JPH09227943A - Production of high strength rail excellent in ductility and toughness - Google Patents

Production of high strength rail excellent in ductility and toughness

Info

Publication number
JPH09227943A
JPH09227943A JP3678896A JP3678896A JPH09227943A JP H09227943 A JPH09227943 A JP H09227943A JP 3678896 A JP3678896 A JP 3678896A JP 3678896 A JP3678896 A JP 3678896A JP H09227943 A JPH09227943 A JP H09227943A
Authority
JP
Japan
Prior art keywords
rail
toughness
steel
ductility
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3678896A
Other languages
Japanese (ja)
Inventor
Hideaki Kageyama
英明 影山
Shinya Kitamura
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3678896A priority Critical patent/JPH09227943A/en
Publication of JPH09227943A publication Critical patent/JPH09227943A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain the gamma transgranular transformed grain refinement of a rail steel by the use of oxide metallurgy and to improve toughness. SOLUTION: A bloom of a steel, which is prepared by adding one or >=2 deoxidizing elements among Zr, Mn, and Si to a molten steel to perform deoxidizing treatment and further successively adding, supplementarily, Ti-containing Zr, and has a composition consisting of, by mass, 0.55-0.85% C, 0.20-1.20% Si, 0.50-1.50% Mn, 0.002-0.035% S, 0.1-1.0% Cr, 0.001-0.020% Ti resultant from supplementarily added Zr, and the balance iron with inevitable impurities, is hot-rolled into rail. By this method, a high strength rail excellent in toughness and ductility, in which the number of MnS of a size of 0.1-10μm is regulated to (30 to 10000) pieces per mm<2> , is produced. This rail can clear the toughness specification specified by Russian GOST standard.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レール鋼のパーラ
イト組織を微細化して靭性および延性の向上を図った鉄
道用高強度レールの製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength rail for a railway, which has a fine pearlite structure of a rail steel to improve toughness and ductility.

【0002】[0002]

【従来の技術】近年、鉄道輸送は高荷重化、高速化が指
向され、レールに要求される特性がますます厳しくなっ
ている。高荷重鉄道では急曲線区間の摩耗対策、レール
頭部内部疲労損傷対策が要求され、高速鉄道では主とし
て直線区間の表面損傷が課題として挙げられている。こ
れらに加えて、寒冷地においては、冬季にレール破断が
集中的に発生する傾向が認められており、寒冷地鉄道で
のレール材の靭性改善は、安全な鉄道輸送に欠かせない
特性になっている。
2. Description of the Related Art In recent years, railway transportation has been aimed at higher loads and higher speeds, and the characteristics required for rails have become increasingly severe. For heavy-duty railways, measures against wear on sharp curves and internal fatigue damage to rail heads are required. On high-speed railways, surface damage mainly on straight sections is cited as an issue. In addition to these, it is recognized that rail rupture tends to occur intensively in winter in cold regions, and improving the toughness of rail materials in cold region railways is a characteristic that is essential for safe rail transportation. ing.

【0003】また、鉄道輸送の高効率化のために、高速
化および貨物の重積載化が進められているが、これに伴
ってレール頭部の摩耗や疲労損傷が急速に増加しつつあ
る。このようなレール材の使用環境の過酷化特に摩耗の
増加に対処するために、レール鋼の高強度化のための技
術開発が加速され、国内・外を問わず曲線区間のレール
材はほとんどすべて高強度レールが支配することとなっ
た。
Further, in order to improve the efficiency of rail transportation, speeding up and heavy loading of cargo have been promoted, but along with this, wear and fatigue damage of rail heads are rapidly increasing. In order to cope with the harsh environment in which rail materials are used, especially the increase in wear, technological development for increasing the strength of rail steel has been accelerated, and almost all rail materials in curved sections, both in Japan and abroad, are being used. The high-strength rails now dominate.

【0004】しかし、一方ではレール鋼の耐摩耗性の向
上とともに、本来摩耗によって削り取られるべき疲労ダ
メージ層がレール頭表面、特に車輪フランジ付け根部が
押しつけられるゲージ・コーナー(GC)表面に残存
し、表面損傷を生成させる傾向が認められるようになっ
た。さらにレール鋼の耐摩耗性の向上は、車輪荷重のレ
ールGC内部での応力集中を一点に固定させることとな
り、レール頭部内部からの疲労損傷を急増させることと
なった。このようなレール頭表面損傷性の改善および内
部疲労損傷に対する抵抗性を改善するためには、レール
材質として靭性および延性を向上させることが重要であ
る。
On the other hand, on the other hand, as the wear resistance of the rail steel is improved, a fatigue damage layer that should be scraped off due to wear remains on the rail head surface, particularly on the gauge corner (GC) surface against which the wheel flange root is pressed, A tendency to produce surface damage has become apparent. Further, the improvement of the wear resistance of the rail steel means that the stress concentration inside the rail GC due to the wheel load is fixed at one point, and the fatigue damage from the inside of the rail head rapidly increases. In order to improve such rail head surface damage and resistance to internal fatigue damage, it is important to improve the toughness and ductility of the rail material.

【0005】高強度レールの靭性および延性改善の方策
としては以下の方法が考えられる。 (1)普通圧延後一旦室温まで冷却したレール頭部を低
温度で再加熱した後加速冷却する方法。 (2)制御圧延によりオーステナイト粒を微細化した後
レール頭部を加速冷却する方法。 (3)制御圧延した後、パーライト変態前で低温度に再
加熱し、その後加速冷却する方法。
The following methods are considered as measures for improving the toughness and ductility of the high-strength rail. (1) A method in which a rail head that has been once cooled to room temperature after normal rolling is reheated at a low temperature and then accelerated cooling is performed. (2) A method of accelerating and cooling the rail head after refining austenite grains by controlled rolling. (3) A method in which after controlled rolling, it is reheated to a low temperature before pearlite transformation and then accelerated cooling is performed.

【0006】[0006]

【発明が解決しようとする課題】上記方法の(1)で
は、大幅な靭性・延性改善のためには特開昭55−12
5231号公報に記載されているような通常の加熱温度
よりも低い850℃以下の低温度に再加熱し、オーステ
ナイト粒度を微細にすることによって靭性および延性を
改善しようとするもので、低温度で加熱してかつレール
頭部内部まで加熱を深めようとすると、投入熱量を下げ
て長時間加熱する必要がある。このため熱処理生産性を
著しく阻害し製造コストを高める難点がある。また、
(2)の方法は特開昭52−138427号公報および
特開昭52−138428号公報に記載されているよう
に、圧延時のオーステナイト粒の細粒化によって靭性・
延性の向上を図ろうとすると、高温での大圧下が要求さ
れ、レール圧延機の能力あるいはレールの形状制御の観
点からも問題を含んでいる。さらに(3)の方法は、特
公平4−4371号公報に記載されているように、80
0℃以下で5%以上の圧延を実施した後、再度750〜
900℃に加熱することによりオーステナイト粒を微細
にしようとする方法であり、圧延後に低温再加熱のため
の加熱炉を必要とするため作業性、生産性、製造コスト
の観点から問題が多い。
In the above method (1), in order to improve the toughness and ductility to a great extent, JP-A-55-12 is used.
Reheating to a low temperature of 850 ° C. or lower, which is lower than the normal heating temperature as described in Japanese Patent No. 5231, attempts to improve toughness and ductility by making the austenite grain size fine. When heating and deepening the heating to the inside of the rail head, it is necessary to lower the amount of heat input and heat for a long time. Therefore, there is a problem that heat treatment productivity is significantly impaired and manufacturing cost is increased. Also,
As described in JP-A-52-138427 and JP-A-52-138428, the method (2) is toughness due to austenite grain refinement during rolling.
In order to improve the ductility, a large reduction at high temperature is required, which causes a problem from the viewpoint of rail rolling mill capacity or rail shape control. Furthermore, the method (3) is described in Japanese Patent Publication No.
After rolling 5% or more at 0 ° C. or less, 750 to 750 again
This is a method in which the austenite grains are made fine by heating at 900 ° C., and since a heating furnace for low-temperature reheating after rolling is required, there are many problems from the viewpoint of workability, productivity, and manufacturing cost.

【0007】さらに、従来のレール溶鋼の脱酸方法とし
ては、Mn,Siの他にAlを加えた脱酸を行ってきた
が、Alの添加によりアルミナ(Al2 3 )が初めに
生成してしまい、MnSの生成核として有効なマンガン
シリケート(MnO・SiO2 )の生成が阻害され、M
nSからの十分なパーライト核生成が生じないことによ
りパーライト組織の微細化が達成できない問題点があっ
た。また、過度のAlの添加により粗大な介在物の1種
であるアルミナ・クラスターが生成し、レール頭部内部
からの疲労破壊の起点となるため、Alによる脱酸は極
力避ける方向にある。
Further, as a conventional deoxidizing method for molten steel for rails, deoxidizing by adding Al in addition to Mn and Si has been carried out, but alumina (Al 2 O 3 ) is first formed by adding Al. As a result, the production of manganese silicate (MnO.SiO 2 ) which is effective as a nucleus for producing MnS is hindered, and M
There was a problem that the fine pearlite structure could not be achieved because sufficient pearlite nucleation from nS did not occur. Further, since excessive addition of Al produces alumina clusters, which are one kind of coarse inclusions, and serves as the starting point of fatigue fracture from inside the rail head, deoxidation by Al tends to be avoided as much as possible.

【0008】[0008]

【課題を解決するための手段】本発明は上記の発明とは
根本的に異なり、溶鋼にZr,Mn,Siの脱酸元素を
1種または2種以上添加して脱酸処理を施し、さらに引
き続いてTiを含むZrを追加添加した、C:0.55
〜0.85%、Si:0.20〜1.20%、Mn:
0.50〜1.50%、S:0.002〜0.035
%、Cr:0.1〜1.0%および追加Zrによっても
たらされるTi:0.001〜0.020%を含有し、
残部が鉄および不可避的不純物からなる鋼片を、熱間圧
延加工して0.1〜10μmの大きさのMnS個数がレ
ール鋼中の1mm2 あたり30〜10000個存在するこ
とを特徴とする靭性および延性に優れた高強度レールで
ある。さらに、本発明においては、上記熱延後、或いは
オーステナイト域に加熱後700〜500℃の間を1〜
5℃/secで加速冷却する方法も採用できる。
The present invention is fundamentally different from the above-mentioned invention, and one or more deoxidizing elements of Zr, Mn, and Si are added to molten steel to perform deoxidizing treatment. Subsequently, Zr containing Ti was additionally added, C: 0.55
~ 0.85%, Si: 0.20 to 1.20%, Mn:
0.50 to 1.50%, S: 0.002 to 0.035
%, Cr: 0.1-1.0% and Ti provided by additional Zr: 0.001-0.020%,
A steel slab having the balance of iron and unavoidable impurities is hot-rolled, and the number of MnS having a size of 0.1 to 10 μm is 30 to 10,000 per 1 mm 2 in the rail steel. It is a high strength rail with excellent ductility. Further, in the present invention, after the hot rolling or after heating to the austenite region, the temperature between 700 and 500 ° C.
A method of accelerated cooling at 5 ° C / sec can also be adopted.

【0009】本発明では、従来オーステナイト粒界のみ
からしか生成しないといわれていたパーライト変態を、
オーステナイト粒内のMnSからもパーライト変態の核
の役割を担わせ、オーステナイト粒内からもパーライト
変態を生成させることを特徴としており、Zr,Mn,
Siの脱酸元素を1種または2種以上添加して十分な脱
酸を行った後、引き続くZrの添加によりパーライト組
織生成核であるMnSをオーステナイト粒内に微細に分
散させ、さらにZr中に含まれているTiがMnS上に
析出し、粒界から変態するパーライトに加えて、オース
テナイト粒内のMnSの生成核をよりいっそう促進させ
ることが可能となった。この発明により、粒内から効率
良く生成したパーライトによって著しく組織が微細化
し、これにともなって大幅な靭性および延性の改善を図
ることができる。
In the present invention, the pearlite transformation, which was conventionally said to be generated only from the austenite grain boundaries,
The feature is that MnS in the austenite grains also plays a role of nuclei for pearlite transformation, and pearlite transformation is generated also in the austenite grains.
After one or more kinds of Si deoxidizing elements are added for sufficient deoxidation, MnS, which is a pearlite structure forming nucleus, is finely dispersed in the austenite grains by the subsequent addition of Zr. The contained Ti precipitates on MnS, and in addition to the pearlite transformed from the grain boundary, it becomes possible to further promote the nucleation of MnS in the austenite grains. According to the present invention, the structure is remarkably refined by the pearlite efficiently generated from the inside of the grain, and accordingly, the toughness and the ductility can be greatly improved.

【0010】[0010]

【発明の実施の形態】以下に本発明について詳細に説明
する。本発明における脱酸の目的は、Zr,Mn,Si
の脱酸元素を1種または2種以上添加して脱酸処理を施
すことによって溶鋼中の酸素量をできるだけ低減化する
ところにあり、追加的に添加するZrによってMnSの
核となる酸化物を有効に微細分散させることを目的と
し、脱酸時に添加されるZr中のTiはZrとともに浮
上してしまうが、追加添加されたZr中のTiは炭窒化
物を生成させてそのまま溶鋼中に留まり、やがてMnS
上に析出してパーライトの変態核として作用させる。こ
のとき追加添加されたZrは酸化物を形成して微細に溶
鋼中に分散し、MnSの核として作用する。すなわち、
脱酸剤としてZr,Mn,Siの脱酸元素を1種または
2種以上添加し、溶鋼中の酸素量を50ppm 以下にし、
Tiを微量含有するZrを他の合金元素とともに追加添
加することによって、Zr中に含まれる微量なTiが酸
化物を作ることなしに効率的に炭窒化物を生成させるこ
とを目的としている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The purpose of deoxidation in the present invention is to make Zr, Mn, Si
The oxygen content in the molten steel is reduced as much as possible by adding one or more kinds of deoxidizing element of No. 2 to perform deoxidizing treatment. Ti in Zr added during deoxidation floats with Zr for the purpose of effectively finely dispersing, but Ti in Zr added additionally remains in molten steel as it is, forming carbonitrides. , Eventually MnS
It precipitates on the surface and acts as a transformation nucleus of pearlite. At this time, Zr additionally added forms an oxide and finely disperses in the molten steel, and acts as nuclei of MnS. That is,
Add one or more deoxidizing elements of Zr, Mn and Si as deoxidizing agents to reduce the amount of oxygen in molten steel to 50 ppm or less,
By additionally adding Zr containing a small amount of Ti together with other alloy elements, it is intended to efficiently generate a carbonitride without forming an oxide by a small amount of Ti contained in Zr.

【0011】ここで、Tiの炭窒化物を効率的に生成さ
せるためには、0.03〜0.3%のTiを含有するZ
rを溶鋼中に0.1〜0.5%追加添加するのが望まし
い。Zr中のTi含有量が0.03%未満あるいは前記
Zrの溶鋼中への添加量が0.1%未満では、MnSに
析出するTi量が確保できず、パーライト変態の核が十
分生成しにくい。またZr中のTi含有量が0.3%を
超えるとあるいは前記Zrの溶鋼中への添加量が0.5
%を超えると、生成するTiNが粗大化してレール疲労
損傷の起点となりやすい。この際、直接的に脱酸後にT
iを添加しない理由は、Tiを多量に添加することによ
って生成するTiNなどの析出物が、レール敷設使用時
にレール頭部内部から生成する疲労き裂の起点として有
害な析出物を生成させるからである。これに対して追加
的に添加されたZr中のTiは、微量かつ効率的にMn
S上に析出する特徴を持っており有害なほど粗大化しな
いことが確認されている。
Here, in order to efficiently generate a carbonitride of Ti, Z containing 0.03 to 0.3% of Ti is used.
It is desirable to add 0.1 to 0.5% of r to the molten steel. If the Ti content in Zr is less than 0.03% or the amount of Zr added to the molten steel is less than 0.1%, the amount of Ti precipitated in MnS cannot be secured, and nuclei for pearlite transformation are not sufficiently generated. . Further, when the Ti content in Zr exceeds 0.3%, or the amount of Zr added to the molten steel is 0.5.
%, The generated TiN tends to be coarse and tends to be the starting point of rail fatigue damage. At this time, after directly deoxidizing, T
The reason why i is not added is that precipitates such as TiN generated by adding a large amount of Ti generate harmful precipitates as the starting point of fatigue cracks generated from inside the rail head when the rail is laid. is there. On the other hand, Ti in Zr added additionally has a small amount of Mn efficiently.
It has been confirmed that it has a feature of depositing on S and does not coarsen to a detrimental degree.

【0012】次に脱酸後の0.1〜10μmのMnS個
数を1mm2 あたり30〜10000個に限定した理由を
述べる。Zr,Mn,Siの脱酸元素を1種または2種
以上添加することによって溶鋼中の酸素量をできるだけ
低減し、十分な酸素の低減により溶鋼中の酸化物の粗大
化を防止し、追加添加するZrによって微細な酸化物が
生成し、この酸化物を核としてMnSがオーステナイト
中に微細分散し、さらにこのMnSを核として追加添加
したZr中に含まれるTiから炭窒化物Ti(CN)が
生成する。このオーステナイト粒内のMnSを核とした
Ti析出物からパーライト変態が生成するわけである
が、この際0.1μm以下の大きさのMnSでは、Ti
炭窒化物の核とはなりがたく、また10μm以上のMn
Sを生成させると、MnSの絶対数が減少してしまい、
結果的にパーライトの核となるMnSの数が減少してし
まうため、MnSの個数を0.1〜10μmに限定し
た。また、MnSの個数を1mm2あたり30〜1000
0個に限定しした理由は、30個以下のMnSでは靭性
・延性を改善するための十分な核生成サイトを確保でき
ないからであり、また10000個以上のMnSが生成
するとレール鋼自体が汚染されてかえって靭性・延性が
低下することから、1mm2 あたりのMnS個数を30〜
10000個に限定した。
Next, the reason why the number of MnS of 0.1 to 10 μm after deoxidation is limited to 30 to 10,000 per 1 mm 2 will be described. By adding one or more deoxidizing elements of Zr, Mn, and Si, the amount of oxygen in molten steel can be reduced as much as possible, and by sufficiently reducing oxygen, coarsening of oxides in molten steel can be prevented and additional addition can be made. A fine oxide is generated by Zr, and MnS is finely dispersed in austenite with this oxide as a nucleus. Further, carbonitride Ti (CN) is converted from Ti contained in Zr additionally added with this MnS as a nucleus. To generate. The pearlite transformation is generated from the Ti precipitates having MnS in the austenite grains as nuclei. At this time, in MnS having a size of 0.1 μm or less, Ti
It is difficult to form carbonitride nuclei and has Mn of 10 μm or more.
When S is generated, the absolute number of MnS decreases,
As a result, the number of MnS, which is the core of pearlite, decreases, so the number of MnS was limited to 0.1 to 10 μm. Further, the number of MnS is 30 to 1000 per 1 mm 2 .
The reason for limiting the number to 0 is that 30 or less MnS cannot secure sufficient nucleation sites for improving toughness and ductility, and if 10000 or more MnS is generated, the rail steel itself is contaminated. On the contrary, since the toughness and ductility decrease, the number of MnS per 1 mm 2 is 30 to
Limited to 10,000.

【0013】次に、上記脱酸を行い、Zrを追加添加し
て得た鋼片の化学成分を前記のように限定した理由につ
いて述べる。Cは高強度化およびパーライト組織生成の
ための必須元素であり、また耐摩耗性に対しても一義的
に効果を示す元素であるが0.55%未満ではオーステ
ナイト粒界に耐摩耗性および耐損傷性に好ましくない初
析フェライトが多量に生成し、また0.85%を超える
とオーステナイト粒界を脆化させる有害な初析セメンタ
イトを生成させるばかりか、レール頭部熱処理層や溶接
部の微小偏析部にマルテンサイトが生成し、靭性・延性
を著しく損なうため0.55〜0.85%に限定した。
Next, the reason why the chemical composition of the steel slab obtained by deoxidizing and additionally adding Zr is limited as described above will be described. C is an essential element for strengthening and forming a pearlite structure, and is an element that also has a unique effect on wear resistance, but if it is less than 0.55%, wear resistance and resistance to austenite grain boundaries are obtained. A large amount of proeutectoid ferrite, which is unfavorable to damage, is generated, and when it exceeds 0.85%, not only harmful proeutectoid cementite that embrittles the austenite grain boundaries is generated, but also minute amounts of rail head heat treatment layers and welds are produced. Martensite is generated in the segregated portion, and the toughness and ductility are significantly impaired, so the content is limited to 0.55 to 0.85%.

【0014】Siはパーライト組織中のフェライト相へ
の固溶体硬化による高強度化に寄与するばかりか、わず
かながらレール鋼の靭性・延性改善にも貢献する。また
SiはMnとともにMnSの核となるマンガンシリケー
ト系酸化物を構成する重要な元素であり、本発明のよう
に適正な脱酸方法を行うことにより有効な微細酸化物を
生成させることができる。Siは、0.2%以下ではそ
の効果が期待できずさらにSiは脱酸元素として0.2
%以上の添加が必要であり、1.2%を超えると脆化を
もたらし溶接接合性も減ずるので、0.20〜1.20
%に限定した。MnはC同様にパーライト変態温度を低
下させ、焼入性を高めることによって高強度化に寄与す
る元素であり、さらにSi同様にMnSの核としてのマ
ンガンシリケートの構成元素として、および脱酸元素と
しても欠かせない元素であり、本発明の脱酸方法の採用
によりいっそう酸化物の微細化が達成されMnSの微細
析出の誘導および引き続くパーライトの核生成に効果を
発揮する。しかし、0.5%未満ではその効果が小さく
また1.50%を超えると偏析部にマルテンサイト組織
を生成させ易くするため0.50〜1.50%に限定し
た。
Si not only contributes to the strengthening of the ferrite phase in the pearlite structure by solid solution hardening, but also contributes to a slight improvement in the toughness and ductility of the rail steel. In addition, Si is an important element that constitutes a manganese silicate-based oxide that becomes the core of MnS together with Mn, and an effective fine oxide can be generated by performing an appropriate deoxidizing method as in the present invention. If Si is 0.2% or less, the effect cannot be expected, and Si is 0.2 as a deoxidizing element.
% Or more is necessary, and if it exceeds 1.2%, embrittlement is caused and weld bondability is reduced, so 0.20 to 1.20.
%. Like C, Mn is an element that contributes to strengthening by lowering the pearlite transformation temperature and increasing hardenability, and, like Si, as a constituent element of manganese silicate as the core of MnS and as a deoxidizing element. This is also an essential element, and by adopting the deoxidizing method of the present invention, further miniaturization of the oxide is achieved, and it is effective in inducing the fine precipitation of MnS and the subsequent nucleation of pearlite. However, if it is less than 0.5%, its effect is small, and if it exceeds 1.50%, the content is limited to 0.50 to 1.50% so that a martensite structure is easily generated in the segregated portion.

【0015】Sは一般に有害元素として知られている
が、本発明においてはオーステナイト粒内のマンガンシ
リケートなどの酸化物を核とするMnSを基地とする析
出物Ti(CN)が生成し、これを変態核とするパーラ
イト組織が生成するため欠かせない元素である。しか
し、0.002%未満ではパーライト変態核としてのM
nS量が減じてしまい、パーライト粒内変態を確保でき
なくする。また0.035%を超えるとMnSが多量に
生成し靭性・延性を著しく低下させるため0.002〜
0.035%に限定した。
Although S is generally known as a harmful element, in the present invention, MnS-based precipitate Ti (CN) having an oxide such as manganese silicate in the austenite grains as a nucleus is formed, which is formed. It is an essential element because it produces a pearlite structure as a transformation nucleus. However, if it is less than 0.002%, M as pearlite transformation nucleus
The amount of nS decreases, and it becomes impossible to secure the pearlite intragranular transformation. On the other hand, if it exceeds 0.035%, a large amount of MnS is formed and the toughness and ductility are remarkably lowered, so 0.002 to 0.002
It was limited to 0.035%.

【0016】Crは、パーライト変態を低下させること
によって高強度化に寄与すると同時に、パーライト組織
中のセメンタイト相を強化することによっても耐摩耗性
向上に貢献するが、一方ではセメンタイトの衝撃靭性を
低下させる作用も有している。しかし、Crのセメンタ
イト強化作用は無視しがたく、さらに溶接継ぎ手部軟化
防止の観点からも微量のCrの添加も望ましい。そこで
強度確保に一定の寄与が期待されかつ靭性・延性を損な
わない範囲内で0.1〜1.0%に限定した。Tiは、
前記のように、Tiを含有するZrを溶鋼中に追加添加
することで含有させるものである。しかし、0.001
%未満では十分に炭窒化物を生成させることができず、
また、0.020%を超えて含有させると、Ti炭窒化
物が粗大化してレール頭部内部から生成する疲労き裂の
起点として有害となることから、その範囲を0.001
〜0.020%とした。不可避的不純物元素であるP
は、レール鋼の靭性を向上させるためにはできるだけ低
減させることが望ましい。
[0016] Cr contributes to higher strength by lowering the pearlite transformation and at the same time contributes to improving wear resistance by strengthening the cementite phase in the pearlite structure. On the other hand, it reduces the impact toughness of cementite. It also has the effect of causing it. However, the cementite strengthening effect of Cr cannot be ignored, and addition of a small amount of Cr is also desirable from the viewpoint of preventing softening of the welded joint. Therefore, it is limited to 0.1 to 1.0% within a range in which a certain contribution is expected to secure the strength and the toughness and ductility are not impaired. Ti is
As described above, Zr containing Ti is added by being added to the molten steel. But 0.001
If it is less than%, carbonitride cannot be sufficiently generated,
Further, when the content exceeds 0.020%, the Ti carbonitride coarsens and becomes harmful as a starting point of a fatigue crack generated from inside the rail head, so the range is set to 0.001.
Was set to 0.020%. Inevitable impurity element P
Is preferably reduced as much as possible in order to improve the toughness of the rail steel.

【0017】前記のような成分組成で構成されるレール
鋼は、転炉、電気炉などの通常使用される溶解炉で前述
した脱酸を含む溶製を行い、この溶鋼を造塊・分塊法あ
るいは連続鋳造法、さらに熱間圧延を経て製造する。熱
間圧延を終えたレールは、冷却中においてオーステナイ
ト粒内のMnSに析出したTi炭窒化物からもパーライ
ト変態が生成し、オーステナイト粒界から生成するパー
ライトと共に微細なパーライト粒を構成する。その結
果、圧延ままで靭性の優れた高強度レールを製造するこ
とができる。
The rail steel having the above-described composition is subjected to melting including the above-mentioned deoxidation in a commonly used melting furnace such as a converter or an electric furnace, and this molten steel is ingoted or agglomerated. Method or continuous casting method, and then hot rolling. The rail that has undergone hot rolling also undergoes pearlite transformation from Ti carbonitrides precipitated in MnS in austenite grains during cooling, and constitutes fine pearlite grains together with pearlite produced from austenite grain boundaries. As a result, a high-strength rail having excellent toughness can be manufactured as rolled.

【0018】さらに高強度とともに高靭性が要求される
場合には、圧延終了後あるいは、一度室温に冷却され熱
処理する目的で再加熱されたオーステナイト域温度から
700〜500℃間を1〜5℃/secで加速冷却されたレ
ール鋼では、一層の高靭性が得られる。すなわち、パー
ライト組織鋼の特徴として、加速冷却することによって
低温でパーライト変態を生じさせ、このことによりパー
ライト変態核の生成速度が向上し結果的にパーライト粒
を微細にすることができるからである。従ってMnS上
に析出させたTi炭窒化物からのパーライト組織のオー
ステナイト粒内変態と、加速冷却によるオーステナイト
粒界からのパーライト変態が重畳して一層のレール鋼の
靭性向上を達成することができる。この際冷却媒体は、
空気あるいはミストなどの気液混合物を用い、レール頭
部もしくは底部の強度が1100MPa以上とすること
が望ましい。
When high strength and high toughness are required, 1 to 5 ° C / 700 ° C to 500 ° C after completion of rolling or reheating for the purpose of heat treatment after cooling to room temperature once. Rail steel that has been accelerated and cooled in sec can achieve even higher toughness. That is, as a characteristic of the pearlite structure steel, pearlite transformation is caused at a low temperature by accelerated cooling, whereby the generation rate of pearlite transformation nuclei is improved, and as a result, pearlite grains can be made fine. Therefore, the austenite intragranular transformation of the pearlite structure from the Ti carbonitride precipitated on MnS and the pearlite transformation from the austenite grain boundaries by accelerated cooling can be superimposed to further improve the toughness of the rail steel. At this time, the cooling medium is
It is desirable to use a gas-liquid mixture such as air or mist and to set the strength of the rail head or bottom to 1100 MPa or more.

【0019】レール鋼の靭性評価法としては、ロシアの
GOST規格によって定められた2mmUノッチシャルピ
ー試験における+20℃での衝撃吸収エネルギーがあ
り、同規格によれば高強度熱処理レールの+20℃での
衝撃吸収エネルギーは0.25MJ/m2 以上が必要とさ
れている。上述したオーステナイト粒内のMnSに析出
させたTi炭窒化物をパーライト変態核として活用する
ことによって、本発明のレール鋼ではパーライト粒が微
細化し、0.25MJ/m2 以上の衝撃吸収エネルギーを
得ることができる。
As a method for evaluating the toughness of rail steel, there is the impact absorbed energy at + 20 ° C. in the 2 mm U-notch Charpy test defined by the Russian GOST standard. According to this standard, the impact of the high strength heat-treated rail at + 20 ° C. Absorbed energy is required to be 0.25 MJ / m 2 or more. By utilizing the Ti carbonitrides precipitated in MnS in the austenite grains as pearlite transformation nuclei, the pearlite grains are refined in the rail steel of the present invention, and impact absorption energy of 0.25 MJ / m 2 or more is obtained. be able to.

【0020】レールの延性はレール頭部の疲労損傷の生
成に影響を与え、中国における高強度レールの延性要求
は、レール頭部GC内部10mm深さ位置から採取した平
行部径6mm、平行部長さ30mmの引っ張り試験において
12%以上の伸び値が必要であるとしている。こりよう
な材質要求に対して本発明のオーステナイト粒内に生成
させたMnSからパーライト変態を生成させることによ
り、微細なパーライト組織を生成せしめ靭性同様にレー
ル鋼の延性も大幅に改善することができた。
The ductility of the rail has an influence on the generation of fatigue damage to the rail head, and the ductility requirement of the high strength rail in China is that the diameter of the parallel portion is 6 mm and the length of the parallel portion is 10 mm inside the rail head GC. It is said that an elongation value of 12% or more is required in a 30 mm tensile test. In response to such material requirements, by producing a pearlite transformation from MnS produced in the austenite grains of the present invention, a fine pearlite structure is produced, and ductility of rail steel as well as toughness can be significantly improved. It was

【0021】[0021]

【実施例】次ぎに本発明により製造した高靭性を有する
高強度レールの製造実施例について述べる。表1は供試
鋼の化学成分およびZr,Mn,Siの1種または2種
以上の脱酸を行った場合と前記脱酸制御を行わなかった
場合、さらに脱酸後Zrを追加添加した鋼と無添加鋼の
成分を示し、それぞれ冷却後の組織中に0.1〜10μ
mのMnS個数の測定結果を、また冷却後の組織中にM
nSを核とするパーライト粒内変態が含まれているかど
うかを観察した結果を表2に示す。適切な脱酸を行った
本発明鋼および比較鋼では、所定の量の微細なMnSの
生成が確認され、さらにTi添加した本発明鋼では明ら
かにオーステナイト粒内からのMnSを核としたTi炭
窒化物を生成起点としたパーライト組織の生成が確認さ
れた。
EXAMPLES Next, examples of manufacturing high-strength high-strength rails according to the present invention will be described. Table 1 shows the chemical composition of the test steel and the steel with deoxidation of one or more of Zr, Mn, and Si and without deoxidation control. And the composition of the additive-free steel are shown in the structure after cooling.
The MnS number of m was measured, and M was measured in the structure after cooling.
Table 2 shows the results obtained by observing whether or not the pearlite intragranular transformation having nS as the nucleus is included. In the steel of the present invention and the comparative steel that were appropriately deoxidized, the formation of a predetermined amount of fine MnS was confirmed, and in the steel of the present invention in which Ti was added, the Ti carbon with MnS from the austenite grains as the nucleus was obviously used. It was confirmed that a pearlite structure starting from nitride was generated.

【0022】表3には圧延まま、および強度を一定とす
るために化学成分毎にオーステナイト域温度から700
〜500℃間を冷却速度1〜5℃/secの範囲で変化させ
た加速冷却後のレール鋼の引張試験強度、伸びおよび2
mmUノッチシャルピー試験における+20℃での衝撃吸
収エネルギー測定結果を示す。引っ張り試験はレール頭
部GC内部10mm深さ位置から採取した平行部径6mm、
平行部長さ30mmの試験片で行った。この結果本発明鋼
は、比較鋼に比べて十分にパーライト微細組織の効果と
しての延性の改善が認められた。衝撃試験片はレール頭
部1mm下より採取した。この試験條件は熱処理レールに
おける靭性を規定したロシアのGOST規格に基づくも
ので、同規格によれば高強度熱処理レールの+20℃で
の衝撃吸収エネルギーは0.25MJ/m2 以上が必要と
されており、本発明鋼は、いずれもGOST規格に定め
られたシャルピー吸収エネルギーを十分に満たしてい
る。
In Table 3, as-rolled and 700-700 from the austenite range temperature for each chemical component in order to keep the strength constant.
Tensile strength, elongation, and 2 of the rail steel after accelerated cooling in which the cooling rate was changed in the range of 1 to 5 ° C / sec.
The measurement result of the impact absorption energy in +20 degreeC in mmU notch Charpy test is shown. The tensile test is a parallel part diameter of 6 mm, which is sampled from a depth of 10 mm inside the rail head GC,
The test was performed on a test piece having a parallel length of 30 mm. As a result, it was confirmed that the steel of the present invention has a sufficiently improved ductility as an effect of the pearlite microstructure, as compared with the comparative steel. The impact test piece was taken from 1 mm below the rail head. This test condition is based on the Russian GOST standard that regulates the toughness of heat-treated rails. According to this standard, high-strength heat-treated rails require impact absorption energy at + 20 ° C of 0.25 MJ / m 2 or more. The steels of the present invention all sufficiently satisfy the Charpy absorbed energy specified in the GOST standard.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】以上説明したように本発明は溶鋼脱酸を
適正に行うことによってオーステナイト粒内からもパー
ライト変態を生成させた微細なパーライト組織のレール
を製造でき、得られる高強度レールはいずれも国外規格
値を十分に充足する延性・靭性値を有している。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a rail having a fine pearlite structure in which pearlite transformation is generated even in the austenite grains can be manufactured by appropriately performing molten steel deoxidation. Has a ductility / toughness value that sufficiently satisfies the overseas standard values.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼にZr,Mn,Siの脱酸元素を1
種または2種以上添加して脱酸処理を施し、さらに引き
続いてTiを含むZrを追加添加した質量%で、 C :0.55〜0.85%、 Si:0.20〜1.20%、 Mn:0.50〜1.50%、 S :0.002〜0.035%、 Cr:0.1〜1.0%および 追加添加ZrによってもたらされるTi:0.001〜
0.020% を含有し、残部が鉄および不可避的不純物からなる鋼片
を、レールに熱間圧延加工して0.1〜10μmの大き
さのMnSの生成個数が1mm2 あたり、30〜1000
0個存在することを特徴とする靭性および延性に優れた
高強度レールの製造法。
1. A deoxidizing element of Zr, Mn and Si is added to molten steel in an amount of 1
1 or 2 or more kinds thereof are added to perform deoxidation treatment, and subsequently, Zr containing Ti is additionally added in a mass% of C: 0.55 to 0.85%, Si: 0.20 to 1.20% , Mn: 0.50 to 1.50%, S: 0.002 to 0.035%, Cr: 0.1 to 1.0%, and Ti: 0.001 to be provided by additional Zr.
A steel slab containing 0.020% of which the balance is iron and unavoidable impurities is hot-rolled into a rail, and the number of MnS having a size of 0.1 to 10 μm is 30 to 1000 per 1 mm 2 .
A method for producing a high-strength rail having excellent toughness and ductility, which is characterized by the presence of zero pieces.
【請求項2】 前項の鋼片を熱間圧延した後、あるいは
さらにオーステナイト域に加熱した後700〜500℃
間を1〜5℃/secで加速冷却することを特徴とする請求
項1記載の延性および靭性に優れた高強度レールの製造
法。
2. The steel slab of the preceding paragraph is hot-rolled, or further heated to an austenite range, and then 700 to 500 ° C.
The method for producing a high-strength rail excellent in ductility and toughness according to claim 1, wherein the space is acceleratedly cooled at 1 to 5 ° C / sec.
JP3678896A 1996-02-23 1996-02-23 Production of high strength rail excellent in ductility and toughness Withdrawn JPH09227943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3678896A JPH09227943A (en) 1996-02-23 1996-02-23 Production of high strength rail excellent in ductility and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3678896A JPH09227943A (en) 1996-02-23 1996-02-23 Production of high strength rail excellent in ductility and toughness

Publications (1)

Publication Number Publication Date
JPH09227943A true JPH09227943A (en) 1997-09-02

Family

ID=12479536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3678896A Withdrawn JPH09227943A (en) 1996-02-23 1996-02-23 Production of high strength rail excellent in ductility and toughness

Country Status (1)

Country Link
JP (1) JPH09227943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224471A (en) * 2012-04-23 2013-10-31 Nippon Steel & Sumitomo Metal Corp Rail excellent in delayed-fracture resistance characteristics
EP2006406A4 (en) * 2006-03-16 2015-08-12 Jfe Steel Corp High-strength pearlite rail with excellent delayed-fracture resistance
CN107760839A (en) * 2017-10-11 2018-03-06 中国石油天然气集团公司 A kind of method added oxide nano rare earth and prepare the thermal recovery shell material based on stress design

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006406A4 (en) * 2006-03-16 2015-08-12 Jfe Steel Corp High-strength pearlite rail with excellent delayed-fracture resistance
JP2013224471A (en) * 2012-04-23 2013-10-31 Nippon Steel & Sumitomo Metal Corp Rail excellent in delayed-fracture resistance characteristics
CN107760839A (en) * 2017-10-11 2018-03-06 中国石油天然气集团公司 A kind of method added oxide nano rare earth and prepare the thermal recovery shell material based on stress design
CN107760839B (en) * 2017-10-11 2019-10-11 中国石油天然气集团公司 A method of addition oxide nano rare earth prepares the thermal recovery shell material based on stress design

Similar Documents

Publication Publication Date Title
JPH06279928A (en) High strength rail excellent in toughness and ductility and its production
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JPH09206804A (en) Manufacture of high-strength rail excellent in ductility and toughness
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JPH06279927A (en) High strength rail excellent in ductility and toughness and its production
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP2001003140A (en) High strength pearlitic rail excellent in toughness and ductility and its production
JP2003105499A (en) Pearlitic rail having excellent toughness and ductility, and production method therefor
JP3323272B2 (en) Manufacturing method of high strength rail with excellent ductility and toughness
JPH09227943A (en) Production of high strength rail excellent in ductility and toughness
JPS621811A (en) Manufacture of rail having superior damage resistance
JP3368557B2 (en) High strength rail with excellent ductility and toughness and its manufacturing method
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JP3368309B2 (en) High-strength pearlitic rail with excellent toughness and ductility, and method for producing the same
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3368556B2 (en) High-strength rail with excellent rolling fatigue resistance and its manufacturing method
JPH06279929A (en) High strength rail excellent in toughness and ductility and its production
JPH06340951A (en) High strength rail excellent in toughness and its production
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH08333634A (en) Production of high strength rail excellent in ductility and toughness
JPH0726348A (en) High strength rail excellent in rolling fatigue damage resistance and its production
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH0790474A (en) Production of contained oxide-dispersed slab and rolled shape steel excellent in toughness by the same slab
JP2000328190A (en) High strength pearlitic rail excellent in toughness and ductility and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506