JPH06279928A - High strength rail excellent in toughness and ductility and its production - Google Patents

High strength rail excellent in toughness and ductility and its production

Info

Publication number
JPH06279928A
JPH06279928A JP7019593A JP7019593A JPH06279928A JP H06279928 A JPH06279928 A JP H06279928A JP 7019593 A JP7019593 A JP 7019593A JP 7019593 A JP7019593 A JP 7019593A JP H06279928 A JPH06279928 A JP H06279928A
Authority
JP
Japan
Prior art keywords
rail
steel
ductility
molten steel
deoxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7019593A
Other languages
Japanese (ja)
Inventor
Shuichi Funaki
秀一 船木
Hideaki Kageyama
英明 影山
Shinya Kitamura
信也 北村
Masamitsu Wakao
昌光 若生
Fusao Ishikawa
房男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7019593A priority Critical patent/JPH06279928A/en
Publication of JPH06279928A publication Critical patent/JPH06279928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a rail steel excellent in toughness and ductility by subjecting a heated steel bloom, which has a composition containing specific amounts of C, Si, Mn, S, Cr, etc., and to which deoxidizing treatment is applied, to cooling under prescribed conditions and forming pearlite where V nitride precipitated on MnS is used as a nucleus. CONSTITUTION:A steel, which has a composition consisting of, by weight, 0.55-0.85% C, 0.2-1.2% Si, 0.5-1.5% Mn, 0.006-0.035% S, 0.1-1% Cr, 0.01-1% V, 0.0005-0.03% N, and the balance Fe and is deoxidized by the addition of Mn and/or Si, is refined. At the time of applying cooling, from an austenite region temp., to the head or further bottom part of a rail prepared by subjecting a bloom of this steel to hot rolling, etc., cooling is done through the temp. region between 700 and 500 deg.C at (1 to 5) deg.C/sec cooling rate. By the above procedure, pearlite where V nitride precipitated on MnS in an austenite grain is used as a nucleus can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レール鋼のパーライト
組織を微細化して靭性および延性の向上を図った高強度
レールおよびその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength rail in which the pearlite structure of rail steel is refined to improve toughness and ductility, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、鉄道輸送は高荷重化、高速化が指
向され、レールに要求される特性がますます厳しくなっ
ている。高荷重鉄道では急曲線区間の摩耗対策、レール
頭部内部疲労損傷対策が要求され、高速鉄道では主とし
て直線区間の表面損傷が課題として挙げられている。こ
れらに加えて、寒冷地においては、冬季にレール破断が
集中的に発生する傾向が認められており、寒冷地鉄道で
のレール材の靭性改善は、安全な鉄道輸送に欠かせない
特性になっている。
2. Description of the Related Art In recent years, railway transportation has been aimed at higher loads and higher speeds, and the characteristics required for rails have become increasingly severe. For heavy-duty railways, measures against wear on sharp curves and internal fatigue damage to rail heads are required. On high-speed railways, surface damage mainly on straight sections is cited as an issue. In addition to these, it is recognized that rail rupture tends to occur intensively in winter in cold regions, and improving the toughness of rail materials in cold region railways is a characteristic that is essential for safe rail transportation. ing.

【0003】また、鉄道輸送の高効率化のために、高速
化および貨物の重積載化が進められているが、これに伴
ってレール頭部の摩耗や疲労損傷が急速に増加しつつあ
る。このようなレール材の使用環境の過酷化、特に摩耗
の増加に対処するために、レール鋼の高強度化のための
技術開発が加速され、国内・外を問わず曲線区間のレー
ル材はほとんどすべて高強度レールが支配することとな
った。
Further, in order to improve the efficiency of rail transportation, speeding up and heavy loading of cargo have been promoted, but along with this, wear and fatigue damage of rail heads are rapidly increasing. In order to cope with such harsh environment of use of rail materials, especially increase in wear, technological development for strengthening rail steel has been accelerated, and rail materials in curved sections are mostly used in Japan and abroad. All of the high-strength rails now dominate.

【0004】しかし、一方ではレール鋼の耐摩耗性の向
上とともに、本来摩耗によって削り取られるべき疲労ダ
メージ層がレール頭表面、特に車輪フランジ付け根部が
押し付けられるゲージ・コーナー(GC)表面に残存
し、表面損傷を生成させる傾向が認められるようになっ
た。さらにレール鋼の耐摩耗性の向上は、車輪荷重のレ
ールGC内部での応力集中を一点に固定させることとな
り、レール頭部内部からの疲労損傷を急増させることと
なった。このようなレール頭表面損傷性の改善および内
部疲労損傷に対する抵抗性を改善するためには、レール
材質として靭性および延性を向上させることが重要であ
る。
On the other hand, on the other hand, as the wear resistance of the rail steel is improved, a fatigue damage layer that should be scraped off due to wear remains on the rail head surface, especially on the gauge corner (GC) surface where the wheel flange root is pressed, A tendency to produce surface damage has become apparent. Further, the improvement of the wear resistance of the rail steel means that the stress concentration inside the rail GC due to the wheel load is fixed at one point, and the fatigue damage from the inside of the rail head rapidly increases. In order to improve such rail head surface damage and resistance to internal fatigue damage, it is important to improve the toughness and ductility of the rail material.

【0005】高強度レールの靭性および延性改善の方法
としては以下の方法が考えられる。 (1)普通圧延後一旦室温まで冷却したレール頭部を低
温度で再加熱した後加速冷却する方法。 (2)制御圧延によりオーステナイト粒を微細化した後
レール頭部を加速冷却する方法。 (3)制御圧延した後、パーライト変態前で低温度に再
加熱し、その後加速冷却する方法。 レール鋼の靭性評価法としては、ロシアのGOST規格
によって定められた2mmUノッチシャルピー試験におけ
る+20℃での衝撃吸収エネルギーがあり、同規格によ
れば高強度熱処理レールの+20℃での衝撃吸収エネル
ギーは0.25MJ/m2 以上が必要とされている。また、
レールの延性はレール頭部の疲労損傷の生成に影響を与
え、中国における高強度レールの延性要求は、レール頭
部GC内部10mm深さ位置から採取した平行部径6mm、
平行部長さ30mmの引張試験において12%以上の伸び
値が必要であるとしている。
The following methods are conceivable as methods for improving the toughness and ductility of high-strength rails. (1) A method in which a rail head that has been once cooled to room temperature after normal rolling is reheated at a low temperature and then accelerated cooling is performed. (2) A method of accelerating and cooling the rail head after refining austenite grains by controlled rolling. (3) A method in which after controlled rolling, it is reheated to a low temperature before pearlite transformation and then accelerated cooling is performed. As a toughness evaluation method for rail steel, there is impact absorption energy at + 20 ° C in the 2mm U-notch Charpy test defined by the Russian GOST standard. According to this standard, the impact absorption energy at + 20 ° C of the high-strength heat-treated rail is 0.25 MJ / m 2 or more is required. Also,
The ductility of the rail affects the generation of fatigue damage to the rail head, and the ductility requirement of the high-strength rail in China is that the diameter of the parallel part is 6 mm from the depth of 10 mm inside the rail head GC.
It is said that an elongation value of 12% or more is required in a tensile test with a parallel length of 30 mm.

【0006】[0006]

【発明が解決しようとする課題】前記方法の(1)で
は、大幅な靭性・延性改善のためには特開昭55−12
5231号公報に記載されているような通常の加熱温度
よりも低い850℃以下の低温度に再加熱し、オーステ
ナイト粒度を微細にすることによって靭性および延性を
改善しようとするもので、低温度で加熱してかつレール
頭部内部まで加熱を深めようとすると、投入熱量を下げ
て長時間加熱する必要がある。このため熱処理生産性を
著しく阻害し製造コストを高める難点がある。また、
(2)の方法は特開昭52−138427号公報および
特開昭52−138428号公報に記載されているよう
に、圧延時のオーステナイト粒の細粒化によって靭性・
延性の向上を図ろうとすると、高温での大圧下が要求さ
れ、レール圧延機の能力あるいはレールの形状制御の観
点からも問題を含んでいる。さらに(3)の方法は、特
公平4−4371号公報に記載されているように、80
0℃以下で5%以上の圧延を実施した後、再度750〜
900℃に加熱することによりオーステナイト粒を微細
にしようとする方法であり、圧延後に低温再加熱のため
の加熱炉を必要とするため作業性、生産性、製造コスト
の観点から問題が多い。
In the above method (1), in order to improve the toughness and ductility to a great extent, JP-A-55-12 is used.
Reheating to a low temperature of 850 ° C. or lower, which is lower than the normal heating temperature as described in Japanese Patent No. 5231, attempts to improve toughness and ductility by making the austenite grain size fine. When heating and deepening the heating to the inside of the rail head, it is necessary to lower the amount of heat input and heat for a long time. Therefore, there is a problem that heat treatment productivity is significantly impaired and manufacturing cost is increased. Also,
As described in JP-A-52-138427 and JP-A-52-138428, the method (2) is toughness due to austenite grain refinement during rolling.
In order to improve the ductility, a large reduction at high temperature is required, which causes a problem from the viewpoint of rail rolling mill capacity or rail shape control. Furthermore, the method (3) is described in Japanese Patent Publication No.
After rolling 5% or more at 0 ° C. or less, 750 to 750 again
This is a method in which the austenite grains are made fine by heating at 900 ° C. Since a heating furnace for low-temperature reheating after rolling is required, there are many problems from the viewpoint of workability, productivity, and manufacturing cost.

【0007】本発明はこのような技術の現状から、従来
考えられていないオーステナイト粒内より、微細なパー
ライトを生成させることにより微細パーライト組織より
なる靭性および延性に優れた高強度レールおよびその製
造法を提供することを目的としている。
In view of the state of the art, the present invention provides a high-strength rail having a fine pearlite structure and excellent in toughness and ductility by producing fine pearlite from inside of austenite grains, which has not been conventionally considered, and a method for producing the same. Is intended to provide.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、溶
鋼に脱酸元素としてMnおよび/またはSiを添加し脱
酸処理を施して溶製した、重量%で、C :0.55〜
0.85%、 Si:0.20〜1.20%、Mn:
0.50〜1.50%、 S :0.006〜0.0
35%、Cr:0.1〜1.0%、 V :0.
001〜1.00%、N :0.0005〜0.030
%を含有し、残部が鉄および不可避的不純物からなる溶
鋼を造塊・分塊法あるいは連続鋳造法を経て製造した鋼
片を、熱間圧延加工して0.1〜20μmの大きさのM
nS個数がレール鋼中の1mm2 あたり、25〜1100
0個存在することを特徴とする靭性および延性に優れた
高強度レールおよびその製造法である。また、本発明
は、溶鋼に(Zr),(ZrおよびMn),(Zrおよ
びSi),(Zr,MnおよびSi)の4組のうちの1
組の脱酸元素を添加し脱酸処理を施して溶製した、重量
%でC :0.55〜0.85%、 Si:0.2
0〜1.20%、Mn:0.50〜1.50%、
S :0.006〜0.035%、Cr:0.1〜1.
0%、 V :0.001〜1.00%、N
:0.0005〜0.030%、Zr:0.0005
〜0.15%を含有し、残部が鉄および不可避的不純物
からなる溶鋼を造塊・分塊法あるいは連続鋳造法を経て
製造した鋼片を、熱間圧延加工して0.1〜20μmの
大きさのMnS個数がレール鋼中の1mm2 あたり、25
〜11000個存在することを特徴とする靭性および延
性に優れた高強度レールおよびその製造法である。さら
に本発明は、溶鋼に脱酸元素としてMnおよび/または
Siを添加し脱酸処理を施して溶製した、重量%で、C
:0.55〜0.85%、 Si:0.20〜
1.20%、Mn:0.50〜1.50%、 S
:0.006〜0.035%、Cr:0.1〜1.0
%、 V :0.001〜1.00%、Ti:
0.0006〜0.075%、N :0.0005〜
0.030%を含有し、残部が鉄および不可避的不純物
からなる溶鋼を造塊・分塊法あるいは連続鋳造法を経て
製造した鋼片を、熱間圧延加工して0.1〜20μmの
大きさのMnS個数がレール鋼中の1mm2 あたり、25
〜11000個存在することを特徴とする靭性および延
性に優れた高強度レールおよびその製造法である。さら
にまた、本発明は、溶鋼に(Zr),(ZrおよびM
n),(ZrおよびSi),(Zr,MnおよびSi)
の4組のうちの1組の脱酸元素を添加し脱酸処理を施し
て溶製した、重量%でC :0.55〜0.85%、
Si:0.20〜1.20%、Mn:0.50〜
1.50%、 S :0.006〜0.035%、
Cr:0.1〜1.0%、 V :0.001
〜1.00%、Ti:0.0006〜0.075%、N
:0.0005〜0.030%、Zr:0.0005
〜0.15%を含有し、残部が鉄および不可避的不純物
からなる溶鋼を造塊・分塊法あるいは連続鋳造法を経て
製造した鋼片を、熱間圧延加工して0.1〜20μmの
大きさのMnS個数がレール鋼中の1mm2 あたり、25
〜11000個存在することを特徴とする靭性および延
性に優れた高強度レールおよびその製造法である。
That is, according to the present invention, Mn and / or Si is added to a molten steel as a deoxidizing element and a deoxidizing treatment is applied to the molten steel to produce a molten steel.
0.85%, Si: 0.20 to 1.20%, Mn:
0.50 to 1.50%, S: 0.006 to 0.0
35%, Cr: 0.1 to 1.0%, V: 0.
001 to 1.00%, N: 0.0005 to 0.030
%, With the balance being iron and unavoidable impurities, a steel slab produced by the ingot-agglomeration method or the continuous casting method is hot-rolled to obtain M having a size of 0.1 to 20 μm.
The number of nS is 25 to 1100 per 1 mm 2 in rail steel.
It is a high-strength rail excellent in toughness and ductility, characterized by the presence of zero, and a method for producing the same. Further, the present invention provides molten steel with one of four sets of (Zr), (Zr and Mn), (Zr and Si), (Zr, Mn and Si).
A set of deoxidizing elements was added and subjected to deoxidizing treatment to be ingot, C: 0.55 to 0.85% by weight, Si: 0.2
0 to 1.20%, Mn: 0.50 to 1.50%,
S: 0.006 to 0.035%, Cr: 0.1 to 1.
0%, V: 0.001-1.00%, N
: 0.0005 to 0.030%, Zr: 0.0005
Of 0.1 to 20 μm is obtained by hot rolling a steel slab containing 0.1 to 0.15% of steel, the balance of which is iron and unavoidable impurities, produced by an ingot-agglomeration method or a continuous casting method. The number of MnS of size is 25 per 1 mm 2 in rail steel.
It is a high-strength rail excellent in toughness and ductility, characterized by the presence of ˜11,000 pieces, and a manufacturing method thereof. Further, according to the present invention, Mn and / or Si is added to the molten steel as a deoxidizing element, and the molten steel is subjected to deoxidizing treatment to be melted.
: 0.55 to 0.85%, Si: 0.20
1.20%, Mn: 0.50 to 1.50%, S
: 0.006-0.035%, Cr: 0.1-1.0
%, V: 0.001-1.00%, Ti:
0.0006-0.075%, N: 0.0005-
A steel slab containing 0.030%, the balance of which is iron and unavoidable impurities, produced by an ingot-agglomeration method or a continuous casting method is hot-rolled into a size of 0.1 to 20 μm. The number of MnS is 25 per 1 mm 2 in rail steel
It is a high-strength rail excellent in toughness and ductility, characterized by the presence of ˜11,000 pieces, and a manufacturing method thereof. Furthermore, the present invention relates to molten steel (Zr), (Zr and M
n), (Zr and Si), (Zr, Mn and Si)
1 set of 4 sets of deoxidizing element was added and subjected to deoxidation treatment to be melted, and C by weight%: 0.55 to 0.85%,
Si: 0.20 to 1.20%, Mn: 0.50
1.50%, S: 0.006-0.035%,
Cr: 0.1-1.0%, V: 0.001
~ 1.00%, Ti: 0.0006-0.075%, N
: 0.0005 to 0.030%, Zr: 0.0005
Of 0.1 to 20 μm is obtained by hot rolling a steel slab containing 0.1 to 0.15% of steel, the balance of which is iron and unavoidable impurities, produced by an ingot-agglomeration method or a continuous casting method. The number of MnS of size is 25 per 1 mm 2 in rail steel.
It is a high-strength rail excellent in toughness and ductility, characterized by the presence of ˜11,000 pieces, and a manufacturing method thereof.

【0009】本発明では、従来オーステナイト粒界のみ
からしか生成しないといわれていたパーライト変態を、
オーステナイト粒内のMnSにパーライト変態の核とな
るV窒化物および/あるいはTi炭窒化物を配して、オ
ーステナイト粒内からもパーライト変態を生成させるこ
とを特徴としている。粒界から変態するパーライトと、
オーステナイト粒内のMnSの生成核を制御・促進させ
ることによって粒内から生成したパーライトとの重畳効
果によって著しく組織が微細化し、この結果、大幅な靭
性および延性の改善を図ることができる。
In the present invention, the pearlite transformation, which was conventionally said to be generated only from the austenite grain boundaries,
It is characterized in that V nitrides and / or Ti carbonitrides, which become nuclei for pearlite transformation, are arranged in MnS in austenite grains to generate pearlite transformation also in austenite grains. Perlite that transforms from the grain boundary,
By controlling / promoting the nucleation of MnS in the austenite grains, the structure is remarkably refined due to the superposition effect with pearlite generated from within the grains, and as a result, the toughness and ductility can be greatly improved.

【0010】前記各発明において、熱間加工(熱延)後
あるいはさらに加熱した後オーステナイト域からの冷却
に際し、700〜500℃の間を1〜5℃/secで加速冷
却することにより、より一層のパーライトの微細化が図
れ、靭性向上に効果的である。
In each of the above-mentioned inventions, after cooling from the austenite region after hot working (hot rolling) or further heating, accelerated cooling at 700 to 500 ° C. at 1 to 5 ° C./sec is further performed. The pearlite can be miniaturized, and it is effective in improving the toughness.

【0011】[0011]

【作用】以下に本発明について詳細に説明する。先ず、
脱酸の必要性および脱酸元素を限定した理由について述
べる。本発明における脱酸の目的は2つあり、その1つ
はMnSの核となる酸化物の制御を目的としたものであ
り、MnおよびSiはMnSの生成核として有効なマン
ガンシリケート(MnO−SiO2 )の構成元素として
MnSの個数と分布を制御する目的で添加する。さらに
Zrは比重の大きい酸化物を生成し溶鋼から浮上する酸
化物数の低下を抑制する目的と、Zr添加によりMnS
の生成核として有効なZrの酸化物あるいはZrを含有
するマンガンシリケート(MnO−SiO2 )の構成元
素としてMnSの個数と分布をさらに制御する目的で添
加する。
The present invention will be described in detail below. First,
The necessity of deoxidation and the reason for limiting the deoxidizing element will be described. There are two purposes of deoxidation in the present invention, one of which is to control the oxide that becomes the core of MnS, and Mn and Si are manganese silicate (MnO-SiO) effective as a generation nucleus of MnS. 2 ) As a constituent element, it is added for the purpose of controlling the number and distribution of MnS. Further, Zr is used for the purpose of suppressing the decrease in the number of oxides floating from the molten steel by forming oxides having a large specific gravity, and by adding Zr, MnS
Adding an effective Zr oxides or purpose of further controlling the number and distribution of MnS as an element of manganese silicate (MnO-SiO 2) containing Zr as nuclei for.

【0012】脱酸のもう1つの目的は、脱酸元素として
Mnおよび/またはSiを添加することによって溶鋼中
の酸素量をできるだけ低減化するところにあり、炭窒化
物生成元素として添加するVおよびTiが酸化物として
析出し、無駄に消費してしまわないように予め酸素量を
低減化するところにある。さらに(Zr),(Zrおよ
びMn),(ZrおよびSi),(Zr,MnおよびS
i)の4組のうちの1組の脱酸元素を添加することによ
って酸素量低減の効果は極めて大きくなり、より酸素量
を低減することができる。すなわち、脱酸元素としてM
nおよび/またはSiを添加し、少なくともVおよびT
iの添加前に溶鋼中の酸素量を20ppm以下にし、Vお
よびTiが酸化物を作ることなしに、より効率的にそれ
らの炭窒化物を生成させることを、さらに(Zr),
(ZrおよびMn),(ZrおよびSi),(Zr,M
nおよびSi)の4組のうちの1組の脱酸元素を添加す
ることによって、少なくともVおよびTiの添加前に溶
鋼中の酸素量を10ppm 以下にし、VおよびTiが酸化
物を作ることなしに効率的にそれらの炭窒化物を生成さ
せることを目的としている。なお、一般的に脱酸剤とし
て用いられているAlは、レール内部からの疲労損傷の
発生に有害なアルミナクラスターを生成させることから
Alは添加しない。
Another purpose of deoxidation is to reduce the amount of oxygen in molten steel as much as possible by adding Mn and / or Si as deoxidizing elements. This is to reduce the amount of oxygen in advance so that Ti is not deposited as an oxide and wasted. Further, (Zr), (Zr and Mn), (Zr and Si), (Zr, Mn and S
By adding the deoxidizing element in one of the four groups of i), the effect of reducing the oxygen amount becomes extremely large, and the oxygen amount can be further reduced. That is, M as a deoxidizing element
n and / or Si is added, and at least V and T
The amount of oxygen in molten steel is set to 20 ppm or less before the addition of i, and V and Ti are more efficiently formed to form their carbonitrides without forming oxides (Zr),
(Zr and Mn), (Zr and Si), (Zr, M
(n and Si) by adding one of four deoxidizing elements, the oxygen content in the molten steel is reduced to 10 ppm or less before addition of at least V and Ti, and V and Ti do not form an oxide. The objective is to efficiently produce those carbonitrides. Al, which is generally used as a deoxidizer, does not add Al because it forms alumina clusters that are harmful to the occurrence of fatigue damage from inside the rail.

【0013】上記脱酸後の0.1〜20μmのMnS個
数を1mm2 あたり25〜11000個に限定した理由を
述べる。十分な脱酸によって酸素が低減し、その結果微
細な酸化物が生成し、この酸化物を核としてMnSがオ
ーステナイト中に微細分散し、さらにこのMnSを核と
してV窒化物:VNおよびTi炭窒化物:Ti(C,
N)が生成する。このオーステナイト粒内のMnSを核
としたV析出物およびTi析出物からパーライト変態が
生成するわけであるが、この際0.1μm未満の大きさ
のMnSでは、V析出物およびTi析出物の核とはなり
がたく、また20μm超のMnSを生成させると、Mn
Sの絶対数が減少してしまい、結果的にパーライトの核
となるMnSの数が減少してしまうため、MnSの大き
さを0.1〜20μmに限定した。また、MnSの個数
を1mm2 あたり25〜11000個に限定した理由は、
25個未満のMnSでは靭性・延性を改善するための十
分な核生成サイトを確保できないからであり、また11
000個超のMnSが生成するとレール鋼自体が汚染さ
れてかえって靭性・延性が低下することから、1mm2
たりのMnS個数を25〜11000個に限定した。
The reason why the number of MnS of 0.1 to 20 μm after deoxidation is limited to 25 to 11,000 per mm 2 will be described. Oxygen is reduced by sufficient deoxidation, as a result, a fine oxide is generated, MnS is finely dispersed in austenite with this oxide as a nucleus, and V nitrides: VN and Ti carbonitride with this MnS as a nucleus. Thing: Ti (C,
N) is generated. A pearlite transformation is generated from V precipitates and Ti precipitates having MnS as nuclei in the austenite grains. At this time, in MnS having a size of less than 0.1 μm, nuclei of V precipitates and Ti precipitates are formed. However, when MnS of more than 20 μm is generated, Mn
The absolute number of S is reduced, and as a result, the number of MnS that is a nucleus of pearlite is reduced. Therefore, the size of MnS is limited to 0.1 to 20 μm. The reason why the number of MnS is limited to 25 to 11,000 per 1 mm 2 is as follows.
This is because less than 25 MnS cannot secure sufficient nucleation sites for improving the toughness and ductility.
If more than 000 MnS are produced, the rail steel itself is contaminated and the toughness and ductility are rather deteriorated. Therefore, the number of MnS per 1 mm 2 is limited to 25 to 11,000.

【0014】次に、上記脱酸を行った溶鋼の化学成分を
前記のように限定した理由について述べる。Cは高強度
化およびパーライト組織生成のための必須元素であり、
また耐摩耗性に対しても一義的に効果を示す元素である
が0.55%未満ではオーステナイト粒界に耐摩耗性お
よび耐損傷性に好ましくない初析フェライトが多量に生
成し、また0.85%を超えるとオーステナイト粒界を
脆化させる有害な初析セメンタイトを生成させるばかり
か、レール頭部熱処理層や溶接部の微小偏析部にマルテ
ンサイトが生成し、靭性・延性を著しく損なうため0.
55〜0.85%に限定した。
Next, the reason why the chemical composition of the deoxidized molten steel is limited as described above will be described. C is an essential element for strengthening and generating a pearlite structure,
Further, it is an element that uniquely exerts an effect on wear resistance as well, but if it is less than 0.55%, a large amount of proeutectoid ferrite which is unfavorable for wear resistance and damage resistance is generated in the austenite grain boundary, If it exceeds 85%, not only harmful harmful pro-eutectoid cementite that embrittles the austenite grain boundaries is generated, but also martensite is generated in the heat-separated layer of the rail head and the minute segregation part of the welded portion, which significantly impairs toughness and ductility. .
It was limited to 55 to 0.85%.

【0015】Siはパーライト組織中のフェライト相へ
の固溶体硬化による高強度化に寄与するばかりか、わず
かながらレール鋼の靭性・延性改善にも貢献する。また
SiはMnとともにMnSの核となるマンガンシリケー
ト系酸化物を構成する重要な元素であり、0.2%未満
ではその効果が期待できず、さらにSiは脱酸元素とし
て0.2%以上の添加が必要であり、1.2%を超える
と脆化をもたらし溶接接合性も減ずるので、0.20〜
1.20%に限定した。
Si not only contributes to the strengthening of the ferrite phase in the pearlite structure by solid solution hardening, but also contributes to a slight improvement in the toughness and ductility of the rail steel. Further, Si is an important element that constitutes a manganese silicate-based oxide, which becomes the core of MnS together with Mn, and its effect cannot be expected if it is less than 0.2%, and Si is 0.2% or more as a deoxidizing element. It is necessary to add it, and if it exceeds 1.2%, embrittlement is caused and weld bondability is reduced, so 0.20 to
Limited to 1.20%.

【0016】MnはC同様にパーライト変態温度を低下
させ、焼入性を高めることによって高強度化に寄与する
元素であり、さらにSi同様にMnSの核としてのマン
ガンシリケートの構成元素として、および脱酸元素とし
ても欠かせない。しかし、0.5%未満ではその効果が
小さくまた1.50%を超えると偏析部にマルテンサイ
ト組織を生成させ易くするため0.50〜1.50%に
限定した。
Like C, Mn is an element that lowers the pearlite transformation temperature and enhances the hardenability to contribute to higher strength. Further, like Mn, it acts as a constituent element of manganese silicate as the core of MnS and as a deoxidizer. It is indispensable as an acid element. However, if it is less than 0.5%, its effect is small, and if it exceeds 1.50%, the content is limited to 0.50 to 1.50% so that a martensite structure is easily generated in the segregated portion.

【0017】Sは一般に有害元素として知られている
が、本発明においてはオーステナイト粒内のマンガンシ
リケートなどの酸化物を核としてMnSが生成し、さら
にそのMnSを基地とする析出物:VNおよびTi
(C,N)が生成し、これら析出物を変態核とするパー
ライト組織が生成するため欠かせない元素である。しか
し、0.006%未満ではパーライト変態核としてのM
nS量が減じてしまい、パーライト粒内変態を確保でき
なくなる。また0.035%超ではMnSが多量に生成
し靭性・延性を著しく低下させるため0.002〜0.
035%に限定した。
Although S is generally known as a harmful element, in the present invention, MnS is produced with an oxide such as manganese silicate in austenite grains as a nucleus, and the MnS-based precipitates: VN and Ti.
(C, N) is generated, and a pearlite structure having these precipitates as transformation nuclei is generated, which is an essential element. However, if it is less than 0.006%, M as pearlite transformation nucleus
Since the amount of nS is reduced, the pearlite intragranular transformation cannot be secured. On the other hand, if it exceeds 0.035%, a large amount of MnS is formed and the toughness and ductility are remarkably reduced, so 0.002 to 0.
Limited to 035%.

【0018】Crは、パーライト変態を低下させること
によって高強度化に寄与すると同時に、パーライト組織
中のセメンタイト相を強化することによっても耐摩耗性
向上に貢献するが、一方ではセメンタイトの衝撃靭性を
低下させる作用も有している。しかし、Crのセメンタ
イト強化作用は無視しがたく、さらに溶接継ぎ手部軟化
防止の観点からも微量のCrの添加も望ましい。そこで
強度確保に一定の寄与が期待されかつ靭性・延性を損な
わない範囲内で0.1〜1.0%に限定した。Vは本発
明の重要な構成要素であり、冷却中にMnS上に析出さ
せたV窒化物を核としたパーライト変態の生成を見いだ
したことにより、従来オーステナイト粒界に限定されて
いたパーライト変態核がオーステナイト粒内からも期待
でき、結果として微細なパーライト粒からなるレール鋼
を得ることができるようになり大幅な靭性の向上を果た
すことができた。しかし、0.001%未満では、この
効果が弱く、また1.00%超添加するとV析出物が粗
大化し、レール頭部内部からの疲労き裂発生起点となる
ことから、V添加量を0.001〜1.00%の範囲に
限定した。
[0018] Cr contributes to higher strength by lowering the pearlite transformation, and at the same time contributes to improving wear resistance by strengthening the cementite phase in the pearlite structure. On the other hand, it lowers the impact toughness of cementite. It also has the effect of causing it. However, the cementite strengthening effect of Cr cannot be ignored, and addition of a small amount of Cr is also desirable from the viewpoint of preventing softening of the welded joint. Therefore, it is limited to 0.1 to 1.0% within a range in which a certain contribution is expected to secure the strength and the toughness and ductility are not impaired. V is an important component of the present invention, and it was found that the pearlite transformation centered on the V-nitride precipitated on MnS during cooling was found. Can be expected from within the austenite grains, and as a result, a rail steel composed of fine pearlite grains can be obtained, and the toughness can be greatly improved. However, if it is less than 0.001%, this effect is weak, and if it exceeds 1.00%, V precipitates are coarsened and become a starting point of fatigue crack initiation from inside the rail head. It was limited to the range of 0.001 to 1.00%.

【0019】TiはVと同様に本発明の重要な構成要素
であり、冷却中にMnS上に析出させたTi炭窒化物を
核としたパーライト変態の生成による効果がV窒化物に
よるパーライト変態に重畳し、より効果的にオーステナ
イト粒内からの変態が期待できる。しかし、0.000
6%未満では、この効果が弱く、また0.075%超添
加するとTi析出物が粗大化し、レール頭部内部からの
疲労き裂発生起点となることから、Ti添加量を0.0
006〜0.075%の範囲に限定した。
Ti, like V, is an important constituent element of the present invention. The effect of the pearlite transformation centered on Ti carbonitride deposited on MnS during cooling is due to the pearlite transformation by V nitride. By superimposing them, the transformation from within the austenite grains can be expected more effectively. But 0.000
If it is less than 6%, this effect is weak, and if it exceeds 0.075%, Ti precipitates are coarsened and become the starting point of fatigue crack initiation from inside the rail head.
It was limited to the range of 006 to 0.075%.

【0020】Nはパーライトの変態核として作用するM
nS上のV窒化物およびTi炭窒化物の構成元素であ
り、VNおよびTiNを有効に析出させるためには0.
0005%以上が必要であり、0.030%を超えると
粗大なVNおよびTiNが生成し、レール内部疲労き裂
の起点となるためN添加量を0.0005〜0.030
%に限定した。
N acts as a transformation nucleus of pearlite M
It is a constituent element of V-nitride and Ti carbonitride on nS. In order to effectively precipitate VN and TiN,
0005% or more is required, and if it exceeds 0.030%, coarse VN and TiN are generated, which becomes the starting point of fatigue cracks in the rail, so the N addition amount is 0.0005 to 0.030.
Limited to%.

【0021】Zrは脱酸元素として利用するものの鋼中
においては主として酸化物の形で存在し、少なすぎると
脱酸の効果が低いことからその含有量は0.0005%
以上必要であること、さらに0.15%超添加するとZ
r析出物が粗大化し、レール頭部内部からの疲労き裂発
生起点となることからZr含有量を0.0005〜0.
15%の範囲に限定した。不可避的不純物元素であるP
は、レール鋼の靭性を向上させるためにはできるだけ低
減させることが望ましい。
Although Zr is used as a deoxidizing element, it exists mainly in the form of an oxide in steel, and if it is too small, the effect of deoxidizing is low, so its content is 0.0005%.
The above is required, and if more than 0.15% is added, Z
The Zr content is 0.0005 to 0. 0 because the R precipitates become coarse and become the starting point of fatigue crack initiation from the inside of the rail head.
The range was limited to 15%. Inevitable impurity element P
Is preferably reduced as much as possible in order to improve the toughness of the rail steel.

【0022】前記のような成分組成で構成されるレール
鋼は、転炉、電気炉などの通常使用される溶解炉で前述
した脱酸を含む溶製を行い、この溶鋼を造塊・分塊法あ
るいは連続鋳造法、さらに熱間圧延を経て製造する。熱
間圧延を終えたレールは、冷却中においてオーステナイ
ト粒内のMnSに析出したV窒化物および/あるいはT
i炭窒化物からもパーライト変態が生成し、オーステナ
イト粒界から生成するパーライトとともに微細なパーラ
イト粒を構成する。その結果、圧延ままで靭性の優れた
高強度レールを製造することができる。
The rail steel having the above-mentioned composition is subjected to melting including the above-mentioned deoxidation in a commonly used melting furnace such as a converter or an electric furnace, and this molten steel is ingoted or agglomerated. Method or continuous casting method, and then hot rolling. The rail that has been hot-rolled has V-nitride and / or T precipitated on MnS in the austenite grains during cooling.
The pearlite transformation is also generated from i-carbonitride and constitutes fine pearlite grains together with pearlite generated from the austenite grain boundaries. As a result, a high-strength rail having excellent toughness can be manufactured as rolled.

【0023】さらに高強度とともに高靭性が要求される
場合には、圧延終了後あるいは、一度室温に冷却され熱
処理する目的で再加熱されたオーステナイト域温度から
の冷却過程における700〜500℃間を1〜5℃/sec
で加速冷却されたレール鋼では、一層の高靭性が得られ
る。すなわち、パーライト組織鋼の特徴として、加速冷
却することによって低温でパーライト変態を生じさせ、
このことによりパーライト変態核の生成速度が向上し結
果的にパーライト粒を微細にすることができるからであ
る。従ってMnS上に析出させたV窒化物および/ある
いはTi炭窒化物を核としたパーライト組織(オーステ
ナイト粒内で変態)と、加速冷却によるオーステナイト
粒界からのパーライト変態が重畳して一層のレール鋼の
靭性向上を達成することができる。この際冷却媒体は、
空気あるいはミストなどの気液混合物を用い、レール頭
部もしくは底部の強度が1100MPa 以上とすることが
望ましい。
When high strength and high toughness are required, a temperature between 700 and 500 ° C. during the cooling process from the end of rolling or from the reheated austenite region temperature once for the purpose of heat treatment after cooling to room temperature is 1 ~ 5 ℃ / sec
With rail steel that has been accelerated and cooled by, even higher toughness can be obtained. That is, as a characteristic of pearlite structure steel, pearlite transformation is caused at low temperature by accelerated cooling,
This is because the rate of generation of pearlite transformation nuclei is improved, and as a result, pearlite grains can be made fine. Therefore, the pearlite structure (transformation within austenite grains) centered on V-nitrides and / or Ti carbonitrides precipitated on MnS and the pearlite transformation from the austenite grain boundaries due to accelerated cooling are superposed to form a further rail steel. It is possible to achieve improvement in toughness. At this time, the cooling medium is
It is desirable to use a gas-liquid mixture such as air or mist and to set the strength of the rail head or bottom to 1100 MPa or more.

【0024】[0024]

【実施例】次に本発明により製造した高靭性を有する高
強度レールの製造実施例について述べる。表1はZr,
Mn,Siの1種または2種以上の脱酸を行った場合の
供試鋼の化学成分を示す。なお、比較のため脱酸制御を
行わなかった場合、さらに、脱酸制御を行ったVおよび
/またはTi無添加の場合の供試鋼の化学成分をあわせ
て表1に示す。また、それらの供試鋼の冷却後の組織中
に存在する0.1〜20μmのMnS個数の測定結果
を、また冷却後の組織中にMnSを核とするパーライト
粒内変態が含まれているかどうかを観察した結果を表2
に示す。適切な脱酸を行った本発明鋼および比較鋼で
は、所定の量の微細なMnSの生成が確認され、さらに
V添加した本発明鋼では明らかにオーステナイト粒内か
らのMnSを核としたV窒化物および/あるいはTi炭
窒化物を生成起点としたパーライト組織の生成が確認さ
れた。
EXAMPLES Next, examples of production of high strength rails having high toughness produced according to the present invention will be described. Table 1 shows Zr,
The chemical composition of the sample steel when one or more kinds of Mn and Si are deoxidized is shown. For comparison, Table 1 also shows the chemical composition of the sample steel when deoxidation control was not performed and when V and / or Ti was not deoxidation controlled. In addition, the measurement results of the number of MnS of 0.1 to 20 μm existing in the microstructures of these test steels after cooling, and whether the microstructure after cooling contains pearlite intragranular transformation having MnS as a nucleus. Table 2 shows the results of observation
Shown in. In the steel of the present invention and the comparative steel that were appropriately deoxidized, it was confirmed that a predetermined amount of fine MnS was formed, and in the steel of the present invention in which V was added, the V nitriding centered on MnS from within the austenite grains was clearly observed. It was confirmed that the pearlite structure originated from the substance and / or Ti carbonitride as a starting point.

【0025】表3には圧延まま、および強度を一定とす
るために化学成分毎にオーステナイト域温度から700
〜500℃間を冷却速度1〜5℃/secの範囲で変化させ
た加速冷却後のレール鋼の引張試験強度、伸びおよび2
mmUノッチシャルピー試験における+20℃での衝撃吸
収エネルギー測定結果を示す。引張試験はレール頭部G
C内部10mm深さ位置から採取した平行部径6mm、平行
部長さ30mmの試験片で行った。この結果本発明鋼は、
比較鋼に比べて十分にパーライト微細組織の効果として
の延性の改善が認められた。衝撃試験片はレール頭部1
mm下より採取した。この試験条件は熱処理レールにおけ
る靭性を規定したロシアのGOST規格に基づくもの
で、同規格によれば高強度熱処理レールの+20℃での
衝撃吸収エネルギーは0.25MJ/m2 以上が必要とされ
ており、本発明の適正な脱酸を行うことによってオース
テナイト粒内からもパーライト変態を生成させた微細パ
ーライト組織鋼は、いずれもGOST規格に定められた
シャルピー吸収エネルギーを十分に満たしている。
Table 3 shows the as-rolled state and 700 to 700 for each chemical component from the austenite range temperature in order to keep the strength constant.
Tensile strength, elongation, and 2 of the rail steel after accelerated cooling in which the cooling rate was changed in the range of 1 to 5 ° C / sec.
The measurement result of the impact absorption energy in +20 degreeC in mmU notch Charpy test is shown. Tensile test for rail head G
A test piece having a parallel part diameter of 6 mm and a parallel part length of 30 mm was sampled from a depth position of 10 mm inside C. As a result, the steel of the present invention is
A sufficient improvement in ductility as an effect of the pearlite microstructure was observed as compared with the comparative steel. Impact test piece is rail head 1
It was collected from the bottom of mm. This test condition is based on the Russian GOST standard that regulates the toughness of heat treated rails. According to this standard, the impact absorption energy at + 20 ° C of high strength heat treated rails must be 0.25 MJ / m 2 or more. Therefore, the fine pearlite structure steels in which the pearlite transformation is generated even in the austenite grains by performing the appropriate deoxidation according to the present invention all sufficiently satisfy the Charpy absorbed energy specified in the GOST standard.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】[0032]

【表7】 [Table 7]

【0033】[0033]

【発明の効果】本発明のレール鋼は脱酸制御によってM
nSの個数を制御することによりオーステナイト粒内の
MnSに析出させたV窒化物および/あるいはTi炭窒
化物をパーライト変態核として活用することによって、
パーライト粒が微細化し、0.25MJ/m2 以上の衝撃吸
収エネルギーを得ることができる。さらに、微細なパー
ライト組織の生成により、靭性同様にレール鋼の延性も
大幅に改善することができる。
INDUSTRIAL APPLICABILITY The rail steel of the present invention is controlled by M
By controlling the number of nS to utilize V nitride and / or Ti carbonitride precipitated in MnS in austenite grains as pearlite transformation nuclei,
The pearlite grains become finer, and impact absorption energy of 0.25 MJ / m 2 or more can be obtained. Furthermore, the ductility of the rail steel as well as the toughness can be greatly improved by the generation of the fine pearlite structure.

フロントページの続き (72)発明者 若生 昌光 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 石川 房男 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内Front Page Continuation (72) Inventor Masamitsu Wakao 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Co., Ltd.Technology Development Division (72) Inventor Fusao Ishikawa 20-1 Shintomi, Futtsu, Chiba Nippon Steel Co., Ltd. Company Technology Development Division

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼を脱酸し、鋼片とし、これを熱間加
工を含む工程で製造したレールであって、重量%で C :0.55〜0.85% Si:0.20〜1.20% Mn:0.50〜1.50% S :0.006〜0.035% Cr:0.1〜1.0% V :0.001〜1.00% N :0.0005〜0.030% を含有し、残部が鉄および不可避的不純物からなり、M
nSが鋼中に0.1〜20μmの大きさで、その個数が
1mm2 あたり、25〜11000個存在することを特徴
とする靭性および延性に優れた高強度レール。
1. A rail produced by deoxidizing molten steel into a steel slab, which is manufactured by a process including hot working, wherein C: 0.55 to 0.85% Si: 0.20 by weight%. 1.20% Mn: 0.50 to 1.50% S: 0.006 to 0.035% Cr: 0.1 to 1.0% V: 0.001 to 1.00% N: 0.0005 to 0.030%, the balance consisting of iron and inevitable impurities, M
A high-strength rail with excellent toughness and ductility, characterized in that nS has a size of 0.1 to 20 μm in steel, and the number thereof is 25 to 11,000 per 1 mm 2 .
【請求項2】 溶鋼を脱酸し、鋼片とし、これを熱間加
工を含む工程で製造したレールであって、重量%で C :0.55〜0.85% Si:0.20〜1.20% Mn:0.50〜1.50% S :0.006〜0.035% Cr:0.1〜1.0% V :0.001〜1.00% N :0.0005〜0.030% を含有し、かつ Ti:0.0006〜0.075% Zr:0.0005〜0.15%の1種または2種 を含有し、残部が鉄および不可避的不純物からなり、M
nSが鋼中に0.1〜20μmの大きさで、その個数が
1mm2 あたり、25〜11000個存在することを特徴
とする靭性および延性に優れた高強度レール。
2. A rail produced by deoxidizing molten steel to obtain a steel slab, which is manufactured by a process including hot working, and has a weight percentage of C: 0.55 to 0.85% Si: 0.20. 1.20% Mn: 0.50 to 1.50% S: 0.006 to 0.035% Cr: 0.1 to 1.0% V: 0.001 to 1.00% N: 0.0005 to 0.030% and Ti: 0.0006 to 0.075%, Zr: 0.0005 to 0.15%, one or two kinds, and the balance consisting of iron and inevitable impurities.
A high-strength rail with excellent toughness and ductility, characterized in that nS has a size of 0.1 to 20 μm in steel, and the number thereof is 25 to 11,000 per 1 mm 2 .
【請求項3】 溶鋼に脱酸元素としてMnおよび/また
はSiを添加し脱酸処理を施して溶製した、重量%で C :0.55〜0.85% Si:0.20〜1.20% Mn:0.50〜1.50% S :0.006〜0.035% Cr:0.1〜1.0% V :0.001〜1.00% N :0.0005〜0.030% を含有して残部が鉄および不可避的不純物からなる溶鋼
を造塊・分塊法あるいは連続鋳造法を経て製造した鋼片
を、熱間圧延終了後、あるいは熱処理する目的で高温に
加熱した後、レールの頭部あるいはさらに底部を、オー
ステナイト域温度から冷却する際に700〜500℃間
を1〜5℃/secで加速冷却し、オーステナイト粒内のM
nS上に析出させたV窒化物を核としたパーライトを生
成させることを特徴とする靭性および延性に優れた高強
度レールの製造法。
3. Mn and / or Si as a deoxidizing element is added to molten steel and subjected to a deoxidizing treatment to be melted. C: 0.55 to 0.85% by weight% Si: 0.20 to 1. 20% Mn: 0.50 to 1.50% S: 0.006 to 0.035% Cr: 0.1 to 1.0% V: 0.001 to 1.00% N: 0.0005 to 0. Molten steel containing 030% and the balance of iron and unavoidable impurities was manufactured by the ingot-agglomeration method or the continuous casting method. A steel piece was heated to a high temperature after the hot rolling or for the purpose of heat treatment. After that, when cooling the head or the bottom of the rail from the austenite region temperature, accelerated cooling is carried out at a temperature of 700 to 500 ° C. at 1 to 5 ° C./sec.
A method for producing a high-strength rail having excellent toughness and ductility, which is characterized in that pearlite having V nitrides deposited on nS as nuclei is generated.
【請求項4】 溶鋼に(Zr),(ZrおよびMn),
(ZrおよびSi),(Zr,MnおよびSi)の4組
のうちの1組の脱酸元素を添加し脱酸処理を施して溶製
した、重量%で C :0.55〜0.85% Si:0.20〜1.20% Mn:0.50〜1.50% S :0.006〜0.035% Cr:0.1〜1.0% V :0.001〜1.00% N :0.0005〜0.030% Zr:0.0005〜0.15% を含有して残部が鉄および不可避的不純物からなる溶鋼
を造塊・分塊法あるいは連続鋳造法を経て製造した鋼片
を、熱間圧延終了後、あるいは熱処理する目的で高温に
加熱した後、レールの頭部あるいはさらに底部を、オー
ステナイト域温度から冷却する際に700〜500℃間
を1〜5℃/secで加速冷却し、オーステナイト粒内のM
nS上に析出させたV窒化物を核としたパーライトを生
成させることを特徴とする靭性および延性に優れた高強
度レールの製造法。
4. A molten steel containing (Zr), (Zr and Mn),
(Zr and Si), (Zr, Mn and Si), one set of four sets of deoxidizing elements was added and subjected to deoxidizing treatment to be melted, and C: 0.55 to 0.85 by weight%. % Si: 0.20 to 1.20% Mn: 0.50 to 1.50% S: 0.006 to 0.035% Cr: 0.1 to 1.0% V: 0.001 to 1.00 Molten steel containing% N: 0.0005 to 0.030% Zr: 0.0005 to 0.15% and the balance being iron and unavoidable impurities was manufactured by an ingot-casting method or a continuous casting method. After the steel strip is hot-rolled or heated to a high temperature for the purpose of heat treatment, the rail head or bottom is cooled from austenite temperature to 700-500 ° C for 1-5 ° C / sec. Accelerated cooling with, M in austenite grains
A method for producing a high-strength rail having excellent toughness and ductility, which is characterized in that pearlite having V nitrides deposited on nS as nuclei is generated.
【請求項5】 溶鋼に脱酸元素としてMnおよび/また
はSiを添加し脱酸処理を施して溶製した、重量%で C :0.55〜0.85% Si:0.20〜1.20% Mn:0.50〜1.50% S :0.006〜0.035% Cr:0.1〜1.0% V :0.001〜1.00% Ti:0.0006〜0.075% N :0.0005〜0.030% を含有して残部が鉄および不可避的不純物からなる溶鋼
を造塊・分塊法あるいは連続鋳造法を経て製造した鋼片
を、熱間圧延終了後、あるいは熱処理する目的で高温に
加熱した後、レールの頭部あるいはさらに底部を、オー
ステナイト域温度から冷却する際に700〜500℃間
を1〜5℃/secで加速冷却し、オーステナイト粒内のM
nS上に析出させたV窒化物および/またはTi炭窒化
物を核としたパーライトを生成させることを特徴とする
靭性および延性に優れた高強度レールの製造法。
5. Mn and / or Si as a deoxidizing element is added to molten steel and subjected to deoxidation treatment to produce molten steel, and C: 0.55 to 0.85% by weight% Si: 0.20 to 1. 20% Mn: 0.50 to 1.50% S: 0.006 to 0.035% Cr: 0.1 to 1.0% V: 0.001 to 1.00% Ti: 0.0006 to 0. 075% N: 0.0005 to 0.030% of molten steel consisting of iron and unavoidable impurities with the balance being produced by the ingot-agglomeration method or the continuous casting method. Or, after heating to a high temperature for the purpose of heat treatment, when cooling the head or the bottom of the rail from the austenite region temperature, accelerated cooling at 700 to 500 ° C. at 1 to 5 ° C./sec, M
A method for producing a high-strength rail having excellent toughness and ductility, which comprises producing pearlite with V nitride and / or Ti carbonitride as nuclei precipitated on nS.
【請求項6】 溶鋼に(Zr),(ZrおよびMn),
(ZrおよびSi),(Zr,MnおよびSi)の4組
のうちの1組の脱酸元素を添加し脱酸処理を施して溶製
した、重量%で C :0.55〜0.85% Si:0.20〜1.20% Mn:0.50〜1.50% S :0.006〜0.035% Cr:0.1〜1.0% V :0.001〜1.00% Ti:0.0006〜0.075% N :0.0005〜0.030% Zr:0.0005〜0.15% を含有して残部が鉄および不可避的不純物からなる溶鋼
を造塊・分塊法あるいは連続鋳造法を経て製造した鋼片
を、熱間圧延終了後、あるいは熱処理する目的で高温に
加熱した後、レールの頭部あるいはさらに底部を、オー
ステナイト域温度から冷却する際に700〜500℃間
を1〜5℃/secで加速冷却し、オーステナイト粒内のM
nS上に析出させたV窒化物および/またはTi炭窒化
物を核としたパーライトを生成させることを特徴とする
靭性および延性に優れた高強度レールの製造法。
6. A molten steel containing (Zr), (Zr and Mn),
(Zr and Si), (Zr, Mn and Si), one set of four sets of deoxidizing elements was added and subjected to deoxidizing treatment to be melted, and C: 0.55 to 0.85 by weight%. % Si: 0.20 to 1.20% Mn: 0.50 to 1.50% S: 0.006 to 0.035% Cr: 0.1 to 1.0% V: 0.001 to 1.00 % Ti: 0.0006 to 0.075% N: 0.0005 to 0.030% Zr: 0.0005 to 0.15% with the balance being iron and inevitable impurities. A steel piece produced by the ingot method or the continuous casting method is heated to a high temperature for the purpose of heat rolling after completion of hot rolling, or after the head or the bottom of the rail is cooled from the austenite range temperature to 700 to Accelerated cooling at a temperature of 1 to 5 ° C / sec between 500 ° C and M in austenite grains
A method for producing a high-strength rail having excellent toughness and ductility, which comprises producing pearlite with V nitride and / or Ti carbonitride as nuclei precipitated on nS.
JP7019593A 1993-03-29 1993-03-29 High strength rail excellent in toughness and ductility and its production Pending JPH06279928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7019593A JPH06279928A (en) 1993-03-29 1993-03-29 High strength rail excellent in toughness and ductility and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7019593A JPH06279928A (en) 1993-03-29 1993-03-29 High strength rail excellent in toughness and ductility and its production

Publications (1)

Publication Number Publication Date
JPH06279928A true JPH06279928A (en) 1994-10-04

Family

ID=13424499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7019593A Pending JPH06279928A (en) 1993-03-29 1993-03-29 High strength rail excellent in toughness and ductility and its production

Country Status (1)

Country Link
JP (1) JPH06279928A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015282A1 (en) * 1994-11-15 1996-05-23 Nippon Steel Corporation Perlite rail of high abrasion resistance and method of manufacturing the same
WO2007111285A1 (en) 2006-03-16 2007-10-04 Jfe Steel Corporation High-strength pearlite rail with excellent delayed-fracture resistance
JP4571759B2 (en) * 2001-06-01 2010-10-27 新日本製鐵株式会社 Perlite rail and manufacturing method thereof
WO2010150448A1 (en) 2009-06-26 2010-12-29 新日本製鐵株式会社 Pearlite–based high-carbon steel rail having excellent ductility and process for production thereof
US8469284B2 (en) 2009-02-18 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Pearlitic rail with excellent wear resistance and toughness
EP2785890B1 (en) 2011-11-28 2015-07-15 Tata Steel UK Ltd Rail steel with an excellent combination of wear properties, rolling contact fatigue resistance and weldability
EP2196552A4 (en) * 2007-10-10 2015-12-23 Jfe Steel Corp Pearlite steel rail of high internal hardness type excellent in wear resistance, fatigue failure resistance and delayed fracture resistance and process for production of the same
CN112239831A (en) * 2020-10-19 2021-01-19 攀钢集团攀枝花钢铁研究院有限公司 High-toughness and high-cold railway steel rail and production method thereof
CN114855082A (en) * 2022-04-26 2022-08-05 包头钢铁(集团)有限责任公司 Manufacturing method for improving low-temperature toughness of hot-rolled U75V steel rail by rare earth elements

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42668E1 (en) 1994-11-15 2011-09-06 Nippon Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same
USRE42360E1 (en) 1994-11-15 2011-05-17 Nippon Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same
WO1996015282A1 (en) * 1994-11-15 1996-05-23 Nippon Steel Corporation Perlite rail of high abrasion resistance and method of manufacturing the same
USRE40263E1 (en) 1994-11-15 2008-04-29 Nippon Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same
USRE41033E1 (en) 1994-11-15 2009-12-08 Nippn Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same
US5762723A (en) * 1994-11-15 1998-06-09 Nippon Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same
JP4571759B2 (en) * 2001-06-01 2010-10-27 新日本製鐵株式会社 Perlite rail and manufacturing method thereof
EP3072988A1 (en) 2006-03-16 2016-09-28 JFE Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
WO2007111285A1 (en) 2006-03-16 2007-10-04 Jfe Steel Corporation High-strength pearlite rail with excellent delayed-fracture resistance
US8361382B2 (en) 2006-03-16 2013-01-29 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
US8404178B2 (en) 2006-03-16 2013-03-26 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
EP2006406A4 (en) * 2006-03-16 2015-08-12 Jfe Steel Corp High-strength pearlite rail with excellent delayed-fracture resistance
EP2196552A4 (en) * 2007-10-10 2015-12-23 Jfe Steel Corp Pearlite steel rail of high internal hardness type excellent in wear resistance, fatigue failure resistance and delayed fracture resistance and process for production of the same
US8469284B2 (en) 2009-02-18 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Pearlitic rail with excellent wear resistance and toughness
WO2010150448A1 (en) 2009-06-26 2010-12-29 新日本製鐵株式会社 Pearlite–based high-carbon steel rail having excellent ductility and process for production thereof
US8747576B2 (en) 2009-06-26 2014-06-10 Nippon Steel & Sumitomo Metal Corporation Pearlite-based high carbon steel rail having excellent ductility and process for production thereof
EP2785890B1 (en) 2011-11-28 2015-07-15 Tata Steel UK Ltd Rail steel with an excellent combination of wear properties, rolling contact fatigue resistance and weldability
CN112239831A (en) * 2020-10-19 2021-01-19 攀钢集团攀枝花钢铁研究院有限公司 High-toughness and high-cold railway steel rail and production method thereof
CN114855082A (en) * 2022-04-26 2022-08-05 包头钢铁(集团)有限责任公司 Manufacturing method for improving low-temperature toughness of hot-rolled U75V steel rail by rare earth elements

Similar Documents

Publication Publication Date Title
WO2022004247A1 (en) Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same
JPH06279928A (en) High strength rail excellent in toughness and ductility and its production
JP3267772B2 (en) Manufacturing method of high strength, high ductility, high toughness rail
JP2003129180A (en) Pearlitic rail superior in toughness and ductility, and manufacturing method therefor
JP3764710B2 (en) Method for producing pearlitic rail with excellent toughness and ductility
JPH09206804A (en) Manufacture of high-strength rail excellent in ductility and toughness
JPH06279927A (en) High strength rail excellent in ductility and toughness and its production
JP2912123B2 (en) Manufacturing method of high-strength and high-toughness bainite-based rail with excellent surface damage resistance
JPH05263182A (en) Manufacture of low alloy rolled shape steel excellent in toughness
JP2001003140A (en) High strength pearlitic rail excellent in toughness and ductility and its production
JP3323272B2 (en) Manufacturing method of high strength rail with excellent ductility and toughness
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JP2000104116A (en) Production of steel excellent in strength and toughness
JPS621811A (en) Manufacture of rail having superior damage resistance
JP3368557B2 (en) High strength rail with excellent ductility and toughness and its manufacturing method
JPH09227943A (en) Production of high strength rail excellent in ductility and toughness
JP2006057128A (en) Method for producing pearlite-series rail excellent in breakage resistance against drop-weight
JPH06279929A (en) High strength rail excellent in toughness and ductility and its production
JP3368556B2 (en) High-strength rail with excellent rolling fatigue resistance and its manufacturing method
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JPH06340951A (en) High strength rail excellent in toughness and its production
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP2000328190A (en) High strength pearlitic rail excellent in toughness and ductility and its production
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH0726348A (en) High strength rail excellent in rolling fatigue damage resistance and its production