WO2022004247A1 - Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same - Google Patents

Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same Download PDF

Info

Publication number
WO2022004247A1
WO2022004247A1 PCT/JP2021/020871 JP2021020871W WO2022004247A1 WO 2022004247 A1 WO2022004247 A1 WO 2022004247A1 JP 2021020871 W JP2021020871 W JP 2021020871W WO 2022004247 A1 WO2022004247 A1 WO 2022004247A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
mass
less
content
crack propagation
Prior art date
Application number
PCT/JP2021/020871
Other languages
French (fr)
Japanese (ja)
Inventor
佳祐 安藤
浩文 大坪
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180044681.XA priority Critical patent/CN115917019A/en
Priority to JP2021545917A priority patent/JP7173366B2/en
Priority to US18/008,203 priority patent/US20230279517A1/en
Priority to CA3186612A priority patent/CA3186612A1/en
Priority to BR112022025557A priority patent/BR112022025557A2/en
Priority to KR1020227038956A priority patent/KR20220160695A/en
Priority to AU2021302317A priority patent/AU2021302317B2/en
Priority to EP21834151.9A priority patent/EP4174191A1/en
Publication of WO2022004247A1 publication Critical patent/WO2022004247A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a rail and a method for manufacturing the rail, and the present invention relates to a rail having improved fatigue crack propagation characteristics and a method for manufacturing the rail which can advantageously manufacture the rail.
  • the high-axis heavy railway is a railway having a large load weight (for example, a load weight of about 150 tons or more) of one freight car such as a train or a freight car.
  • Patent Document 1 and Patent Document 2 the C content is increased from 0.85% by mass to 1.20% by mass or less. Further, in Patent Document 3 and Patent Document 4, the C content is more than 0.85% by mass and 1.20% by mass or less, and the rail head is heat-treated. In these techniques, the wear resistance is improved by increasing the cementite fraction by increasing the C content.
  • Patent Document 5 proposes a technique of suppressing the formation of proeutectoid cementite by adding Al and Si and improving fatigue damage resistance. Further, Patent Document 6 proposes a technique for reducing the fatigue crack propagation rate by controlling the lamellar spacing of pearlite within an appropriate range.
  • the pro-eutectoid cementite structure may be formed depending on the combination of the components and the production conditions, and as a result, the fatigue crack propagation rate increases, so that the material control is sufficient. It's hard to say.
  • the present invention has been made to advantageously solve the above-mentioned problems, and an object of the present invention is to provide a rail having excellent fatigue damage resistance, particularly fatigue crack propagation characteristics, together with a preferable manufacturing method thereof.
  • the inventors have manufactured rails having different contents of C, Si, Mn and Cr, and have diligently investigated the structure and fatigue crack propagation characteristics.
  • the parameter CP was derived from the component parameter X corresponding to the amount of pro-eutectoid cementite and the old austenite particle size RA. Then, they have found that by controlling the parameter CP within a predetermined range, excellent fatigue-resistant crack propagation characteristics can be obtained even if a large amount of pro-eutectoid cementite is present.
  • the rails having excellent fatigue crack propagation characteristics according to the present invention developed to solve the above problems and realize the above objects have C: 0.80 to 1.30% by mass and Si: 0.10 to 1. Contains 20% by mass, Mn: 0.20 to 1.80% by mass, P: 0.035% by mass or less, S: 0.0005 to 0.012% by mass, Cr: 0.20 to 2.50% by mass.
  • the balance has a component composition consisting of Fe and unavoidable impurities, and the CP represented by the following formula (1) is 2500 or less, where [% Y] is the content (mass%) of the element Y. ),
  • RA is characterized by having an old austenite particle size ( ⁇ m).
  • CP X / RA ... (1)
  • X ⁇ (10 ⁇ [% C]) + ([% Si] / 12) + ([% Mn] / 24) + ([% Cr] / 21) ⁇ 5 ...
  • the component composition is V: 0.30% by mass or less, Cu: 1.0% by mass or less, Ni: 1.0% by mass or less, Nb: 0.05% by mass or less, and Mo: 2.0% by mass. Containing at least one selected from the following, b.
  • the component composition further includes Al: 0.07% by mass or less, W: 1.0% by mass or less, B: 0.005% by mass or less, Ti: 0.05% by mass or less, and Sb: 0.05% by mass. Containing at least one selected from the following, Etc. may be a more preferable solution.
  • the method for manufacturing a rail having excellent fatigue-resistant crack propagation characteristics is to heat a steel material having any of the above component compositions to 1350 ° C. or lower.
  • This is a method for manufacturing a rail by hot rolling after performing hot rolling, and is characterized by hot rolling so that the finishing temperature becomes 900 ° C. or higher.
  • accelerated cooling is performed from 900 ° C. to 750 ° C. at a cooling rate in the range of 0.4 to 3 ° C./s.
  • accelerated cooling from 750 ° C. to a cooling stop temperature of 400 to 600 ° C. at a cooling rate in the range of 1 to 10 ° C./s may be a more preferable solution.
  • the rail and the manufacturing method thereof it is possible to stably manufacture a fatigue-resistant damage-resistant rail having excellent fatigue-resistant crack propagation characteristics, and it is possible to extend the life of rails for high-axis heavy railways and railways. It contributes to accident prevention and has an industrially beneficial effect. In addition, it is preferable to optimize the heat treatment conditions after hot rolling because the fatigue damage resistance can be improved.
  • FIG. 1 It is a schematic diagram which shows the influence of the analytic cementite on the fatigue crack propagation rate, (a) shows the case where the former austenite grain size and the plastic region dimension are almost equal, and (b) is the former austenite particle diameter in the plastic region. The case where it is larger than the dimension is shown. It is a figure which shows the position where the test piece for observing the old austenite particle size was collected. It is a figure which shows the position where the fatigue crack propagation test piece was collected. It is a figure explaining the test piece shape used for the fatigue crack propagation test, (a) shows the front view, (b) shows the side view, (c) shows the notch part enlarged front view. It is a figure explaining the shape of the test piece used for the fatigue-resistant damage test, (a) shows the side view, and (b) shows the front view. It is a figure which shows the position where the fatigue-resistant damage test piece was collected.
  • C 0.80 to 1.30%
  • C is an essential element for ensuring the strength of the pearlite structure, that is, the fatigue damage resistance. However, if it is less than 0.80%, it is difficult to obtain excellent fatigue-resistant crack propagation characteristics. On the other hand, if it exceeds 1.30%, a large amount of proeutectoid cementite is generated at the austenite grain boundaries during cooling after hot rolling, which causes an increase in the fatigue crack propagation rate. Although the proeutectoid cementite is present even when it is 1.30% or less, its influence can be avoided by controlling the old austenite particle size based on the relational expression described later. Therefore, the C content is in the range of 0.80 to 1.30%. The upper limit of the C content is preferably 1.00%, more preferably 0.90%.
  • Si 0.10 to 1.20%
  • Si contributes to a decrease in the fatigue crack propagation rate by increasing the pearlite equilibrium transformation temperature and making the lamellar interval finer. Therefore, 0.10% or more is required, but if it exceeds 1.20%, the weldability deteriorates due to the high bonding force of Si with oxygen. Further, since Si has an action of moving the eutectic point to the low C side, excessive addition promotes the formation of eutectic cementite and causes an increase in the fatigue crack propagation rate. Therefore, the Si content is in the range of 0.10 to 1.20%.
  • the lower limit of the Si content is preferably 0.20%
  • the upper limit of the Si content is preferably 0.80%, and even more preferably 0.60%.
  • Mn 0.20 to 1.80% Mn contributes to a decrease in the fatigue crack propagation rate by lowering the pearlite transformation temperature and making the lamellar interval finer. However, if the Mn content is less than 0.20%, a sufficient effect cannot be obtained. On the other hand, when the Mn content exceeds 1.80%, a martensite structure is likely to be formed, and the material is likely to be deteriorated due to hardening or embrittlement during heat treatment and welding of the rail. Further, since Mn has an action of moving the eutectic point to the low C side, excessive addition promotes the formation of eutectic cementite and causes an increase in the fatigue crack propagation rate. Therefore, the Mn content is in the range of 0.20 to 1.80%. The lower limit of the Mn content is preferably 0.30%, the upper limit of the Mn content is preferably 1.00%, and even more preferably 0.60%.
  • the P content is 0.035% or less. It is preferably 0.020% or less.
  • the lower limit of the P content is not particularly limited and may be 0%, but industrially, it is usually more than 0%. It should be noted that excessively reducing the P content leads to an increase in refining cost, and therefore, from the viewpoint of economic efficiency, it is preferable to set the P content to 0.001% or more.
  • S 0.0005 to 0.012% S is mainly present in steel in the form of A-based inclusions (those that undergo viscous deformation due to processing), but when the content exceeds 0.012%, the amount of these inclusions increases remarkably, and at the same time, it is coarse. Since inclusions are generated, the cleanliness of the steel material deteriorates. Further, if the S content is less than 0.0005%, the refining cost will increase. Therefore, the S content is in the range of 0.0005 to 0.012%. The upper limit of the S content is preferably 0.010%, more preferably 0.008%.
  • the Cr content is in the range of 0.20 to 2.50%.
  • the lower limit of the Cr content is preferably 0.40%, more preferably 0.50%, and the upper limit of the Cr content is preferably 1.50%, further preferably 1.00%.
  • each element is not sufficient for each element to simply satisfy the above range, and it is derived from the component parameter X corresponding to the amount of proeutectoid cementite represented by the following equation (2) and the former austenite particle size RA. It is important to control the CP value represented by the following equation (1) to 2500 or less.
  • CP X / RA ...
  • X ⁇ (10 ⁇ [% C]) + ([% Si] / 12) + ([% Mn] / 24) + ([% Cr] / 21) ⁇ 5 ... (2)
  • [% Y] content of element Y (mass%)
  • RA Old austenite particle size ( ⁇ m) Represents.
  • the brittle fracture of the proactive cementite 24 at the tip of the fatigue crack 23 causes the increase in the fatigue crack propagation rate 26. I got the finding that it is.
  • the particle size of the old austenite, which is the formation site of the structure according to the amount of proactive cementite produced, the frequency of encounters between the plastic region 22 formed at the tip of the fatigue crack and the proactive cementite is reduced. It was found that brittle crack growth can be suppressed.
  • the austenite grains 21 are sufficiently coarsened to be larger than the size of the plastic region 22 at the crack tip. This makes it possible to control the CP value to 2500 or less. As a result, the above-mentioned effect of suppressing the fatigue crack propagation rate can be stably obtained.
  • the CP value is preferably 2000 or less.
  • the component composition of the rail used in the present invention may be any one or both of at least one selected from the following group A and at least one selected from group B below. It may be contained in.
  • V 0.30% or less V forms a carbonitride in the steel and disperses and precipitates in the substrate, improving the wear resistance of the steel.
  • the content exceeds 0.30%, the processability deteriorates and the manufacturing cost increases.
  • the alloy cost increases, so that the cost of the internal high hardness type rail increases. Therefore, V is preferably contained up to 0.30%.
  • V is preferably contained in an amount of 0.001% or more.
  • the upper limit of the V content is more preferably 0.15%.
  • Cu 1.0% or less
  • Cu is an element that can further increase the strength of steel by solid solution strengthening like Cr. However, if the content exceeds 1.0%, Cu cracking is likely to occur. Therefore, when Cu is contained in the component composition, the Cu content is preferably 1.0% or less.
  • the lower limit of the Cu content is more preferably 0.005%, and the upper limit of the Cu content is more preferably 0.5%.
  • Ni 1.0% or less
  • Ni is an element that can increase the strength of steel without deteriorating ductility. Further, since Cu cracking can be suppressed by compound addition with Cu, it is desirable that Ni is also contained when Cu is contained in the component composition. However, when the Ni content exceeds 1.0%, the hardenability of the steel is further increased, the amount of martensite and bainite produced is increased, and the wear resistance and the fatigue damage resistance tend to be lowered. Therefore, when Ni is contained, the Ni content is preferably 1.0% or less.
  • the lower limit of the Ni content is more preferably 0.005%, and the upper limit of the Ni content is more preferably 0.5%.
  • Nb 0.05% or less Nb is combined with C in steel and precipitated as carbide during hot rolling for forming a rail and after hot rolling, and effectively acts on the miniaturization of pearlite colony size.
  • wear resistance, fatigue damage resistance, and ductility are greatly improved, which greatly contributes to extending the life of the internal high hardness type rail.
  • Nb content exceeds 0.05%, the effect of improving wear resistance and fatigue damage resistance is saturated, and an effect commensurate with the increase in content cannot be obtained. Therefore, Nb may be contained with the upper limit of its content being 0.05%. If the Nb content is less than 0.001%, it is difficult to obtain a sufficient effect on extending the life of the rail. Therefore, when Nb is contained, the Nb content is preferably 0.001% or more. The upper limit of the Nb content is more preferably 0.03%.
  • Mo 2.0% or less Mo is an element that can further increase the strength of steel by solid solution strengthening. Further, since Mo has an action of moving the eutectic point to the high C side, it also has an action of suppressing the formation of eutectic cementite. However, if it exceeds 2.0%, the amount of bainite generated in the steel increases and the wear resistance deteriorates. Therefore, when the component composition of the rail contains Mo, the Mo content is preferably 2.0% or less. The lower limit of the Mo content is more preferably 0.005%, and the upper limit of the Mo content is more preferably 1.0%.
  • Al 0.07% or less
  • Al is an element that can be added as a deoxidizing agent.
  • the Al content is preferably 0.07% or less.
  • the lower limit of the Al content is not particularly limited, but is preferably 0.001% or more for deoxidation.
  • the upper limit of the Al content is more preferably 0.03%.
  • W 1.0% or less W is precipitated as carbide during and after hot rolling for forming into a rail shape, and the strength and ductility of the rail are improved by strengthening the precipitation.
  • the W content exceeds 1.0%, martensite is formed in the steel, and as a result, the ductility is lowered. Therefore, when W is added, the W content is preferably 1.0% or less.
  • the lower limit of the W content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the above-mentioned action of improving strength and ductility.
  • the lower limit of the W content is more preferably 0.005%, and the upper limit of the W content is more preferably 0.5%.
  • B 0.005% or less B is precipitated as nitride in steel during and after hot rolling for forming into a rail shape, and the strength and ductility of the steel are improved by precipitation strengthening.
  • the B content exceeds 0.005%, martensite is formed, and as a result, the ductility of the steel is lowered. Therefore, when B is contained, the B content is preferably 0.005% or less.
  • the lower limit of the B content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the above-mentioned action of improving strength and ductility.
  • the upper limit of the B content is more preferably 0.003%.
  • Ti 0.05% or less Ti precipitates in steel as carbides, nitrides or carbonitrides during and after hot rolling to form a rail shape, and the strength and ductility of the steel are enhanced by precipitation strengthening. Improve. However, if the Ti content exceeds 0.05%, coarse carbides, nitrides or carbonitrides are formed, resulting in a decrease in steel ductility. Therefore, when Ti is contained, the Ti content is preferably 0.05% or less.
  • the lower limit of the Ti content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the above-mentioned action of improving strength and ductility. The lower limit of the Ti content is more preferably 0.005%, and the upper limit of the Ti content is more preferably 0.03%.
  • Sb 0.05% or less Sb has a remarkable effect of preventing decarburization of the steel during the reheating when the rail steel material is reheated in a heating furnace before hot rolling.
  • the Sb content is preferably 0.05% or less.
  • the lower limit of the Sb content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the effect of reducing the decarburized layer.
  • the lower limit of the Sb content is more preferably 0.005%, and the upper limit of the Sb content is more preferably 0.03%.
  • the composition of the steel material used as the material for the rail of the present invention contains the above components, the balance Fe, and unavoidable impurities.
  • a rail that contains other trace component elements in place of a part of the balance Fe in the composition according to the present invention within a range that does not substantially affect the action and effect of the present invention also belongs to the present invention.
  • examples of the unavoidable impurities include N, O, etc., and N can be allowed up to 0.008% and O can be allowed up to 0.004%.
  • the structure other than pearlite in the microstructure of the rail according to the present invention is not particularly limited. If the total area ratio is 5% or less, the fatigue crack propagation characteristics are not significantly affected, so that other tissues are allowed to be present. Examples of the other structures include ferrite, proeutectoid cementite, bainite and martensite.
  • the rail of the present invention can be manufactured by sequentially applying the following treatments (1) to (3) to a steel material having the above-mentioned composition.
  • (1) Hot rolling (2) Primary cooling
  • Secondary cooling The steel material used as the rail material can be manufactured by any method, but in general, the steel material is manufactured by casting, especially continuous casting. Is preferable.
  • the hot rolling method is not particularly limited and is performed by any method. be able to.
  • Heating temperature 1350 ° C. or lower
  • the heating temperature must be 1350 ° C. or lower. If the heating temperature exceeds the upper limit, the steel material may be partially melted due to excessive temperature rise, and defects may occur inside the rail.
  • the lower limit of the heating temperature is not particularly limited, but is preferably 1150 ° C. or higher in order to reduce the deformation resistance during rolling.
  • Rolling finish temperature 900 ° C or higher
  • the rolling finish temperature in the above hot rolling is lower than 900 ° C, rolling is performed in the austenite low temperature range, and not only processing strain is introduced into the austenite crystal grains but also austenite is introduced. The elongation of the crystal grains becomes remarkable. Increasing the austenite grain boundary area increases the nucleation sites of proeutectoid cementite, resulting in a decrease in fatigue-resistant crack propagation characteristics. Therefore, the rolling finish temperature is set to 900 ° C. or higher.
  • the upper limit of the rolling finish temperature is not particularly limited, but if the old austenite particle size becomes extremely coarse, the ductility and toughness will decrease, so the temperature is preferably 1050 ° C. or lower.
  • the rolling finish temperature referred to here is the temperature of the side surface of the rail head on the entry side of the final rolling mill, and can be measured by a radiation thermometer.
  • the upper limit of the average cooling rate of the primary cooling is preferably 3 ° C / s, more preferably 2 ° C / s.
  • the average cooling rate of the secondary cooling is preferably in the range of 1 to 10 ° C./s.
  • the upper limit of the average cooling rate of the secondary cooling is more preferably 5 ° C./s.
  • the temperature for determining the average cooling rate is the surface temperature of the side surface of the rail head, and can be measured by a radiation thermometer.
  • the cooling stop temperature at the time of secondary cooling is the temperature measured by a radiation thermometer after the acceleration cooling stop (before reheating) on the side surface of the rail head.
  • the present invention is not limited by the following examples, and can be appropriately modified within a range that can be adapted to the gist of the present invention, all of which are included in the technical scope of the present invention. Will be.
  • the steel material having the composition shown in Table 1 was hot-rolled under the conditions shown in Table 2 and accelerated cooling after the hot-rolling to produce a rail material. Accelerated cooling was performed only on the rail head, and after cooling was stopped, it was allowed to cool.
  • the rolling finish temperature in Table 2 is a value obtained by measuring the temperature of the surface of the side surface of the rail head on the entry side of the final rolling mill with a radiation thermometer as the rolling finish temperature.
  • the cooling stop temperature in Table 2 the value measured by the radiation thermometer for the temperature of the surface layer on the side surface of the rail head when the cooling of the secondary cooling is stopped is shown as the cooling stop temperature.
  • the cooling rate was defined as the cooling rate (° C./s) by converting the temperature change from the start of cooling to the stop of cooling per unit time (seconds) for the primary cooling and the secondary cooling.
  • the obtained rails were evaluated for the old austenite particle size RA , fatigue crack propagation characteristics, and fatigue damage resistance. Each evaluation content will be described in detail below.
  • ⁇ Old austenite particle size RA > After cutting the tip of the rail after hot finish rolling, the cut material was immediately water-cooled. With respect to the obtained water-cooled material, a test piece for microstructure observation was taken from the rolling longitudinal direction at a depth of 5 mm from the surface of the rail head 1 shown in FIG. The obtained test piece was subjected to ⁇ -grain etching after mirror polishing, and a cross-sectional observation of 200 times was performed using an optical microscope.
  • the old austenite particle size RA was evaluated by measuring the particle size of 400 or more by tracing work using image analysis software and calculating the average value.
  • FIG. 4A and 4B are schematic views showing an example of a test piece, FIG. 4A shows a front view, FIG. 4B shows a side view, and FIG. 4C shows an enlarged front view of a notch portion.
  • the crack propagation characteristics were evaluated. When the value of da / dN was 8.0 ⁇ 10-8 or less, it was evaluated as having the fatigue crack propagation suppressing performance.
  • ⁇ Fatigue damage resistance> Regarding fatigue damage resistance, it is most desirable to actually lay the rail and evaluate it, but it takes a long time to test. Therefore, we used a Nishihara-type wear tester that can evaluate fatigue resistance in a short time.
  • a round bar having a diameter of 32 mm was taken from the head of an ordinary rail described in JIS standard E1101: 2012. Then, the round bar was heat-treated so that the Vickers hardness (load 98N) was Hv390 and the structure became a tempered martensite structure, and then the round bar was processed into a cylinder having a diameter of 30 mm and used for the test. As shown in FIG. 6, the Nishihara-type wear test piece 17 was collected from the fatigue-resistant damage test piece collecting section 14 on the surface layer of the rail head 1. The arrows in FIG. 5A indicate the rotation directions of the Nishihara-type wear test piece 17 and the wheel test piece 18, respectively.
  • the test environment is oil lubrication conditions, contact pressure: 1.8 GPa, slip rate: -20%, rotation speed: 600 rpm (wheel test piece is 750 rpm), and observe the surface of the test piece every 2.5 x 10 4 times.
  • the number of revolutions at the time when a crack of 0.5 mm or more was generated was defined as the fatigue damage life. If this value is 8 ⁇ 10 5 times or more, it is determined that there is fatigue damage resistance.
  • Table 2 also shows the results of the above survey.
  • Test results of rail materials produced by the manufacturing method heatating temperature, rolling finish temperature
  • compatible steel satisfying the composition of the present invention and CP of 2500 or less (Test No. 1 to No. 1 in Table 2).
  • the fatigue crack propagation rate of 20, ) Satisfied with the fatigue crack propagation rate da / dN (m / cycle) of 8.0 ⁇ 10-8 or less at ⁇ K 20 MPa ⁇ m 1/2.
  • the test No. 1 in which the primary cooling and secondary cooling conditions are in a suitable range.
  • the fatigue crack propagation speed da / dN (m / cycle) was 8.0 ⁇ 10-8 or less, and the fatigue damage life was 8 ⁇ 10 5 times or more.
  • CP was used in the comparative example (test Nos. 21 to 28 and 30 in Table 2) in which the component composition of the rail material did not satisfy the conditions of the present invention or was not applied to the production method within the scope of the present invention. It exceeded 2500 and the fatigue crack propagation velocity da / dN (m / cycle) exceeded 8.0 ⁇ 10-8 , or the fatigue damage life was less than 8 ⁇ 10 5 times.
  • the heating temperature was too high, so that a part of the steel material melted during heating. For this reason, it was not possible to perform rolling because there was a concern about breakage during rolling, and it was not possible to evaluate the characteristics.
  • the rail and the manufacturing method thereof according to the present invention it is possible to stably manufacture a fatigue-resistant damage-resistant rail having excellent fatigue-resistant crack propagation characteristics, and it is possible to extend the life of rails for high-axis heavy railways and railways. It contributes to accident prevention and has an industrially beneficial effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Provided are a rail that exhibits an excellent fatigue damage resistance and in particular excellent fatigue crack propagation resistance characteristics, and a preferred method for producing the rail. The rail has a component composition that contains, on a mass basis, C : 0.80-1.30%, Si : 0.10-1.20%, Mn : 0.20-1.80%, P ≤ 0.035%, S : 0.0005-0.012%, and Cr : 0.20-2.50%, with the balance being Fe and inevitable impurities, and has not more than 2500 for CP = X/RA (wherein X = {(10 x [%C]) + ([%Si]/12) + ([%Mn]/24) + ([%Cr]/21)}5, [%Y] is the content (mass%) of element Y, and RA is the prior austenite grain diameter (µm)). In the rail production method, a steel material is heated to not more than 1350°C and then hot rolled so as to provide a finishing temperature of at least 900°C.

Description

耐疲労き裂伝播特性に優れるレールおよびその製造方法Rails with excellent fatigue crack propagation characteristics and their manufacturing methods
 本発明は、レールおよびその製造方法に関し、耐疲労き裂伝播特性を向上させたレールと、そのレールを有利に製造し得るレールの製造方法に関する。 The present invention relates to a rail and a method for manufacturing the rail, and the present invention relates to a rail having improved fatigue crack propagation characteristics and a method for manufacturing the rail which can advantageously manufacture the rail.
 鉱石の運搬等を主体とする高軸重鉄道では、貨車の車軸にかかる荷重は客車に比べて遥かに高く、レールの使用環境も過酷なものとなっている。このような環境下で使用されるレールは従来から、耐摩耗性重視の観点で主としてパーライト組織を有する鋼が使用されてきた。しかし、近年においては鉄道による輸送の効率化のために貨車への積載重量のさらなる増加が進められており、レールには、一層の耐摩耗性と耐疲労損傷性の向上が求められている。なお、高軸重鉄道とは、列車や貨車の1台の貨車の積載重量の大きい(積載重量がたとえば150トン程度以上の)鉄道である。 In high-axle heavy railways that mainly transport ore, the load on the axles of freight cars is much higher than that of passenger cars, and the rail usage environment is harsh. As the rail used in such an environment, steel having a pearlite structure has been mainly used from the viewpoint of emphasizing wear resistance. However, in recent years, the weight loaded on freight cars has been further increased in order to improve the efficiency of transportation by rail, and rails are required to have further improvement in wear resistance and fatigue damage resistance. The high-axis heavy railway is a railway having a large load weight (for example, a load weight of about 150 tons or more) of one freight car such as a train or a freight car.
 そこで、さらなる耐摩耗性向上を目指して様々な研究が行なわれている。たとえば特許文献1や特許文献2ではC含有量を0.85質量%超え1.20質量%以下に増加している。また、特許文献3や特許文献4ではC含有量を0.85質量%超え1.20質量%以下とするとともにレール頭部に熱処理を施している。これらの技術では、C含有量の増加により、セメンタイト分率を増加させることによって耐摩耗性の向上を図る等の工夫がなされている。 Therefore, various studies are being conducted with the aim of further improving wear resistance. For example, in Patent Document 1 and Patent Document 2, the C content is increased from 0.85% by mass to 1.20% by mass or less. Further, in Patent Document 3 and Patent Document 4, the C content is more than 0.85% by mass and 1.20% by mass or less, and the rail head is heat-treated. In these techniques, the wear resistance is improved by increasing the cementite fraction by increasing the C content.
 一方、高軸重鉄道の曲線区間のレールには、車輪による転がり応力と遠心力による滑り力が加わるためレールの摩耗がより厳しくなるとともに、滑りに起因した疲労損傷が発生する。そのため、特許文献5ではAl、Siの添加により初析セメンタイト生成を抑制し、耐疲労損傷性を向上させる技術が提案されている。また特許文献6では、パーライトのラメラー間隔を適正範囲に制御することで、疲労き裂伝播速度を低下させる技術が提案されている。 On the other hand, the rails in the curved section of the high-axis heavy railway are subject to rolling stress due to the wheels and slipping force due to centrifugal force, so the rail wear becomes more severe and fatigue damage due to slipping occurs. Therefore, Patent Document 5 proposes a technique of suppressing the formation of proeutectoid cementite by adding Al and Si and improving fatigue damage resistance. Further, Patent Document 6 proposes a technique for reducing the fatigue crack propagation rate by controlling the lamellar spacing of pearlite within an appropriate range.
特開平8‐109439号公報Japanese Unexamined Patent Publication No. 8-109439 特開平8‐144016号公報Japanese Unexamined Patent Publication No. 8-144016 特開平8‐246100号公報Japanese Unexamined Patent Publication No. 8-246100 特開平8‐246101号公報Japanese Unexamined Patent Publication No. 8-246101 特開2002‐69585号公報Japanese Unexamined Patent Publication No. 2002-69585 特開2010‐185106号公報Japanese Unexamined Patent Publication No. 2010-185106
 しかしながら、上記従来の技術には、未だ解決すべき以下のような問題があった。
 特許文献1~4に記載の技術のように、単にC含有量を0.85質量%超え1.20質量%以下にすると、熱処理条件によっては初析セメンタイト組織が生成し、また脆いパーライト層状組織のセメンタイト層の量が増加するため、耐疲労損傷性の向上は見込めない。また、特許文献5に記載の技術では、Alの添加により疲労損傷の起点となる酸化物が生成するため、特に疲労き裂の発生を抑制することが困難であった。さらに、特許文献6に記載の技術では、成分と製造条件の組み合わせによっては初析セメンタイト組織が生成する場合があり、結果として疲労き裂伝播速度が増加してしまうため、材質制御が十分であるとは言い難い。
However, the above-mentioned conventional technique still has the following problems to be solved.
When the C content is simply more than 0.85% by mass and 1.20% by mass or less as in the techniques described in Patent Documents 1 to 4, an initial cementite structure is formed depending on the heat treatment conditions, and a brittle pearlite layered structure is formed. Since the amount of cementite layer is increased, improvement in fatigue damage resistance cannot be expected. Further, in the technique described in Patent Document 5, it is particularly difficult to suppress the occurrence of fatigue cracks because the addition of Al produces an oxide that is a starting point of fatigue damage. Further, in the technique described in Patent Document 6, the pro-eutectoid cementite structure may be formed depending on the combination of the components and the production conditions, and as a result, the fatigue crack propagation rate increases, so that the material control is sufficient. It's hard to say.
 本発明は上述した問題を有利に解決すべくなされたもので、耐疲労損傷性、特に耐疲労き裂伝播特性に優れるレールをその好ましい製造方法とともに提供することを目的とする。 The present invention has been made to advantageously solve the above-mentioned problems, and an object of the present invention is to provide a rail having excellent fatigue damage resistance, particularly fatigue crack propagation characteristics, together with a preferable manufacturing method thereof.
 発明者らは、上記の課題を解決するため、C、Si、MnおよびCrの含有量を変化させたレールを製作し、組織や耐疲労き裂伝播特性を鋭意調査した。その結果、初析セメンタイト量に対応する成分パラメータXおよび旧オーステナイト粒径RからパラメータCPを導出した。そして、パラメータCPを所定範囲に制御することで、仮に初析セメンタイトが多量に存在する場合であっても、優れた耐疲労き裂伝播特性が得られることを見出した。 In order to solve the above problems, the inventors have manufactured rails having different contents of C, Si, Mn and Cr, and have diligently investigated the structure and fatigue crack propagation characteristics. As a result, the parameter CP was derived from the component parameter X corresponding to the amount of pro-eutectoid cementite and the old austenite particle size RA. Then, they have found that by controlling the parameter CP within a predetermined range, excellent fatigue-resistant crack propagation characteristics can be obtained even if a large amount of pro-eutectoid cementite is present.
 上記課題を解決し、上記の目的を実現するため開発した本発明にかかる耐疲労き裂伝播特性に優れるレールは、C:0.80~1.30質量%、Si:0.10~1.20質量%、Mn:0.20~1.80質量%、P:0.035質量%以下、S:0.0005~0.012質量%、Cr:0.20~2.50質量%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、下記(1)式で表されるCPが2500以下である、ここで、[%Y]は、元素Yの含有量(質量%)であり、Rは、旧オーステナイト粒径(μm)である、ことを特徴とする。
 CP=X/R  ・・・(1)
 X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)}  ・・・(2)
The rails having excellent fatigue crack propagation characteristics according to the present invention developed to solve the above problems and realize the above objects have C: 0.80 to 1.30% by mass and Si: 0.10 to 1. Contains 20% by mass, Mn: 0.20 to 1.80% by mass, P: 0.035% by mass or less, S: 0.0005 to 0.012% by mass, Cr: 0.20 to 2.50% by mass. However, the balance has a component composition consisting of Fe and unavoidable impurities, and the CP represented by the following formula (1) is 2500 or less, where [% Y] is the content (mass%) of the element Y. ), And RA is characterized by having an old austenite particle size (μm).
CP = X / RA ... (1)
X = {(10 × [% C]) + ([% Si] / 12) + ([% Mn] / 24) + ([% Cr] / 21)} 5 ... (2)
 なお、本発明にかかる耐疲労き裂伝播特性に優れるレールについては、
a.前記成分組成が、さらに、V:0.30質量%以下、Cu:1.0質量%以下、Ni:1.0質量%以下、Nb:0.05質量%以下およびMo:2.0質量%以下から選ばれる少なくとも1種を含有すること、
b.前記成分組成が、さらに、Al:0.07質量%以下、W:1.0質量%以下、B:0.005質量%以下、Ti:0.05質量%以下およびSb:0.05質量%以下から選ばれる少なくとも1種を含有すること、
などがより好ましい解決手段になり得るものと考えられる。
Regarding the rail having excellent fatigue crack propagation characteristics according to the present invention,
a. Further, the component composition is V: 0.30% by mass or less, Cu: 1.0% by mass or less, Ni: 1.0% by mass or less, Nb: 0.05% by mass or less, and Mo: 2.0% by mass. Containing at least one selected from the following,
b. The component composition further includes Al: 0.07% by mass or less, W: 1.0% by mass or less, B: 0.005% by mass or less, Ti: 0.05% by mass or less, and Sb: 0.05% by mass. Containing at least one selected from the following,
Etc. may be a more preferable solution.
 上記課題を解決し、上記の目的を実現するため開発した本発明にかかる耐疲労き裂伝播特性に優れるレールの製造方法は、上記いずれかの成分組成を有する鋼素材に、1350℃以下の加熱を施した後、熱間圧延を施してレールを製造する方法であって、仕上げ温度が900℃以上となるように熱間圧延することを特徴とする。 The method for manufacturing a rail having excellent fatigue-resistant crack propagation characteristics according to the present invention, which has been developed to solve the above problems and realize the above object, is to heat a steel material having any of the above component compositions to 1350 ° C. or lower. This is a method for manufacturing a rail by hot rolling after performing hot rolling, and is characterized by hot rolling so that the finishing temperature becomes 900 ° C. or higher.
 なお、本発明にかかる耐疲労き裂伝播特性に優れるレールの製造方法については、前記熱間圧延後、900℃から750℃までを0.4~3℃/sの範囲の冷却速度で加速冷却し、750℃から400~600℃の冷却停止温度までを1~10℃/sの範囲の冷却速度で加速冷却することがより好ましい解決手段になり得るものと考えられる。 Regarding the method for manufacturing a rail having excellent fatigue crack propagation characteristics according to the present invention, after the hot rolling, accelerated cooling is performed from 900 ° C. to 750 ° C. at a cooling rate in the range of 0.4 to 3 ° C./s. However, it is considered that accelerated cooling from 750 ° C. to a cooling stop temperature of 400 to 600 ° C. at a cooling rate in the range of 1 to 10 ° C./s may be a more preferable solution.
 本発明にかかるレールおよびその製造方法によれば、優れた耐疲労き裂伝播特性を有する耐疲労損傷レールを安定して製造することが可能となり、高軸重鉄道用レールの高寿命化や鉄道事故防止に寄与し、産業上有益な効果がもたらされる。
 加えて、熱間圧延後の熱処理条件を適正化することで対疲労損傷性を向上させることができるので好ましい。
According to the rail and the manufacturing method thereof according to the present invention, it is possible to stably manufacture a fatigue-resistant damage-resistant rail having excellent fatigue-resistant crack propagation characteristics, and it is possible to extend the life of rails for high-axis heavy railways and railways. It contributes to accident prevention and has an industrially beneficial effect.
In addition, it is preferable to optimize the heat treatment conditions after hot rolling because the fatigue damage resistance can be improved.
疲労き裂伝播速度に及ぼす初析セメンタイトの影響を示す模式図であり、(a)は、旧オーステナイト粒径と塑性域寸法がほぼ等しい場合を示し、(b)は旧オーステナイト粒径が塑性域寸法より大きい場合を示す。It is a schematic diagram which shows the influence of the analytic cementite on the fatigue crack propagation rate, (a) shows the case where the former austenite grain size and the plastic region dimension are almost equal, and (b) is the former austenite particle diameter in the plastic region. The case where it is larger than the dimension is shown. 旧オーステナイト粒径観察用の試験片を採取した位置を示す図である。It is a figure which shows the position where the test piece for observing the old austenite particle size was collected. 疲労き裂伝播試験片を採取した位置を示す図である。It is a figure which shows the position where the fatigue crack propagation test piece was collected. 疲労き裂伝播試験に用いた試験片形状を説明する図であり、(a)は正面図を表し、(b)は側面図を表し、(c)はノッチ部拡大正面図を表す。It is a figure explaining the test piece shape used for the fatigue crack propagation test, (a) shows the front view, (b) shows the side view, (c) shows the notch part enlarged front view. 耐疲労損傷試験に用いた試験片形状を説明する図であり、(a)は側面図を表し、(b)は正面図を表す。It is a figure explaining the shape of the test piece used for the fatigue-resistant damage test, (a) shows the side view, and (b) shows the front view. 耐疲労損傷試験片を採取した位置を示す図である。It is a figure which shows the position where the fatigue-resistant damage test piece was collected.
 以下、本発明の実施の形態について具体的に説明する。まず、本発明において、レール素材となる鋼の成分組成を上記の範囲に限定した理由について説明する。なお、以下の説明における「%」は、特に断らない限り「質量%」を表すものとする。 Hereinafter, embodiments of the present invention will be specifically described. First, in the present invention, the reason why the composition of steel as a rail material is limited to the above range will be described. In addition, "%" in the following description shall represent "mass%" unless otherwise specified.
C:0.80~1.30%
 Cはパーライト組織の強度すなわち耐疲労損傷性を確保するための必須元素である。しかし、0.80%未満では優れた耐疲労き裂伝播特性を得ることが難しい。また、1.30%を超えると、熱間圧延後の冷却中に多量の初析セメンタイトがオーステナイト粒界に生成し、疲労き裂伝播速度の増加を招く。なお、初析セメンタイトは1.30%以下の場合にも存在するが、後述の関係式に基づき、旧オーステナイト粒径を制御することで、その影響を回避することができる。したがって、C含有量は0.80~1.30%の範囲とする。なお、C含有量の上限は1.00%が好ましく、0.90%がさらに好ましい。
C: 0.80 to 1.30%
C is an essential element for ensuring the strength of the pearlite structure, that is, the fatigue damage resistance. However, if it is less than 0.80%, it is difficult to obtain excellent fatigue-resistant crack propagation characteristics. On the other hand, if it exceeds 1.30%, a large amount of proeutectoid cementite is generated at the austenite grain boundaries during cooling after hot rolling, which causes an increase in the fatigue crack propagation rate. Although the proeutectoid cementite is present even when it is 1.30% or less, its influence can be avoided by controlling the old austenite particle size based on the relational expression described later. Therefore, the C content is in the range of 0.80 to 1.30%. The upper limit of the C content is preferably 1.00%, more preferably 0.90%.
Si:0.10~1.20%
 Siは、脱酸剤としての効果に加え、パーライト平衡変態温度を上昇させ、ラメラー間隔を細かくすることにより、疲労き裂伝播速度の低下に寄与する。そのため0.10%以上必要であるが、1.20%を超えるとSiの有する高い酸素との結合力のため、溶接性が劣化する。さらに、Siは、共析点を低C側へ移動させる作用を有するため、過度の添加は初析セメンタイトの生成を助長し、疲労き裂伝播速度の増加を招く。したがって、Si含有量は0.10~1.20%の範囲とする。なお、Si含有量の下限は0.20%が好ましく、Si含有量の上限は0.80%が好ましく、0.60%がさらに好ましい。
Si: 0.10 to 1.20%
In addition to its effect as a deoxidizing agent, Si contributes to a decrease in the fatigue crack propagation rate by increasing the pearlite equilibrium transformation temperature and making the lamellar interval finer. Therefore, 0.10% or more is required, but if it exceeds 1.20%, the weldability deteriorates due to the high bonding force of Si with oxygen. Further, since Si has an action of moving the eutectic point to the low C side, excessive addition promotes the formation of eutectic cementite and causes an increase in the fatigue crack propagation rate. Therefore, the Si content is in the range of 0.10 to 1.20%. The lower limit of the Si content is preferably 0.20%, the upper limit of the Si content is preferably 0.80%, and even more preferably 0.60%.
Mn:0.20~1.80%
 Mnは、パーライト変態温度を低下させてラメラー間隔を細かくすることにより、疲労き裂伝播速度の低下に寄与する。しかしながら、Mn含有量が0.20%未満では、十分な効果が得られない。一方、Mn含有量が1.80%を超えるとマルテンサイト組織を生じ易く、レールの熱処理時および溶接時に硬化や脆化を生じ材質が劣化し易い。さらに、Mnは、共析点を低C側へ移動させる作用を有するため、過度の添加は初析セメンタイトの生成を助長し、疲労き裂伝播速度の増加を招く。したがって、Mn含有量は0.20~1.80%の範囲とする。なお、Mn含有量の下限は0.30%が好ましく、Mn含有量の上限は1.00%が好ましく、0.60%がさらに好ましい。
Mn: 0.20 to 1.80%
Mn contributes to a decrease in the fatigue crack propagation rate by lowering the pearlite transformation temperature and making the lamellar interval finer. However, if the Mn content is less than 0.20%, a sufficient effect cannot be obtained. On the other hand, when the Mn content exceeds 1.80%, a martensite structure is likely to be formed, and the material is likely to be deteriorated due to hardening or embrittlement during heat treatment and welding of the rail. Further, since Mn has an action of moving the eutectic point to the low C side, excessive addition promotes the formation of eutectic cementite and causes an increase in the fatigue crack propagation rate. Therefore, the Mn content is in the range of 0.20 to 1.80%. The lower limit of the Mn content is preferably 0.30%, the upper limit of the Mn content is preferably 1.00%, and even more preferably 0.60%.
P:0.035%以下
 0.035%を超えるPの含有は延性を劣化する。したがって、P含有量は0.035%以下とする。好ましくは0.020%以下である。一方、P含有量の下限は特に限定されず0%であってもよいが、工業的には0%超となるのが通例である。なお、P含有量を過度に低下させることは、精錬コストの増加を招くため、経済性の観点からは、P含有量を0.001%以上とすることが好ましい。
P: 0.035% or less The content of P exceeding 0.035% deteriorates ductility. Therefore, the P content is 0.035% or less. It is preferably 0.020% or less. On the other hand, the lower limit of the P content is not particularly limited and may be 0%, but industrially, it is usually more than 0%. It should be noted that excessively reducing the P content leads to an increase in refining cost, and therefore, from the viewpoint of economic efficiency, it is preferable to set the P content to 0.001% or more.
S:0.0005~0.012%
 Sは、主にA系介在物の形態(加工によって粘性変形をうけるもの)で鋼中に存在するが、その含有量が0.012%を超えるとこの介在物量が著しく増加し、同時に粗大な介在物を生成するため、鋼材の清浄性が悪化する。また、S含有量を0.0005%未満にすると、精錬コストの増加を招く。したがって、S含有量は0.0005~0.012%の範囲とする。なお、S含有量の上限は0.010%が好ましく、0.008%がさらに好ましい。
S: 0.0005 to 0.012%
S is mainly present in steel in the form of A-based inclusions (those that undergo viscous deformation due to processing), but when the content exceeds 0.012%, the amount of these inclusions increases remarkably, and at the same time, it is coarse. Since inclusions are generated, the cleanliness of the steel material deteriorates. Further, if the S content is less than 0.0005%, the refining cost will increase. Therefore, the S content is in the range of 0.0005 to 0.012%. The upper limit of the S content is preferably 0.010%, more preferably 0.008%.
Cr:0.20~2.50%
 Crは、パーライト平衡変態温度を上昇させ、ラメラー間隔を細かくすることにより、疲労き裂伝播速度の低下に寄与する。しかし、Cr含有量が0.20%未満では、疲労き裂進展を十分に抑制することができず、一方、Cr含有量が2.50%を超えると鋼の焼入れ性が高くなり、マルテンサイトが生成し易くなる。また、マルテンサイトが生成しない条件で製造した場合、旧オーステナイト粒界に初析セメンタイトが生成する。そのため、疲労き裂伝播速度が増加する。したがって、Cr含有量は0.20~2.50%の範囲とする。なお、Cr含有量の下限は0.40%が好ましく、0.50%がさらに好ましく、Cr含有量の上限は1.50%が好ましく、1.00%がさらに好ましい。
Cr: 0.20 to 2.50%
Cr contributes to a decrease in the fatigue crack propagation rate by increasing the pearlite equilibrium transformation temperature and making the lamellar spacing finer. However, if the Cr content is less than 0.20%, fatigue crack growth cannot be sufficiently suppressed, while if the Cr content exceeds 2.50%, the hardenability of steel becomes high and martensite. Is easy to generate. Further, when manufactured under the condition that martensite is not formed, proeutectoid cementite is formed at the old austenite grain boundaries. Therefore, the fatigue crack propagation rate increases. Therefore, the Cr content is in the range of 0.20 to 2.50%. The lower limit of the Cr content is preferably 0.40%, more preferably 0.50%, and the upper limit of the Cr content is preferably 1.50%, further preferably 1.00%.
 さらに本発明では、各々の元素が単に上記の範囲を満足するだけでは不十分で、下記(2)式に示す初析セメンタイト量に対応する成分パラメータXと旧オーステナイト粒径Rから導出された下記(1)式で表されるCP値を2500以下に制御することが重要である。
 CP=X/R  ・・・(1)
 X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)}  ・・・(2)
ただし、[%Y]:元素Yの含有量(質量%)、
  R  :旧オーステナイト粒径(μm)
を表す。
Furthermore, in the present invention, it is not sufficient for each element to simply satisfy the above range, and it is derived from the component parameter X corresponding to the amount of proeutectoid cementite represented by the following equation (2) and the former austenite particle size RA. It is important to control the CP value represented by the following equation (1) to 2500 or less.
CP = X / RA ... (1)
X = {(10 × [% C]) + ([% Si] / 12) + ([% Mn] / 24) + ([% Cr] / 21)} 5 ... (2)
However, [% Y]: content of element Y (mass%),
RA : Old austenite particle size (μm)
Represents.
 発明者らは、初析セメンタイトの存在により疲労き裂伝播速度が増加する原因について調査を行った。その結果、図1(a)の模式図で示すように、疲労き裂23の先端で初析セメンタイト24が先行して脆性的に破壊することが、疲労き裂伝播速度増加26の要因となっているとの知見を得た。さらに、初析セメンタイトの生成量に応じ、当該組織の生成サイトとなる旧オーステナイト粒径を調整することで、疲労き裂先端に形成される塑性域22と初析セメンタイトの遭遇頻度が低下し、脆性的なき裂進展を抑制できることが分かった。具体的には、初析セメンタイトが多量に存在する場合であっても、図1(b)で示すように、き裂先端の塑性域22の大きさよりも旧オーステナイト粒21を十分に粗大化させることで、CP値を2500以下に制御することが可能となる。それにより、前述した疲労き裂伝播速度の抑制効果を安定的に得ることができる。なお、上記CP値は2000以下とすることが好ましい。 The inventors investigated the cause of the increase in fatigue crack propagation rate due to the presence of proeutectoid cementite. As a result, as shown in the schematic diagram of FIG. 1 (a), the brittle fracture of the proactive cementite 24 at the tip of the fatigue crack 23 causes the increase in the fatigue crack propagation rate 26. I got the finding that it is. Furthermore, by adjusting the particle size of the old austenite, which is the formation site of the structure, according to the amount of proactive cementite produced, the frequency of encounters between the plastic region 22 formed at the tip of the fatigue crack and the proactive cementite is reduced. It was found that brittle crack growth can be suppressed. Specifically, even when a large amount of pro-eutectoid cementite is present, as shown in FIG. 1 (b), the austenite grains 21 are sufficiently coarsened to be larger than the size of the plastic region 22 at the crack tip. This makes it possible to control the CP value to 2500 or less. As a result, the above-mentioned effect of suppressing the fatigue crack propagation rate can be stably obtained. The CP value is preferably 2000 or less.
 本発明で用いられるレールの成分組成は、以上説明した成分の他に、以下のA群の中から選ばれる少なくとも1種、B群の中から選ばれる少なくとも1種の、いずれかまたは両方を任意に含有していてもよい。
A群:V:0.30%以下、Cu:1.0%以下、Ni:1.0%以下、Nb:0.05%以下およびMo:2.0%以下
B群:Al:0.07%以下、W:1.0%以下、B:0.005%以下、Ti:0.05%以下およびSb:0.05%以下
In addition to the components described above, the component composition of the rail used in the present invention may be any one or both of at least one selected from the following group A and at least one selected from group B below. It may be contained in.
Group A: V: 0.30% or less, Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.05% or less and Mo: 2.0% or less Group B: Al: 0.07 % Or less, W: 1.0% or less, B: 0.005% or less, Ti: 0.05% or less and Sb: 0.05% or less
 以下、上記A群およびB群に属する元素の含有量を特定した理由を説明する。
V:0.30%以下
 Vは、鋼中で炭窒化物を形成して基地中へ分散析出し、鋼の耐摩耗性を向上させる。しかし、その含有量が、0.30%を超えると、加工性が劣化し、製造コストが増加する。また、V含有量が0.30%を超えると、合金コストが増加するため、内部高硬度型レールのコストが増加する。したがって、Vは、0.30%を上限として含有することが好ましい。なお、上記の耐摩耗性を向上させる効果を発現させるためには、Vは0.001%以上で含有されることが好ましい。なお、V含有量の上限は0.15%がより好ましい。
Hereinafter, the reason for specifying the content of the elements belonging to the above groups A and B will be described.
V: 0.30% or less V forms a carbonitride in the steel and disperses and precipitates in the substrate, improving the wear resistance of the steel. However, if the content exceeds 0.30%, the processability deteriorates and the manufacturing cost increases. Further, when the V content exceeds 0.30%, the alloy cost increases, so that the cost of the internal high hardness type rail increases. Therefore, V is preferably contained up to 0.30%. In addition, in order to exhibit the above-mentioned effect of improving wear resistance, V is preferably contained in an amount of 0.001% or more. The upper limit of the V content is more preferably 0.15%.
Cu:1.0%以下
 Cuは、Crと同様に固溶強化により鋼の更なる高強度化を図ることができる元素である。ただし、その含有量が1.0%を超えるとCu割れが生じ易くなる。したがって、成分組成にCuを含有する場合は、Cu含有量は1.0%以下とすることが好ましい。なお、Cu含有量の下限は0.005%がより好ましく、Cu含有量の上限は0.5%がより好ましい。
Cu: 1.0% or less Cu is an element that can further increase the strength of steel by solid solution strengthening like Cr. However, if the content exceeds 1.0%, Cu cracking is likely to occur. Therefore, when Cu is contained in the component composition, the Cu content is preferably 1.0% or less. The lower limit of the Cu content is more preferably 0.005%, and the upper limit of the Cu content is more preferably 0.5%.
Ni:1.0%以下
 Niは、延性を劣化することなく鋼の高強度化を図ることができる元素である。また、Cuと複合添加することによりCu割れを抑制することができるため、成分組成にCuを含有する場合にはNiも含有することが望ましい。ただし、Ni含有量が1.0%を超えると、鋼の焼入れ性がより上昇し、マルテンサイトやベイナイトの生成量が多くなり、耐摩耗性と耐疲労損傷性が低下しがちとなる。したがって、Niを含有する場合は、Ni含有量は1.0%以下とすることが好ましい。なお、Ni含有量の下限は0.005%がより好ましく、Ni含有量の上限は0.5%がより好ましい。
Ni: 1.0% or less Ni is an element that can increase the strength of steel without deteriorating ductility. Further, since Cu cracking can be suppressed by compound addition with Cu, it is desirable that Ni is also contained when Cu is contained in the component composition. However, when the Ni content exceeds 1.0%, the hardenability of the steel is further increased, the amount of martensite and bainite produced is increased, and the wear resistance and the fatigue damage resistance tend to be lowered. Therefore, when Ni is contained, the Ni content is preferably 1.0% or less. The lower limit of the Ni content is more preferably 0.005%, and the upper limit of the Ni content is more preferably 0.5%.
Nb:0.05%以下
 Nbは、レールを成形するための熱間圧延中および熱間圧延後に、鋼中のCと結び付いて炭化物として析出し、パーライトコロニーサイズの微細化に有効に作用する。その結果、耐摩耗性や耐疲労損傷性、延性を大きく向上させ、内部高硬度型レールの長寿命化に大きく寄与する。ただし、Nb含有量が0.05%を超えても、耐摩耗性や耐疲労損傷性の向上効果が飽和し、含有量上昇に見合う効果が得られない。したがって、Nbは、その含有量の上限を0.05%として含有されていてもよい。なお、Nb含有量が0.001%未満では、上記のレールの長寿命化に対して十分な効果が得られにくい。したがって、Nbを含有する場合は、Nb含有量は0.001%以上であることが好ましい。なお、Nb含有量の上限は0.03%がより好ましい。
Nb: 0.05% or less Nb is combined with C in steel and precipitated as carbide during hot rolling for forming a rail and after hot rolling, and effectively acts on the miniaturization of pearlite colony size. As a result, wear resistance, fatigue damage resistance, and ductility are greatly improved, which greatly contributes to extending the life of the internal high hardness type rail. However, even if the Nb content exceeds 0.05%, the effect of improving wear resistance and fatigue damage resistance is saturated, and an effect commensurate with the increase in content cannot be obtained. Therefore, Nb may be contained with the upper limit of its content being 0.05%. If the Nb content is less than 0.001%, it is difficult to obtain a sufficient effect on extending the life of the rail. Therefore, when Nb is contained, the Nb content is preferably 0.001% or more. The upper limit of the Nb content is more preferably 0.03%.
Mo:2.0%以下
 Moは、固溶強化によりさらなる鋼の高強度化を図ることができる元素である。また、Moは、共析点を高C側へ移動させる作用を有するため、初析セメンタイトの生成を抑制する作用も有する。ただし、2.0%を超えると、鋼中に生ずるベイナイト量が多くなり、耐摩耗性が低下する。したがって、レールの成分組成がMoを含有する場合は、Mo含有量は2.0%以下とすることが好ましい。なお、Mo含有量の下限は0.005%がより好ましく、Mo含有量の上限は1.0%がより好ましい。
Mo: 2.0% or less Mo is an element that can further increase the strength of steel by solid solution strengthening. Further, since Mo has an action of moving the eutectic point to the high C side, it also has an action of suppressing the formation of eutectic cementite. However, if it exceeds 2.0%, the amount of bainite generated in the steel increases and the wear resistance deteriorates. Therefore, when the component composition of the rail contains Mo, the Mo content is preferably 2.0% or less. The lower limit of the Mo content is more preferably 0.005%, and the upper limit of the Mo content is more preferably 1.0%.
Al:0.07%以下
 Alは、脱酸剤として添加することができる元素である。しかし、Al含有量が0.07%を超えると、Alの有する高い酸素との結合力のため、鋼中に酸化物系介在物が多量に生成し、その結果、鋼の延性が低下する。そのため、Al含有量は0.07%以下とすることが好ましい。一方、Al含有量の下限は特に限定されないが、脱酸のためには0.001%以上とすることが好ましい。なお、Al含有量の上限は0.03%がより好ましい。
Al: 0.07% or less Al is an element that can be added as a deoxidizing agent. However, when the Al content exceeds 0.07%, a large amount of oxide-based inclusions are generated in the steel due to the high binding force of Al with oxygen, and as a result, the ductility of the steel is lowered. Therefore, the Al content is preferably 0.07% or less. On the other hand, the lower limit of the Al content is not particularly limited, but is preferably 0.001% or more for deoxidation. The upper limit of the Al content is more preferably 0.03%.
W:1.0%以下
 Wは、レール形状への成形を行う熱間圧延中および熱間圧延後に炭化物として析出し、析出強化によりレールの強度や延性を向上させる。しかし、W含有量が1.0%を超えると鋼中にマルテンサイトが生成し、その結果、延性が低下する。そのため、Wを添加する場合、W含有量を1.0%以下とすることが好ましい。一方、W含有量の下限は特に限定されないが、上記の強度や延性を向上させる作用を発現させるためには0.001%以上とすることが好ましい。なお、W含有量の下限は0.005%がより好ましく、W含有量の上限は0.5%がより好ましい。
W: 1.0% or less W is precipitated as carbide during and after hot rolling for forming into a rail shape, and the strength and ductility of the rail are improved by strengthening the precipitation. However, when the W content exceeds 1.0%, martensite is formed in the steel, and as a result, the ductility is lowered. Therefore, when W is added, the W content is preferably 1.0% or less. On the other hand, the lower limit of the W content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the above-mentioned action of improving strength and ductility. The lower limit of the W content is more preferably 0.005%, and the upper limit of the W content is more preferably 0.5%.
B:0.005%以下
 Bは、レール形状への成形を行う熱間圧延中および熱間圧延後に、鋼中で窒化物として析出し、析出強化により鋼の強度や延性を向上させる。しかし、B含有量が0.005%を超えるとマルテンサイトが生成し、その結果、鋼の延性が低下する。そのため、Bを含有する場合、B含有量を0.005%以下とすることが好ましい。一方、B含有量の下限は特に限定されないが、上記の強度や延性を向上させる作用を発現させるためには0.001%以上とすることが好ましい。なお、B含有量の上限は0.003%がより好ましい。
B: 0.005% or less B is precipitated as nitride in steel during and after hot rolling for forming into a rail shape, and the strength and ductility of the steel are improved by precipitation strengthening. However, if the B content exceeds 0.005%, martensite is formed, and as a result, the ductility of the steel is lowered. Therefore, when B is contained, the B content is preferably 0.005% or less. On the other hand, the lower limit of the B content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the above-mentioned action of improving strength and ductility. The upper limit of the B content is more preferably 0.003%.
Ti:0.05%以下
 Tiは、レール形状への成形を行う熱間圧延中および熱間圧延後に炭化物、窒化物あるいは炭窒化物として鋼中で析出し、析出強化により鋼の強度や延性を向上させる。しかし、Ti含有量が0.05%を超えると粗大な炭化物、窒化物あるいは炭窒化物が生成し、その結果、鋼の延性が低下する。そのため、Tiを含有する場合、Ti含有量を0.05%以下とすることが好ましい。一方、Ti含有量の下限は特に限定されないが、上記の強度や延性を向上させる作用を発現させるためには0.001%以上とすることが好ましい。なお、Ti含有量の下限は0.005%がより好ましく、Ti含有量の上限は0.03%がより好ましい。
Ti: 0.05% or less Ti precipitates in steel as carbides, nitrides or carbonitrides during and after hot rolling to form a rail shape, and the strength and ductility of the steel are enhanced by precipitation strengthening. Improve. However, if the Ti content exceeds 0.05%, coarse carbides, nitrides or carbonitrides are formed, resulting in a decrease in steel ductility. Therefore, when Ti is contained, the Ti content is preferably 0.05% or less. On the other hand, the lower limit of the Ti content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the above-mentioned action of improving strength and ductility. The lower limit of the Ti content is more preferably 0.005%, and the upper limit of the Ti content is more preferably 0.03%.
Sb:0.05%以下
 Sbは、熱間圧延前にレール鋼素材を加熱炉で再加熱する際に、その再加熱中の鋼の脱炭を防止するという顕著な効果を有する。しかし、Sb含有量が0.05%を超えると、鋼の延性および靭性に悪影響を及ぼすため、Sbを含有する場合、Sb含有量を0.05%以下とすることが好ましい。一方、Sb含有量の下限は特に限定されないが、脱炭層を軽減する効果を発現させるためには0.001%以上とすることが好ましい。なお、Sb含有量の下限は0.005%がより好ましく、Sb含有量の上限は0.03%がより好ましい。
Sb: 0.05% or less Sb has a remarkable effect of preventing decarburization of the steel during the reheating when the rail steel material is reheated in a heating furnace before hot rolling. However, if the Sb content exceeds 0.05%, the ductility and toughness of the steel are adversely affected. Therefore, when the Sb is contained, the Sb content is preferably 0.05% or less. On the other hand, the lower limit of the Sb content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the effect of reducing the decarburized layer. The lower limit of the Sb content is more preferably 0.005%, and the upper limit of the Sb content is more preferably 0.03%.
 本発明のレールの材料となる鋼素材の成分組成は、以上の成分および残部のFeおよび不可避不純物を含むものである。本発明に係る組成中の残部Feの一部に代えて本発明の作用効果に実質的に影響しない範囲内で他の微量成分元素を含有するものとしたレールも、本発明に属する。ここで、不可避的不純物としては、N、O等が挙げられ、Nは0.008%まで、Oは0.004%まで許容できる。 The composition of the steel material used as the material for the rail of the present invention contains the above components, the balance Fe, and unavoidable impurities. A rail that contains other trace component elements in place of a part of the balance Fe in the composition according to the present invention within a range that does not substantially affect the action and effect of the present invention also belongs to the present invention. Here, examples of the unavoidable impurities include N, O, etc., and N can be allowed up to 0.008% and O can be allowed up to 0.004%.
 なお、本発明にかかるレールのミクロ組織における、パーライト以外の組織は特に限定されない。合計面積率で5%以下であれば、耐疲労き裂伝播特性に大きな影響を及ぼさないため、他の組織が存在することが許容される。前記他の組織としては、例えば、フェライト、初析セメンタイト、ベイナイトおよびマルテンサイトが挙げられる。 The structure other than pearlite in the microstructure of the rail according to the present invention is not particularly limited. If the total area ratio is 5% or less, the fatigue crack propagation characteristics are not significantly affected, so that other tissues are allowed to be present. Examples of the other structures include ferrite, proeutectoid cementite, bainite and martensite.
 次に、以上説明した本発明にかかるレールの製造方法について説明する。本発明のレールは、上述した成分組成を有する鋼素材に対して、下記(1)~(3)の処理を順次施すことにより製造することができる。
(1)熱間圧延
(2)一次冷却
(3)二次冷却
 レール素材として用いる鋼素材は任意の方法で製造できるが、一般的には、鋳造、特に連続鋳造により前記鋼素材を製造することが好ましい。
Next, the rail manufacturing method according to the present invention described above will be described. The rail of the present invention can be manufactured by sequentially applying the following treatments (1) to (3) to a steel material having the above-mentioned composition.
(1) Hot rolling (2) Primary cooling (3) Secondary cooling The steel material used as the rail material can be manufactured by any method, but in general, the steel material is manufactured by casting, especially continuous casting. Is preferable.
(1)熱間圧延
 まず、前記鋼素材を熱間圧延してレール形状とする。本発明では、前記熱間圧延における圧延仕上げ温度を制御することにより最終的に得られるレールの旧オーステナイト粒径をコントロールできるため、前記熱間圧延の方法は特に限定されず、任意の方法で行うことができる。
加熱温度:1350℃以下
 熱間圧延に先立って施す鋼素材の加熱において、加熱温度は1350℃以下とする必要がある。加熱温度が上限超えでは、過度の昇温によって鋼素材が部分的に溶融し、レール内部に欠陥が発生するおそれがある。一方、加熱温度の下限については特に制限は無いが、圧延時の変形抵抗を低減するため、1150℃以上とすることが好ましい。
(1) Hot rolling First, the steel material is hot-rolled to form a rail shape. In the present invention, since the old austenite grain size of the rail finally obtained can be controlled by controlling the rolling finish temperature in the hot rolling, the hot rolling method is not particularly limited and is performed by any method. be able to.
Heating temperature: 1350 ° C. or lower In heating the steel material to be applied prior to hot rolling, the heating temperature must be 1350 ° C. or lower. If the heating temperature exceeds the upper limit, the steel material may be partially melted due to excessive temperature rise, and defects may occur inside the rail. On the other hand, the lower limit of the heating temperature is not particularly limited, but is preferably 1150 ° C. or higher in order to reduce the deformation resistance during rolling.
圧延仕上げ温度:900℃以上
 上記熱間圧延における圧延仕上げ温度が900℃より低い場合、オーステナイト低温域にて圧延が行われることになり、オーステナイト結晶粒に加工歪が導入されるだけでなく、オーステナイト結晶粒の伸長が顕著となる。オーステナイト粒界面積の増加により初析セメンタイトの核生成サイトが増加し、その結果、耐疲労き裂伝播特性が低下する。そのため、圧延仕上げ温度は900℃以上とする。一方、圧延仕上げ温度の上限については特に制限は無いが、旧オーステナイト粒径が極端に粗大化すると、延性や靭性が低下してしまうため、1050℃以下にすることが好ましい。なお、ここでいう圧延仕上げ温度は、最終圧延ミル入側におけるレール頭部側面の温度であり、放射温度計で測定可能である。
Rolling finish temperature: 900 ° C or higher When the rolling finish temperature in the above hot rolling is lower than 900 ° C, rolling is performed in the austenite low temperature range, and not only processing strain is introduced into the austenite crystal grains but also austenite is introduced. The elongation of the crystal grains becomes remarkable. Increasing the austenite grain boundary area increases the nucleation sites of proeutectoid cementite, resulting in a decrease in fatigue-resistant crack propagation characteristics. Therefore, the rolling finish temperature is set to 900 ° C. or higher. On the other hand, the upper limit of the rolling finish temperature is not particularly limited, but if the old austenite particle size becomes extremely coarse, the ductility and toughness will decrease, so the temperature is preferably 1050 ° C. or lower. The rolling finish temperature referred to here is the temperature of the side surface of the rail head on the entry side of the final rolling mill, and can be measured by a radiation thermometer.
(2)一次冷却
900℃から750℃までの平均冷却速度:0.4~3℃/s
 次に、加速冷却を行う。その際、一次冷却として、初析セメンタイトの生成温度域である900℃から750℃における平均冷却速度が0.4℃/s未満であると、初析セメンタイト量が増加する。そのため、初析セメンタイト組織に割れが発生しやすくなり、レールの耐疲労損傷性が低下するおそれがある。したがって、前記一次冷却の平均冷却速度の下限は0.4℃/sとすることが好ましく、0.7℃/sがより好ましい。一方、前記一次冷却の平均冷却速度が3℃/sを超える場合は、マルテンサイト組織が生成し、延性や耐疲労損傷性が低下するおそれがある。そのため、前記一次冷却の平均冷却速度の上限は3℃/sとすることが好ましく、2℃/sがより好ましい。
(2) Primary cooling Average cooling rate from 900 ° C to 750 ° C: 0.4 to 3 ° C / s
Next, accelerated cooling is performed. At that time, as the primary cooling, if the average cooling rate in the temperature range of 900 ° C. to 750 ° C., which is the temperature range for producing the proeutectoid cementite, is less than 0.4 ° C./s, the amount of the proeutectoid cementite increases. Therefore, cracks are likely to occur in the proactive cementite structure, which may reduce the fatigue damage resistance of the rail. Therefore, the lower limit of the average cooling rate of the primary cooling is preferably 0.4 ° C./s, more preferably 0.7 ° C./s. On the other hand, when the average cooling rate of the primary cooling exceeds 3 ° C./s, a martensite structure may be formed, and ductility and fatigue damage resistance may decrease. Therefore, the upper limit of the average cooling rate of the primary cooling is preferably 3 ° C / s, more preferably 2 ° C / s.
(3)二次冷却
750℃から400~600℃の温度域までの平均冷却速度:1~10℃/s
 上記一次冷却の停止後、二次冷却を行う。二次冷却開始温度である750℃から400~600℃の温度域にある二次冷却の冷却停止温度までの平均冷却速度が1℃/s未満であると、パーライト組織のラメラー間隔が粗くなる。そのため、パーライト組織の硬度が低下して、レールの耐疲労損傷性が低下するおそれがある。加えて、低温域での冷却時間が増大するため生産性が低下し、レールの製造コストが増加するおそれがある。一方、前記二次冷却の平均冷却速度が10℃/sを超える場合は、マルテンサイト組織が生成し、延性や耐疲労損傷性が低下するおそれがある。そのため、前記二次冷却の平均冷却速度は1~10℃/sの範囲とすることが好ましい。なお、前記二次冷却の平均冷却速度の上限は、5℃/sがより好ましい。
(3) Secondary cooling Average cooling rate from 750 ° C to 400 to 600 ° C: 1 to 10 ° C / s
After the primary cooling is stopped, the secondary cooling is performed. When the average cooling rate from the secondary cooling start temperature of 750 ° C. to the cooling stop temperature of the secondary cooling in the temperature range of 400 to 600 ° C. is less than 1 ° C./s, the lamellar spacing of the pearlite structure becomes coarse. Therefore, the hardness of the pearlite structure may decrease, and the fatigue damage resistance of the rail may decrease. In addition, the increased cooling time in the low temperature region may reduce productivity and increase rail manufacturing costs. On the other hand, if the average cooling rate of the secondary cooling exceeds 10 ° C./s, a martensite structure may be formed, and ductility and fatigue damage resistance may decrease. Therefore, the average cooling rate of the secondary cooling is preferably in the range of 1 to 10 ° C./s. The upper limit of the average cooling rate of the secondary cooling is more preferably 5 ° C./s.
 なお、上述の一次、二次冷却において、平均冷却速度を決める上での温度は、いずれもレール頭部側面の表面温度であり、放射温度計で測定可能である。ここで、二次冷却時の冷却停止温度は、加速冷却停止後(復熱前)のレール頭部側面の温度を放射温度計で測定した温度とする。 In the above-mentioned primary and secondary cooling, the temperature for determining the average cooling rate is the surface temperature of the side surface of the rail head, and can be measured by a radiation thermometer. Here, the cooling stop temperature at the time of secondary cooling is the temperature measured by a radiation thermometer after the acceleration cooling stop (before reheating) on the side surface of the rail head.
 以下、実施例に従って、本発明の構成および作用効果をより具体的に説明する。しかし、本発明は下記の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲内にて適宜変更することも可能であり、これらは何れも本発明の技術的範囲に含まれる。 Hereinafter, the configuration and action / effect of the present invention will be described more specifically according to Examples. However, the present invention is not limited by the following examples, and can be appropriately modified within a range that can be adapted to the gist of the present invention, all of which are included in the technical scope of the present invention. Will be.
 表1に示す成分組成を有する鋼素材について、表2に示す条件で熱間圧延、および熱間圧延後の加速冷却を行なって、レール材を製造した。加速冷却はレール頭部のみに行ない、冷却停止後は放冷した。表2中の圧延仕上げ温度とは、最終圧延ミル入側のレール頭部側面表面の温度を放射温度計で測定した値を圧延仕上げ温度として示している。表2中の冷却停止温度は、二次冷却の冷却停止時のレール頭部側面表層の温度を放射温度計で測定した値を冷却停止温度として示している。冷却速度は、一次冷却および二次冷却について、冷却開始から冷却停止までの間の温度変化を単位時間(秒)あたりに換算して冷却速度(℃/s)とした。 The steel material having the composition shown in Table 1 was hot-rolled under the conditions shown in Table 2 and accelerated cooling after the hot-rolling to produce a rail material. Accelerated cooling was performed only on the rail head, and after cooling was stopped, it was allowed to cool. The rolling finish temperature in Table 2 is a value obtained by measuring the temperature of the surface of the side surface of the rail head on the entry side of the final rolling mill with a radiation thermometer as the rolling finish temperature. As the cooling stop temperature in Table 2, the value measured by the radiation thermometer for the temperature of the surface layer on the side surface of the rail head when the cooling of the secondary cooling is stopped is shown as the cooling stop temperature. The cooling rate was defined as the cooling rate (° C./s) by converting the temperature change from the start of cooling to the stop of cooling per unit time (seconds) for the primary cooling and the secondary cooling.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 得られたレールについて、旧オーステナイト粒径R、耐疲労き裂伝播特性ならびに耐疲労損傷性を評価した。以下にそれぞれの評価内容について詳細に説明する。
<旧オーステナイト粒径R
 熱間仕上げ圧延後のレール先端部を切断後、該切断材に対して直ちに水冷処理を施した。得られた水冷材に対し、図2に示すレール頭部1の表面から5mm深さ位置の圧延長手方向より、組織観察用の試験片を採取した。得られた試験片に対し、鏡面研磨後γ粒エッチングを施し、光学顕微鏡を用いて200倍の断面観察を行った。旧オーステナイト粒径Rは画像解析ソフトを用いたトレース作業により400個以上の粒径を測定し、その平均値を求めることで評価した。
The obtained rails were evaluated for the old austenite particle size RA , fatigue crack propagation characteristics, and fatigue damage resistance. Each evaluation content will be described in detail below.
<Old austenite particle size RA >
After cutting the tip of the rail after hot finish rolling, the cut material was immediately water-cooled. With respect to the obtained water-cooled material, a test piece for microstructure observation was taken from the rolling longitudinal direction at a depth of 5 mm from the surface of the rail head 1 shown in FIG. The obtained test piece was subjected to γ-grain etching after mirror polishing, and a cross-sectional observation of 200 times was performed using an optical microscope. The old austenite particle size RA was evaluated by measuring the particle size of 400 or more by tracing work using image analysis software and calculating the average value.
<耐疲労き裂伝播特性>
 図3に示すレール頭頂部とゲージコーナー(GC)部の2箇所から、疲労き裂伝播試験片を採取し、疲労き裂伝播試験を行った。図4は試験片の一例を示す模式図であり、図4(a)は正面図を、図4(b)は側面図を、図4(c)はノッチ部拡大正面図を示す。図4において、試験片は例えば幅W=20mm、高さH=100mm、厚さB=5mmの板状のものであって、高さHの中央H/2部分の一方の幅端にノッチ部が形成されている。ノッチ部の長さL=2mm、幅C=0.2mmであって、ノッチ部の端部は曲率R=0.1mmに形成されている。応力比(R比=最小応力/最大応力)は0.1とし、応力拡大係数ΔK=20MPa・m1/2における、疲労き裂伝播速度da/dN(m/cycle)を測定し、耐疲労亀裂伝播特性を評価した。da/dNの値が8.0×10-8以下であれば、疲労き裂伝播抑止性能があると評価した。
<Fatigue crack propagation characteristics>
Fatigue crack propagation test pieces were collected from two locations, the top of the rail and the gauge corner (GC) shown in FIG. 3, and the fatigue crack propagation test was performed. 4A and 4B are schematic views showing an example of a test piece, FIG. 4A shows a front view, FIG. 4B shows a side view, and FIG. 4C shows an enlarged front view of a notch portion. In FIG. 4, the test piece is, for example, a plate having a width W = 20 mm, a height H = 100 mm, and a thickness B = 5 mm, and has a notch at one width end of the central H / 2 portion of the height H. Is formed. The notch portion has a length L = 2 mm and a width C = 0.2 mm, and the end portion of the notch portion is formed with a curvature R = 0.1 mm. The stress ratio (R ratio = minimum stress / maximum stress) is 0.1, and the fatigue crack propagation velocity da / dN (m / cycle) at the stress intensity factor ΔK = 20 MPa · m 1/2 is measured to withstand fatigue. The crack propagation characteristics were evaluated. When the value of da / dN was 8.0 × 10-8 or less, it was evaluated as having the fatigue crack propagation suppressing performance.
<耐疲労損傷性>
 耐疲労損傷性に関しては、レールを実際に敷設して評価するのが最も望ましいが、それでは試験に長時間を要する。そこで、短時間で耐疲労損傷性を評価することができる西原式摩耗試験機を用いた。ここでは、実際のレールと車輪の接触条件をシミュレートした比較試験により耐疲労損傷性を評価した。具体的には、接触面を曲率半径R=15mmの曲面としてレール頭部1から直径30mmの西原式摩耗試験片17を採取し、図5に示すように車輪試験片18と接触させて回転させて試験を行なった。車輪試験片18は、まず、JIS規格E1101:2012に記載の普通レールの頭部から直径32mmの丸棒を採取した。そして、その丸棒に、ビッカース硬さ(荷重98N)がHv390であり、組織が焼戻しマルテンサイト組織となるように熱処理を行った後、直径30mmの円柱状に加工し試験に供した。なお、西原式摩耗試験片17は図6に示すようにレール頭部1の表層の耐疲労損傷試験片採取部14から採取した。図5(a)中の矢印は、それぞれ西原式摩耗試験片17と車輪試験片18の回転方向を示す。試験環境は油潤滑条件とし、接触圧力:1.8GPa、滑り率:-20%、回転速度:600rpm(車輪試験片は750rpm)で、2.5×10回毎に試験片表面を観察し、0.5mm以上の亀裂が発生した時点での回転数をもって、疲労損傷寿命とした。この数値が8×10回以上であれば耐疲労損傷性があると判定した。
<Fatigue damage resistance>
Regarding fatigue damage resistance, it is most desirable to actually lay the rail and evaluate it, but it takes a long time to test. Therefore, we used a Nishihara-type wear tester that can evaluate fatigue resistance in a short time. Here, the fatigue damage resistance was evaluated by a comparative test simulating the actual contact conditions between the rail and the wheel. Specifically, the Nishihara-type wear test piece 17 having a diameter of 30 mm is collected from the rail head 1 with the contact surface as a curved surface having a radius of curvature R = 15 mm, and is brought into contact with the wheel test piece 18 and rotated as shown in FIG. Was tested. For the wheel test piece 18, first, a round bar having a diameter of 32 mm was taken from the head of an ordinary rail described in JIS standard E1101: 2012. Then, the round bar was heat-treated so that the Vickers hardness (load 98N) was Hv390 and the structure became a tempered martensite structure, and then the round bar was processed into a cylinder having a diameter of 30 mm and used for the test. As shown in FIG. 6, the Nishihara-type wear test piece 17 was collected from the fatigue-resistant damage test piece collecting section 14 on the surface layer of the rail head 1. The arrows in FIG. 5A indicate the rotation directions of the Nishihara-type wear test piece 17 and the wheel test piece 18, respectively. The test environment is oil lubrication conditions, contact pressure: 1.8 GPa, slip rate: -20%, rotation speed: 600 rpm (wheel test piece is 750 rpm), and observe the surface of the test piece every 2.5 x 10 4 times. The number of revolutions at the time when a crack of 0.5 mm or more was generated was defined as the fatigue damage life. If this value is 8 × 10 5 times or more, it is determined that there is fatigue damage resistance.
 表2に上記調査の結果を併せて示す。本発明の成分組成ならびにCPが2500以下を満足する適合鋼を用い、本発明範囲の製造方法(加熱温度、圧延仕上げ温度)で作製したレール材の試験結果(表2中の試験No.1~20、・・・)の疲労き裂伝播速度はいずれもΔK=20MPa・m1/2における疲労き裂伝播速度da/dN(m/cycle)が8.0×10-8以下を満足した。また、一次冷却および二次冷却条件が好適範囲にある試験No.1~20は、疲労き裂伝播速度da/dN(m/cycle)が8.0×10-8以下、かつ、疲労損傷寿命が8×10回以上のいずれも満足した。一方、レール材の成分組成が本発明の条件を満足しないか、あるいは、本発明範囲の製造方法に適用しなかった比較例(表2中の試験No.21~28、30)は、CPが2500を超えてしまい疲労き裂伝播速度da/dN(m/cycle)が8.0×10-8超えとなるか、または、疲労損傷寿命が8×10回未満にとどまった。なお、試験No.29は、加熱温度が高すぎたため、加熱時に鋼素材の一部が溶融した。このため、圧延時の破断が懸念されるために圧延に供することができず、特性評価にまで至らなかった。 Table 2 also shows the results of the above survey. Test results of rail materials produced by the manufacturing method (heating temperature, rolling finish temperature) within the scope of the present invention using compatible steel satisfying the composition of the present invention and CP of 2500 or less (Test No. 1 to No. 1 in Table 2). The fatigue crack propagation rate of 20, ...) Satisfied with the fatigue crack propagation rate da / dN (m / cycle) of 8.0 × 10-8 or less at ΔK = 20 MPa · m 1/2. In addition, the test No. 1 in which the primary cooling and secondary cooling conditions are in a suitable range. In 1 to 20, the fatigue crack propagation speed da / dN (m / cycle) was 8.0 × 10-8 or less, and the fatigue damage life was 8 × 10 5 times or more. On the other hand, in the comparative example (test Nos. 21 to 28 and 30 in Table 2) in which the component composition of the rail material did not satisfy the conditions of the present invention or was not applied to the production method within the scope of the present invention, CP was used. It exceeded 2500 and the fatigue crack propagation velocity da / dN (m / cycle) exceeded 8.0 × 10-8 , or the fatigue damage life was less than 8 × 10 5 times. In Test No. 29, the heating temperature was too high, so that a part of the steel material melted during heating. For this reason, it was not possible to perform rolling because there was a concern about breakage during rolling, and it was not possible to evaluate the characteristics.
 本発明にかかるレールおよびその製造方法によれば、優れた耐疲労き裂伝播特性を有する耐疲労損傷レールを安定して製造することが可能となり、高軸重鉄道用レールの高寿命化や鉄道事故防止に寄与し、産業上有益な効果がもたらされる。 According to the rail and the manufacturing method thereof according to the present invention, it is possible to stably manufacture a fatigue-resistant damage-resistant rail having excellent fatigue-resistant crack propagation characteristics, and it is possible to extend the life of rails for high-axis heavy railways and railways. It contributes to accident prevention and has an industrially beneficial effect.
 1 レール頭部
11 旧オーステナイト粒径観察用試験片採取部
12 ゲージコーナー(GC)部
13 頭頂部
14 耐疲労損傷試験片採取部
15 疲労き裂伝播試験片
16 ノッチ部
17 西原式摩耗試験片
18 タイヤ試験片
21 旧オーステナイト粒
22 塑性域
23 疲労き裂
24 初析セメンタイト
25 へき開破壊
26 疲労き裂伝播速度増加
27 疲労き裂伝播速度低下
 旧オーステナイト粒径
 塑性域寸法
1 Rail head 11 Old austenite particle size observation test piece collection part 12 Gauge corner (GC) part 13 Head top 14 Fatigue damage resistance test piece collection part 15 Fatigue crack propagation test piece 16 Notch part 17 Nishihara type wear test piece 18 Tire test piece 21 Old austenite grain 22 Plastic region 23 Fatigue crack 24 Initialized cementite 25 Fatigue fracture 26 Fatigue crack propagation speed increase 27 Fatigue crack propagation speed decrease RA Old austenite particle size R P Plastic region dimensions

Claims (5)

  1. C:0.80~1.30質量%、Si:0.10~1.20質量%、Mn:0.20~1.80質量%、P:0.035質量%以下、S:0.0005~0.012質量%、Cr:0.20~2.50質量%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、下記(1)式で表されるCPが2500以下であることを特徴とする耐疲労き裂伝播特性に優れるレール。
     CP=X/R  ・・・(1)
     X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)}  ・・・(2)
    ただし、[%Y]:元素Yの含有量(質量%)、
        R  :旧オーステナイト粒径(μm)
    を表す。
    C: 0.80 to 1.30% by mass, Si: 0.10 to 1.20% by mass, Mn: 0.20 to 1.80% by mass, P: 0.035% by mass or less, S: 0.0005 It contains ~ 0.012% by mass, Cr: 0.20 ~ 2.50% by mass, has a component composition in which the balance is composed of Fe and unavoidable impurities, and has a CP represented by the following formula (1) of 2500 or less. A rail with excellent fatigue crack propagation characteristics.
    CP = X / RA ... (1)
    X = {(10 × [% C]) + ([% Si] / 12) + ([% Mn] / 24) + ([% Cr] / 21)} 5 ... (2)
    However, [% Y]: content of element Y (mass%),
    RA : Old austenite particle size (μm)
    Represents.
  2. 前記成分組成が、さらに、V:0.30質量%以下、Cu:1.0質量%以下、Ni:1.0質量%以下、Nb:0.05質量%以下およびMo:2.0質量%以下から選ばれる少なくとも1種を含有することを特徴とする請求項1に記載の耐疲労き裂伝播特性に優れるレール。 Further, the component composition is V: 0.30% by mass or less, Cu: 1.0% by mass or less, Ni: 1.0% by mass or less, Nb: 0.05% by mass or less, and Mo: 2.0% by mass. The rail having excellent fatigue crack propagation characteristics according to claim 1, which contains at least one selected from the following.
  3. 前記成分組成が、さらに、Al:0.07質量%以下、W:1.0質量%以下、B:0.005質量%以下、Ti:0.05質量%以下およびSb:0.05質量%以下から選ばれる少なくとも1種を含有することを特徴とする請求項1または2に記載の耐疲労き裂伝播特性に優れるレール。 The component composition further includes Al: 0.07% by mass or less, W: 1.0% by mass or less, B: 0.005% by mass or less, Ti: 0.05% by mass or less, and Sb: 0.05% by mass. The rail having excellent fatigue crack propagation characteristics according to claim 1 or 2, which contains at least one selected from the following.
  4. 請求項1から3のいずれか1項に記載の成分組成を有する鋼素材に、1350℃以下の加熱を施した後、熱間圧延を施してレールを製造する方法であって、仕上げ温度が900℃以上となるように熱間圧延することを特徴とする耐疲労き裂伝播特性に優れるレールの製造方法。 A method for manufacturing a rail by heating a steel material having the component composition according to any one of claims 1 to 3 to 1350 ° C. or lower and then hot rolling to produce a rail, wherein the finishing temperature is 900. A method for manufacturing a rail having excellent fatigue-resistant crack propagation characteristics, which is characterized by hot rolling to a temperature of ℃ or higher.
  5. 前記熱間圧延後、900℃から750℃までを0.4~3℃/sの範囲の冷却速度で加速冷却し、750℃から400~600℃の冷却停止温度までを1~10℃/sの範囲の冷却速度で加速冷却することを特徴とする請求項4に記載の耐疲労き裂伝播特性に優れるレールの製造方法。 After the hot rolling, acceleration cooling is performed from 900 ° C. to 750 ° C. at a cooling rate in the range of 0.4 to 3 ° C./s, and cooling stop temperature from 750 ° C. to 400 to 600 ° C. is 1 to 10 ° C./s. The method for manufacturing a rail having excellent fatigue crack propagation characteristics according to claim 4, wherein the rail is accelerated and cooled at a cooling rate in the range of.
PCT/JP2021/020871 2020-06-29 2021-06-01 Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same WO2022004247A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202180044681.XA CN115917019A (en) 2020-06-29 2021-06-01 Rail having excellent fatigue crack propagation resistance and method for manufacturing same
JP2021545917A JP7173366B2 (en) 2020-06-29 2021-06-01 RAIL EXCELLENT IN FATIGUE CRACK PROPAGATION RESISTANCE AND PRODUCTION METHOD THEREOF
US18/008,203 US20230279517A1 (en) 2020-06-29 2021-06-01 Rail having excellent fatigue crack propagation resistance characteristics, and method of producing same
CA3186612A CA3186612A1 (en) 2020-06-29 2021-06-01 Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same
BR112022025557A BR112022025557A2 (en) 2020-06-29 2021-06-01 RAIL THAT HAS EXCELLENT CHARACTERISTICS OF RESISTANCE TO THE PROPAGATION OF FATIGUE CRACKING AND MANUFACTURING METHOD
KR1020227038956A KR20220160695A (en) 2020-06-29 2021-06-01 Rail with excellent fatigue crack propagation characteristics and its manufacturing method
AU2021302317A AU2021302317B2 (en) 2020-06-29 2021-06-01 Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same
EP21834151.9A EP4174191A1 (en) 2020-06-29 2021-06-01 Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020111354 2020-06-29
JP2020-111354 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022004247A1 true WO2022004247A1 (en) 2022-01-06

Family

ID=79316006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020871 WO2022004247A1 (en) 2020-06-29 2021-06-01 Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same

Country Status (9)

Country Link
US (1) US20230279517A1 (en)
EP (1) EP4174191A1 (en)
JP (1) JP7173366B2 (en)
KR (1) KR20220160695A (en)
CN (1) CN115917019A (en)
AU (1) AU2021302317B2 (en)
BR (1) BR112022025557A2 (en)
CA (1) CA3186612A1 (en)
WO (1) WO2022004247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7522984B1 (en) 2023-03-24 2024-07-26 Jfeスチール株式会社 Rail and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109439A (en) 1994-10-07 1996-04-30 Nippon Steel Corp Highly wear resistant rail with pearlitic metallic structure
JPH08144016A (en) 1994-11-15 1996-06-04 Nippon Steel Corp Highly wear resisting pearlitic rail
JPH08246100A (en) 1995-03-07 1996-09-24 Nippon Steel Corp Pearlitic rail excellent in wear resistance and its production
JPH08246101A (en) 1995-03-07 1996-09-24 Nippon Steel Corp Pearlitic rail excellent in wear resistance and damage resistance and its production
JP2002069585A (en) 2000-06-14 2002-03-08 Nippon Steel Corp Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacturing method
JP2010185106A (en) 2009-02-12 2010-08-26 Jfe Steel Corp Wear-resistant rail, and method for manufacturing the same
WO2018174095A1 (en) * 2017-03-21 2018-09-27 Jfeスチール株式会社 Rail and method for producing same
WO2019189686A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Rail and method for manufacturing same
US20200017943A1 (en) * 2018-07-10 2020-01-16 Voestalpine Schienen Gmbh Track part made of a hypereutectoid steel
WO2020067520A1 (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Railway wheel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109439A (en) 1994-10-07 1996-04-30 Nippon Steel Corp Highly wear resistant rail with pearlitic metallic structure
JPH08144016A (en) 1994-11-15 1996-06-04 Nippon Steel Corp Highly wear resisting pearlitic rail
JPH08246100A (en) 1995-03-07 1996-09-24 Nippon Steel Corp Pearlitic rail excellent in wear resistance and its production
JPH08246101A (en) 1995-03-07 1996-09-24 Nippon Steel Corp Pearlitic rail excellent in wear resistance and damage resistance and its production
JP2002069585A (en) 2000-06-14 2002-03-08 Nippon Steel Corp Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacturing method
JP2010185106A (en) 2009-02-12 2010-08-26 Jfe Steel Corp Wear-resistant rail, and method for manufacturing the same
WO2018174095A1 (en) * 2017-03-21 2018-09-27 Jfeスチール株式会社 Rail and method for producing same
WO2019189686A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Rail and method for manufacturing same
US20200017943A1 (en) * 2018-07-10 2020-01-16 Voestalpine Schienen Gmbh Track part made of a hypereutectoid steel
WO2020067520A1 (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Railway wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7522984B1 (en) 2023-03-24 2024-07-26 Jfeスチール株式会社 Rail and manufacturing method thereof
JP7522985B1 (en) 2023-03-24 2024-07-26 Jfeスチール株式会社 Rail and manufacturing method thereof

Also Published As

Publication number Publication date
AU2021302317B2 (en) 2023-11-16
BR112022025557A2 (en) 2023-01-31
JP7173366B2 (en) 2022-11-16
CN115917019A (en) 2023-04-04
EP4174191A1 (en) 2023-05-03
AU2021302317A1 (en) 2023-01-19
KR20220160695A (en) 2022-12-06
CA3186612A1 (en) 2022-01-06
US20230279517A1 (en) 2023-09-07
JPWO2022004247A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP4390004B2 (en) Internal high-hardness pearlite steel rail with excellent wear resistance and fatigue damage resistance and method for producing the same
JP5292875B2 (en) Internal high-hardness pearlitic steel rail with excellent wear resistance, fatigue damage resistance and delayed fracture resistance, and manufacturing method thereof
AU2015272889B2 (en) Wheel for railroad car and method for manufacturing wheel for railroad car
JP5282506B2 (en) Internal high hardness type pearlitic steel rail with excellent wear resistance and fatigue damage resistance and method for manufacturing the same
JP6769579B2 (en) Rails and their manufacturing methods
JP6658962B2 (en) Manufacturing method of perlite rail
JP6852761B2 (en) Rails and their manufacturing methods
JP6555447B2 (en) Rail manufacturing method
WO2022004247A1 (en) Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same
JP6822575B2 (en) Rails and their manufacturing methods
JP3832169B2 (en) Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility
JP7063400B2 (en) Rail and its manufacturing method
JP7522985B1 (en) Rail and manufacturing method thereof
JP2021063248A (en) rail

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545917

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227038956

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3186612

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022025557

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202317003628

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021302317

Country of ref document: AU

Date of ref document: 20210601

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022025557

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221214

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021834151

Country of ref document: EP

Effective date: 20230130