JPH10176240A - Wide flange shape for tunnel timbering and its production - Google Patents
Wide flange shape for tunnel timbering and its productionInfo
- Publication number
- JPH10176240A JPH10176240A JP8334314A JP33431496A JPH10176240A JP H10176240 A JPH10176240 A JP H10176240A JP 8334314 A JP8334314 A JP 8334314A JP 33431496 A JP33431496 A JP 33431496A JP H10176240 A JPH10176240 A JP H10176240A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- tensile strength
- tunnel
- tunnel support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明はトンネル工事におけ
る支保に用いられる高強度H形鋼およびその製造法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength H-section steel used for supporting tunnel construction and a method for producing the same.
【0002】[0002]
【従来の技術】トンネルの支保のパターンとしては地質
の状況に応じて種々のものが実用化されており、詳細は
トンネル標準示方書(山岳編)などに述べられている。
ロックボルトを地中に打ち込む方法は共通であるが、ト
ンネルの内壁を支保するものとしてはコンクリートを吹
き付けるもの、鋼製の支保工をアーチ型に曲げ加工して
用いるものが主なものである。従来は鋼製の支保工とし
て曲げ加工性の良い400N/mm2 級の高張力の形鋼が
用いられてきた。しかしながら、近年のトンネルの大断
面化により、トンネルの断面形状が従来の円形から偏平
になり、荷重形態も軸力のみが主たる外力であったもの
から、軸力と曲げ力が組合わさったものに変化してき
た。そのため、従来の400N/mm2 級の鋼製の支保工
を用いると、断面積と断面係数の大きなものが必要とな
り、施工工期が長くなり且つ施工コストは大幅に増加す
るという問題点があった。2. Description of the Related Art Various types of tunnel support patterns have been put into practical use in accordance with geological conditions, and details thereof are described in Tunnel Standard Specifications (mountain edition).
Although the method of driving the rock bolt into the ground is common, the main methods for supporting the inner wall of the tunnel are the method of spraying concrete and the method of bending a steel support into an arch shape. Conventionally, a 400 N / mm 2 class high-tensile shaped steel with good bending workability has been used as a steel support. However, due to the recent increase in the cross-section of the tunnel, the cross-sectional shape of the tunnel has become flatter from the conventional circular shape, and the load form has been changed from the case where only the axial force was the main external force to the one where the axial force and the bending force were combined. It has changed. Therefore, when a conventional 400 N / mm 2 class steel support is used, a large cross-sectional area and a large cross-sectional modulus are required, and the construction period is prolonged and the construction cost is greatly increased. .
【0003】しかしながらこれまでにトンネル支保用に
400N/mm2 級を越える支保工が用いられた例はな
い。これは、トンネル支保工には強度のみならず、耐溶
接割れ性が良好なこと、水素性欠陥がないこと、靭性が
良好なことなど、多くの要求が伴うため、高強度鋼でこ
れらの要求を満足することは難しかったためである。However, there has been no example in which a support exceeding 400 N / mm 2 class has been used for supporting a tunnel. This is because tunnel support requires not only strength but also many requirements such as good weld cracking resistance, no hydrogen defects, and good toughness. Was difficult to satisfy.
【0004】[0004]
【発明が解決しようとする課題】そこで本発明は、耐溶
接割れ性が良好で水素性欠陥が極めて少なく、さらに靭
性も良好な引張強度590N/mm2 級以上のトンネル支
保工用H形鋼とその製造方法を提供することを目的とす
る。[SUMMARY OF THE INVENTION] The present invention, resistance to weld cracking resistance is extremely small satisfactory hydrogen defects, and further toughness good tensile strength 590N / mm 2 or higher grade tunnel支保Engineering for H-shaped steel It is an object of the present invention to provide a manufacturing method thereof.
【0005】[0005]
【課題を解決するための手段】本発明は上記のような従
来のトンネル支保工用H形鋼の欠点を有利に排除しう
る、耐溶接割れ性が良好で水素性欠陥が極めて少なく、
さらに靭性も良好な引張強度590N/mm2 級以上のト
ンネル支保工用H形鋼とその製造方法であり、その要旨
とする所は次の通りである。 (1)重量%で、 C :0.04%〜0.13%、 Si:0.05%〜0.40%、 Mn:0.3%〜1.5%、 Al:0.005%〜0.10%、 不純物として S:0.010%以下、 P:0.020%以下、 H:2.5ppm 以下に制限し、残部がFeおよび不可避
的不純物からなるフランジとウェブの厚みが6mm以上2
5mm以下であり且つ全面にわたりフェライトとパーライ
ト組織の合計が60%以上90%以下であることをこと
を特徴とする引張り強度が590N/mm2 以上780N
/mm2 以下のトンネル支保工用H形鋼。SUMMARY OF THE INVENTION The present invention can advantageously eliminate the above-mentioned drawbacks of the conventional H-shaped steel for tunnel support, has good weld cracking resistance, and has very few hydrogen defects.
Further, the present invention relates to an H-section steel for tunnel shoring having a tensile strength of 590 N / mm 2 or more, which has good toughness, and a method for producing the same. The points of the summary are as follows. (1) By weight%, C: 0.04% to 0.13%, Si: 0.05% to 0.40%, Mn: 0.3% to 1.5%, Al: 0.005% to 0.10%, as impurities S: 0.010% or less, P: 0.020% or less, H: limited to 2.5 ppm or less, and the balance of the flange and the web made of Fe and unavoidable impurities is 6 mm or more. 2
A tensile strength of 590 N / mm 2 or more and 780 N or less, wherein the total of ferrite and pearlite structure is 60% or more and 90% or less over the entire surface.
/ Mm 2 or less tunnel支保Engineering for H-shaped steel.
【0006】また、本発明は上記(1)記載のトンネル
支保工用H形鋼において、鋼成分として、以下の(2)
乃至(7)の各項に記載した成分を各項記載毎に、ある
いは各項を組合わせてさらに含有させることができる。 (2)重量%で、Ti:0.002%〜0.10%、
Nb:0.005%〜0.10%の1種または2種以上
を含有すること。 (3)重量%で、V:0.005%〜0.1%を含有す
ること。 (4)重量%で、 Cu:0.05%〜0.5%、 Ni:0.05%〜0.5%、 Cr:0.05%〜0.5%、 Mo:0.05%〜0.5%、 Co:0.05%〜0.5%、 W :0.05%〜0.5% の1種または2種以上を含有すること。 (5)重量%で、B:0.0002%〜0.0025%
を含有すること。 (6)重量%で、Rem:0.002%〜0.10%、
Ca:0.0003%〜0.0030%の1種または2
種以上を含有すること。 (7)重量%で、Mg:0.0003%〜0.01%を
含有すること。Further, the present invention provides the H-section steel for tunnel support according to the above (1), wherein the steel component is as follows:
The components described in each item of (7) to (7) can be further contained for each item described or in combination of each item. (2) Ti: 0.002% to 0.10% by weight,
Nb: One or two or more of 0.005% to 0.10% are contained. (3) V: 0.005% to 0.1% by weight. (4) By weight%, Cu: 0.05% to 0.5%, Ni: 0.05% to 0.5%, Cr: 0.05% to 0.5%, Mo: 0.05% to 0.5%, Co: 0.05% to 0.5%, W: 0.05% to 0.5%. (5) B: 0.0002% to 0.0025% by weight
Containing. (6) Rem: 0.002% to 0.10% by weight,
Ca: one or two of 0.0003% to 0.0030%
Contain more than one species. (7) Mg: 0.0003% to 0.01% by weight.
【0007】(8)さらに本発明は上記(1)乃至
(7)の何れか一つに記載の成分を含有する鋼片または
鋳片を1200℃以上に加熱した後に900℃以上の温
度域でフランジ厚6mm以上25mm以下、ウエブ厚さ6mm
以上25mm以下の範囲にあるH形鋼への圧延を終了し、
圧延後2℃/s以上30℃/s以下の冷却速度で650
℃以下まで冷却し、フェライトとパーライト組織の合計
を60%〜90%とすることを特徴とする引張り強度が
590N/mm2 以上780N/mm2 以下のトンネル支保
工用H形鋼の製造方法である。(8) The present invention further provides a steel slab or a slab containing the component described in any one of the above (1) to (7), which is heated to 1200 ° C. or more, and then heated to 900 ° C. or more. Flange thickness 6mm or more and 25mm or less, web thickness 6mm
Finish rolling to H-beam in the range of 25mm or less,
After rolling, 650 at a cooling rate of 2 ° C / s or more and 30 ° C / s or less.
C. or less, and the total of ferrite and pearlite structure is adjusted to 60% to 90%. A method for producing an H-section steel for tunnel support having a tensile strength of 590 N / mm 2 or more and 780 N / mm 2 or less. is there.
【0008】[0008]
【発明の実施の形態】以下本発明について詳細に説明す
る。本発明の根幹をなす技術思想は以下の通りである。
大断面のトンネルに従来の400N/mm2 級の鋼製の支
保工を用いると、断面積と断面係数の大きなものが必要
となり、施工工期が長くなり且つ施工コストは大幅に増
加してしまう。従来のサイズで大断面のトンネルに耐え
得る断面係数を有するためには、H形鋼の強度は590
N/mm2 以上必要である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The technical idea underlying the present invention is as follows.
If a conventional steel support of 400 N / mm 2 class is used for a tunnel having a large cross section, a large cross-sectional area and a large section modulus are required, so that the construction period becomes longer and the construction cost is greatly increased. In order to have a section modulus that can withstand a large-sized tunnel with a conventional size, the strength of the H-section steel is 590.
N / mm 2 or more is required.
【0009】一般に、鋼を高強度化する方法としては固
溶強化、析出効果、変態強化、加工硬化などの機構が用
いられる。H形鋼のように部位によって厚みが異なり、
よって熱間圧延後に変態する際の冷却速度も異なる場合
は、強化機構が冷却速度に比較的依存しない固溶強化、
加工硬化を用いることが好ましい。しかし過度の固溶強
化は溶接性を損ない且つ製造コストを著しく上昇させ
る。またH形鋼を冷間加工で製造することは加工装置に
多大なパワーが要求されるため不可能に近く、よって加
工硬化による高強度化も期待できない。析出効果、変態
強化は変態時の冷却速度依存性が非常に大きいため、こ
れまではH形鋼の高強度化機構としては不適であった。Generally, as a method for increasing the strength of steel, mechanisms such as solid solution strengthening, precipitation effect, transformation strengthening, and work hardening are used. The thickness differs depending on the part like H-section steel,
Therefore, if the cooling rate at the time of transformation after hot rolling is also different, the solution strengthening mechanism is relatively independent of the cooling rate,
It is preferred to use work hardening. However, excessive solid solution strengthening impairs weldability and significantly increases manufacturing costs. In addition, it is almost impossible to produce an H-section steel by cold working because a large amount of power is required for a working apparatus, and therefore, it is impossible to expect high strength by work hardening. The precipitation effect and transformation strengthening have a very large dependence on the cooling rate during transformation, and thus have not been suitable as a mechanism for increasing the strength of H-section steels.
【0010】しかしながら本発明者らは、所定の成分系
の鋼を用いて、所定のサイズのH形鋼に圧延し、さらに
圧延後に所定の冷却速度で冷却すれば、全体の金属組織
の60%以上90%以下がフェライトとパーライトの混
合組織となり、残りがより高強度のベイナイト、マルテ
ンサイトまたはそれらの混合組織となり、これにより5
90N/mm2 以上780N/mm2 以下の範囲の任意の強
度が安定して得られることを見出した。[0010] However, the present inventors, by using a steel of a predetermined component system, rolled into an H-beam of a predetermined size, and further cooled at a predetermined cooling rate after the rolling, 60% of the entire metal structure More than 90% or less is a mixed structure of ferrite and pearlite, and the rest is a higher-strength bainite, martensite, or a mixed structure thereof.
Any strength of 90 N / mm 2 or more 780N / mm 2 or less in the range it was found that stably obtained.
【0011】また、トンネル支保工には強度のみなら
ず、耐溶接割れ性が良好なこと、水素性欠陥がないこ
と、靭性、延性が良好なことなど、多くの要求が伴い、
従来の高強度鋼でこれらの要求を満足することは難しか
ったが、本発明のように比較的少ない合金添加量で均一
なフェライトとパーライトの混合組織とすれば、耐溶接
割れ性、靭性、延性ともに良好な特性が得られることも
見出した。また、水素性欠陥の防止は鋼中の水素量を制
限することにより達成可能である。[0011] In addition, tunnel support has many demands such as good weld cracking resistance, no hydrogen deficiency, good toughness and good ductility, as well as strength.
It was difficult to satisfy these requirements with conventional high-strength steels.However, if a uniform mixed structure of ferrite and pearlite is used with a relatively small alloy addition amount as in the present invention, weld crack resistance, toughness, ductility It was also found that good characteristics were obtained in both cases. Prevention of hydrogen defects can be achieved by limiting the amount of hydrogen in steel.
【0012】以下に製造方法の限定理由を詳細に説明す
る。まず本発明における出発材の成分の限定理由につい
て述べる。Cは、鋼を強化するのに有効な元素であり、
0.04%未満では十分な強度が得られない。一方、そ
の含有量が0.13%を超えると硬化しすぎて割れやす
くなる。Hereinafter, the reasons for limiting the manufacturing method will be described in detail. First, the reasons for limiting the components of the starting material in the present invention will be described. C is an effective element for strengthening steel,
If it is less than 0.04%, sufficient strength cannot be obtained. On the other hand, if the content exceeds 0.13%, the composition is excessively hardened and easily cracked.
【0013】Siは脱酸元素として、また鋼の強化元素
として有効であるが、0.05%未満の含有量ではその
効果がない。一方、0.4%を超えると、溶接部の靭性
を損なう。Mnは鋼の強化に有効な元素であり、0.3
%未満では十分な効果が得られない。一方、その含有量
が1.5%を超えると鋼の加工性を劣化させる。[0013] Although Si is effective as a deoxidizing element and as a strengthening element for steel, it is not effective at a content of less than 0.05%. On the other hand, if it exceeds 0.4%, the toughness of the welded part is impaired. Mn is an element effective for strengthening steel, and 0.3
%, A sufficient effect cannot be obtained. On the other hand, if the content exceeds 1.5%, the workability of steel deteriorates.
【0014】Alは脱酸元素として添加される。0.0
05%未満の含有量ではその効果がなく、0.1%を超
えると、鋼の表面性状を損なう。SはMnSを生成し、
超音波探傷時の不合格の原因となるため、含有量を0.
01%以下に制限する。Al is added as a deoxidizing element. 0.0
If the content is less than 05%, the effect is not obtained, and if it exceeds 0.1%, the surface properties of steel are impaired. S produces MnS,
The content is set to 0.
Limit to 01% or less.
【0015】Pは靭性を劣化するため、含有量を0.0
2%以下に制限する。Hは水素性欠陥の原因となる。す
なわち、水素は圧延前の鋼片または鋳片内にあるポロシ
ティー内に集まり、圧延によりそのポロシティーが圧着
するのを阻害するため、含有量を2.5ppm 以下に制限
する。Since P deteriorates the toughness, the content of P is set to 0.0
Limit to 2% or less. H causes a hydrogen defect. That is, since hydrogen collects in the porosity in the steel slab or slab before rolling and prevents the porosity from being pressed by rolling, the content is limited to 2.5 ppm or less.
【0016】さらに本発明では以下の成分を必要に応じ
て添加する。NbとTiは何れも微量の添加で結晶粒の
微細化と析出硬化の面で有効に機能するが、過度に添加
すると析出脆化をおこす。このためその添加量の上限を
0.10%とする。添加量が少なすぎると効果がないた
め、Tiの添加量の下限を0.002%、Nbの添加量
の下限を0.005%とする。Further, in the present invention, the following components are added as required. Both Nb and Ti function effectively in terms of crystal grain refinement and precipitation hardening when added in a trace amount, but excessively added causes precipitation embrittlement. Therefore, the upper limit of the addition amount is set to 0.10%. If the addition amount is too small, there is no effect. Therefore, the lower limit of the addition amount of Ti is set to 0.002%, and the lower limit of the addition amount of Nb is set to 0.005%.
【0017】Vは微量の添加で析出強化をもたらすが、
過度に添加すると析出脆化をおこす。このためその添加
量の上限を0.10%とする。添加量が少なすぎると効
果がないため、添加量の下限を0.005%とする。V brings about precipitation strengthening with a small amount of addition.
Excessive addition causes precipitation embrittlement. Therefore, the upper limit of the addition amount is set to 0.10%. If the addition amount is too small, there is no effect, so the lower limit of the addition amount is made 0.005%.
【0018】Cu,Ni,Cr,Mo,Co,Wは何れ
も鋼の焼入れ性を向上させる元素である。本発明におけ
る場合、その添加により鋼の強度を高めることができる
が、過度の量の添加は鋼を硬化させ割れやすくするた
め、Cu≦0.5%、Ni≦0.5%、Cr≦0.5
%、Mo≦0.5%、Co≦0.5%、W≦0.5%に
限定する。また添加量が少なすぎると効果がないため添
加量の下限を何れの元素とも0.05%とする。[0018] Cu, Ni, Cr, Mo, Co and W are all elements that improve the hardenability of steel. In the case of the present invention, the strength of the steel can be increased by its addition, but an excessive amount of addition hardens the steel and makes it easy to crack, so that Cu ≦ 0.5%, Ni ≦ 0.5%, Cr ≦ 0 .5
%, Mo ≦ 0.5%, Co ≦ 0.5%, W ≦ 0.5%. Further, if the addition amount is too small, there is no effect, so the lower limit of the addition amount is set to 0.05% for any element.
【0019】Bは鋼の焼入れ性を向上させる元素であ
る。本発明における場合、その添加により鋼の強度を高
めることができるが、過度の添加はBの析出物を増加さ
せて鋼の靭性を損なうためその含有量の上限を0.00
25%とする。また添加量が少なすぎると効果がないた
め添加量の下限を0.0002%とする。B is an element that improves the hardenability of steel. In the case of the present invention, the addition can increase the strength of the steel, but excessive addition increases the amount of B precipitates and impairs the toughness of the steel.
25%. Further, if the addition amount is too small, there is no effect, so the lower limit of the addition amount is set to 0.0002%.
【0020】RemとCaはSの無害化に有効である
が、添加量が少ないとSが有害のまま残り、過度の添加
は靭性を損なうため、Rem:0.002%〜0.10
%、Ca:0.0003%〜0.0030%の範囲で添
加する。Rem and Ca are effective for detoxifying S. However, if the added amount is small, S remains harmful, and excessive addition impairs toughness, so that Rem: 0.002% to 0.10.
%, Ca: 0.0003% to 0.0030%.
【0021】Mgは微細な酸化物となり鋼の組織を微細
化し靭性を向上させる。0.0003%未満ではその効
果がなく、0.01%を越えると酸化物を起点とした割
れが生じやすくなるため含有量を0.0003%〜0.
01%の範囲とする。Mg becomes a fine oxide and refines the structure of steel to improve toughness. If the content is less than 0.0003%, the effect is not obtained. If the content exceeds 0.01%, cracks starting from oxides are likely to occur, so that the content is 0.0003% to 0.3%.
01% range.
【0022】次に本発明におけるH形鋼のサイズの条件
について述べる。フランジ厚さ、ウェブ厚さともに6mm
以上25mm以下の範囲に制限し、圧延後に所定の冷却速
度で冷却することにより、本発明鋼の成分範囲でフェラ
イトとパーライト組織の分率を60%以上とすることが
できる。フェライト+パーライト組織分率が60%未満
では十分な靭性が得られなくなる。フェライトの形状は
粒状、針状何れでも構わない。また、引張強度が590
N/mm2 であればこの厚みの範囲で十分な断面係数と支
保力を有することができる。Next, conditions for the size of the H-section steel in the present invention will be described. 6mm for both flange thickness and web thickness
By limiting to a range of not more than 25 mm and cooling at a predetermined cooling rate after rolling, the fraction of ferrite and pearlite structure can be increased to 60% or more in the component range of the steel of the present invention. If the ferrite + pearlite structure fraction is less than 60%, sufficient toughness cannot be obtained. The shape of ferrite may be granular or acicular. In addition, the tensile strength is 590
If it is N / mm 2 , a sufficient section modulus and supporting force can be obtained within this thickness range.
【0023】次に本発明におけるH形鋼の製造条件につ
いて述べる。本発明鋼で十分な強度を得るためには圧延
前の加熱工程で十分にγを粒成長させて、その後の焼入
れ性を向上させることが必要であるため加熱温度の下限
を1200℃とする。さらに圧延終了温度が低くなりす
ぎると圧延歪みが残留した状態で変態するため焼き入れ
性が低下する。本発明鋼では熱間圧延中にオーステナイ
トを十分に再結晶させて、圧延歪みをほぼ完全に除去す
る必要があるため、圧延仕上げ温度を900℃以上とす
る。この様な条件で加熱・圧延した後の冷却速度が遅い
と比較的粒径の大きいオーステナイト粒界から大きなフ
ェライト粒径が変態して靭性を劣化させてしまう。よっ
て、加熱・圧延後に2℃/s以上30℃/s以下の冷却
速度で650℃以下冷却する。これにより、比較的微細
なフェライトとパーライトの混合組織の分率が60%以
上90%以下で残りがベイナイトまたはマルテンサイト
である組織が得られる。このような組織からなるH形鋼
は所定の強度を有し、さらに靭性も良好である。冷却速
度が2℃/s未満ではα粒径が粗大で靭性が劣化し、3
0℃/s以上ではマルテンサイト組織の分率が高くなり
すぎて強度が過大となる。また冷却停止温度が650℃
以上では、やはりフェライト粒径が粗大になり十分な靭
性が得られない。Next, the manufacturing conditions of the H-section steel in the present invention will be described. In order to obtain sufficient strength with the steel of the present invention, it is necessary to sufficiently grow γ grains in the heating step before rolling and to improve the hardenability thereafter, so the lower limit of the heating temperature is set to 1200 ° C. Further, when the rolling end temperature is too low, the transformation is performed in a state where the rolling distortion remains, so that the hardenability decreases. In the steel of the present invention, since austenite needs to be sufficiently recrystallized during hot rolling to remove rolling distortion almost completely, the rolling finish temperature is set to 900 ° C. or higher. If the cooling rate after heating and rolling under such conditions is low, a large ferrite grain size is transformed from the austenite grain boundary having a relatively large grain size, and the toughness is deteriorated. Therefore, after heating / rolling, cooling is performed at a cooling rate of 2 ° C./s or more and 30 ° C./s or less and 650 ° C. or less. Thereby, a relatively fine structure in which the fraction of the mixed structure of ferrite and pearlite is 60% or more and 90% or less and the remainder is bainite or martensite is obtained. The H-shaped steel having such a structure has a predetermined strength and also has good toughness. If the cooling rate is less than 2 ° C./s, the α grain size is coarse and the toughness is deteriorated.
At 0 ° C./s or more, the fraction of the martensite structure becomes too high, and the strength becomes excessive. The cooling stop temperature is 650 ° C
Above, the ferrite grain size becomes coarse, and sufficient toughness cannot be obtained.
【0024】[0024]
【実施例】次に本発明を実施例に基づいて詳細に説明す
る。まず表1に示す化学成分の鋼を表2に示す製造条件
で第2表中に示すサイズのH形鋼とした。このH形鋼の
各位置での金属組織、強度、伸び、靭性さらには最高硬
さ試験における最高硬度、溶接部のUST欠陥判定結果
は表3に示すようになる。Next, the present invention will be described in detail with reference to examples. First, a steel having the chemical composition shown in Table 1 was formed into an H-shaped steel having the size shown in Table 2 under the manufacturing conditions shown in Table 2. Table 3 shows the metal structure, strength, elongation, toughness, maximum hardness in the maximum hardness test, and the UST defect judgment result of the welded portion at each position of the H-section steel.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【表3】 [Table 3]
【0028】[0028]
【発明の効果】表3によると、本発明のH形鋼は何れも
フェライト・パーライト主体の組織を有し、引張強度5
90N/mm2 以上を有し、且つ伸び、衝撃値共に従来鋼
に比べて良好である。さらにH形鋼の部位による材質の
差も小さく安定していることがわかる。さらに最高硬さ
試験における最高硬度はのきなみ280程度と従来鋼の
それに比べて格段に低く、十分な耐溶接割れ性を有する
ことがわかる。さらに溶接部のUST欠陥判定結果から
不合格材は皆無であった。このように本発明鋼および発
明法を適用することにより、大断面トンネルの支保工と
して使用するに十分な特性を有する引張強度590N/
mm2 以上のH形鋼が得られることが確認できた。According to Table 3, all of the H-section steels of the present invention have a structure mainly composed of ferrite and pearlite, and have a tensile strength of 5%.
It has 90 N / mm 2 or more, and both elongation and impact value are better than conventional steel. Further, it can be seen that the difference in material between the portions of the H-section steel is small and stable. Further, the maximum hardness in the maximum hardness test was about 280, which is much lower than that of the conventional steel, and it is understood that the steel has a sufficient welding crack resistance. Furthermore, there was no rejected material from the UST defect judgment result of the welded portion. Thus, by applying the steel of the present invention and the method of the present invention, a tensile strength of 590 N / having sufficient properties to be used as a support for a large-section tunnel.
It was confirmed that an H-section steel of mm 2 or more was obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/54 C22C 38/54 E21D 15/00 E21D 15/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/54 C22C 38/54 E21D 15/00 E21D 15/00
Claims (8)
ェブの厚みが6mm以上25mm以下であり且つ全面にわた
りフェライトとパーライト組織の合計が60%以上90
%以下であることをことを特徴とする引張り強度が59
0N/mm2 以上780N/mm2 以下のトンネル支保工用
H形鋼。C .: 0.04% to 0.13%, Si: 0.05% to 0.40%, Mn: 0.3% to 1.5%, Al: 0.005% by weight. % To 0.10%, as impurities S: 0.010% or less, P: 0.020% or less, H: 2.5 ppm or less, and the balance of the thickness of the flange and the web consisting of Fe and inevitable impurities is 6 mm or more and 25 mm or less, and the total of ferrite and pearlite structure is 60% to 90% over the entire surface.
% Or less, wherein the tensile strength is 59% or less.
H-shaped steel for tunnel support of 0 N / mm 2 or more and 780 N / mm 2 or less.
鋼において、鋼成分としてさらに重量%で、 Ti:0.002%〜0.10%、 Nb:0.005%〜0.10% の1種または2種以上を含有することを特徴とする引張
り強度が590N/mm2以上780N/mm2 以下のトン
ネル支保工用H形鋼。2. The H-section steel for tunnel support according to claim 1, wherein the steel component further includes: Ti: 0.002% to 0.10%, Nb: 0.005% to 0.10 by weight%. % Or more of 590 N / mm 2 or more and 780 N / mm 2 or less.
保工用H形鋼において、鋼成分としてさらに重量%で、
V:0.005%〜0.1%を含有することを特徴とす
る引張り強度が590N/mm2 以上780N/mm2 以下
のトンネル支保工用H形鋼。3. The H-section steel for tunnel support according to claim 1, wherein the steel component further comprises:
V: An H-section steel for tunnel support having a tensile strength of 590 N / mm 2 or more and 780 N / mm 2 or less, characterized by containing 0.005% to 0.1%.
ンネル支保工用H形鋼において、鋼成分としてさらに重
量%で、 Cu:0.05%〜0.5%、 Ni:0.05%〜0.5%、 Cr:0.05%〜0.5%、 Mo:0.05%〜0.5%、 Co:0.05%〜0.5%、 W :0.05%〜0.5% の1種または2種以上を含有することを特徴とする引張
り強度が590N/mm2以上780N/mm2 以下のトン
ネル支保工用H形鋼。4. The H-section steel for tunnel support according to claim 1, wherein the steel component further comprises: Cu: 0.05% to 0.5%, Ni: 0% by weight. 0.05% to 0.5%, Cr: 0.05% to 0.5%, Mo: 0.05% to 0.5%, Co: 0.05% to 0.5%, W: 0.05 H-shaped steel for tunnel support having a tensile strength of 590 N / mm 2 or more and 780 N / mm 2 or less, characterized in that it contains one or more kinds of steel.
ンネル支保工用H形鋼において、鋼成分としてさらに重
量%で、B:0.0002%〜0.0025%を含有す
ることを特徴とする引張り強度が590N/mm2 以上7
80N/mm2以下のトンネル支保工用H形鋼。5. The H-section steel for tunnel support according to claim 1, further comprising B: 0.0002% to 0.0025% by weight as a steel component. Tensile strength characterized by 590 N / mm 2 or more 7
H-shaped steel for tunnel support of 80 N / mm 2 or less.
ンネル支保工用H形鋼において、鋼成分としてさらに重
量%で、 Rem:0.002%〜0.10%、 Ca:0.0003%〜0.0030% の1種または2種以上を含有することを特徴とする引張
り強度が590N/mm2以上780N/mm2 以下のトン
ネル支保工用H形鋼。6. The H-section steel for tunnel support according to any one of claims 1 to 5, wherein Rem is 0.002% to 0.10%, and Ca is 0% by weight as a steel component. An H-section steel having a tensile strength of 590 N / mm 2 or more and 780 N / mm 2 or less, characterized by containing one or more kinds of 0.0003% to 0.0030%.
ンネル支保工用H形鋼において、鋼成分としてさらに重
量%で、Mg:0.0003%〜0.01%を含有する
ことを特徴とする引張り強度が590N/mm2 以上78
0N/mm2 以下のトンネル支保工用H形鋼。7. The H-section steel for tunnel support according to claim 1, further comprising Mg: 0.0003% to 0.01% by weight as a steel component. A tensile strength of 590 N / mm 2 or more, characterized by 78
0N / mm 2 or less tunnel支保Engineering for H-shaped steel.
分を有する鋼片または鋳片を1200℃以上に加熱した
後に900℃以上の温度域でフランジ厚6mm以上25mm
以下、ウエブ厚さ6mm以上25mm以下の範囲にあるH形
鋼への圧延を終了し、圧延後2℃/s以上30℃/s以
下の冷却速度で650℃以下まで冷却し、フェライトと
パーライト組織の合計を60%〜90%とすることを特
徴とする引張り強度が590N/mm2 以上780N/mm
2 以下のトンネル支保工用H形鋼の製造方法。8. A steel slab or a slab having the composition according to claim 1 is heated to 1200 ° C. or more and a flange thickness of 6 mm to 25 mm in a temperature range of 900 ° C. or more.
Hereinafter, the rolling into the H-section steel having a web thickness of 6 mm or more and 25 mm or less is completed, and after rolling, the steel is cooled to 650 ° C. or less at a cooling rate of 2 ° C./s or more and 30 ° C./s or less. Is 60% to 90%, and the tensile strength is 590 N / mm 2 or more and 780 N / mm 2 or more.
2. A method of manufacturing an H-section steel for tunnel support below 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33431496A JP3579557B2 (en) | 1996-12-13 | 1996-12-13 | H-section steel for tunnel support and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33431496A JP3579557B2 (en) | 1996-12-13 | 1996-12-13 | H-section steel for tunnel support and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10176240A true JPH10176240A (en) | 1998-06-30 |
JP3579557B2 JP3579557B2 (en) | 2004-10-20 |
Family
ID=18275977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33431496A Expired - Lifetime JP3579557B2 (en) | 1996-12-13 | 1996-12-13 | H-section steel for tunnel support and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3579557B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8641836B2 (en) | 2009-10-28 | 2014-02-04 | Nippon Steel & Sumitomo Metal Corporation | Steel plate for line pipe excellent in strength and ductility and method of production of same |
EP2484790A4 (en) * | 2009-09-30 | 2016-11-30 | Jfe Steel Corp | Steel material for structures having excellent weather resistance and steel structure |
CN106191651A (en) * | 2016-08-10 | 2016-12-07 | 邢台钢铁有限责任公司 | A kind of automatic binding reinforcing bar steel and the production method of wire rod thereof |
JP2017071827A (en) * | 2015-10-07 | 2017-04-13 | 新日鐵住金株式会社 | H shaped steel and manufacturing method therefor |
JP2020105620A (en) * | 2018-12-28 | 2020-07-09 | 日本製鉄株式会社 | Rolled h-section steel and method for manufacturing the same |
JP2021143389A (en) * | 2020-03-12 | 2021-09-24 | Jfeスチール株式会社 | H-section steel with ridges and manufacturing method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0483821A (en) * | 1990-07-27 | 1992-03-17 | Nippon Steel Corp | Production of wide flange shape excellent in refractoriness and toughness in weld zone |
JPH04259352A (en) * | 1991-02-14 | 1992-09-14 | Nkk Corp | Steel excellent in hydrogen-induced cracking resistance and its manufacture |
JPH04329826A (en) * | 1991-04-30 | 1992-11-18 | Nippon Steel Corp | Production of extra thick steel plate for pressure vessel excellent in hydrogen induced cracking resistance |
JPH0525588A (en) * | 1990-12-21 | 1993-02-02 | Kawasaki Steel Corp | Web thin ih-shaped steel having low yield ratio and its production |
JPH05156405A (en) * | 1991-12-03 | 1993-06-22 | Kawasaki Steel Corp | Low-yield ratio refractory h-shape steel and production thereof |
JPH0790474A (en) * | 1993-09-27 | 1995-04-04 | Nippon Steel Corp | Production of contained oxide-dispersed slab and rolled shape steel excellent in toughness by the same slab |
JPH0885846A (en) * | 1994-09-20 | 1996-04-02 | Kawasaki Steel Corp | Thick steel plate with ferrite/pearlite structure, reduced in material dispersion, and its production |
JPH08283900A (en) * | 1995-04-14 | 1996-10-29 | Nippon Steel Corp | Rolled shape steel for refractory use and its production |
JPH10152751A (en) * | 1996-09-30 | 1998-06-09 | Kawasaki Steel Corp | High strength shape steel for timbering, excelling in ductility after cold working, and timbering |
JPH10195603A (en) * | 1996-11-13 | 1998-07-28 | Nippon Steel Corp | Guage h steel for tunnel timbering and its production |
-
1996
- 1996-12-13 JP JP33431496A patent/JP3579557B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0483821A (en) * | 1990-07-27 | 1992-03-17 | Nippon Steel Corp | Production of wide flange shape excellent in refractoriness and toughness in weld zone |
JPH0525588A (en) * | 1990-12-21 | 1993-02-02 | Kawasaki Steel Corp | Web thin ih-shaped steel having low yield ratio and its production |
JPH04259352A (en) * | 1991-02-14 | 1992-09-14 | Nkk Corp | Steel excellent in hydrogen-induced cracking resistance and its manufacture |
JPH04329826A (en) * | 1991-04-30 | 1992-11-18 | Nippon Steel Corp | Production of extra thick steel plate for pressure vessel excellent in hydrogen induced cracking resistance |
JPH05156405A (en) * | 1991-12-03 | 1993-06-22 | Kawasaki Steel Corp | Low-yield ratio refractory h-shape steel and production thereof |
JPH0790474A (en) * | 1993-09-27 | 1995-04-04 | Nippon Steel Corp | Production of contained oxide-dispersed slab and rolled shape steel excellent in toughness by the same slab |
JPH0885846A (en) * | 1994-09-20 | 1996-04-02 | Kawasaki Steel Corp | Thick steel plate with ferrite/pearlite structure, reduced in material dispersion, and its production |
JPH08283900A (en) * | 1995-04-14 | 1996-10-29 | Nippon Steel Corp | Rolled shape steel for refractory use and its production |
JPH10152751A (en) * | 1996-09-30 | 1998-06-09 | Kawasaki Steel Corp | High strength shape steel for timbering, excelling in ductility after cold working, and timbering |
JPH10195603A (en) * | 1996-11-13 | 1998-07-28 | Nippon Steel Corp | Guage h steel for tunnel timbering and its production |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2484790A4 (en) * | 2009-09-30 | 2016-11-30 | Jfe Steel Corp | Steel material for structures having excellent weather resistance and steel structure |
US8641836B2 (en) | 2009-10-28 | 2014-02-04 | Nippon Steel & Sumitomo Metal Corporation | Steel plate for line pipe excellent in strength and ductility and method of production of same |
JP2017071827A (en) * | 2015-10-07 | 2017-04-13 | 新日鐵住金株式会社 | H shaped steel and manufacturing method therefor |
CN106191651A (en) * | 2016-08-10 | 2016-12-07 | 邢台钢铁有限责任公司 | A kind of automatic binding reinforcing bar steel and the production method of wire rod thereof |
JP2020105620A (en) * | 2018-12-28 | 2020-07-09 | 日本製鉄株式会社 | Rolled h-section steel and method for manufacturing the same |
JP2021143389A (en) * | 2020-03-12 | 2021-09-24 | Jfeスチール株式会社 | H-section steel with ridges and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3579557B2 (en) | 2004-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2397570A1 (en) | Steel plate for line pipes with excellent strength and ductility and process for production of same | |
JP3509603B2 (en) | Extra-thick H-section steel with excellent toughness and yield strength of 325 MPa or more | |
JP3301348B2 (en) | Manufacturing method of hot-rolled high-tensile steel sheet | |
JP4379085B2 (en) | Manufacturing method of high strength and high toughness thick steel plate | |
JP2002020837A (en) | Wear resistant steel excellent in toughness and its production method | |
JP2005256037A (en) | Method for producing high strength-high toughness-thick steel plate | |
JP4096839B2 (en) | Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone | |
JP3863647B2 (en) | H-section steel for tunnel support and manufacturing method thereof | |
JP3579557B2 (en) | H-section steel for tunnel support and method of manufacturing the same | |
JP2021066941A (en) | Wear-resistant steel sheet and method for producing the same | |
JP3828666B2 (en) | H-section steel for tunnel support with good bending workability and tensile strength of 490 N square mm or more | |
JP2002047532A (en) | High tensile strength steel sheet excellent in weldability and its production method | |
JP3440710B2 (en) | H-section steel excellent in toughness of fillet portion and method for producing the same | |
JP3785940B2 (en) | High toughness steel sheet pile having a web thickness of 15 mm or more and method for producing the same | |
JP2002294391A (en) | Steel for building structure and production method therefor | |
JP4655372B2 (en) | Method for producing high-tensile steel with high yield point | |
JPH07109521A (en) | Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming | |
JP3471586B2 (en) | H-section steel for tunnel shoring and method of manufacturing the same | |
JP2021021139A (en) | Wear-resistant steel plate and method for producing the same | |
JP4513311B2 (en) | Welded joint with excellent fatigue strength characteristics | |
JP3852279B2 (en) | Manufacturing method of rolled H-section steel with excellent earthquake resistance | |
JP2016180163A (en) | Low yield ratio high tensile steel plate excellent in heat affected zone toughness | |
JP3602396B2 (en) | Low yield ratio high strength steel sheet with excellent weldability | |
JP4256525B2 (en) | High-toughness, high-uniform elongation, H-section steel for tunnel support with tensile strength of 590 N / mm2 or more and 780 N / mm2 or less, and its manufacturing method | |
JP2905639B2 (en) | Method for producing 780 N / mm2 grade steel sheet with extremely low yield ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040317 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040716 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070723 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120723 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |