JP7173366B2 - RAIL EXCELLENT IN FATIGUE CRACK PROPAGATION RESISTANCE AND PRODUCTION METHOD THEREOF - Google Patents

RAIL EXCELLENT IN FATIGUE CRACK PROPAGATION RESISTANCE AND PRODUCTION METHOD THEREOF Download PDF

Info

Publication number
JP7173366B2
JP7173366B2 JP2021545917A JP2021545917A JP7173366B2 JP 7173366 B2 JP7173366 B2 JP 7173366B2 JP 2021545917 A JP2021545917 A JP 2021545917A JP 2021545917 A JP2021545917 A JP 2021545917A JP 7173366 B2 JP7173366 B2 JP 7173366B2
Authority
JP
Japan
Prior art keywords
less
mass
rail
crack propagation
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021545917A
Other languages
Japanese (ja)
Other versions
JPWO2022004247A1 (en
Inventor
佳祐 安藤
浩文 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2022004247A1 publication Critical patent/JPWO2022004247A1/ja
Application granted granted Critical
Publication of JP7173366B2 publication Critical patent/JP7173366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、レールおよびその製造方法に関し、耐疲労き裂伝播特性を向上させたレールと、そのレールを有利に製造し得るレールの製造方法に関する。 TECHNICAL FIELD The present invention relates to a rail and its manufacturing method, and more particularly to a rail with improved fatigue crack propagation resistance and a rail manufacturing method that can advantageously manufacture the rail.

鉱石の運搬等を主体とする高軸重鉄道では、貨車の車軸にかかる荷重は客車に比べて遥かに高く、レールの使用環境も過酷なものとなっている。このような環境下で使用されるレールは従来から、耐摩耗性重視の観点で主としてパーライト組織を有する鋼が使用されてきた。しかし、近年においては鉄道による輸送の効率化のために貨車への積載重量のさらなる増加が進められており、レールには、一層の耐摩耗性と耐疲労損傷性の向上が求められている。なお、高軸重鉄道とは、列車や貨車の1台の貨車の積載重量の大きい(積載重量がたとえば150トン程度以上の)鉄道である。 In high-axle-load railways mainly used for transportation of ore, etc., the load applied to the axles of freight cars is much higher than that of passenger cars, and the environment in which the rails are used is severe. For rails used in such environments, steel having a pearlite structure has been conventionally used mainly from the viewpoint of wear resistance. However, in recent years, the load weight of freight cars has been increasing in order to improve the efficiency of railroad transportation, and rails are required to have further improvements in wear resistance and fatigue damage resistance. A high-axle-load railway is a railway in which a single freight car of trains and freight cars has a large loading weight (loading weight of about 150 tons or more, for example).

そこで、さらなる耐摩耗性向上を目指して様々な研究が行なわれている。たとえば特許文献1や特許文献2ではC含有量を0.85質量%超え1.20質量%以下に増加している。また、特許文献3や特許文献4ではC含有量を0.85質量%超え1.20質量%以下とするとともにレール頭部に熱処理を施している。これらの技術では、C含有量の増加により、セメンタイト分率を増加させることによって耐摩耗性の向上を図る等の工夫がなされている。 Therefore, various studies have been conducted with the aim of further improving wear resistance. For example, in Patent Documents 1 and 2, the C content is increased from 0.85% by mass to 1.20% by mass or less. Further, in Patent Documents 3 and 4, the C content is set to more than 0.85% by mass and 1.20% by mass or less, and the rail head is subjected to heat treatment. In these techniques, efforts are made to improve wear resistance by increasing the cementite fraction by increasing the C content.

一方、高軸重鉄道の曲線区間のレールには、車輪による転がり応力と遠心力による滑り力が加わるためレールの摩耗がより厳しくなるとともに、滑りに起因した疲労損傷が発生する。そのため、特許文献5ではAl、Siの添加により初析セメンタイト生成を抑制し、耐疲労損傷性を向上させる技術が提案されている。また特許文献6では、パーライトのラメラー間隔を適正範囲に制御することで、疲労き裂伝播速度を低下させる技術が提案されている。 On the other hand, rails in curved sections of high-axle-load railways are subject to rolling stress from wheels and slipping force due to centrifugal force. Therefore, Patent Document 5 proposes a technique for suppressing the formation of proeutectoid cementite by adding Al and Si to improve the fatigue damage resistance. Further, Patent Document 6 proposes a technique for reducing the fatigue crack propagation speed by controlling the lamellar spacing of pearlite within an appropriate range.

特開平8‐109439号公報JP-A-8-109439 特開平8‐144016号公報JP-A-8-144016 特開平8‐246100号公報JP-A-8-246100 特開平8‐246101号公報JP-A-8-246101 特開2002‐69585号公報JP-A-2002-69585 特開2010‐185106号公報JP 2010-185106 A

しかしながら、上記従来の技術には、未だ解決すべき以下のような問題があった。
特許文献1~4に記載の技術のように、単にC含有量を0.85質量%超え1.20質量%以下にすると、熱処理条件によっては初析セメンタイト組織が生成し、また脆いパーライト層状組織のセメンタイト層の量が増加するため、耐疲労損傷性の向上は見込めない。また、特許文献5に記載の技術では、Alの添加により疲労損傷の起点となる酸化物が生成するため、特に疲労き裂の発生を抑制することが困難であった。さらに、特許文献6に記載の技術では、成分と製造条件の組み合わせによっては初析セメンタイト組織が生成する場合があり、結果として疲労き裂伝播速度が増加してしまうため、材質制御が十分であるとは言い難い。
However, the conventional technique described above still has the following problems to be solved.
As in the techniques described in Patent Documents 1 to 4, if the C content is simply set to more than 0.85% by mass and 1.20% by mass or less, a proeutectoid cementite structure is generated depending on the heat treatment conditions, and a brittle pearlite layered structure is generated. Since the amount of cementite layer in the steel increases, no improvement in fatigue damage resistance can be expected. In addition, in the technique described in Patent Document 5, the addition of Al generates oxides that act as starting points for fatigue damage, so it is particularly difficult to suppress the occurrence of fatigue cracks. Furthermore, in the technique described in Patent Document 6, a proeutectoid cementite structure may be generated depending on the combination of components and manufacturing conditions, and as a result, the fatigue crack propagation speed increases, so material control is sufficient. Hard to say.

本発明は上述した問題を有利に解決すべくなされたもので、耐疲労損傷性、特に耐疲労き裂伝播特性に優れるレールをその好ましい製造方法とともに提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to advantageously solve the above-described problems, and to provide a rail excellent in fatigue damage resistance, particularly fatigue crack propagation resistance, together with a preferred manufacturing method thereof.

発明者らは、上記の課題を解決するため、C、Si、MnおよびCrの含有量を変化させたレールを製作し、組織や耐疲労き裂伝播特性を鋭意調査した。その結果、初析セメンタイト量に対応する成分パラメータXおよび旧オーステナイト粒径RからパラメータCPを導出した。そして、パラメータCPを所定範囲に制御することで、仮に初析セメンタイトが多量に存在する場合であっても、優れた耐疲労き裂伝播特性が得られることを見出した。In order to solve the above problems, the inventors produced rails with varying contents of C, Si, Mn and Cr, and diligently investigated their structures and fatigue crack propagation resistance. As a result, the parameter CP was derived from the component parameter X corresponding to the amount of proeutectoid cementite and the prior austenite grain size RA . They also found that by controlling the parameter CP within a predetermined range, excellent fatigue crack propagation resistance can be obtained even if a large amount of proeutectoid cementite is present.

上記課題を解決し、上記の目的を実現するため開発した本発明にかかる耐疲労き裂伝播特性に優れるレールは、C:0.80~1.30質量%、Si:0.10~1.20質量%、Mn:0.20~1.80質量%、P:0.035質量%以下、S:0.0005~0.012質量%、Cr:0.20~2.50質量%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、下記(1)式で表されるCPが2500以下である、ここで、[%Y]は、元素Yの含有量(質量%)であり、Rは、旧オーステナイト粒径(μm)である、ことを特徴とする。
CP=X/R ・・・(1)
X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)} ・・・(2)
The rail excellent in fatigue crack propagation resistance according to the present invention, which has been developed to solve the above problems and achieve the above objects, contains C: 0.80 to 1.30% by mass and Si: 0.10 to 1.0% by mass. 20% by mass, Mn: 0.20 to 1.80% by mass, P: 0.035% by mass or less, S: 0.0005 to 0.012% by mass, Cr: 0.20 to 2.50% by mass The balance has a component composition consisting of Fe and unavoidable impurities, and CP represented by the following formula (1) is 2500 or less, where [% Y] is the content of element Y (% by mass ), and RA is the prior austenite grain size (μm).
CP=X/R A (1)
X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)} 5 (2)

なお、本発明にかかる耐疲労き裂伝播特性に優れるレールについては、
a.前記成分組成が、さらに、V:0.30質量%以下、Cu:1.0質量%以下、Ni:1.0質量%以下、Nb:0.05質量%以下およびMo:2.0質量%以下から選ばれる少なくとも1種を含有すること、
b.前記成分組成が、さらに、Al:0.07質量%以下、W:1.0質量%以下、B:0.005質量%以下、Ti:0.05質量%以下およびSb:0.05質量%以下から選ばれる少なくとも1種を含有すること、
などがより好ましい解決手段になり得るものと考えられる。
Regarding the rail excellent in fatigue crack propagation resistance according to the present invention,
a. The component composition further includes V: 0.30% by mass or less, Cu: 1.0% by mass or less, Ni: 1.0% by mass or less, Nb: 0.05% by mass or less, and Mo: 2.0% by mass. Containing at least one selected from the following,
b. The component composition further includes Al: 0.07% by mass or less, W: 1.0% by mass or less, B: 0.005% by mass or less, Ti: 0.05% by mass or less, and Sb: 0.05% by mass. Containing at least one selected from the following,
etc. is considered to be a more preferable solution.

上記課題を解決し、上記の目的を実現するため開発した本発明にかかる耐疲労き裂伝播特性に優れるレールの製造方法は、上記いずれかの成分組成を有する鋼素材に、1350℃以下の加熱を施した後、熱間圧延を施してレールを製造する方法であって、仕上げ温度が900℃以上となるように熱間圧延することを特徴とする。 A method for manufacturing a rail having excellent fatigue crack propagation resistance according to the present invention, which has been developed to solve the above problems and achieve the above objects, comprises heating a steel material having any of the above chemical compositions to 1350° C. or less. A method of manufacturing a rail by performing hot rolling after subjecting the steel to hot rolling, characterized in that the hot rolling is performed so that the finishing temperature is 900° C. or higher.

なお、本発明にかかる耐疲労き裂伝播特性に優れるレールの製造方法については、前記熱間圧延後、900℃から750℃までを0.4~3℃/sの範囲の冷却速度で加速冷却し、750℃から400~600℃の冷却停止温度までを1~10℃/sの範囲の冷却速度で加速冷却することがより好ましい解決手段になり得るものと考えられる。 Regarding the method for manufacturing a rail having excellent fatigue crack propagation resistance according to the present invention, accelerated cooling from 900 ° C. to 750 ° C. at a cooling rate in the range of 0.4 to 3 ° C./s after the hot rolling. However, it is considered that accelerated cooling from 750° C. to the cooling stop temperature of 400 to 600° C. at a cooling rate in the range of 1 to 10° C./s can be a more preferable solution.

本発明にかかるレールおよびその製造方法によれば、優れた耐疲労き裂伝播特性を有する耐疲労損傷レールを安定して製造することが可能となり、高軸重鉄道用レールの高寿命化や鉄道事故防止に寄与し、産業上有益な効果がもたらされる。
加えて、熱間圧延後の熱処理条件を適正化することで対疲労損傷性を向上させることができるので好ましい。
INDUSTRIAL APPLICABILITY According to the rail and the manufacturing method thereof according to the present invention, it is possible to stably manufacture a fatigue damage resistant rail having excellent fatigue crack propagation resistance, thereby increasing the service life of rails for high axle load railways, It contributes to the prevention of accidents and has industrially beneficial effects.
In addition, by optimizing the heat treatment conditions after hot rolling, the resistance to fatigue damage can be improved, which is preferable.

疲労き裂伝播速度に及ぼす初析セメンタイトの影響を示す模式図であり、(a)は、旧オーステナイト粒径と塑性域寸法がほぼ等しい場合を示し、(b)は旧オーステナイト粒径が塑性域寸法より大きい場合を示す。It is a schematic diagram showing the effect of pro-eutectoid cementite on the fatigue crack propagation rate, (a) shows the case where the prior austenite grain size and the plastic region size are almost equal, and (b) shows the prior austenite grain size in the plastic region. Indicates the case of greater than dimension. 旧オーステナイト粒径観察用の試験片を採取した位置を示す図である。It is a figure which shows the position which sampled the test piece for prior austenite grain size observation. 疲労き裂伝播試験片を採取した位置を示す図である。FIG. 2 is a diagram showing the positions where fatigue crack propagation test pieces were taken; 疲労き裂伝播試験に用いた試験片形状を説明する図であり、(a)は正面図を表し、(b)は側面図を表し、(c)はノッチ部拡大正面図を表す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the test piece shape used for the fatigue crack propagation test, (a) represents a front view, (b) represents a side view, (c) represents a notch part enlarged front view. 耐疲労損傷試験に用いた試験片形状を説明する図であり、(a)は側面図を表し、(b)は正面図を表す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the test piece shape used for the fatigue damage-resistant test, (a) represents a side view, (b) represents a front view. 耐疲労損傷試験片を採取した位置を示す図である。It is a figure which shows the position which extract|collected the fatigue-resistant damage test piece.

以下、本発明の実施の形態について具体的に説明する。まず、本発明において、レール素材となる鋼の成分組成を上記の範囲に限定した理由について説明する。なお、以下の説明における「%」は、特に断らない限り「質量%」を表すものとする。 Embodiments of the present invention will be specifically described below. First, in the present invention, the reasons for limiting the chemical composition of the steel, which is the rail material, to the above range will be explained. Note that "%" in the following description represents "% by mass" unless otherwise specified.

C:0.80~1.30%
Cはパーライト組織の強度すなわち耐疲労損傷性を確保するための必須元素である。しかし、0.80%未満では優れた耐疲労き裂伝播特性を得ることが難しい。また、1.30%を超えると、熱間圧延後の冷却中に多量の初析セメンタイトがオーステナイト粒界に生成し、疲労き裂伝播速度の増加を招く。なお、初析セメンタイトは1.30%以下の場合にも存在するが、後述の関係式に基づき、旧オーステナイト粒径を制御することで、その影響を回避することができる。したがって、C含有量は0.80~1.30%の範囲とする。なお、C含有量の上限は1.00%が好ましく、0.90%がさらに好ましい。
C: 0.80-1.30%
C is an essential element for ensuring the strength of the pearlite structure, that is, the resistance to fatigue damage. However, if it is less than 0.80%, it is difficult to obtain excellent fatigue crack propagation resistance. On the other hand, if it exceeds 1.30%, a large amount of proeutectoid cementite is generated at the austenite grain boundary during cooling after hot rolling, resulting in an increase in fatigue crack propagation speed. Proeutectoid cementite is present even when the content is 1.30% or less, but its influence can be avoided by controlling the prior austenite grain size based on the relational expression described later. Therefore, the C content should be in the range of 0.80 to 1.30%. The upper limit of the C content is preferably 1.00%, more preferably 0.90%.

Si:0.10~1.20%
Siは、脱酸剤としての効果に加え、パーライト平衡変態温度を上昇させ、ラメラー間隔を細かくすることにより、疲労き裂伝播速度の低下に寄与する。そのため0.10%以上必要であるが、1.20%を超えるとSiの有する高い酸素との結合力のため、溶接性が劣化する。さらに、Siは、共析点を低C側へ移動させる作用を有するため、過度の添加は初析セメンタイトの生成を助長し、疲労き裂伝播速度の増加を招く。したがって、Si含有量は0.10~1.20%の範囲とする。なお、Si含有量の下限は0.20%が好ましく、Si含有量の上限は0.80%が好ましく、0.60%がさらに好ましい。
Si: 0.10-1.20%
In addition to its effect as a deoxidizing agent, Si raises the pearlite equilibrium transformation temperature and narrows the lamellar spacing, thereby contributing to the reduction of the fatigue crack propagation speed. Therefore, 0.10% or more is necessary, but if it exceeds 1.20%, weldability deteriorates due to the high bonding strength of Si with oxygen. Furthermore, since Si has the effect of moving the eutectoid point to the low C side, excessive addition promotes the formation of proeutectoid cementite, resulting in an increase in the fatigue crack propagation rate. Therefore, the Si content should be in the range of 0.10 to 1.20%. The lower limit of the Si content is preferably 0.20%, and the upper limit of the Si content is preferably 0.80%, more preferably 0.60%.

Mn:0.20~1.80%
Mnは、パーライト変態温度を低下させてラメラー間隔を細かくすることにより、疲労き裂伝播速度の低下に寄与する。しかしながら、Mn含有量が0.20%未満では、十分な効果が得られない。一方、Mn含有量が1.80%を超えるとマルテンサイト組織を生じ易く、レールの熱処理時および溶接時に硬化や脆化を生じ材質が劣化し易い。さらに、Mnは、共析点を低C側へ移動させる作用を有するため、過度の添加は初析セメンタイトの生成を助長し、疲労き裂伝播速度の増加を招く。したがって、Mn含有量は0.20~1.80%の範囲とする。なお、Mn含有量の下限は0.30%が好ましく、Mn含有量の上限は1.00%が好ましく、0.60%がさらに好ましい。
Mn: 0.20-1.80%
Mn lowers the pearlite transformation temperature and narrows the lamellar spacing, thereby contributing to the reduction of the fatigue crack propagation rate. However, if the Mn content is less than 0.20%, sufficient effects cannot be obtained. On the other hand, if the Mn content exceeds 1.80%, a martensitic structure tends to occur, and hardening and embrittlement occur during heat treatment and welding of the rail, and the material tends to deteriorate. Furthermore, since Mn has the effect of moving the eutectoid point to the low C side, excessive addition promotes the formation of proeutectoid cementite, resulting in an increase in the fatigue crack propagation rate. Therefore, the Mn content should be in the range of 0.20 to 1.80%. The lower limit of the Mn content is preferably 0.30%, and the upper limit of the Mn content is preferably 1.00%, more preferably 0.60%.

P:0.035%以下
0.035%を超えるPの含有は延性を劣化する。したがって、P含有量は0.035%以下とする。好ましくは0.020%以下である。一方、P含有量の下限は特に限定されず0%であってもよいが、工業的には0%超となるのが通例である。なお、P含有量を過度に低下させることは、精錬コストの増加を招くため、経済性の観点からは、P含有量を0.001%以上とすることが好ましい。
P: 0.035% or less A content of P exceeding 0.035% deteriorates ductility. Therefore, the P content should be 0.035% or less. Preferably, it is 0.020% or less. On the other hand, the lower limit of the P content is not particularly limited and may be 0%, but industrially it is usually over 0%. Note that an excessive reduction in the P content leads to an increase in refining costs, so from the viewpoint of economy, the P content is preferably 0.001% or more.

S:0.0005~0.012%
Sは、主にA系介在物の形態(加工によって粘性変形をうけるもの)で鋼中に存在するが、その含有量が0.012%を超えるとこの介在物量が著しく増加し、同時に粗大な介在物を生成するため、鋼材の清浄性が悪化する。また、S含有量を0.0005%未満にすると、精錬コストの増加を招く。したがって、S含有量は0.0005~0.012%の範囲とする。なお、S含有量の上限は0.010%が好ましく、0.008%がさらに好ましい。
S: 0.0005-0.012%
S exists in steel mainly in the form of A-based inclusions (those subject to viscous deformation by working). Since inclusions are generated, the cleanliness of the steel deteriorates. Also, if the S content is less than 0.0005%, the refining cost will increase. Therefore, the S content should be in the range of 0.0005 to 0.012%. The upper limit of the S content is preferably 0.010%, more preferably 0.008%.

Cr:0.20~2.50%
Crは、パーライト平衡変態温度を上昇させ、ラメラー間隔を細かくすることにより、疲労き裂伝播速度の低下に寄与する。しかし、Cr含有量が0.20%未満では、疲労き裂進展を十分に抑制することができず、一方、Cr含有量が2.50%を超えると鋼の焼入れ性が高くなり、マルテンサイトが生成し易くなる。また、マルテンサイトが生成しない条件で製造した場合、旧オーステナイト粒界に初析セメンタイトが生成する。そのため、疲労き裂伝播速度が増加する。したがって、Cr含有量は0.20~2.50%の範囲とする。なお、Cr含有量の下限は0.40%が好ましく、0.50%がさらに好ましく、Cr含有量の上限は1.50%が好ましく、1.00%がさらに好ましい。
Cr: 0.20-2.50%
Cr raises the pearlite equilibrium transformation temperature and refines the lamellar spacing, thereby contributing to the reduction of the fatigue crack propagation rate. However, if the Cr content is less than 0.20%, fatigue crack propagation cannot be sufficiently suppressed, while if the Cr content exceeds 2.50%, the hardenability of the steel increases, and martensite is easier to generate. In addition, when the steel is manufactured under conditions in which martensite is not generated, proeutectoid cementite is generated at the prior austenite grain boundaries. Therefore, the fatigue crack propagation rate increases. Therefore, the Cr content should be in the range of 0.20 to 2.50%. The lower limit of Cr content is preferably 0.40%, more preferably 0.50%, and the upper limit of Cr content is preferably 1.50%, more preferably 1.00%.

さらに本発明では、各々の元素が単に上記の範囲を満足するだけでは不十分で、下記(2)式に示す初析セメンタイト量に対応する成分パラメータXと旧オーステナイト粒径Rから導出された下記(1)式で表されるCP値を2500以下に制御することが重要である。
CP=X/R ・・・(1)
X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)} ・・・(2)
ただし、[%Y]:元素Yの含有量(質量%)、
:旧オーステナイト粒径(μm)
を表す。
Furthermore, in the present invention, it is not sufficient for each element to simply satisfy the above range. It is important to control the CP value represented by the following formula (1) to 2500 or less.
CP=X/R A (1)
X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)} 5 (2)
However, [% Y]: content of element Y (% by mass),
R A : Prior austenite grain size (μm)
represents

発明者らは、初析セメンタイトの存在により疲労き裂伝播速度が増加する原因について調査を行った。その結果、図1(a)の模式図で示すように、疲労き裂23の先端で初析セメンタイト24が先行して脆性的に破壊することが、疲労き裂伝播速度増加26の要因となっているとの知見を得た。さらに、初析セメンタイトの生成量に応じ、当該組織の生成サイトとなる旧オーステナイト粒径を調整することで、疲労き裂先端に形成される塑性域22と初析セメンタイトの遭遇頻度が低下し、脆性的なき裂進展を抑制できることが分かった。具体的には、初析セメンタイトが多量に存在する場合であっても、図1(b)で示すように、き裂先端の塑性域22の大きさよりも旧オーステナイト粒21を十分に粗大化させることで、CP値を2500以下に制御することが可能となる。それにより、前述した疲労き裂伝播速度の抑制効果を安定的に得ることができる。なお、上記CP値は2000以下とすることが好ましい。 The inventors investigated the cause of the increase in fatigue crack propagation rate due to the presence of pro-eutectoid cementite. As a result, as shown in the schematic diagram of FIG. 1( a ), the proeutectoid cementite 24 precedes the brittle fracture at the tip of the fatigue crack 23 , which causes the fatigue crack propagation speed increase 26 . I got the knowledge that Furthermore, by adjusting the grain size of prior austenite, which is the formation site of the structure, according to the amount of pro-eutectoid cementite generated, the frequency of encounter between the plastic region 22 formed at the tip of the fatigue crack and the pro-eutectoid cementite is reduced. It was found that brittle crack propagation can be suppressed. Specifically, even when a large amount of proeutectoid cementite exists, as shown in FIG. This makes it possible to control the CP value to 2500 or less. As a result, the effect of suppressing the fatigue crack propagation rate described above can be stably obtained. The CP value is preferably 2000 or less.

本発明で用いられるレールの成分組成は、以上説明した成分の他に、以下のA群の中から選ばれる少なくとも1種、B群の中から選ばれる少なくとも1種の、いずれかまたは両方を任意に含有していてもよい。
A群:V:0.30%以下、Cu:1.0%以下、Ni:1.0%以下、Nb:0.05%以下およびMo:2.0%以下
B群:Al:0.07%以下、W:1.0%以下、B:0.005%以下、Ti:0.05%以下およびSb:0.05%以下
The component composition of the rail used in the present invention includes, in addition to the components described above, at least one selected from the following group A and at least one selected from the following group B, or both. may be contained in
Group A: V: 0.30% or less, Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.05% or less and Mo: 2.0% or less Group B: Al: 0.07 % or less, W: 1.0% or less, B: 0.005% or less, Ti: 0.05% or less and Sb: 0.05% or less

以下、上記A群およびB群に属する元素の含有量を特定した理由を説明する。
V:0.30%以下
Vは、鋼中で炭窒化物を形成して基地中へ分散析出し、鋼の耐摩耗性を向上させる。しかし、その含有量が、0.30%を超えると、加工性が劣化し、製造コストが増加する。また、V含有量が0.30%を超えると、合金コストが増加するため、内部高硬度型レールのコストが増加する。したがって、Vは、0.30%を上限として含有することが好ましい。なお、上記の耐摩耗性を向上させる効果を発現させるためには、Vは0.001%以上で含有されることが好ましい。なお、V含有量の上限は0.15%がより好ましい。
The reason for specifying the contents of the elements belonging to the above groups A and B will be described below.
V: 0.30% or less V forms carbonitrides in the steel and precipitates dispersedly in the matrix to improve the wear resistance of the steel. However, when the content exceeds 0.30%, workability deteriorates and manufacturing costs increase. Also, if the V content exceeds 0.30%, the cost of the alloy increases, so the cost of the internal high-hardness rail increases. Therefore, V preferably contains 0.30% as the upper limit. In addition, in order to exhibit the above-mentioned effect of improving the wear resistance, V is preferably contained in an amount of 0.001% or more. Note that the upper limit of the V content is more preferably 0.15%.

Cu:1.0%以下
Cuは、Crと同様に固溶強化により鋼の更なる高強度化を図ることができる元素である。ただし、その含有量が1.0%を超えるとCu割れが生じ易くなる。したがって、成分組成にCuを含有する場合は、Cu含有量は1.0%以下とすることが好ましい。なお、Cu含有量の下限は0.005%がより好ましく、Cu含有量の上限は0.5%がより好ましい。
Cu: 1.0% or less Cu, like Cr, is an element capable of further increasing the strength of steel through solid-solution strengthening. However, when the content exceeds 1.0%, Cu cracks are likely to occur. Therefore, when Cu is contained in the component composition, the Cu content is preferably 1.0% or less. The lower limit of Cu content is more preferably 0.005%, and the upper limit of Cu content is more preferably 0.5%.

Ni:1.0%以下
Niは、延性を劣化することなく鋼の高強度化を図ることができる元素である。また、Cuと複合添加することによりCu割れを抑制することができるため、成分組成にCuを含有する場合にはNiも含有することが望ましい。ただし、Ni含有量が1.0%を超えると、鋼の焼入れ性がより上昇し、マルテンサイトやベイナイトの生成量が多くなり、耐摩耗性と耐疲労損傷性が低下しがちとなる。したがって、Niを含有する場合は、Ni含有量は1.0%以下とすることが好ましい。なお、Ni含有量の下限は0.005%がより好ましく、Ni含有量の上限は0.5%がより好ましい。
Ni: 1.0% or less Ni is an element capable of increasing the strength of steel without deteriorating ductility. Moreover, since Cu cracking can be suppressed by adding Cu in combination, it is desirable to also contain Ni when Cu is contained in the composition. However, if the Ni content exceeds 1.0%, the hardenability of the steel increases, the amount of martensite and bainite increases, and wear resistance and fatigue damage resistance tend to decrease. Therefore, when Ni is contained, the Ni content is preferably 1.0% or less. The lower limit of the Ni content is more preferably 0.005%, and the upper limit of the Ni content is more preferably 0.5%.

Nb:0.05%以下
Nbは、レールを成形するための熱間圧延中および熱間圧延後に、鋼中のCと結び付いて炭化物として析出し、パーライトコロニーサイズの微細化に有効に作用する。その結果、耐摩耗性や耐疲労損傷性、延性を大きく向上させ、内部高硬度型レールの長寿命化に大きく寄与する。ただし、Nb含有量が0.05%を超えても、耐摩耗性や耐疲労損傷性の向上効果が飽和し、含有量上昇に見合う効果が得られない。したがって、Nbは、その含有量の上限を0.05%として含有されていてもよい。なお、Nb含有量が0.001%未満では、上記のレールの長寿命化に対して十分な効果が得られにくい。したがって、Nbを含有する場合は、Nb含有量は0.001%以上であることが好ましい。なお、Nb含有量の上限は0.03%がより好ましい。
Nb: 0.05% or less Nb binds with C in steel and precipitates as carbide during and after hot rolling for forming rails, and acts effectively to refine pearlite colony size. As a result, the wear resistance, fatigue damage resistance, and ductility are greatly improved, which greatly contributes to the extension of the service life of the internal high-hardness rail. However, even if the Nb content exceeds 0.05%, the effect of improving wear resistance and fatigue damage resistance is saturated, and the effect corresponding to the increase in content cannot be obtained. Therefore, Nb may be contained with the upper limit of the content being 0.05%. If the Nb content is less than 0.001%, it is difficult to obtain a sufficient effect for extending the life of the rail. Therefore, when Nb is contained, the Nb content is preferably 0.001% or more. Note that the upper limit of the Nb content is more preferably 0.03%.

Mo:2.0%以下
Moは、固溶強化によりさらなる鋼の高強度化を図ることができる元素である。また、Moは、共析点を高C側へ移動させる作用を有するため、初析セメンタイトの生成を抑制する作用も有する。ただし、2.0%を超えると、鋼中に生ずるベイナイト量が多くなり、耐摩耗性が低下する。したがって、レールの成分組成がMoを含有する場合は、Mo含有量は2.0%以下とすることが好ましい。なお、Mo含有量の下限は0.005%がより好ましく、Mo含有量の上限は1.0%がより好ましい。
Mo: 2.0% or less Mo is an element capable of further increasing the strength of steel through solid-solution strengthening. In addition, since Mo has the effect of moving the eutectoid point to the high C side, it also has the effect of suppressing the formation of proeutectoid cementite. However, if it exceeds 2.0%, the amount of bainite generated in the steel increases and wear resistance decreases. Therefore, when the rail composition contains Mo, the Mo content is preferably 2.0% or less. The lower limit of Mo content is more preferably 0.005%, and the upper limit of Mo content is more preferably 1.0%.

Al:0.07%以下
Alは、脱酸剤として添加することができる元素である。しかし、Al含有量が0.07%を超えると、Alの有する高い酸素との結合力のため、鋼中に酸化物系介在物が多量に生成し、その結果、鋼の延性が低下する。そのため、Al含有量は0.07%以下とすることが好ましい。一方、Al含有量の下限は特に限定されないが、脱酸のためには0.001%以上とすることが好ましい。なお、Al含有量の上限は0.03%がより好ましい。
Al: 0.07% or less Al is an element that can be added as a deoxidizing agent. However, when the Al content exceeds 0.07%, a large amount of oxide-based inclusions are formed in the steel due to the high bonding strength of Al with oxygen, resulting in a decrease in ductility of the steel. Therefore, the Al content is preferably 0.07% or less. On the other hand, although the lower limit of the Al content is not particularly limited, it is preferably 0.001% or more for deoxidation. In addition, the upper limit of Al content is more preferably 0.03%.

W:1.0%以下
Wは、レール形状への成形を行う熱間圧延中および熱間圧延後に炭化物として析出し、析出強化によりレールの強度や延性を向上させる。しかし、W含有量が1.0%を超えると鋼中にマルテンサイトが生成し、その結果、延性が低下する。そのため、Wを添加する場合、W含有量を1.0%以下とすることが好ましい。一方、W含有量の下限は特に限定されないが、上記の強度や延性を向上させる作用を発現させるためには0.001%以上とすることが好ましい。なお、W含有量の下限は0.005%がより好ましく、W含有量の上限は0.5%がより好ましい。
W: 1.0% or less W precipitates as carbide during and after hot rolling for shaping into a rail shape, and improves the strength and ductility of the rail by precipitation strengthening. However, if the W content exceeds 1.0%, martensite is formed in the steel, resulting in reduced ductility. Therefore, when adding W, the W content is preferably 1.0% or less. On the other hand, the lower limit of the W content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the effect of improving the strength and ductility. The lower limit of the W content is more preferably 0.005%, and the upper limit of the W content is more preferably 0.5%.

B:0.005%以下
Bは、レール形状への成形を行う熱間圧延中および熱間圧延後に、鋼中で窒化物として析出し、析出強化により鋼の強度や延性を向上させる。しかし、B含有量が0.005%を超えるとマルテンサイトが生成し、その結果、鋼の延性が低下する。そのため、Bを含有する場合、B含有量を0.005%以下とすることが好ましい。一方、B含有量の下限は特に限定されないが、上記の強度や延性を向上させる作用を発現させるためには0.001%以上とすることが好ましい。なお、B含有量の上限は0.003%がより好ましい。
B: 0.005% or less B precipitates as a nitride in steel during and after hot rolling for forming into a rail shape, and improves the strength and ductility of steel by precipitation strengthening. However, when the B content exceeds 0.005%, martensite is formed and as a result the ductility of the steel is reduced. Therefore, when B is contained, the B content is preferably 0.005% or less. On the other hand, the lower limit of the B content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the effect of improving the strength and ductility. Incidentally, the upper limit of the B content is more preferably 0.003%.

Ti:0.05%以下
Tiは、レール形状への成形を行う熱間圧延中および熱間圧延後に炭化物、窒化物あるいは炭窒化物として鋼中で析出し、析出強化により鋼の強度や延性を向上させる。しかし、Ti含有量が0.05%を超えると粗大な炭化物、窒化物あるいは炭窒化物が生成し、その結果、鋼の延性が低下する。そのため、Tiを含有する場合、Ti含有量を0.05%以下とすることが好ましい。一方、Ti含有量の下限は特に限定されないが、上記の強度や延性を向上させる作用を発現させるためには0.001%以上とすることが好ましい。なお、Ti含有量の下限は0.005%がより好ましく、Ti含有量の上限は0.03%がより好ましい。
Ti: 0.05% or less Ti precipitates in the steel as carbides, nitrides or carbonitrides during and after hot rolling for forming into a rail shape, and increases the strength and ductility of the steel by precipitation strengthening. Improve. However, if the Ti content exceeds 0.05%, coarse carbides, nitrides or carbonitrides are formed, resulting in a decrease in ductility of the steel. Therefore, when Ti is contained, the Ti content is preferably 0.05% or less. On the other hand, the lower limit of the Ti content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the effect of improving the strength and ductility. The lower limit of the Ti content is more preferably 0.005%, and the upper limit of the Ti content is more preferably 0.03%.

Sb:0.05%以下
Sbは、熱間圧延前にレール鋼素材を加熱炉で再加熱する際に、その再加熱中の鋼の脱炭を防止するという顕著な効果を有する。しかし、Sb含有量が0.05%を超えると、鋼の延性および靭性に悪影響を及ぼすため、Sbを含有する場合、Sb含有量を0.05%以下とすることが好ましい。一方、Sb含有量の下限は特に限定されないが、脱炭層を軽減する効果を発現させるためには0.001%以上とすることが好ましい。なお、Sb含有量の下限は0.005%がより好ましく、Sb含有量の上限は0.03%がより好ましい。
Sb: 0.05% or less Sb has a remarkable effect of preventing decarburization of the steel during reheating when the rail steel material is reheated in a heating furnace before hot rolling. However, if the Sb content exceeds 0.05%, the ductility and toughness of the steel are adversely affected. On the other hand, the lower limit of the Sb content is not particularly limited, but it is preferably 0.001% or more in order to exhibit the effect of reducing the decarburized layer. The lower limit of the Sb content is more preferably 0.005%, and the upper limit of the Sb content is more preferably 0.03%.

本発明のレールの材料となる鋼素材の成分組成は、以上の成分および残部のFeおよび不可避不純物を含むものである。本発明に係る組成中の残部Feの一部に代えて本発明の作用効果に実質的に影響しない範囲内で他の微量成分元素を含有するものとしたレールも、本発明に属する。ここで、不可避的不純物としては、N、O等が挙げられ、Nは0.008%まで、Oは0.004%まで許容できる。 The chemical composition of the steel material, which is the material for the rail of the present invention, contains the above components, the balance of Fe, and unavoidable impurities. The present invention also includes rails containing other minor constituent elements in place of part of the balance Fe in the composition according to the present invention within a range that does not substantially affect the effects of the present invention. Here, the unavoidable impurities include N, O, etc., and up to 0.008% of N and up to 0.004% of O are permissible.

なお、本発明にかかるレールのミクロ組織における、パーライト以外の組織は特に限定されない。合計面積率で5%以下であれば、耐疲労き裂伝播特性に大きな影響を及ぼさないため、他の組織が存在することが許容される。前記他の組織としては、例えば、フェライト、初析セメンタイト、ベイナイトおよびマルテンサイトが挙げられる。 The structure other than pearlite in the microstructure of the rail according to the present invention is not particularly limited. If the total area ratio is 5% or less, the presence of other structures is allowed because the fatigue crack propagation resistance is not significantly affected. Said other structures include, for example, ferrite, proeutectoid cementite, bainite and martensite.

次に、以上説明した本発明にかかるレールの製造方法について説明する。本発明のレールは、上述した成分組成を有する鋼素材に対して、下記(1)~(3)の処理を順次施すことにより製造することができる。
(1)熱間圧延
(2)一次冷却
(3)二次冷却
レール素材として用いる鋼素材は任意の方法で製造できるが、一般的には、鋳造、特に連続鋳造により前記鋼素材を製造することが好ましい。
Next, a method for manufacturing the rail according to the present invention explained above will be explained. The rail of the present invention can be manufactured by sequentially subjecting a steel material having the chemical composition described above to the following treatments (1) to (3).
(1) Hot rolling (2) Primary cooling (3) Secondary cooling The steel material used as the rail material can be produced by any method, but generally the steel material is produced by casting, particularly continuous casting. is preferred.

(1)熱間圧延
まず、前記鋼素材を熱間圧延してレール形状とする。本発明では、前記熱間圧延における圧延仕上げ温度を制御することにより最終的に得られるレールの旧オーステナイト粒径をコントロールできるため、前記熱間圧延の方法は特に限定されず、任意の方法で行うことができる。
加熱温度:1350℃以下
熱間圧延に先立って施す鋼素材の加熱において、加熱温度は1350℃以下とする必要がある。加熱温度が上限超えでは、過度の昇温によって鋼素材が部分的に溶融し、レール内部に欠陥が発生するおそれがある。一方、加熱温度の下限については特に制限は無いが、圧延時の変形抵抗を低減するため、1150℃以上とすることが好ましい。
(1) Hot Rolling First, the steel material is hot rolled into a rail shape. In the present invention, since the prior austenite grain size of the finally obtained rail can be controlled by controlling the rolling finish temperature in the hot rolling, the method of the hot rolling is not particularly limited, and any method can be used. be able to.
Heating temperature: 1350°C or less In heating the steel material prior to hot rolling, the heating temperature must be 1350°C or less. If the heating temperature exceeds the upper limit, the excessive temperature rise may partially melt the steel material and cause defects inside the rail. On the other hand, the lower limit of the heating temperature is not particularly limited, but is preferably 1150° C. or higher in order to reduce deformation resistance during rolling.

圧延仕上げ温度:900℃以上
上記熱間圧延における圧延仕上げ温度が900℃より低い場合、オーステナイト低温域にて圧延が行われることになり、オーステナイト結晶粒に加工歪が導入されるだけでなく、オーステナイト結晶粒の伸長が顕著となる。オーステナイト粒界面積の増加により初析セメンタイトの核生成サイトが増加し、その結果、耐疲労き裂伝播特性が低下する。そのため、圧延仕上げ温度は900℃以上とする。一方、圧延仕上げ温度の上限については特に制限は無いが、旧オーステナイト粒径が極端に粗大化すると、延性や靭性が低下してしまうため、1050℃以下にすることが好ましい。なお、ここでいう圧延仕上げ温度は、最終圧延ミル入側におけるレール頭部側面の温度であり、放射温度計で測定可能である。
Rolling finishing temperature: 900 ° C. or higher When the rolling finishing temperature in the hot rolling is lower than 900 ° C., rolling is performed in the austenite low temperature region, and not only is processing strain introduced into the austenite crystal grains, but also austenite Elongation of crystal grains becomes remarkable. An increase in the austenite grain boundary area increases the nucleation sites for proeutectoid cementite, resulting in a decrease in fatigue crack propagation resistance. Therefore, the rolling finish temperature is set to 900° C. or higher. On the other hand, there is no particular upper limit for the finishing temperature of rolling, but if the grain size of the prior austenite is excessively coarsened, the ductility and toughness will decrease, so it is preferably 1050° C. or less. The rolling finish temperature referred to here is the temperature of the rail head side surface on the entry side of the final rolling mill, and can be measured with a radiation thermometer.

(2)一次冷却
900℃から750℃までの平均冷却速度:0.4~3℃/s
次に、加速冷却を行う。その際、一次冷却として、初析セメンタイトの生成温度域である900℃から750℃における平均冷却速度が0.4℃/s未満であると、初析セメンタイト量が増加する。そのため、初析セメンタイト組織に割れが発生しやすくなり、レールの耐疲労損傷性が低下するおそれがある。したがって、前記一次冷却の平均冷却速度の下限は0.4℃/sとすることが好ましく、0.7℃/sがより好ましい。一方、前記一次冷却の平均冷却速度が3℃/sを超える場合は、マルテンサイト組織が生成し、延性や耐疲労損傷性が低下するおそれがある。そのため、前記一次冷却の平均冷却速度の上限は3℃/sとすることが好ましく、2℃/sがより好ましい。
(2) Average cooling rate from 900°C to 750°C for primary cooling: 0.4-3°C/s
Next, accelerated cooling is performed. At this time, when the average cooling rate in the primary cooling in the temperature range of 900° C. to 750° C. where pro-eutectoid cementite is generated is less than 0.4° C./s, the amount of pro-eutectoid cementite increases. As a result, cracks are likely to occur in the pro-eutectoid cementite structure, and the fatigue damage resistance of the rail may deteriorate. Therefore, the lower limit of the average cooling rate of the primary cooling is preferably 0.4°C/s, more preferably 0.7°C/s. On the other hand, if the average cooling rate of the primary cooling exceeds 3° C./s, a martensite structure may be generated, and ductility and fatigue damage resistance may be lowered. Therefore, the upper limit of the average cooling rate of the primary cooling is preferably 3°C/s, more preferably 2°C/s.

(3)二次冷却
750℃から400~600℃の温度域までの平均冷却速度:1~10℃/s
上記一次冷却の停止後、二次冷却を行う。二次冷却開始温度である750℃から400~600℃の温度域にある二次冷却の冷却停止温度までの平均冷却速度が1℃/s未満であると、パーライト組織のラメラー間隔が粗くなる。そのため、パーライト組織の硬度が低下して、レールの耐疲労損傷性が低下するおそれがある。加えて、低温域での冷却時間が増大するため生産性が低下し、レールの製造コストが増加するおそれがある。一方、前記二次冷却の平均冷却速度が10℃/sを超える場合は、マルテンサイト組織が生成し、延性や耐疲労損傷性が低下するおそれがある。そのため、前記二次冷却の平均冷却速度は1~10℃/sの範囲とすることが好ましい。なお、前記二次冷却の平均冷却速度の上限は、5℃/sがより好ましい。
(3) Secondary cooling Average cooling rate from 750°C to 400-600°C: 1-10°C/s
After stopping the primary cooling, secondary cooling is performed. When the average cooling rate from the secondary cooling start temperature of 750° C. to the secondary cooling stop temperature in the temperature range of 400 to 600° C. is less than 1° C./s, the lamellar spacing of the pearlite structure becomes rough. As a result, the hardness of the pearlite structure is lowered, and the fatigue damage resistance of the rail may be lowered. In addition, since the cooling time in the low temperature range increases, the productivity may decrease and the manufacturing cost of the rail may increase. On the other hand, if the average cooling rate of the secondary cooling exceeds 10° C./s, a martensite structure may be generated, resulting in deterioration of ductility and fatigue damage resistance. Therefore, the average cooling rate of the secondary cooling is preferably in the range of 1 to 10°C/s. In addition, the upper limit of the average cooling rate of the secondary cooling is more preferably 5°C/s.

なお、上述の一次、二次冷却において、平均冷却速度を決める上での温度は、いずれもレール頭部側面の表面温度であり、放射温度計で測定可能である。ここで、二次冷却時の冷却停止温度は、加速冷却停止後(復熱前)のレール頭部側面の温度を放射温度計で測定した温度とする。 In the primary and secondary cooling described above, the temperature used to determine the average cooling rate is the surface temperature of the side surface of the rail head, which can be measured with a radiation thermometer. Here, the cooling stop temperature during secondary cooling is the temperature obtained by measuring the temperature of the side surface of the rail head after accelerated cooling is stopped (before reheating) with a radiation thermometer.

以下、実施例に従って、本発明の構成および作用効果をより具体的に説明する。しかし、本発明は下記の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲内にて適宜変更することも可能であり、これらは何れも本発明の技術的範囲に含まれる。 Hereinafter, the configuration and effects of the present invention will be described more specifically according to examples. However, the present invention is not limited by the following examples, and can be modified as appropriate within the scope of the gist of the present invention, and any of these are included in the technical scope of the present invention. be

表1に示す成分組成を有する鋼素材について、表2に示す条件で熱間圧延、および熱間圧延後の加速冷却を行なって、レール材を製造した。加速冷却はレール頭部のみに行ない、冷却停止後は放冷した。表2中の圧延仕上げ温度とは、最終圧延ミル入側のレール頭部側面表面の温度を放射温度計で測定した値を圧延仕上げ温度として示している。表2中の冷却停止温度は、二次冷却の冷却停止時のレール頭部側面表層の温度を放射温度計で測定した値を冷却停止温度として示している。冷却速度は、一次冷却および二次冷却について、冷却開始から冷却停止までの間の温度変化を単位時間(秒)あたりに換算して冷却速度(℃/s)とした。 Steel materials having the chemical compositions shown in Table 1 were subjected to hot rolling under the conditions shown in Table 2 and accelerated cooling after hot rolling to produce rail materials. Accelerated cooling was performed only on the rail head, and after the cooling was stopped, it was allowed to cool. The rolling finish temperature in Table 2 indicates the value obtained by measuring the temperature of the rail head side surface on the entry side of the final rolling mill with a radiation thermometer as the rolling finish temperature. The cooling stop temperature in Table 2 indicates the value obtained by measuring the temperature of the rail head side surface layer at the time of cooling stop of the secondary cooling with a radiation thermometer. As for the cooling rate, the cooling rate (°C/s) was obtained by converting the temperature change from the start of cooling to the stop of cooling into a unit time (second) for primary cooling and secondary cooling.

Figure 0007173366000001
Figure 0007173366000001

Figure 0007173366000002
Figure 0007173366000002

Figure 0007173366000003
Figure 0007173366000003

Figure 0007173366000004
Figure 0007173366000004

得られたレールについて、旧オーステナイト粒径R、耐疲労き裂伝播特性ならびに耐疲労損傷性を評価した。以下にそれぞれの評価内容について詳細に説明する。
<旧オーステナイト粒径R
熱間仕上げ圧延後のレール先端部を切断後、該切断材に対して直ちに水冷処理を施した。得られた水冷材に対し、図2に示すレール頭部1の表面から5mm深さ位置の圧延長手方向より、組織観察用の試験片を採取した。得られた試験片に対し、鏡面研磨後γ粒エッチングを施し、光学顕微鏡を用いて200倍の断面観察を行った。旧オーステナイト粒径Rは画像解析ソフトを用いたトレース作業により400個以上の粒径を測定し、その平均値を求めることで評価した。
The obtained rail was evaluated for prior austenite grain size RA , fatigue crack propagation resistance, and fatigue damage resistance. Details of each evaluation are described below.
<Previous austenite grain size RA >
After cutting the tip of the rail after hot finish rolling, the cut material was immediately water-cooled. From the obtained water-cooled material, a test piece for structure observation was taken from the rolling direction at a depth of 5 mm from the surface of the rail head 1 shown in FIG. The obtained test piece was mirror-polished and then subjected to γ-grain etching, and its cross section was observed with an optical microscope at a magnification of 200 times. Prior austenite grain size RA was evaluated by measuring 400 or more grain sizes by tracing work using image analysis software and obtaining the average value.

<耐疲労き裂伝播特性>
図3に示すレール頭頂部とゲージコーナー(GC)部の2箇所から、疲労き裂伝播試験片を採取し、疲労き裂伝播試験を行った。図4は試験片の一例を示す模式図であり、図4(a)は正面図を、図4(b)は側面図を、図4(c)はノッチ部拡大正面図を示す。図4において、試験片は例えば幅W=20mm、高さH=100mm、厚さB=5mmの板状のものであって、高さHの中央H/2部分の一方の幅端にノッチ部が形成されている。ノッチ部の長さL=2mm、幅C=0.2mmであって、ノッチ部の端部は曲率R=0.1mmに形成されている。応力比(R比=最小応力/最大応力)は0.1とし、応力拡大係数ΔK=20MPa・m1/2における、疲労き裂伝播速度da/dN(m/cycle)を測定し、耐疲労亀裂伝播特性を評価した。da/dNの値が8.0×10-8以下であれば、疲労き裂伝播抑止性能があると評価した。
<Fatigue crack propagation resistance>
Fatigue crack propagation test specimens were taken from two locations, the top of the rail and the gauge corner (GC) shown in FIG. 3, and a fatigue crack propagation test was performed. FIG. 4 is a schematic diagram showing an example of a test piece, FIG. 4(a) showing a front view, FIG. 4(b) showing a side view, and FIG. 4(c) showing an enlarged front view of a notch portion. In FIG. 4, the test piece is, for example, a plate having a width of W = 20 mm, a height of H = 100 mm, and a thickness of B = 5 mm. is formed. The length L of the notch portion is 2 mm, the width C is 0.2 mm, and the end portion of the notch portion is formed with a curvature R of 0.1 mm. The stress ratio (R ratio = minimum stress / maximum stress) is 0.1, and the fatigue crack propagation speed da / dN (m / cycle) is measured at the stress intensity factor ΔK = 20 MPa m 1/2 , and the fatigue resistance Crack propagation properties were evaluated. If the value of da/dN was 8.0×10 −8 or less, it was evaluated that there was fatigue crack propagation inhibition performance.

<耐疲労損傷性>
耐疲労損傷性に関しては、レールを実際に敷設して評価するのが最も望ましいが、それでは試験に長時間を要する。そこで、短時間で耐疲労損傷性を評価することができる西原式摩耗試験機を用いた。ここでは、実際のレールと車輪の接触条件をシミュレートした比較試験により耐疲労損傷性を評価した。具体的には、接触面を曲率半径R=15mmの曲面としてレール頭部1から直径30mmの西原式摩耗試験片17を採取し、図5に示すように車輪試験片18と接触させて回転させて試験を行なった。車輪試験片18は、まず、JIS規格E1101:2012に記載の普通レールの頭部から直径32mmの丸棒を採取した。そして、その丸棒に、ビッカース硬さ(荷重98N)がHv390であり、組織が焼戻しマルテンサイト組織となるように熱処理を行った後、直径30mmの円柱状に加工し試験に供した。なお、西原式摩耗試験片17は図6に示すようにレール頭部1の表層の耐疲労損傷試験片採取部14から採取した。図5(a)中の矢印は、それぞれ西原式摩耗試験片17と車輪試験片18の回転方向を示す。試験環境は油潤滑条件とし、接触圧力:1.8GPa、滑り率:-20%、回転速度:600rpm(車輪試験片は750rpm)で、2.5×10回毎に試験片表面を観察し、0.5mm以上の亀裂が発生した時点での回転数をもって、疲労損傷寿命とした。この数値が8×10回以上であれば耐疲労損傷性があると判定した。
<Fatigue damage resistance>
As for fatigue damage resistance, it is most desirable to evaluate by actually laying rails, but it takes a long time to test. Therefore, we used a Nishihara wear tester that can evaluate fatigue damage resistance in a short time. Here, fatigue damage resistance was evaluated by a comparative test simulating actual contact conditions between rails and wheels. Specifically, a Nishihara wear test piece 17 with a diameter of 30 mm was collected from the rail head 1 with the contact surface being a curved surface with a curvature radius R = 15 mm. was tested. For the wheel test piece 18, first, a round bar with a diameter of 32 mm was obtained from the head of a normal rail described in JIS E1101:2012. Then, the round bar was heat-treated so that the Vickers hardness (load 98 N) was Hv390 and the structure was a tempered martensitic structure, and then processed into a cylindrical shape with a diameter of 30 mm and subjected to a test. As shown in FIG. 6, the Nishihara wear test piece 17 was taken from the fatigue damage resistance test piece sampling portion 14 of the surface layer of the rail head 1 . The arrows in FIG. 5(a) indicate the directions of rotation of the Nishihara wear test piece 17 and the wheel test piece 18, respectively. The test environment was oil lubrication conditions, contact pressure: 1.8 GPa, slip ratio: -20%, rotation speed: 600 rpm (wheel test piece: 750 rpm), and the test piece surface was observed every 2.5 × 10 4 times. , and the number of revolutions at which a crack of 0.5 mm or more was generated was taken as the fatigue damage life. When this numerical value was 8×10 5 times or more, it was judged that the fatigue damage resistance was present.

表2に上記調査の結果を併せて示す。本発明の成分組成ならびにCPが2500以下を満足する適合鋼を用い、本発明範囲の製造方法(加熱温度、圧延仕上げ温度)で作製したレール材の試験結果(表2中の試験No.1~20、・・・)の疲労き裂伝播速度はいずれもΔK=20MPa・m1/2における疲労き裂伝播速度da/dN(m/cycle)が8.0×10-8以下を満足した。また、一次冷却および二次冷却条件が好適範囲にある試験No.1~20は、疲労き裂伝播速度da/dN(m/cycle)が8.0×10-8以下、かつ、疲労損傷寿命が8×10回以上のいずれも満足した。一方、レール材の成分組成が本発明の条件を満足しないか、あるいは、本発明範囲の製造方法に適用しなかった比較例(表2中の試験No.21~28、30)は、CPが2500を超えてしまい疲労き裂伝播速度da/dN(m/cycle)が8.0×10-8超えとなるか、または、疲労損傷寿命が8×10回未満にとどまった。なお、試験No.29は、加熱温度が高すぎたため、加熱時に鋼素材の一部が溶融した。このため、圧延時の破断が懸念されるために圧延に供することができず、特性評価にまで至らなかった。Table 2 also shows the results of the above investigation. Test results (Test Nos. 1 to 1 in Table 2) of rail materials manufactured by the manufacturing method (heating temperature, finishing temperature of rolling) within the range of the present invention using compatible steel satisfying the composition of the present invention and CP of 2500 or less. 20, . . . ) satisfied the fatigue crack propagation speed da/dN (m/cycle) at ΔK=20 MPa·m 1/2 of 8.0×10 −8 or less. In addition, test No. 1 in which the primary cooling and secondary cooling conditions were in the suitable range. 1 to 20 satisfied both the fatigue crack propagation speed da/dN (m/cycle) of 8.0×10 −8 or less and the fatigue damage life of 8×10 5 times or more. On the other hand, in comparative examples (Test Nos. 21 to 28 and 30 in Table 2) in which the chemical composition of the rail material did not satisfy the conditions of the present invention, or in which the production method within the scope of the present invention was not applied, CP was It exceeded 2500 and the fatigue crack propagation speed da/dN (m/cycle) exceeded 8.0×10 −8 , or the fatigue damage life remained below 8×10 5 cycles. In Test No. 29, the heating temperature was too high, so part of the steel material melted during heating. For this reason, it was not possible to use it for rolling due to the fear of breakage during rolling, and it was not possible to evaluate the characteristics.

本発明にかかるレールおよびその製造方法によれば、優れた耐疲労き裂伝播特性を有する耐疲労損傷レールを安定して製造することが可能となり、高軸重鉄道用レールの高寿命化や鉄道事故防止に寄与し、産業上有益な効果がもたらされる。 INDUSTRIAL APPLICABILITY According to the rail and the manufacturing method thereof according to the present invention, it is possible to stably manufacture a fatigue damage resistant rail having excellent fatigue crack propagation resistance, thereby increasing the service life of rails for high axle load railways, It contributes to the prevention of accidents and has industrially beneficial effects.

1 レール頭部
11 旧オーステナイト粒径観察用試験片採取部
12 ゲージコーナー(GC)部
13 頭頂部
14 耐疲労損傷試験片採取部
15 疲労き裂伝播試験片
16 ノッチ部
17 西原式摩耗試験片
18 タイヤ試験片
21 旧オーステナイト粒
22 塑性域
23 疲労き裂
24 初析セメンタイト
25 へき開破壊
26 疲労き裂伝播速度増加
27 疲労き裂伝播速度低下
旧オーステナイト粒径
塑性域寸法
1 Rail head 11 Old austenite grain size observation test piece sampling part 12 Gauge corner (GC) part 13 Head top part 14 Fatigue damage resistance test piece sampling part 15 Fatigue crack propagation test piece 16 Notch part 17 Nishihara type wear test piece 18 Tire test piece 21 Prior austenite grain 22 Plastic region 23 Fatigue crack 24 Proeutectoid cementite 25 Cleavage fracture 26 Fatigue crack propagation speed increase 27 Fatigue crack propagation speed decrease RA Prior austenite grain size RP Plastic region dimension

Claims (5)

C:0.80~1.30質量%、Si:0.10~1.20質量%、Mn:0.20~1.80質量%、P:0.035質量%以下、S:0.0005~0.012質量%、Cr:0.20~2.50質量%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、下記(1)式で表されるCPが2500以下であることを特徴とする耐疲労き裂伝播特性に優れるレール。
CP=X/R ・・・(1)
X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)} ・・・(2)
ただし、[%Y]:元素Yの含有量(質量%)、
:旧オーステナイト粒径(μm)
を表す。
C: 0.80 to 1.30% by mass, Si: 0.10 to 1.20% by mass, Mn: 0.20 to 1.80% by mass, P: 0.035% by mass or less, S: 0.0005 ~ 0.012% by mass, Cr: 0.20 to 2.50% by mass, the balance being Fe and unavoidable impurities, CP represented by the following formula (1) is 2500 or less A rail having excellent fatigue crack propagation resistance, characterized by:
CP=X/R A (1)
X={(10×[%C])+([%Si]/12)+([%Mn]/24)+([%Cr]/21)} 5 (2)
However, [% Y]: content of element Y (% by mass),
R A : Prior austenite grain size (μm)
represents
前記成分組成が、さらに、V:0.30質量%以下、Cu:1.0質量%以下、Ni:1.0質量%以下、Nb:0.05質量%以下およびMo:2.0質量%以下から選ばれる少なくとも1種を含有することを特徴とする請求項1に記載の耐疲労き裂伝播特性に優れるレール。 The component composition further includes V: 0.30% by mass or less, Cu: 1.0% by mass or less, Ni: 1.0% by mass or less, Nb: 0.05% by mass or less, and Mo: 2.0% by mass. 2. A rail excellent in fatigue crack propagation resistance according to claim 1, characterized by containing at least one selected from the following. 前記成分組成が、さらに、Al:0.07質量%以下、W:1.0質量%以下、B:0.005質量%以下、Ti:0.05質量%以下およびSb:0.05質量%以下から選ばれる少なくとも1種を含有することを特徴とする請求項1または2に記載の耐疲労き裂伝播特性に優れるレール。 The component composition further includes Al: 0.07% by mass or less, W: 1.0% by mass or less, B: 0.005% by mass or less, Ti: 0.05% by mass or less, and Sb: 0.05% by mass. 3. A rail excellent in fatigue crack propagation resistance according to claim 1 or 2, characterized by containing at least one selected from the following. 請求項1から3のいずれか1項に記載の耐疲労き裂伝播特性に優れるレールの製造方法であって、
前記成分組成を有する鋼素材に、1350℃以下の加熱を施した後、熱間圧延を施してレールを製造するにあたり、仕上げ温度が900℃以上となるように熱間圧延し、前記(1)式で表されるCPを2500以下とすることを特徴とする耐疲労き裂伝播特性に優れるレールの製造方法。
A method for manufacturing a rail having excellent fatigue crack propagation resistance according to any one of claims 1 to 3,
A steel material having the above chemical composition is heated to 1350° C. or less and then hot rolled to manufacture a rail. A method for manufacturing a rail excellent in fatigue crack propagation resistance, characterized in that CP represented by the formula is 2500 or less.
前記熱間圧延後、900℃から750℃までを0.4~3℃/sの範囲の冷却速度で加速冷却し、750℃から400~600℃の冷却停止温度までを1~10℃/sの範囲の冷却速度で加速冷却することを特徴とする請求項4に記載の耐疲労き裂伝播特性に優れるレールの製造方法。 After the hot rolling, accelerated cooling is performed from 900 ° C. to 750 ° C. at a cooling rate in the range of 0.4 to 3 ° C./s, and from 750 ° C. to the cooling stop temperature of 400 to 600 ° C. is 1 to 10 ° C./s. 5. The method of manufacturing a rail having excellent fatigue crack propagation resistance according to claim 4, wherein accelerated cooling is performed at a cooling rate in the range of .
JP2021545917A 2020-06-29 2021-06-01 RAIL EXCELLENT IN FATIGUE CRACK PROPAGATION RESISTANCE AND PRODUCTION METHOD THEREOF Active JP7173366B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020111354 2020-06-29
JP2020111354 2020-06-29
PCT/JP2021/020871 WO2022004247A1 (en) 2020-06-29 2021-06-01 Rail having excellent fatigue crack propagation resistance characteristics, and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2022004247A1 JPWO2022004247A1 (en) 2022-01-06
JP7173366B2 true JP7173366B2 (en) 2022-11-16

Family

ID=79316006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021545917A Active JP7173366B2 (en) 2020-06-29 2021-06-01 RAIL EXCELLENT IN FATIGUE CRACK PROPAGATION RESISTANCE AND PRODUCTION METHOD THEREOF

Country Status (9)

Country Link
US (1) US20230279517A1 (en)
EP (1) EP4174191A1 (en)
JP (1) JP7173366B2 (en)
KR (1) KR20220160695A (en)
CN (1) CN115917019A (en)
AU (1) AU2021302317B2 (en)
BR (1) BR112022025557A2 (en)
CA (1) CA3186612A1 (en)
WO (1) WO2022004247A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185106A (en) 2009-02-12 2010-08-26 Jfe Steel Corp Wear-resistant rail, and method for manufacturing the same
WO2018174095A1 (en) 2017-03-21 2018-09-27 Jfeスチール株式会社 Rail and method for producing same
WO2019189686A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Rail and method for manufacturing same
US20200017943A1 (en) 2018-07-10 2020-01-16 Voestalpine Schienen Gmbh Track part made of a hypereutectoid steel
WO2020067520A1 (en) 2018-09-28 2020-04-02 日本製鉄株式会社 Railway wheel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081116B2 (en) 1994-10-07 2000-08-28 新日本製鐵株式会社 High wear resistant rail with pearlite metal structure
JPH08246100A (en) 1995-03-07 1996-09-24 Nippon Steel Corp Pearlitic rail excellent in wear resistance and its production
JP3078461B2 (en) 1994-11-15 2000-08-21 新日本製鐵株式会社 High wear-resistant perlite rail
JPH08246101A (en) 1995-03-07 1996-09-24 Nippon Steel Corp Pearlitic rail excellent in wear resistance and damage resistance and its production
JP4598265B2 (en) 2000-06-14 2010-12-15 新日本製鐵株式会社 Perlite rail and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185106A (en) 2009-02-12 2010-08-26 Jfe Steel Corp Wear-resistant rail, and method for manufacturing the same
WO2018174095A1 (en) 2017-03-21 2018-09-27 Jfeスチール株式会社 Rail and method for producing same
WO2019189686A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Rail and method for manufacturing same
US20200017943A1 (en) 2018-07-10 2020-01-16 Voestalpine Schienen Gmbh Track part made of a hypereutectoid steel
WO2020067520A1 (en) 2018-09-28 2020-04-02 日本製鉄株式会社 Railway wheel

Also Published As

Publication number Publication date
AU2021302317A1 (en) 2023-01-19
CN115917019A (en) 2023-04-04
WO2022004247A1 (en) 2022-01-06
EP4174191A1 (en) 2023-05-03
AU2021302317B2 (en) 2023-11-16
BR112022025557A2 (en) 2023-01-31
KR20220160695A (en) 2022-12-06
CA3186612A1 (en) 2022-01-06
US20230279517A1 (en) 2023-09-07
JPWO2022004247A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP6210155B2 (en) Rail vehicle wheel and method for manufacturing rail vehicle wheel
JP4390004B2 (en) Internal high-hardness pearlite steel rail with excellent wear resistance and fatigue damage resistance and method for producing the same
JP5292875B2 (en) Internal high-hardness pearlitic steel rail with excellent wear resistance, fatigue damage resistance and delayed fracture resistance, and manufacturing method thereof
JP5282506B2 (en) Internal high hardness type pearlitic steel rail with excellent wear resistance and fatigue damage resistance and method for manufacturing the same
JP7332460B2 (en) perlite rail
JP6769579B2 (en) Rails and their manufacturing methods
JP6852761B2 (en) Rails and their manufacturing methods
JP6555447B2 (en) Rail manufacturing method
JP2008050684A (en) High-strength pearlite steel rail with excellent delayed-fracture resistance
JP2007169727A (en) High-strength pearlitic rail, and its manufacturing method
JP7173366B2 (en) RAIL EXCELLENT IN FATIGUE CRACK PROPAGATION RESISTANCE AND PRODUCTION METHOD THEREOF
JP6822575B2 (en) Rails and their manufacturing methods
JP2021063248A (en) rail
JPH0726348A (en) High strength rail excellent in rolling fatigue damage resistance and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7173366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150