room temperature and high temperature strength, ductility, and toughness vary, and some parts do not meet the standards. In addition, the addition of these elements significantly hardens the weld and reduces toughness.

本発明の特徴は母材の材質特性の向上と溶接時の溶接部
靭性の向上の二点である。母材に関しては、溶鋼の溶存
酸素量の制御と脱酸元素の添加手順の選択により、鋼中
に分散させたTi酸化物S i −Mn酸化物などの酸
化物粒子を核にしたVNの析出によるオーステナイト粒
内からの粒内フェライト変態の促進効果を利用し、H形
鋼の各部位のベーナイトとフェライトの組織割合の変化
を少なくし、母材の機械特性の均一化を達成したことと
、高温強度をVNの析出強化により向上させたことにあ
る。
The present invention is characterized by two points: improvement in the material properties of the base material and improvement in the toughness of the weld zone during welding. Regarding the base material, by controlling the amount of dissolved oxygen in molten steel and selecting the procedure for adding deoxidizing elements, VN can be precipitated with oxide particles such as Ti oxide or Si-Mn oxide dispersed in the steel as nuclei. Utilizing the effect of promoting intragranular ferrite transformation from within the austenite grains, changes in the microstructure ratio of bainite and ferrite in each part of the H-beam steel were reduced, and the mechanical properties of the base metal were made uniform. The high temperature strength is improved by precipitation strengthening of VN.

溶接熱影響部(以下はHAZと称す)は鉄の融点直下の
温度に加熱され、オーステナイト粒の著しい粗粒化を生
じ、その結果、組織の粗粒化を招き、靭性を著しく低下
させる。本発明により鋼中に分散させたTi酸化物、5
1−Mn酸化物などの酸化物粒子は針状の粒内フェライ
ト生成機能に優れ、これを核に粒内フェライト組織を生
成し、組織を著しく微細化し、靭性を向上させる特徴を
有している。
The weld heat affected zone (hereinafter referred to as HAZ) is heated to a temperature just below the melting point of iron, causing significant coarsening of austenite grains, resulting in coarsening of the structure and significantly lowering toughness. Ti oxide dispersed in steel according to the invention, 5
Oxide particles such as 1-Mn oxide have an excellent ability to generate acicular intragranular ferrite, which generates an intragranular ferrite structure using this as a nucleus, which significantly refines the structure and improves toughness. .

次に本発明対象鋼の基本成分範囲の限定理由について述
べる。
Next, the reason for limiting the basic component range of the steel subject to the present invention will be described.

まず、Cは鋼の強度を向上させる有効な成分として添加
するもので、0.05%未満では構造用鋼として必要な
強度が得られず、また、0.20%を趙える過剰の添加
は、母材靭性、耐溶接割れ性、HAZ靭性などを著しく
低下させるので、上限を0.20%とした。
First, C is added as an effective component to improve the strength of steel; if it is less than 0.05%, the strength required for structural steel cannot be obtained, and if it is added in excess of 0.20%, , the upper limit was set at 0.20% because it significantly deteriorates base metal toughness, weld cracking resistance, HAZ toughness, etc.

次に、Siは母材の強度確保、Si系酸化物の生成など
に必要であるが、0.50%を超えると熱処理組織内に
硬化組織の高炭素マンテンサイドを生成し、靭性を著し
く低下させる。また、0.05%未満では必要なSi系
酸化物が生成できないため、Si含有量を0.05〜0
.50%に限定した。
Next, Si is necessary to ensure the strength of the base material and to generate Si-based oxides, but if it exceeds 0.50%, a high carbon mantenside, which is a hardened structure, will be generated in the heat-treated structure, significantly reducing toughness. let In addition, if the Si content is less than 0.05%, the necessary Si-based oxide cannot be generated, so the Si content should be reduced from 0.05 to 0.
.. Limited to 50%.

Mnは母材の強凌、靭性の確保のために0.4%以上の
添加が必要であるが、溶接部靭性、耐割れ性などの許容
できる範囲で上限を2.0%とした。
Mn needs to be added in an amount of 0.4% or more to ensure strength and toughness of the base metal, but the upper limit was set to 2.0% within an allowable range such as weld toughness and cracking resistance.

Atは強力な脱酸元素であり、0.005%以上の含有
は粒内フェライト変態を促進するTi酸化物、 Si・
Mn酸化物などが形成されず、靭性の低下がもたらされ
ることと、過剰の固溶^lはNと化合しAINを形成し
本発明対象鋼の特徴であるVNの析出量を低減させるた
め、0.005%未満に限定した。
At is a strong deoxidizing element, and its content of 0.005% or more promotes intragranular ferrite transformation.
Because Mn oxides etc. are not formed, resulting in a decrease in toughness, and excessive solid solution^l combines with N to form AIN, reducing the amount of VN precipitation, which is a characteristic of the steel subject to the present invention. It was limited to less than 0.005%.

NはVNの析出には極めて重要な元素であり、0.00
70%未満ではVNの析出量が不足し、フェライト組織
の十分な生成量が得られず、また600℃での高温強度
も確保できないため0.0070%以上とした。含有量
が0.0150%を超えると母材靭性を低下させ、連続
鋳造時の鋼片の表面割れを生じさせるため0.0150
%以下に限定した。
N is an extremely important element for the precipitation of VN, and 0.00
If it is less than 70%, the amount of VN precipitated is insufficient, a sufficient amount of ferrite structure cannot be obtained, and high temperature strength at 600° C. cannot be ensured, so it is set to 0.0070% or more. If the content exceeds 0.0150%, it will reduce the toughness of the base material and cause surface cracking of the steel billet during continuous casting.
% or less.

Moはは母材強度及び高温強度の確保に有効な元素であ
る。0.3%未満ではVNの析出強化との複合作用によ
っても十分な高温強度が確保できず、0.7%超では焼
き入れ性が上昇しすぎて母材靭性HAZ靭性が劣化する
ため0.3〜0.7%に限定した。
Mo is an effective element for ensuring base metal strength and high temperature strength. If it is less than 0.3%, sufficient high-temperature strength cannot be secured due to the combined effect of VN precipitation strengthening, and if it exceeds 0.7%, the hardenability increases too much and the base material toughness (HAZ toughness) deteriorates. It was limited to 3-0.7%.

■はVNとして粒内フェライト組織の生成とその細粒化
、高温強度の確保のために極めて重要であり、0.05
%未満ではVNの析出量が不十分であり、0.20%超
では析出量が過剰になり、母材靭性、溶接部靭性が低下
するため0.05〜0.20%に限定した。
■ is extremely important as VN for the generation of intragranular ferrite structure, its refinement, and ensuring high temperature strength, and is 0.05
If it is less than 0.2%, the amount of VN precipitated is insufficient, and if it exceeds 0.20%, the amount of VN precipitated becomes excessive and the base metal toughness and weld zone toughness deteriorate, so it was limited to 0.05 to 0.20%.

不可避不純物として含有するP、Sはその量について特
に限定しないが凝固偏析による溶接割れ、靭性などの低
下を生じるので極力低減すべきであり、望ましくはP、
  S量はそれぞれ0.02%以下である。
The amounts of P and S contained as unavoidable impurities are not particularly limited, but they should be reduced as much as possible because they cause weld cracking due to solidification segregation and a decrease in toughness.
The amount of S is 0.02% or less.

以上が本発明対象鋼の基本成分であるが、母材強度の上
昇、および母材の靭性向上の目的で、Cr、Ni、Nb
、Cuの1種または2種以上を含有することができる。
The above are the basic components of the steel subject to the present invention, but for the purpose of increasing the strength of the base metal and improving the toughness of the base metal, Cr, Ni, Nb
, Cu or more.

まず、Niは母材の強靭性を高める極めて有効な元素で
あるが、1.0%を超える添加は合金コストを増加させ
経済的でないので上限を1.0%とした。
First, Ni is an extremely effective element for increasing the toughness of the base material, but addition of more than 1.0% increases alloy cost and is not economical, so the upper limit was set at 1.0%.

Crは焼き入れ性の向上と析出硬化により、母材の強化
、高温強化に有効である。しかし上限を超える過剰の添
加は、靭性及び硬化性の観点から有害となるため、上限
を0.7%とした。
Cr is effective in strengthening the base material and strengthening it at high temperatures by improving hardenability and precipitation hardening. However, excessive addition exceeding the upper limit is harmful from the viewpoint of toughness and hardenability, so the upper limit was set at 0.7%.

Nbは母材の強靭化に有効であるが、上限を超える過剰
の添加は、靭性及び硬化性の観点から有害となるため0
.05%以下とした。
Nb is effective in toughening the base material, but excessive addition exceeding the upper limit is harmful from the viewpoint of toughness and hardenability, so it is
.. 05% or less.

Cuは母材の強化、耐候性に有効な元素であるが、応力
除去焼鈍による焼き戻し脆性、溶接割れ性、熱間加工割
れなどを考慮して上限を1.0%とした。
Cu is an effective element for strengthening and weathering the base material, but the upper limit was set at 1.0% in consideration of temper brittleness due to stress relief annealing, weld cracking, hot work cracking, etc.

溶鉄を真空脱ガス処理及び脱酸元素Al、 Si、 C
a。
Vacuum degassing treatment of molten iron and deoxidizing elements Al, Si, C
a.

FIIgの純金属か合金による脱酸をそれぞれ単独及び
両者の併用により予備脱酸するのは溶鉄を高清浄化する
と同時に、溶存酸素を重量%で0.003〜0.015
%に制御するために極めて重要な処理である。さらに脱
酸前の溶鉄の〔O〕濃度がO,OO3%未満では粒内フ
ェライト変態を促進するTi酸化物、51−Mn酸化物
などの粒内フェライト生成核が減少し、靭性を向上でき
ない。−・方、0.015%を超える場合は、他の条件
を満たしていても、酸化物が粗粒化し脆性破壊の起点と
なり、靭性を低下させるため合金添加前の溶鉄の溶存酸
素を重量%で0.003〜0.015%に限定した。
Preliminary deoxidation using FIIg pure metal or alloy, either alone or in combination, can highly purify the molten iron and at the same time reduce dissolved oxygen by 0.003 to 0.015% by weight.
This is an extremely important process in order to control the Further, if the [O] concentration of the molten iron before deoxidation is less than 3% O, OO, intragranular ferrite generation nuclei such as Ti oxide and 51-Mn oxide that promote intragranular ferrite transformation are reduced, and toughness cannot be improved. - On the other hand, if it exceeds 0.015%, even if other conditions are met, the oxide becomes coarse grained and becomes the starting point of brittle fracture, reducing toughness. It was limited to 0.003 to 0.015%.

Tiは溶鋼の最終脱酸に際して添加するものであり、か
くして得られる溶鍛が、溶鋼の溶存酸素〔O%〕に対し
−0,006≦(Ti%)−2〔O%〕≦0.008の
関係を満たす重量%のT1を含有するように調整すると
限定したのは、この関係式において重量%でTiが〔O
〕濃度に対し過剰である場合は過剰なTiが必要以上の
TiNを生成し、本発明対象鋼の特徴であるVNの析出
量を低減させ、重量%でTiが〔O〕濃度に対し過小で
ある場合は粒内フェライト核となるTi酸化物及びSi
・Mn酸化物個数の総計が必要数を満たさなくなるため
である。
Ti is added during the final deoxidation of molten steel, and the molten forging thus obtained has -0,006≦(Ti%)-2[O%]≦0.008 with respect to dissolved oxygen [O%] of molten steel. The reason why the adjustment is limited to the content of T1 in the weight% that satisfies the relationship is that in this relational expression, Ti is [O
] If it is in excess of the [O] concentration, the excess Ti will generate more TiN than necessary, reducing the amount of VN precipitation, which is a feature of the steel subject to the present invention, and if Ti is too small in terms of [O] concentration in terms of weight percent. In some cases, Ti oxide and Si become intragranular ferrite nuclei.
- This is because the total number of Mn oxides no longer satisfies the required number.

再加熱温度を1100〜1300℃の温度域に限定した
のは、熱間加工による形鋼の製造には塑性変形を容易に
するため1100℃以上の加熱が必要であり、且つV、
Moによる高温での降伏点を増大させるには、これらの
元素を十分に固溶させる必要があるため再加熱温度の下
限を1100゛Cとした。その上限は加熱炉の性能、経
済性から1300℃とした。
The reason why the reheating temperature was limited to the temperature range of 1100 to 1300°C is that heating to 1100°C or higher is necessary to facilitate plastic deformation in the production of section steel by hot working, and V,
In order to increase the yield point of Mo at high temperatures, it is necessary to sufficiently dissolve these elements in solid solution, so the lower limit of the reheating temperature was set at 1100°C. The upper limit was set at 1300° C. in view of the performance and economic efficiency of the heating furnace.

熱間圧延の圧延仕上げ温度を750〜105゜としたの
は、低温圧延はど靭性は向上するが、形鋼の造形上75
0℃未満での加工は困難であり、また1050℃を趙え
ての加工は粗粒組織を生成し靭性が低下するためである
The reason for setting the finishing temperature of hot rolling to 750 to 105° is that although cold rolling improves the toughness,
This is because processing at temperatures below 0°C is difficult, and processing at temperatures above 1050°C produces a coarse grain structure and reduces toughness.

以下に実施例によりさらに本発明の効果を示す。The effects of the present invention will be further illustrated by Examples below.

(実施例) 供試鋼は転炉溶製し、脱ガス処理後、連続鋳造により2
50〜300肛厚鋳片に鋳造した後、圧延造形によりフ
ランジ厚み毎に第1表に示す種々の形状のH形鋼を製造
した。母材の機械特性用試験片は第1図に示すH形鋼の
断面の174F部の圧延方向に採取した。溶接継手シャ
ルピー試験片は、第2図に示すフランジの板厚中心部(
1/2t2)で幅全長の1/4幅(1/4B)から採集
し求めた。なお、フランジ174F部を選択し特性を求
めたのは、この箇所がH形鋼のほぼ平均的な機械特性を
示し、H形鋼の機械試験特性を代表できると考えたため
である。
(Example) The test steel was melted in a converter furnace, and after degassing treatment, it was continuously cast into 2
After casting into slabs with a diameter of 50 to 300 mm, H-beams having various shapes shown in Table 1 were manufactured for each flange thickness by rolling. A test piece for the mechanical properties of the base metal was taken in the rolling direction at the 174F section of the H-beam cross section shown in FIG. The welded joint Charpy test specimen was measured at the center of the plate thickness of the flange (Fig. 2).
1/2t2) and was collected from 1/4 width (1/4B) of the total width. The reason why the flange 174F section was selected and its properties were determined was because it was thought that this location exhibited approximately average mechanical properties of H-section steel and could represent the mechanical test characteristics of H-section steel.

溶接部の靭性はし型開先及びに型開先による多層潜弧溶
接を行い、2 an Vノンチシャルピー試験により評
価した。溶接は電流700A、電圧32■。
The toughness of the weld zone was evaluated by a 2 an V non-chiralpy test using multi-layer submerged arc welding using a ladder groove and a groove groove. Welding current is 700A and voltage is 32cm.

溶接速度30 cm/min、入熱量45kJ/cmの
1電極潜孤溶接である。
This is one-electrode latent arc welding with a welding speed of 30 cm/min and a heat input of 45 kJ/cm.

第2表は、供試鋼の化学成分、第3表は圧延条件及び機
械試験特性を示す。なお、圧延加熱温度を1280℃に
揃えたのは、−船釣に加熱温度の低下は機械特性を向上
させることは周知であり、高温加熱条件は機械特性の最
低値を示すと推定され、この値がそれ以下の加熱温度で
の特性を代表できると判断したためである。
Table 2 shows the chemical composition of the test steel, and Table 3 shows the rolling conditions and mechanical test characteristics. The rolling heating temperature was set at 1280°C because it is well known that lowering the heating temperature improves mechanical properties, and it is assumed that high-temperature heating conditions show the lowest value of mechanical properties. This is because the value was determined to be representative of the characteristics at heating temperatures below that value.

第3表に示すように、本発明によるml−13は圧延仕
上げ温度、フランジ板厚(冷却速度)の変化に対して、
目標の母材機械特性の常温強度、6 D O’Cでの高
温強度とOoCでのシャルピー値3.5kgf−m以上
を十分に満たしている。さらに、溶接継手・HAZ部の
OoCでのシャルピー値も3.5kgf−m以上を十分
溝たしている。一方、比較鋼の鋼14綱は■無添加のた
め高温降伏強度が確保できず、鋼15はMOの無添加に
よる高温強度不足とCが0.21%と成分請求範囲を超
えるためHAZ靭性の要求値を満たすことができない。
As shown in Table 3, ml-13 according to the present invention has a change in rolling finishing temperature and flange plate thickness (cooling rate).
It fully satisfies the target base material mechanical properties of room temperature strength, high temperature strength at 6D O'C, and Charpy value of 3.5 kgf-m or more at OoC. Furthermore, the OoC Charpy value of the welded joint/HAZ portion is 3.5 kgf-m or more. On the other hand, steel 14, which is a comparison steel, cannot secure high-temperature yield strength because it does not have any additives, and steel 15 has insufficient high-temperature strength due to no addition of MO, and has 0.21% C, which exceeds the claimed range, resulting in poor HAZ toughness. Unable to meet required values.

鋼16は過剰AIによりVNの析出強化不足から高温強
度が確保できず、鋼17は脱酸不足による0濃度の増加
により母材、HAZ靭性が確保できない。
Steel 16 cannot secure high-temperature strength due to insufficient precipitation strengthening of VN due to excess AI, and steel 17 cannot secure base metal and HAZ toughness due to an increase in zero concentration due to insufficient deoxidation.

またfillBは溶存〔O〕濃度に対しTi量が不足す
るため、HAZ部での粒内フェライトの生成が不十分で
あり、HAZ靭性が著しく低下し目標値を達成できない
。綱19はSiが、綱20はNが過剰なため母材、HA
Z靭性を確保できない。
In addition, in fill B, since the amount of Ti is insufficient relative to the dissolved [O] concentration, the generation of intragranular ferrite in the HAZ portion is insufficient, and the HAZ toughness is significantly reduced, making it impossible to achieve the target value. Because the wire 19 contains excess Si and the wire 20 contains excess N, the base material and HA
Z toughness cannot be ensured.

即ち、本発明の製造法の要件が総て満たされた時に、第
3表に示される鋼1〜13のように、H形鋼の機械試験
特性を代表するフランジ174F部においても十分な常
温・高温強度を有し、優れた靭性を持つ耐火性及び溶接
部靭性の優れH形鋼の製造が可能になる。
That is, when all the requirements of the manufacturing method of the present invention are satisfied, even the flange 174F section, which is representative of the mechanical test characteristics of H-beam steel, can be heated to a sufficient temperature at room temperature, as shown in Steels 1 to 13 shown in Table 3. It becomes possible to manufacture H-beam steel that has high temperature strength, excellent toughness, fire resistance, and excellent weld zone toughness.

第 表 (mm) (発明の効果) 本発明により製造されたH形鋼は高温特性及び溶接性に
優れ、耐火材の被覆厚さが従来の20〜50%で耐火目
的を達成でき、施工コスト低減、工期の短縮による大幅
なコスト削減が可能になる。
Table (mm) (Effects of the Invention) The H-beam steel produced according to the present invention has excellent high-temperature properties and weldability, and can achieve fireproofing purposes with a refractory coating thickness of 20 to 50% of the conventional thickness, and construction costs are low. Significant cost reductions can be achieved by reducing costs and shortening the construction period.

また、H形鋼の機械試験特性を代表するフランジ174
F部において十分な常温・高温強度を有し、優れたHA
Z靭性をもつH形鋼の製造が可能になり、大型建造物の
信軌性向上、安全性の確保、経済効果等の産業上の効果
は極めて顕著なものがある。
In addition, flange 174, which represents the mechanical test characteristics of H-beam steel,
Excellent HA with sufficient room temperature and high temperature strength in the F section
It has become possible to manufacture H-beam steel with Z toughness, and the industrial effects such as improving the reliability of large buildings, ensuring safety, and economic effects are extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はH形鋼の断面形状を示し、機械試験片の採取位
置を示す図である。 第2図は溶接継ぎ半部の開先形状及び溶接形状の概略説
明図である。
FIG. 1 is a diagram showing the cross-sectional shape of the H-section steel and showing the sampling positions of mechanical test pieces. FIG. 2 is a schematic explanatory diagram of the groove shape and weld shape of the weld joint half.

Claims (2)

【特許請求の範囲】[Claims] (1)溶鉄を真空脱ガス処理及び脱酸元素Al、Si、
Ca、Mgの純金属単独かそれらの合金併用添加による
予備脱酸処理を行うか、もしくは真空脱ガス処理のみに
より、溶存酸素を重量%で0.003〜0.015%に
溶製後、合金添加により、重量%でC:0.05〜0.
20%、Si:0.05〜0.50%、Mn:0.4〜
2.0%、Mo:0.3〜0.7%、V:0.05〜0
.20%、N:0.0070〜0.0150%、Al<
0.005%を含み、残部がFe及び不可避不純物から
なる溶鋼に調整し、さらに最終脱酸により溶鋼の溶存酸
素〔O%〕に対し−0.006≦〔Ti%〕−2〔O%
〕≦0.008の関係を満たす重量%のTiを含有する
溶鋼に調整し、同溶鋼から得られた鋼片を1100〜1
300℃の温度域に再加熱後、熱間圧延を行い圧延仕上
げ温度を750〜1050℃の範囲とすることを特徴と
する耐火性及び溶接部靭性の優れたH形鋼の製造方法。
(1) Vacuum degassing treatment of molten iron and deoxidizing elements Al, Si,
After performing preliminary deoxidation treatment by adding pure metals such as Ca and Mg alone or in combination with their alloys, or by vacuum degassing treatment alone, dissolved oxygen is reduced to 0.003 to 0.015% by weight, and then the alloy is prepared. By addition, C: 0.05-0.
20%, Si: 0.05~0.50%, Mn: 0.4~
2.0%, Mo: 0.3-0.7%, V: 0.05-0
.. 20%, N: 0.0070-0.0150%, Al<
0.005%, with the remainder consisting of Fe and unavoidable impurities, and further deoxidized to -0.006≦[Ti%]-2[O%] relative to the dissolved oxygen [O%] of the molten steel.
] ≦0.008, and the steel pieces obtained from the molten steel were adjusted to have a Ti content of 1100 to 1% by weight.
A method for producing an H-beam steel having excellent fire resistance and weld zone toughness, which comprises reheating to a temperature range of 300°C, followed by hot rolling to a rolling finishing temperature in the range of 750 to 1050°C.
(2)溶鉄を真空脱ガス処理及び脱酸元素Al、Si、
Ca、Mgの純金属単独かそれらの合金併用添加による
予備脱酸処理を行うか、もしくは真空脱ガス処理のみに
より、溶存酸素を重量%で0.003〜0.015%に
溶製後、合金添加により、重量%でC:0.05〜0.
20%、Si:0.05〜0.50%、Mn:0.4〜
2.0%、Mo:0.3〜0.7%、V:0.05〜0
.20%、N:0.0070〜0.0150%、Al<
0.005%に加えてCr≦0.7%、Ni≦1.0%
、Nb≦0.05%、Cu≦1.0%の1種または2種
以上を含み、残部がFe及び不可避不純物からなる溶鋼
に調製し、さらに最終脱酸により溶鋼の溶存酸素〔O%
〕に対し−0.006≦〔Ti%〕−2〔O%〕≦0.
008の関係を満たす重量%のTiを含有する溶鋼に調
整し、同溶鋼から得られた鋼片を1100〜1300℃
の温度域に再加熱後、熱間圧延を行い圧延仕上げ温度を
750〜1050℃の範囲とすることを特徴とする耐火
性及び溶接部靭性の優れたH形鋼の製造方法。
(2) Vacuum degassing treatment of molten iron and deoxidizing elements Al, Si,
After performing preliminary deoxidation treatment by adding pure metals such as Ca and Mg alone or in combination with their alloys, or by vacuum degassing treatment alone, dissolved oxygen is reduced to 0.003 to 0.015% by weight, and then the alloy is prepared. By addition, C: 0.05-0.
20%, Si: 0.05~0.50%, Mn: 0.4~
2.0%, Mo: 0.3-0.7%, V: 0.05-0
.. 20%, N: 0.0070-0.0150%, Al<
In addition to 0.005%, Cr≦0.7%, Ni≦1.0%
, Nb≦0.05%, Cu≦1.0%, and the remainder is Fe and unavoidable impurities.
] -0.006≦[Ti%]-2[O%]≦0.
The molten steel containing Ti by weight% satisfying the relationship 008 was prepared, and the steel pieces obtained from the molten steel were heated at 1100 to 1300°C.
A method for producing an H-section steel having excellent fire resistance and weld zone toughness, the method comprising: reheating the steel to a temperature range of 750 to 1050°C, and then hot rolling to a finishing temperature of 750 to 1050°C.
JP2200305A 1990-07-27 1990-07-27 Method for producing H-section steel excellent in fire resistance and weld toughness Expired - Lifetime JPH0765097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200305A JPH0765097B2 (en) 1990-07-27 1990-07-27 Method for producing H-section steel excellent in fire resistance and weld toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200305A JPH0765097B2 (en) 1990-07-27 1990-07-27 Method for producing H-section steel excellent in fire resistance and weld toughness

Publications (2)

Publication Number Publication Date
JPH0483821A true JPH0483821A (en) 1992-03-17
JPH0765097B2 JPH0765097B2 (en) 1995-07-12

Family

ID=16422110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200305A Expired - Lifetime JPH0765097B2 (en) 1990-07-27 1990-07-27 Method for producing H-section steel excellent in fire resistance and weld toughness

Country Status (1)

Country Link
JP (1) JPH0765097B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589435A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Refractory shape steel material containing oxide and process for producing rolled shape steel of said material
EP0589424A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
EP0717123A1 (en) * 1994-12-14 1996-06-19 Fried. Krupp AG Hoesch-Krupp Steel for tyres
JPH10176240A (en) * 1996-12-13 1998-06-30 Nippon Steel Corp Wide flange shape for tunnel timbering and its production
EP1052303A2 (en) * 1999-05-10 2000-11-15 Kawasaki Steel Corporation High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone
JP2002212632A (en) * 2001-01-16 2002-07-31 Nippon Steel Corp Method for producing low yield ratio, high toughness, fire resistant wide flange shape
CN100406581C (en) * 2005-10-26 2008-07-30 本溪冶炼集团有限公司 Al-Mg-Fe alloy contg. trace carbo, low silicon, low phosphorus, low sulphur used for steelmaking
EP2305850A1 (en) * 2008-07-30 2011-04-06 Nippon Steel Corporation High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
JP2021526587A (en) * 2018-06-19 2021-10-07 山東鋼鉄股▲ふん▼有限公司Shandong Iron And Steel Co., Ltd. Hot-rolled H-shaped steel with a thick gauge having a yield strength of 500 MPa grade and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness
JPH0277523A (en) * 1988-06-13 1990-03-16 Nippon Steel Corp Production of building low yield ratio steel having excellent fire resistance and building steel material using same steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness
JPH0277523A (en) * 1988-06-13 1990-03-16 Nippon Steel Corp Production of building low yield ratio steel having excellent fire resistance and building steel material using same steel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589435A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Refractory shape steel material containing oxide and process for producing rolled shape steel of said material
EP0589424A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
EP0589435A3 (en) * 1992-09-24 1994-09-14 Nippon Steel Corp Refractory shape steel material containing oxide and process for producing rolled shape steel of said material
EP0589424A3 (en) * 1992-09-24 1994-09-14 Nippon Steel Corp Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
EP0717123A1 (en) * 1994-12-14 1996-06-19 Fried. Krupp AG Hoesch-Krupp Steel for tyres
JPH10176240A (en) * 1996-12-13 1998-06-30 Nippon Steel Corp Wide flange shape for tunnel timbering and its production
EP1052303A2 (en) * 1999-05-10 2000-11-15 Kawasaki Steel Corporation High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone
EP1052303A3 (en) * 1999-05-10 2006-03-22 JFE Steel Corporation High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone
JP2002212632A (en) * 2001-01-16 2002-07-31 Nippon Steel Corp Method for producing low yield ratio, high toughness, fire resistant wide flange shape
CN100406581C (en) * 2005-10-26 2008-07-30 本溪冶炼集团有限公司 Al-Mg-Fe alloy contg. trace carbo, low silicon, low phosphorus, low sulphur used for steelmaking
EP2305850A1 (en) * 2008-07-30 2011-04-06 Nippon Steel Corporation High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
EP2305850A4 (en) * 2008-07-30 2011-12-28 Nippon Steel Corp High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
US8303734B2 (en) 2008-07-30 2012-11-06 Nippon Steel Corporation High strength thick steel material and high strength giant H-shape excellent in toughness and weldability and methods of production of same
JP2021526587A (en) * 2018-06-19 2021-10-07 山東鋼鉄股▲ふん▼有限公司Shandong Iron And Steel Co., Ltd. Hot-rolled H-shaped steel with a thick gauge having a yield strength of 500 MPa grade and its manufacturing method

Also Published As

Publication number Publication date
JPH0765097B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP5098210B2 (en) Refractory steel and method for producing the same
JPH0483821A (en) Production of wide flange shape excellent in refractoriness and toughness in weld zone
JP2579841B2 (en) Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness
KR102089167B1 (en) Shape steel and method of manufacturing the same
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JPH03249149A (en) H-shape steel excellent in fire resistance and toughness and its manufacture
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab
JP2936235B2 (en) Rolled section steel with excellent toughness and method for producing the same
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH05105947A (en) Production of rolled shape steel excellent in refractoriness and toughness
JP2962629B2 (en) Manufacturing method of refractory section steel with excellent internal characteristics in ultrasonic testing
JP3285731B2 (en) Rolled section steel for refractory and method for producing the same
JPS62139813A (en) Method for straight forward rolling of hot steel slab

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070712

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 16