JP3832169B2 - Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility - Google Patents

Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility Download PDF

Info

Publication number
JP3832169B2
JP3832169B2 JP37016399A JP37016399A JP3832169B2 JP 3832169 B2 JP3832169 B2 JP 3832169B2 JP 37016399 A JP37016399 A JP 37016399A JP 37016399 A JP37016399 A JP 37016399A JP 3832169 B2 JP3832169 B2 JP 3832169B2
Authority
JP
Japan
Prior art keywords
less
wear resistance
steel
rail
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37016399A
Other languages
Japanese (ja)
Other versions
JP2001181737A (en
Inventor
泰康 横山
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP37016399A priority Critical patent/JP3832169B2/en
Publication of JP2001181737A publication Critical patent/JP2001181737A/en
Application granted granted Critical
Publication of JP3832169B2 publication Critical patent/JP3832169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は貨車重量が重く且つ急曲線が多い海外の鉱山鉄道のような、過酷な高軸荷重条件下で使用されるレールの長寿命化を達成する耐摩耗性と延靭性に優れたパーライト鋼レールに関する。
【0002】
【従来の技術】
鉱石の運搬等を主体とする鉱山鉄道等(いわゆる高軸重鉄道)では貨車の車軸にかかる荷重は客車に比べて遙かに高く、レールの使用環境も過酷なものとなっている。従来、このような環境下で使用されるレールは、耐摩耗性重視の観点から主としてパーライト組織を有する鋼が使用されている。しかし近年においては鉄道輸送の一層の効率化のために貨車への積載重量の更なる増加が進められており、使用されるレールの摩耗量も増加の傾向にある。従って、更なる耐摩耗性向上の観点から、特開平8−109439号公報、特開平8−144016号公報では、炭素量を0.85〜1.20%の過共析鋼として、パーライト組織の耐摩耗性を確保しているセメンタイト組織比率を増加させる工夫がなされている。また、特開平8−246100号公報、特開平8−246101号公報では同じく炭素量を0.85〜1.20%とし、熱処理によってレール頭部のパーライト硬さを高硬度化する工夫がなされている。
【0003】
しかしながら、鉄道に敷設されたレールは夏季には80℃以上の温度になることもあり、逆に冬季には−30℃以下になることもある。このような大きな温度差によりレールには熱膨張、熱収縮に起因する熱応力が発生し、レールの延靭性が乏しい場合にはレールの破断を生じる場合もある。また、近年ではレールの敷設能率を上げるために、レールを溶接したロングレール(長さ200m〜1500m)が多く使用されるようになり、ロングレールの継ぎ目部における熱収縮量は従来に比較して一層大きくなっているので、レールにはより十分な延靭性が求められるようになってきた。
【0004】
従って、上記した炭素量を増大させて耐摩耗性を向上させる手法では延靭性の低下は避けがたく、耐摩耗性と延靭性の両方の特性を向上させることは困難であった。
【0005】
【発明が解決しようとする課題】
本発明はこのような問題に鑑みてなされたもので、従来の亜共析、共析及び過共析型パーライト鋼レールに比べて耐摩耗性と延靭性の両特性に優れたレールの製造方法を提供するものである。
【0006】
【課題を解決するための手段】
上記課題を解決するための本発明の特徴は以下の通りである。
(1)質量%でC:0.75〜0.84%,Si:0.1〜1%,Mn:0.4〜2.5%,P:0.035%以下,S:0.035%以下,Nb:0.06〜0.5%を含有し、残部 Fe および不可避的不純物である鋼を、1100〜1350℃に加熱し、圧延仕上温度が850℃以上、1050℃以下となるように熱間圧延してレール素材を成形し、次いでレール頭部を5℃/s以下の冷却速度で500℃以下の温度まで制御冷却することを特徴とする耐摩耗性と延靭性に優れたパーライト鋼レールの製造方法。
(2)質量%でC:0.75〜0.84%,Si:0.1〜1%,Mn:0.4〜2.5%,P:0.035%以下,S:0.035%以下,Nb:0.06〜0.2%を含有し、残部 Fe および不可避的不純物である鋼を、1100〜1350℃に加熱し、圧延仕上温度が850℃以上、1050℃以下となるように熱間圧延してレール素材を成形し、次いでレール頭部を5℃/s以下の冷却速度で500℃以下の温度まで制御冷却することを特徴とする耐摩耗性と延靭性に優れたパーライト鋼レールの製造方法。
(3)上記(1)又は(2)の製造方法において、質量%でCr:1.5%,Cu:1%以下,Mo:1%以下の1種または2種以上をさらに含有する鋼を熱間圧延することを特徴とする耐摩耗性、延靭性に優れたパーライト鋼レールの製造方法。
(4)上記(1)、(2)又は(3)の製造方法において、質量%で、V:0.2%以下をさらに含有する鋼を熱間圧延することを特徴とする耐摩耗性と延靭性に優れたパーライト鋼レールの製造方法。
【0007】
【発明の実施の形態】
本発明者らは、延靭性に優れるパーライト組織を前提として、合金成分と製造方法を適正化することにより、Nb炭化物等の特殊炭化物を鋼中に微細分散させて、延靭性と耐摩耗性の両方を向上させたレールの製造方法を完成させたものである。
【0008】
以下、本発明の詳細とその限定理由を説明する。まず、本発明が規定する鋼の成分組成について説明する。なお、%は質量%を意味する。
【0009】
C:0.75〜0.84% 。
Cは耐摩耗性を確保するための必須元素であり、添加量の増加に伴い耐摩耗性が向上する。しかし、0.75%未満では従来の熱処理型パーライト鋼レールと比較して優れた耐摩耗性を得ることが難しく、一方、0.85%を超えると熱間圧延後の変態時に初析セメンタイトがγ粒界に生成し延靭性が著しく低下する。従って、C量は0.75〜0.84%の範囲とする。
【0010】
Si:0.1〜1% 。
Siは脱酸材として0.1%以上必要であるが、1%を超えるとSiの有する高い酸素との結合力のために溶接性が劣化する。従って、Si量は0.1〜1%の範囲とする。
【0011】
Mn:0.4〜2.5% 。
Mnはパーライト変態温度を低下させてパーライト組織のラメラー間隔を微細化することにより、レールの高強度化、高延靭性化に寄与する元素である。しかし、0.4%以下では十分な効果が得られず、一方、2.5%を超えると鋼のミクロ偏析によるマルテンサイト組織を生じ易く、熱処理時、溶接時に硬化や脆化を生じ、材質劣化を来すので好ましくない。従って、Mn量は0.4〜2.5%の範囲とする。
【0012】
P :0.035%以下 。
Pは0.035%を超えると靭性を劣化させるので0.035%以下とする。
【0013】
S :0.035%以下 。
Sは主に介在物の形態で鋼中に存在するが、0.035%を超えるとこの介在物量が著しく増加し、材質の劣化を引き起こすので0.035%以下とする。
【0014】
Nb:0.06〜0.5%。
Nbは鋼中のCと結びついて熱間圧延中及び熱間圧延後に炭化物として微細に析出するので、レール頭部の内部まで析出強化により硬度上昇が可能となる。その結果、耐摩耗性を大きく向上させ、レールの長寿命化に大きく寄与する。さらに、炭化物が材料中に微細分散してパーライトコロニーの微細化にも効果を示すため、同一炭素量における延靭性の向上にも非常に有効である。しかし、0.06%以下ではその効果が有効に発揮されず、逆に、0.5%を超えて添加すると溶接性が劣化する。従って、Nb量は0.06〜0.5%の範囲とする。なお、耐摩耗性、延靭性向上の効果、経済性の観点からは0.06〜0.2%の範囲がより好ましい。
【0015】
Cr,Cu,Ni,Moの1種または2種以上を必要に応じて添加できる。
Cr:1.5%以下 。
Crは固溶強化によりさらなる高強度化を図るための元素である。しかし、1.5%を超えるとCrの有する高い酸素との結合力のために溶接性を阻害する要因となるのでCr量は1.5%以下とする(但し、無添加の場合を含む)。
【0016】
Cu:1%以下 。
CuはCrと同様に固溶強化によりさらなる高強度化を図るための元素である。しかし、1%を超えるとCu割れを生じるので、Cu量は1%以下とする(但し、無添加の場合を含む)。
【0017】
Ni:1%以下 。
Niはさらなる靭性向上と固溶強化による高強度化を図るための元素である。またCuと複合添加することによりCu割れを抑制するので、Cuを添加する場合にはNiも添加することが望ましい。しかし1%を超えると強度、靭性向上の効果は飽和するためNi量は1%以下とする(但し、無添加の場合を含む)。
【0018】
Mo:1%以下 。
Moは固溶強化によりさらなる高強度化を図るための元素であるが1%を超えるとベイナイト組織を生じやすくなり、耐摩耗性が低下するのでMo量は1%以下とする(但し、無添加の場合を含む)。
【0019】
さらに、Vを添加することができる。
V :0.2%以下 。
Vは鋼中のCと結びついて熱間圧延中及び熱間圧延後に炭化物として微細に析出するので、レール頭部の内部まで析出強化により硬度上昇が可能となる。その結果、耐摩耗性を大きく向上させ、レールの長寿命化に大きく寄与する。さらに、炭化物が材料中に微細分散してパーライトコロニーの微細化にも効果を示すため、同一炭素量における延靭性の向上にも非常に有効である。しかし、0.2%を超えて添加すると溶接性が劣化する。従って、V量は0.2%以下とする。
【0020】
なお、以上の元素以外に、本発明の効果が損なわれない限度で他の元素を適量含有することは妨げない。また、その他は不可避的不純物元素及び鉄である。
【0021】
次に、本発明の製造条件を説明する。
本発明では、上記成分の鋼を1100〜1350℃に加熱し、圧延仕上温度が850℃以上、1050℃以下となるように熱間圧延してレール素材を成形し、次いでレール頭部を5℃/s以下の冷却速度で500℃以下の温度まで制御冷却する。
【0022】
加熱温度:1100〜1350℃ 。
レールのような複雑な形状に寸法精度良く圧延するためには、加熱温度を高くし、熱間変形抵抗の低い高温(再結晶γ)域で圧延することが望ましいため、加熱温度の下限を1100℃以上とする。一方、1350℃を超える温度で加熱すると、鋼片表面に傷が発生しやすくなり、仕上圧延後のレール表面性状に問題を生じる。従って、加熱温度の上限は1350℃とする。
【0023】
圧延仕上温度:850〜1050℃ 。
圧延仕上温度が低い場合は、未再結晶γ低温域まで圧延を行うこととなり、γ結晶粒に加工歪が導入されるだけでなく、γ結晶粒の伸長度合いも顕著となる。この場合、γ結晶粒界に初析フェライトが生成し、最終的に得られるミクロ組織がフェライトとパーライトの混合組織となり、耐摩耗性が著しく低下する。一方、圧延仕上温度が1050℃を超える場合は、γ結晶粒が粗大になるため最終的に得られるパーライトのコロニーサイズが粗くなり延靭性が低下する。従って、圧延仕上温度は850〜1050℃とする。
【0024】
冷却速度:5℃/s以下。
冷却速度は、5℃/s以下の範囲であれば、均質なパーライト組織が得られ所望の特性が得られる。一方、冷却速度が5℃/sを超えるとマルテンサイト組織が生成し、延靭性が低下する。従って、冷却速度は5℃/s以下とする。
【0025】
冷却停止温度:500℃以下 。
本発明の範囲の化学成分、冷却速度の場合パーライト変態開始温度は、概ね600〜700℃となるので、冷却速度5℃/s以下で均質なパーライト組織を得るためには、冷却停止温度をパーライト変態開始温度以下100℃程度を確保する必要がある。従って冷却停止温度は500℃以下とする。
【0026】
【実施例】
以下に本発明の具体的実施例について説明する。
(実施例1)
表1に示す成分組成を有する供試鋼を1250℃に加熱し、920℃で熱間圧延を終了後、0.5〜3℃/sで500℃以下まで冷却して製造したレールから摩耗試験片、引張試験片、硬さ試験片、衝撃試験片を採取して下記に示す試験条件により評価試験を行った。
表2に評価結果を示す。
【0027】
(摩耗試験)
耐摩耗性に関しては、レールを実際に敷設して評価するのが最も望ましいが、それでは試験に長時間を要するので、短期間で耐摩耗性を評価することができる西原式摩耗試験機を用いて実際のレールと車輪との接触条件をシミュレートした比較試験により評価した。外径30mmの西原式摩耗試験片をレール頭部から採取し、試験環境条件は乾燥状態とし、接触圧力:1.4GPa、滑り率:―10%の条件で10万回転後の摩耗量を測定した。摩耗量の大小を比較するさいに基準となる鋼材として現用のC量0.71%の熱処理型パーライト鋼レールを採用し本鋼種よりも3%以上摩耗量が少ない場合に耐摩耗性が向上したと判定した。
【0028】
(延性評価試験)
ロングレール端部継ぎ目部の熱応力による伸縮に伴う破断を評価する指標として引張試験の全伸びを採用し、ASTM丸棒試験片(平行部径:9mm、ゲージ長さ:36mm)を用いた引張試験において10%以上の伸びが得られる場合はレールの破断は発生しないものと評価した。
【0029】
(硬さ試験)
ビッカース硬度計(荷重10Kgf)を用いてレール頭部より5mm深さでビッカース硬さ(Hv)を測定した。硬さの評価基準値としてはHv=340〜399の範囲を採用した。
尚、伸びと硬さの評価基準値はAREMA(American Railway Engineering and Maintenannce-of-way Associations:北米の鉄道会社が加盟している協会)規格のChapter 4 Railの項(高軸重鉄道向けレール)で規定されている値である。尚、表中でHvはビッカース硬さを表している。
【0030】
(靭性評価試験)
靭性に関しては、北米の寒冷地で使用される場合の要求水準である2mmUノッチ試験片を用いて衝撃試験を−20℃で行った時の吸収エネルギが20J以上を満たせば十分に靭性が優れているものと判断した。
【0031】
【表1】

Figure 0003832169
【0032】
【表2】
Figure 0003832169
【0033】
耐摩耗性の評価は、現状レールとして使用されている鋼種1−29(以下基準材1と呼ぶ)の摩耗量を基準とし、この基準摩耗量に対する各鋼種の摩耗量の増減を%で示した。基準摩耗量に対して3%以上摩耗量が少ない値が得られれば十分耐摩耗性が向上したと判断した。引張試験における伸び値は10%以上を、硬さ試験における値はHv340〜399を評価基準値とした。2mmUノッチ衝撃試験は−20℃で行い、吸収エネルギーで20Jを評価基準値とした。
【0034】
C量が低い鋼種1−1、1−2、1−3,1−21、1−22、1−23、1−24は基準材1と比較して3%以上の摩耗量の減少が認められず、耐摩耗性の向上効果は少なかった。また、本発明よりC量が高い鋼種1−8、1−9、1−10,1−18、1−19はミクロ組織が粗い初析セメンタイトを含んでいるため耐摩耗性は優れるものの延性が低く、引張試験の伸び値は10%未満、衝撃試験の−20℃での吸収エネルギーは20J未満であった。鋼種1−11はSi量が低いため、鋼種1−13はMn量が低いため、鋼種1−14はSi,Mn量が共に低いために耐摩耗性が低下している。また、鋼種1−25はMoが多く、組織がベイナイトとなっているために硬さは評価基準値を満足するが耐摩耗性が低下している。鋼種1−26は、V量が多く、析出物が粗大化するため、耐摩耗性は向上しているものの、延靭性が低下している。これに対して成分組成が本発明の範囲を満たす鋼種1−4,1−5,1−6,1−7,1−12,1−15,1−16,1−17,1−20、1−27,1−28は硬さが上記したAREMA規格で規定されているHv=340〜399の範囲内にあり、且つ、耐摩耗性、延靭性も上記した基準値を満足しておりいずれも優れた特性を示している。
【0035】
図1は鋼種1−1〜1−10の試験結果をもとに耐摩耗性、延性に及ぼすC含有量の影響を示したものである。本発明の範囲であるC含有量:0.75〜0.84%において優れた耐摩耗性、延性が得られることがわかる。
【0036】
(実施例2)
表3に示す成分組成を有する供試鋼を1280℃に加熱し、950℃で熱間圧延を終了後、0.5〜3℃/sで500℃以下まで冷却して製造したレールから摩耗試験片、引張試験片、硬さ試験片、衝撃試験片を採取して実施例1と同様の試験条件により評価試験を行った。
表4に耐摩耗試験、引張試験、硬さ試験、衝撃試験結果を示す。
【0037】
【表3】
Figure 0003832169
【0038】
【表4】
Figure 0003832169
【0039】
図2には鋼種2−1〜2−11の試験結果からNb量と延性の関係を図示した。
表4、図2から明らかなように、Nb含有量が少ない鋼種2−1、2−2は延靭性が不足している。一方Nb含有量が0.05%以上では優れた耐摩耗性と延靭性が得られた。従って、溶接性も考慮してNb含有量は0.05%以上0.5%以下とすることによって優れた耐摩耗性と延靭性、硬さが得られることがわかる。
【0040】
しかし、Nb添加による延靭性の向上効果は0.2%以上では飽和傾向にあるので、合金添加量の経済性も考慮するとNb量は0.05%〜0.2%とするのが好ましい。
【0041】
(実施例3)
表5に示す成分組成の供試鋼を用いて、表6に示した製造条件で製造したレールから摩耗試験片、硬さ試験片、引張試験片、衝撃試験片を採取し、実施例1と同様の試験条件により評価試験を行った。表7にその評価試験結果を示す。
【0042】
【表5】
Figure 0003832169
【0043】
【表6】
Figure 0003832169
【0044】
【表7】
Figure 0003832169
【0045】
鋼種Aは成分組成が本発明の範囲に属する供試鋼であり、鋼種Bは0.71%Cを含有し、現状熱処理レールとして使用されている鋼(以下基準材2と呼ぶ)である。
【0046】
摩耗試験は基準材2の摩耗量を基準とし、この基準摩耗量と鋼種Aの各製造条件によって得られた摩耗量を比較し摩耗量の増減を%で示した。基準摩耗量に対して3%以上摩耗量が少ない値が得られれば十分耐摩耗性が向上したと判断した。引張試験における伸び値は10%以上を、硬さ試験における値はHv340〜399を評価基準値とした。2mmUノッチ衝撃試験は−20℃で行い、吸収エネルギーで20Jを評価基準値とした。
【0047】
No.3-1は、圧延加熱温度が低いために圧延後のレール寸法精度が悪くレール製品として使用できなかった。No.3-2は逆に加熱温度が高すぎて圧延加熱中に鋼片に発生した傷が仕上げ圧延後もレールに残存しレール製品として使用できなかった。
【0048】
No.3-3は圧延仕上げ温度が低いために均質なパーライト組織が得られず耐摩耗性、延性、靭性が低下した。No.3-4は圧延仕上げ温度が高すぎて、ミクロ組織が粗いパーライト組織を呈したために延性が低下した。No.3-5は冷却速度が5℃/sを超えているためミクロ組織はベイナイトとマルテンサイトの混合組織となり耐摩耗性が低下することとなった。No.3-6は冷却停止温度が高すぎて、ミクロ組織がラメラー間隔の細かい均質なパーライト組織が得られないために耐摩耗性、延性、靭性が低下する結果となった。一方、製造条件が全て本発明の特許請求の範囲を満足するNo.3-7, No.3-8,No.3-9,No.3-10, No.3-11は耐摩耗性、延性、靭性とも評価基準値を超える優れた値が得られた。
【0049】
【発明の効果】
本発明によれば、高軸荷重条件下でも使用可能な耐摩耗性、延性に優れたパーライト鋼レールが提供される。
【図面の簡単な説明】
【図1】耐摩耗性、延性とC含有量との関係を示す図
【図2】延性とNb含有量との関係を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention is a pearlite steel excellent in wear resistance and toughness that achieves a long life of a rail used under severe high axial load conditions such as overseas mining railways with heavy freight cars and many sharp curves. For rails.
[0002]
[Prior art]
In mining railways (so-called high-axle heavy railways), which mainly transport ores, etc., the load applied to the axles of freight cars is much higher than that of passenger cars, and the use environment of the rails is also severe. Conventionally, steels having a pearlite structure are mainly used for rails used in such an environment from the viewpoint of emphasizing wear resistance. However, in recent years, in order to further improve the efficiency of railway transportation, the load on the freight cars has been further increased, and the amount of wear on the rails used is also increasing. Therefore, from the viewpoint of further improving the wear resistance, JP-A-8-109439 and JP-A-8-144016 describe a hypereutectoid steel having a carbon content of 0.85 to 1.20% and a pearlite structure. A contrivance has been made to increase the cementite structure ratio that ensures wear resistance. Also, in JP-A-8-246100 and JP-A-8-246101, the amount of carbon is set to 0.85 to 1.20%, and the pearlite hardness of the rail head is increased by heat treatment. Yes.
[0003]
However, rails laid on the railroad may have a temperature of 80 ° C. or higher in summer, and conversely, may be −30 ° C. or lower in winter. Due to such a large temperature difference, thermal stress due to thermal expansion and contraction is generated in the rail, and when the toughness of the rail is poor, the rail may break. In recent years, in order to increase the efficiency of laying rails, long rails (200m to 1500m in length) welded to rails are often used. As it has become even larger, rails have been required to have sufficient ductility.
[0004]
Therefore, it is difficult to reduce the toughness by the above-described method of increasing the carbon content and improving the wear resistance, and it is difficult to improve both the wear resistance and the toughness characteristics.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and a method of manufacturing a rail that is superior in both wear resistance and ductility characteristics compared to conventional hypoeutectoid, eutectoid and hypereutectoid pearlite steel rails. Is to provide.
[0006]
[Means for Solving the Problems]
The features of the present invention for solving the above-described problems are as follows.
(1) By mass % C: 0.75 to 0.84%, Si: 0.1 to 1%, Mn: 0.4 to 2.5%, P: 0.035% or less, S: 0.035 %, Nb: 0.06 to 0.5% , the remaining Fe and the inevitable impurities steel are heated to 1100 to 1350 ° C., so that the rolling finishing temperature is 850 ° C. or more and 1050 ° C. or less. A pearlite excellent in wear resistance and ductility characterized by forming a rail material by hot rolling and then cooling the head of the rail to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or less. Steel rail manufacturing method.
(2) C: 0.75 to 0.84% by mass , Si: 0.1 to 1%, Mn: 0.4 to 2.5%, P: 0.035% or less, S: 0.035 %, Nb: 0.06 to 0.2% contained , the remaining Fe and inevitable impurities steel is heated to 1100 to 1350 ° C. so that the rolling finishing temperature is 850 ° C. or higher and 1050 ° C. or lower. A pearlite excellent in wear resistance and ductility characterized by forming a rail material by hot rolling and then cooling the head of the rail to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or less. Steel rail manufacturing method.
(3) In the production method of (1) or (2), a steel further containing one or more of Cr: 1.5%, Cu: 1% or less, Mo: 1% or less in mass %. A method for producing a pearlitic steel rail excellent in wear resistance and toughness, characterized by hot rolling.
(4) In the manufacturing method of (1), (2) or (3) above, the steel further containing V: 0.2% or less in mass % is hot-rolled, A method for manufacturing pearlitic steel rails with excellent ductility.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Based on the premise of a pearlite structure excellent in ductility, the present inventors finely disperse special carbides such as Nb carbide in the steel by optimizing the alloy components and the manufacturing method, so that the ductility and wear resistance are improved. A rail manufacturing method that improves both is completed.
[0008]
The details of the present invention and the reasons for limitation will be described below. First, the component composition of steel defined by the present invention will be described. In addition,% means the mass %.
[0009]
C: 0.75 to 0.84%.
C is an essential element for ensuring wear resistance, and wear resistance improves as the amount added increases. However, if it is less than 0.75%, it is difficult to obtain excellent wear resistance as compared with the conventional heat-treated pearlite steel rail. On the other hand, if it exceeds 0.85%, pro-eutectoid cementite is not formed during transformation after hot rolling. It is formed at the γ grain boundary and the ductility is significantly reduced. Therefore, the C content is in the range of 0.75 to 0.84%.
[0010]
Si: 0.1 to 1%.
Si needs to be 0.1% or more as a deoxidizing material, but if it exceeds 1%, weldability deteriorates due to the bonding force of Si with high oxygen. Accordingly, the Si amount is in the range of 0.1 to 1%.
[0011]
Mn: 0.4 to 2.5%.
Mn is an element that contributes to increasing the strength and toughness of the rail by reducing the pearlite transformation temperature and reducing the lamellar spacing of the pearlite structure. However, if 0.4% or less, a sufficient effect cannot be obtained. On the other hand, if it exceeds 2.5%, a martensitic structure due to microsegregation of the steel tends to occur, and hardening and embrittlement occur during heat treatment and welding. Since it causes deterioration, it is not preferable. Therefore, the Mn content is in the range of 0.4 to 2.5%.
[0012]
P: 0.035% or less.
If P exceeds 0.035%, the toughness deteriorates, so the content is made 0.035% or less.
[0013]
S: 0.035% or less.
S is present in the steel mainly in the form of inclusions, but if it exceeds 0.035%, the amount of inclusions increases remarkably and causes deterioration of the material, so the content is made 0.035% or less.
[0014]
Nb: 0.06 to 0.5%.
Since Nb is combined with C in the steel and precipitates finely as carbide during and after hot rolling, the hardness can be increased by precipitation strengthening to the inside of the rail head. As a result, the wear resistance is greatly improved, which greatly contributes to the extension of the rail life. Furthermore, since the carbide is finely dispersed in the material and has an effect on refining the pearlite colony, it is very effective for improving the toughness at the same carbon content. However, the effect is not exhibited effectively at 0.06% or less , and conversely, if added over 0.5%, the weldability deteriorates. Therefore, the Nb content is in the range of 0.06 to 0.5%. In addition, the range of 0.06 to 0.2% is more preferable from the viewpoint of wear resistance, the effect of improving toughness, and economical efficiency.
[0015]
One or more of Cr, Cu, Ni, and Mo can be added as necessary.
Cr: 1.5% or less.
Cr is an element for further strengthening by solid solution strengthening. However, if it exceeds 1.5%, it becomes a factor that hinders weldability due to the binding force with high oxygen of Cr, so the Cr amount is 1.5% or less (including the case of no addition). .
[0016]
Cu: 1% or less.
Cu, like Cr, is an element for further strengthening by solid solution strengthening. However, if it exceeds 1%, Cu cracking occurs, so the amount of Cu is 1% or less (including the case of no addition).
[0017]
Ni: 1% or less.
Ni is an element for further improving toughness and increasing strength by solid solution strengthening. Moreover, since Cu cracking is suppressed by complex addition with Cu, it is desirable to add Ni when Cu is added. However, if it exceeds 1%, the effect of improving strength and toughness is saturated, so the Ni content is 1% or less (however, including the case of no addition).
[0018]
Mo: 1% or less.
Mo is an element for further strengthening by solid solution strengthening, but if it exceeds 1%, a bainite structure tends to be formed and the wear resistance is lowered, so the amount of Mo is 1% or less (but not added) Including the case).
[0019]
Furthermore, V can be added.
V: 0.2% or less.
Since V is combined with C in the steel and precipitates finely as carbide during and after hot rolling, the hardness can be increased by precipitation strengthening to the inside of the rail head. As a result, the wear resistance is greatly improved, which greatly contributes to the extension of the rail life. Furthermore, since the carbide is finely dispersed in the material and has an effect on refining the pearlite colony, it is very effective for improving the toughness at the same carbon content. However, if added over 0.2%, weldability deteriorates. Therefore, the V amount is 0.2% or less.
[0020]
In addition to the above elements, it is not prohibited to contain an appropriate amount of other elements as long as the effects of the present invention are not impaired. Others are inevitable impurity elements and iron.
[0021]
Next, the manufacturing conditions of the present invention will be described.
In the present invention, the steel having the above components is heated to 1100 to 1350 ° C., and is hot-rolled so that the rolling finishing temperature is 850 ° C. or higher and 1050 ° C. or lower, and then the rail head is formed at 5 ° C. Controlled cooling to a temperature of 500 ° C. or less at a cooling rate of / s or less.
[0022]
Heating temperature: 1100-1350 ° C.
In order to roll into a complex shape such as a rail with high dimensional accuracy, it is desirable to raise the heating temperature and roll in a high temperature (recrystallization γ) region with low hot deformation resistance, so the lower limit of the heating temperature is 1100. ℃ or more. On the other hand, when heated at a temperature exceeding 1350 ° C., the surface of the steel slab is likely to be damaged, which causes a problem in the rail surface properties after finish rolling. Therefore, the upper limit of the heating temperature is 1350 ° C.
[0023]
Rolling finishing temperature: 850 to 1050 ° C.
When the rolling finishing temperature is low, rolling is performed to a non-recrystallized γ low temperature region, and not only processing strain is introduced into the γ crystal grains, but also the degree of elongation of the γ crystal grains becomes remarkable. In this case, pro-eutectoid ferrite is generated at the γ grain boundary, and the finally obtained microstructure becomes a mixed structure of ferrite and pearlite, and the wear resistance is remarkably lowered. On the other hand, when the rolling finishing temperature exceeds 1050 ° C., the γ crystal grains become coarse, so that the finally obtained pearlite colony size becomes coarse and ductility decreases. Accordingly, the rolling finishing temperature is 850 to 1050 ° C.
[0024]
Cooling rate: 5 ° C./s or less.
When the cooling rate is in the range of 5 ° C./s or less, a homogeneous pearlite structure is obtained and desired characteristics are obtained. On the other hand, when the cooling rate exceeds 5 ° C./s, a martensite structure is generated and ductility is lowered. Therefore, the cooling rate is 5 ° C./s or less.
[0025]
Cooling stop temperature: 500 ° C. or less.
In the case of chemical components and cooling rates within the scope of the present invention, the pearlite transformation start temperature is approximately 600 to 700 ° C. Therefore, in order to obtain a homogeneous pearlite structure at a cooling rate of 5 ° C./s or less, the cooling stop temperature is set to It is necessary to secure about 100 ° C. below the transformation start temperature. Therefore, the cooling stop temperature is set to 500 ° C. or lower.
[0026]
【Example】
Specific examples of the present invention will be described below.
Example 1
The test steel having the composition shown in Table 1 was heated to 1250 ° C, and after hot rolling was completed at 920 ° C, it was cooled to 500 ° C or less at 0.5 to 3 ° C / s, and the abrasion test was performed. A piece, a tensile test piece, a hardness test piece, and an impact test piece were collected and subjected to an evaluation test under the test conditions shown below.
Table 2 shows the evaluation results.
[0027]
(Abrasion test)
As for wear resistance, it is most desirable to evaluate by actually laying the rail. However, since it takes a long time for the test, use a Nishihara type wear tester that can evaluate the wear resistance in a short period of time. The actual contact condition between the rail and the wheel was evaluated by a simulated comparative test. A Nishihara-type wear test piece with an outer diameter of 30 mm was taken from the rail head, the test environment was dry, and the amount of wear after 100,000 revolutions was measured under the conditions of contact pressure: 1.4 GPa and slip rate: -10%. did. When comparing the amount of wear, the heat-treated pearlite steel rail with a C content of 0.71% is adopted as the standard steel material, and the wear resistance is improved when the wear amount is 3% or less than this steel type. It was determined.
[0028]
(Ductility evaluation test)
Tension using ASTM round bar test piece (parallel part diameter: 9mm, gauge length: 36mm), adopting the total elongation of tensile test as an index to evaluate the break due to expansion and contraction due to thermal stress of long rail end seam When elongation of 10% or more was obtained in the test, it was evaluated that no rail breakage occurred.
[0029]
(Hardness test)
Vickers hardness (Hv) was measured at a depth of 5 mm from the rail head using a Vickers hardness meter (load: 10 kgf). As the evaluation standard value of hardness, a range of Hv = 340 to 399 was adopted.
The evaluation standard values for elongation and hardness are the AREMA (American Railway Engineering and Maintenannce-of-way Associations) Standard Chapter 4 Rail section (rails for high-axle railways). This is the value specified in. In the table, Hv represents Vickers hardness.
[0030]
(Toughness evaluation test)
Regarding toughness, the toughness is sufficiently excellent if the absorbed energy when the impact test is performed at −20 ° C. using a 2 mm U notch test piece which is a required level when used in a cold region of North America satisfies 20 J or more. Judged that there is.
[0031]
[Table 1]
Figure 0003832169
[0032]
[Table 2]
Figure 0003832169
[0033]
The evaluation of wear resistance was based on the wear amount of steel type 1-29 (hereinafter referred to as reference material 1) currently used as a rail, and the increase / decrease in the wear amount of each steel type with respect to this reference wear amount was indicated in%. . If a value with a wear amount of 3% or more with respect to the reference wear amount was obtained, it was judged that the wear resistance was sufficiently improved. The elongation value in the tensile test was 10% or more, and the value in the hardness test was Hv 340 to 399. The 2 mm U notch impact test was performed at −20 ° C., and 20 J was used as the evaluation reference value for the absorbed energy.
[0034]
Steel types 1-1, 1-2, 1-3, 1-21, 1-22, 1-23, and 1-24 with low C content showed a 3% or more reduction in wear compared to the reference material 1. However, the effect of improving wear resistance was small. Steel types 1-8, 1-9, 1-10, 1-18, and 1-19, which have a higher C content than the present invention, contain proeutectoid cementite with a rough microstructure, and therefore have excellent wear resistance but are ductile. The elongation value of the tensile test was less than 10%, and the absorbed energy at −20 ° C. of the impact test was less than 20 J. Since steel type 1-11 has a low amount of Si, steel type 1-13 has a low amount of Mn, and steel type 1-14 has a low amount of Si and Mn, so wear resistance is low. Moreover, since steel type 1-25 has many Mo and the structure | tissue is bainite, hardness satisfies the evaluation reference value, However, Abrasion resistance is falling. Steel type 1-26 has a large amount of V, and precipitates are coarsened. Therefore, although wear resistance is improved, ductility is reduced. On the other hand, steel types 1-4, 1-5, 1-6, 1-7, 1-12, 1-15, 1-16, 1-17, 1-20 whose component composition satisfies the scope of the present invention, 1-27 and 1-28 have hardness in the range of Hv = 340 to 399 defined by the above-mentioned AREMA standard, and wear resistance and toughness satisfy the above-mentioned standard values. Also shows excellent properties.
[0035]
FIG. 1 shows the influence of the C content on the wear resistance and ductility based on the test results of steel types 1-1 to 1-10. It can be seen that excellent wear resistance and ductility can be obtained when the C content, which is the range of the present invention: 0.75 to 0.84%.
[0036]
(Example 2)
The test steel having the composition shown in Table 3 was heated to 1280 ° C, and after hot rolling was completed at 950 ° C, it was cooled to 500 ° C or less at 0.5 to 3 ° C / s, and the abrasion test was performed. A piece, a tensile test piece, a hardness test piece, and an impact test piece were collected and subjected to an evaluation test under the same test conditions as in Example 1.
Table 4 shows the results of the abrasion resistance test, tensile test, hardness test, and impact test.
[0037]
[Table 3]
Figure 0003832169
[0038]
[Table 4]
Figure 0003832169
[0039]
FIG. 2 shows the relationship between Nb content and ductility from the test results of steel types 2-1 to 2-11.
As is apparent from Table 4 and FIG. 2, the steel types 2-1 and 2-2 having a low Nb content are insufficient in ductility. On the other hand, when the Nb content was 0.05% or more, excellent wear resistance and ductility were obtained. Therefore, it is understood that excellent wear resistance, toughness and hardness can be obtained when the Nb content is 0.05% or more and 0.5% or less in consideration of weldability.
[0040]
However, since the effect of improving the toughness by adding Nb tends to be saturated at 0.2% or more, the Nb content is preferably 0.05% to 0.2% in consideration of the economy of the alloy addition amount.
[0041]
Example 3
Using test steels having the component compositions shown in Table 5, wear test pieces, hardness test pieces, tensile test pieces, and impact test pieces were collected from the rails manufactured under the manufacturing conditions shown in Table 6. An evaluation test was performed under the same test conditions. Table 7 shows the evaluation test results.
[0042]
[Table 5]
Figure 0003832169
[0043]
[Table 6]
Figure 0003832169
[0044]
[Table 7]
Figure 0003832169
[0045]
Steel type A is a test steel whose composition is within the scope of the present invention, and steel type B contains 0.71% C, and is currently used as a heat-treated rail (hereinafter referred to as reference material 2).
[0046]
The wear test was based on the amount of wear of the reference material 2, and the amount of wear obtained by each production condition of steel type A was compared with the amount of wear in%. If a value with a wear amount of 3% or more with respect to the reference wear amount was obtained, it was judged that the wear resistance was sufficiently improved. The elongation value in the tensile test was 10% or more, and the value in the hardness test was Hv 340 to 399. The 2 mm U notch impact test was performed at −20 ° C., and 20 J was used as the evaluation reference value for the absorbed energy.
[0047]
No. 3-1 could not be used as a rail product due to the low rolling heating temperature, resulting in poor dimensional accuracy after rolling. On the other hand, No. 3-2 was too hot to be used, and the scratches generated on the steel slab during rolling heating remained on the rail after finishing rolling and could not be used as a rail product.
[0048]
No. 3-3 had a low rolling finish temperature, so a homogeneous pearlite structure could not be obtained and the wear resistance, ductility and toughness were reduced. In No. 3-4, the rolling finish temperature was too high, and the microstructure was rough and the pearlite structure was rough. In No. 3-5, the cooling rate exceeded 5 ° C / s, so the microstructure became a mixed structure of bainite and martensite, and the wear resistance was reduced. In No. 3-6, the cooling stop temperature was too high, and a homogeneous pearlite structure with fine lamellar spacing was not obtained, resulting in a decrease in wear resistance, ductility, and toughness. On the other hand, No.3-7, No.3-8, No.3-9, No.3-10, and No.3-11, which all satisfy the claims of the present invention, are wear resistant, Excellent values exceeding the evaluation standard value were obtained for both ductility and toughness.
[0049]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the pearlite steel rail excellent in the abrasion resistance and ductility which can be used also on a high axial load condition is provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between wear resistance, ductility and C content. FIG. 2 is a diagram showing the relationship between ductility and Nb content.

Claims (4)

質量%でC:0.75〜0.84%,Si:0.1〜1%,Mn:0.4〜2.5%,P:0.035%以下,S:0.035%以下,Nb:0.06〜0.5%を含有し、残部 Fe および不可避的不純物である鋼を、1100〜1350℃に加熱し、圧延仕上温度が850℃以上、1050℃以下となるように熱間圧延してレール素材を成形し、次いでレール頭部を5℃/s以下の冷却速度で500℃以下の温度まで制御冷却することを特徴とする耐摩耗性と延靭性に優れたパーライト鋼レールの製造方法。C: 0.75 to 0.84% by mass , Si: 0.1 to 1%, Mn: 0.4 to 2.5%, P: 0.035% or less, S: 0.035% or less, Steel containing Nb: 0.06 to 0.5% , remaining Fe and unavoidable impurities is heated to 1100 to 1350 ° C., and the rolling finish temperature is 850 ° C. or higher and 1050 ° C. or lower. A pearlite steel rail excellent in wear resistance and ductility characterized by rolling to form a rail material and then controlling cooling the rail head to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or less. Production method. 質量%でC:0.75〜0.84%,Si:0.1〜1%,Mn:0.4〜2.5%,P:0.035%以下,S:0.035%以下,Nb:0.06〜0.2%を含有し、残部 Fe および不可避的不純物である鋼を、1100〜1350℃に加熱し、圧延仕上温度が850℃以上、1050℃以下となるように熱間圧延してレール素材を成形し、次いでレール頭部を5℃/s以下の冷却速度で500℃以下の温度まで制御冷却することを特徴とする耐摩耗性と延靭性に優れたパーライト鋼レールの製造方法。C: 0.75 to 0.84% by mass , Si: 0.1 to 1%, Mn: 0.4 to 2.5%, P: 0.035% or less, S: 0.035% or less, Nb: 0.06 to 0.2% contained , the remainder Fe and inevitable impurities steel is heated to 1100 to 1350 ° C., and the rolling finish temperature is 850 ° C. or higher and 1050 ° C. or lower. A pearlite steel rail excellent in wear resistance and ductility characterized by rolling to form a rail material and then controlling cooling the rail head to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or less. Production method. 質量%でCr:1.5%,Cu:1%以下,Mo:1%以下の1種または2種以上をさらに含有する鋼を熱間圧延することを特徴とする請求項1,または2記載の耐摩耗性、延靭性に優れたパーライト鋼レールの製造方法。 3. A steel further containing one or more of Cr: 1.5%, Cu: 1% or less, and Mo: 1% or less in mass % is hot-rolled. Of pearlitic steel rails with excellent wear resistance and ductility. 質量%で、V:0.2%以下をさらに含有する鋼を熱間圧延することを特徴とする請求項1,2又は3記載の耐摩耗性と延靭性に優れたパーライト鋼レールの製造方法。 A method for producing a pearlitic steel rail excellent in wear resistance and toughness according to claim 1, wherein the steel further contains, in mass %, V: 0.2% or less. .
JP37016399A 1999-12-27 1999-12-27 Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility Expired - Fee Related JP3832169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37016399A JP3832169B2 (en) 1999-12-27 1999-12-27 Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37016399A JP3832169B2 (en) 1999-12-27 1999-12-27 Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility

Publications (2)

Publication Number Publication Date
JP2001181737A JP2001181737A (en) 2001-07-03
JP3832169B2 true JP3832169B2 (en) 2006-10-11

Family

ID=18496225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37016399A Expired - Fee Related JP3832169B2 (en) 1999-12-27 1999-12-27 Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility

Country Status (1)

Country Link
JP (1) JP3832169B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401762B2 (en) * 2006-03-16 2014-01-29 Jfeスチール株式会社 High-strength pearlite rail with excellent delayed fracture resistance
CA2645858C (en) * 2006-03-16 2014-05-20 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
JP4390004B2 (en) * 2007-03-28 2009-12-24 Jfeスチール株式会社 Internal high-hardness pearlite steel rail with excellent wear resistance and fatigue damage resistance and method for producing the same
CN113637914A (en) * 2021-08-18 2021-11-12 攀钢集团攀枝花钢铁研究院有限公司 High-strength and high-toughness steel rail and preparation method thereof

Also Published As

Publication number Publication date
JP2001181737A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
WO2008123483A1 (en) Pearlite steel rail of high internal hardness type excellent in wear resistance and fatigue failure resistance and process for production of the same
WO2009047926A1 (en) Pearlite steel rail of high internal hardness type excellent in wear resistance, fatigue failure resistance and delayed fracture resistance and process for production of the same
JP3513427B2 (en) Pearlitic rail excellent in wear resistance and internal fatigue damage resistance, and method of manufacturing the same
JPH09316598A (en) Pearlitic rail, excellent in wear resistance and weldability, and its production
JPH08144016A (en) Highly wear resisting pearlitic rail
JP3445619B2 (en) Rail with excellent wear resistance and internal damage resistance, and method of manufacturing the same
AU2016210110A1 (en) Rail
JPH08246100A (en) Pearlitic rail excellent in wear resistance and its production
JP4964489B2 (en) Method for producing pearlitic rails with excellent wear resistance and ductility
JP6769579B2 (en) Rails and their manufacturing methods
JP4736790B2 (en) High-strength pearlite rail and manufacturing method thereof
EP3821040B1 (en) Track part made of a hypereutectoid steel
JP6852761B2 (en) Rails and their manufacturing methods
JPH10195601A (en) Pearlitic steel rail excellent in wear resistance and internal fatigue fracture resistance and manufacture therefor
JP3832169B2 (en) Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility
JP3267124B2 (en) High-strength rail excellent in delayed fracture resistance, wear resistance and toughness, and a method for manufacturing the same
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail
WO2022004247A1 (en) Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same
JP6822575B2 (en) Rails and their manufacturing methods
JP2000345297A (en) Pearlitic steel pail excellent in wear resistance and ductility
JP2000008142A (en) Pearlitic rail excellent in inside fatigue damage resistance and its production
JP3287495B2 (en) Manufacturing method of bainite steel rail with excellent surface damage resistance
JP4767431B2 (en) Perlite rail with excellent wear resistance and toughness
JP2002088449A (en) Pearlitic rail

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees