JP3368557B2 - High strength rail with excellent ductility and toughness and its manufacturing method - Google Patents

High strength rail with excellent ductility and toughness and its manufacturing method

Info

Publication number
JP3368557B2
JP3368557B2 JP24443994A JP24443994A JP3368557B2 JP 3368557 B2 JP3368557 B2 JP 3368557B2 JP 24443994 A JP24443994 A JP 24443994A JP 24443994 A JP24443994 A JP 24443994A JP 3368557 B2 JP3368557 B2 JP 3368557B2
Authority
JP
Japan
Prior art keywords
mns
pearlite
rail
toughness
nucleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24443994A
Other languages
Japanese (ja)
Other versions
JPH08109438A (en
Inventor
秀一 船木
英明 影山
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24443994A priority Critical patent/JP3368557B2/en
Publication of JPH08109438A publication Critical patent/JPH08109438A/en
Application granted granted Critical
Publication of JP3368557B2 publication Critical patent/JP3368557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レール鋼のパーライト
組織を微細化して靭性および延性の向上を図った高強度
レールおよびその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength rail in which the pearlite structure of rail steel is refined to improve toughness and ductility, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、鉄道輸送は高荷重化、高速化が指
向され、レールに要求される特性がますます厳しくなっ
ている。高荷重鉄道では急曲線区間の摩耗対策、レール
頭部内部疲労損傷対策が要求され、高速鉄道では主とし
て直線区間の表面損傷が課題として挙げられている。こ
れらに加えて、寒冷地においては、冬季にレール破断が
集中的に発生する傾向が認められており、寒冷地鉄道で
のレール材の靭性改善は安全な鉄道輸送に欠かせない特
性になっている。
2. Description of the Related Art In recent years, railway transportation has been aimed at higher loads and higher speeds, and the characteristics required for rails have become increasingly severe. For heavy-duty railways, measures against wear on sharp curves and internal fatigue damage to rail heads are required. On high-speed railways, surface damage mainly on straight sections is cited as an issue. In addition to these, it is recognized that rail ruptures tend to occur intensively in winter in cold regions, and improving the toughness of rail materials in cold region railways is an essential property for safe rail transportation. There is.

【0003】また、鉄道輸送の高効率化のために、高速
化および貨物の重積載化が進められているが、これに伴
ってレール頭部の摩擦や疲労損傷が急速に増加しつつあ
る。このようなレール材の使用環境の過酷化特に摩耗の
増加に対処するために、レール鋼の高強度化のための技
術開発が加速され、国内・外を問わず曲線区間のレール
材はほとんどすべて高強度レールが支配することとなっ
た。
Further, in order to improve the efficiency of rail transportation, speeding up and heavy loading of cargo are being promoted, and along with this, friction and fatigue damage of the rail head are rapidly increasing. In order to cope with the harsh environment in which rail materials are used, especially the increase in wear, technological development for increasing the strength of rail steel has been accelerated, and almost all rail materials in curved sections, both in Japan and abroad, are being used. The high-strength rails now dominate.

【0004】しかし、一方ではレール鋼の耐摩耗性の向
上とともに、本来摩耗によって削り取られるべき疲労ダ
メージ層がレール頭表面、特に車輪フランジ付け根部が
押しつけられるゲージ・コーナー(GC)表面に残存
し、表面損傷を生成させる傾向が認められるようになっ
た。さらにレール鋼の耐摩耗性の向上は、車輪荷重のレ
ールGC内部での応力集中を一点に固定させることとな
り、レール頭部内部からの疲労損傷を急増させることと
なった。このようなレール頭表面損傷性の改善および内
部疲労損傷に対する抵抗性を改善するためには、レール
材質として靭性および延性を向上させることが重要であ
る。
On the other hand, on the other hand, as the wear resistance of the rail steel is improved, a fatigue damage layer which should be originally scraped off by abrasion remains on the rail head surface, particularly on the gauge corner (GC) surface against which the wheel flange root is pressed, A tendency to produce surface damage has become apparent. Further, the improvement of the wear resistance of the rail steel means that the stress concentration inside the rail GC due to the wheel load is fixed at one point, and the fatigue damage from the inside of the rail head rapidly increases. In order to improve such rail head surface damage and resistance to internal fatigue damage, it is important to improve the toughness and ductility of the rail material.

【0005】高強度レールの靭性および延性改善の方策
としては以下の方法が考えられる。 (1)普通圧延後一旦室温まで冷却したレール頭部を低
温度で再加熱した後加速冷却する方法。 (2)制御圧延によりオーステナイト粒を微細化した後
レール頭部を加速冷却する方法。 (3)制御圧延した後、パーライト変態前で低温度に再
加熱し、その後加速冷却する方法。
The following methods are considered as measures for improving the toughness and ductility of the high-strength rail. (1) A method in which a rail head that has been once cooled to room temperature after normal rolling is reheated at a low temperature and then accelerated cooling is performed. (2) A method of accelerating and cooling the rail head after refining austenite grains by controlled rolling. (3) A method in which after controlled rolling, it is reheated to a low temperature before pearlite transformation and then accelerated cooling is performed.

【0006】レール鋼の靭性評価法としては、ロシアの
GOST規格によって定められた2mmUノッチシャルピ
ー試験における+20℃での衝撃吸収エネルギーがあ
り、同規格によれば高強度熱処理レールの+20℃での
衝撃吸収エネルギーは0.25MJ/m2 以上が必要とされ
ている。また、レールの延性はレール頭部の疲労損傷の
生成に影響を与え、中国における高強度レールの延性要
求は、レール頭部GC内部10mm深さ位置から採取した
平行部径6mm、平行部長さ30mmの引っ張り試験におい
て12%以上の伸び値が必要であるとしている。
[0006] As a toughness evaluation method for rail steel, there is an impact absorbed energy at + 20 ° C in a 2 mm U-notch Charpy test defined by the GOST standard of Russia. According to the standard, impact of a high strength heat treated rail at + 20 ° C is measured. Absorbed energy is required to be 0.25 MJ / m 2 or more. In addition, the ductility of the rail affects the generation of fatigue damage to the rail head, and the ductility requirement of the high-strength rail in China is that the diameter of the parallel section is 6 mm and the length of the parallel section is 30 mm, which is sampled from a depth of 10 mm inside the rail head GC. In the tensile test, the elongation value of 12% or more is required.

【0007】[0007]

【発明が解決しようとする課題】上記方法の(1)で
は、大幅な靭性・延性改善のためには特開昭55−12
5231号公報に記載されているような通常の加熱温度
よりも低い850℃以下の低温度に再加熱し、オーステ
ナイト粒を微細にすることによって靭性および延性を改
善しようとするもので、低温度で加熱してかつレール頭
部内部まで加熱を深めようとすると、投入熱量を下げて
長時間加熱する必要がある。このため熱処理生産性を著
しく阻害し製造コストを高める難点がある。
In the above method (1), in order to improve the toughness and ductility to a great extent, JP-A-55-12 is used.
Reheating to a low temperature of 850 ° C. or lower, which is lower than the normal heating temperature as described in Japanese Patent No. 5231, is intended to improve toughness and ductility by making austenite grains fine. When heating and deepening the heating to the inside of the rail head, it is necessary to lower the amount of heat input and heat for a long time. Therefore, there is a problem that heat treatment productivity is significantly impaired and manufacturing cost is increased.

【0008】また、(2)の方法は特開昭52−238
427号公報および特開昭52−138428号公報に
記載されているように、圧延時のオーステナイト粒の微
細化によって靭性・延性の向上を図ろうとすると、高温
での大圧下が要求され、レール圧延機の能力あるいはレ
ールの形状制御の観点からも問題を含んでいる。
The method (2) is disclosed in JP-A-52-238.
As described in Japanese Patent No. 427 and Japanese Patent Laid-Open No. 52-138428, when it is attempted to improve toughness and ductility by refining austenite grains during rolling, large reduction at high temperature is required, and rail rolling is required. There are problems from the viewpoint of machine capacity or rail shape control.

【0009】さらに(3)の方法は、特公平4−437
1号公報に記載されているように、800℃以下で5%
以上の圧延を実施した後、再度750〜900℃に加熱
することによりオーステナイト粒を微細にしようとする
方法であり、圧延後に低温再加熱のための加熱炉を必要
とするため作業性、生産性、製造コストの観点から問題
が多い。
Furthermore, the method (3) is disclosed in Japanese Examined Patent Publication No. 4-437.
As described in Japanese Patent Publication No. 1-5, 5% at 800 ° C or lower
After performing the above rolling, it is a method of refining the austenite grains by heating again to 750 to 900 ° C., and since a heating furnace for low temperature reheating is required after rolling, workability and productivity are improved. However, there are many problems from the viewpoint of manufacturing cost.

【0010】本発明はこのような問題を解消しようとす
るものであって、オーステナイト粒内からパーライト変
態核を生成させることにより、パーライトを微細組織と
した靭性および延性に優れた高強度レールおよびその製
造方法を提供することを目的とする。
The present invention is intended to solve such a problem, and by producing pearlite transformation nuclei from the inside of austenite grains, a high-strength rail having a fine structure of pearlite and excellent in toughness and ductility, and the same. It is intended to provide a manufacturing method.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するものであり、以下の構成を要旨とする。すなわち 溶鋼を脱酸し、鋼片とし、これを熱間加工を含む工程
で製造したレールであって、重量%で、C :0.55
〜0.90%、 Si:0.10〜1.20%、M
n:0.50〜1.50%、 S :0.002〜
0.035%、Mg:0.0004〜0.01%、A
l:0.0005〜0.05%、V :0.001〜
1.00%、 N :0.0005〜0.030%を含
有し、あるいは更に必要に応じて、Cr:0.10〜
1.0%、 Ni:0.10〜4.0%、Mo:
0.10〜0.50%、 Nb:0.01〜0.05
%の1種または2種以上を含有し、残部が鉄及びPなど
の不可避的不純物からなる鋼で、オーステナイト粒内の
MnSを核としたパーライトが、さらにはMnS上のV
炭窒化物を核としたパーライトが存在し、かつ0.1〜
10μmの大きさのMnS個数が1mm2 あたり600〜
12000個存在することを特徴とする靭性および延性
に優れた強強度レール。および、 溶鋼に脱酸元素としてMgを添加し、脱酸処理を施し
て溶製した、重量%で、C :0.55〜0.90%、
Si:0.10〜1.20%、Mn:0.50〜
1.50%、 S :0.002〜0.035%、M
g:0.0004〜0.01%、Al:0.0005〜
0.05%、V :0.001〜1.00%、 N :
0.0005〜0.030%を含有し、あるいは更に必
要に応じて、Cr:0.10〜1.0%、 Ni:
0.10〜4.0%、Mo:0.10〜0.50%、
Nb:0.01〜0.05%の1種または2種以上を
含有し、残部が鉄及びPなどの不可避的不純物からなる
溶鋼を造塊・分塊法あるいは連続鋳造法を経て鋼片と
し、この鋼片を熱間圧延してレール形状に成形し、該圧
延終了後そのまま、あるいは熱処理する目的で高温に加
熱した後、レールの頭部あるいはさらに底部を、オース
テナイト域温度から冷却する際に700〜500℃間を
1〜5℃/secで加速冷却し、オーステナイト粒内に微細
なMnSを析出させ、MnSによるオーステナイト粒の
細粒化、MnSを核としたパーライトの生成、さらには
MnS上に析出させたV炭窒化物を核としたパーライト
を生成させることを特徴とする靭性および延性に優れた
高強度レールの製造法に関するものである。
The present invention achieves the above object, and has the following features. That is, a rail manufactured by deoxidizing molten steel to form a billet, which is manufactured by a process including hot working, and has a weight ratio of C: 0.55.
~ 0.90%, Si: 0.10 to 1.20%, M
n: 0.50 to 1.50%, S: 0.002 to
0.035%, Mg: 0.0004 to 0.01%, A
1: 0.0005-0.05%, V: 0.001-
1.00%, N: 0.0005-0.030%, or, if necessary, Cr: 0.10-
1.0%, Ni: 0.10 to 4.0%, Mo:
0.10 to 0.50%, Nb: 0.01 to 0.05
%, One or two or more, and the balance being iron and unavoidable impurities such as P, pearlite with MnS in the austenite grains as the core, and V on MnS.
There is pearlite whose core is carbonitride, and
The number of MnS having a size of 10 μm is 600 to 1 mm 2
A strong rail with excellent toughness and ductility, characterized by the presence of 12,000 pieces. And, Mg was added to the molten steel as a deoxidizing element and subjected to deoxidizing treatment to be melted, and in weight%, C: 0.55 to 0.90%,
Si: 0.10 to 1.20%, Mn: 0.50
1.50%, S: 0.002-0.035%, M
g: 0.0004 to 0.01%, Al: 0.0005 to
0.05%, V: 0.001-1.00%, N:
0.0005 to 0.030%, or, if necessary, Cr: 0.10 to 1.0%, Ni:
0.10 to 4.0%, Mo: 0.10 to 0.50%,
Nb: 0.01 to 0.05% of one or more kinds of molten steel, the balance of which is inevitable impurities such as iron and P, is made into a steel piece through an ingot-casting method or a continuous casting method. When the steel slab is hot-rolled to form a rail shape, and after the rolling is finished, or after being heated to a high temperature for the purpose of heat treatment, when the head or the bottom of the rail is cooled from the austenite temperature, Accelerated cooling at 700 to 500 ° C at 1 to 5 ° C / sec to precipitate fine MnS in austenite grains, refine the austenite grains by MnS, generate pearlite with MnS as a nucleus, and further on MnS. The present invention relates to a method for producing a high-strength rail having excellent toughness and ductility, which is characterized in that pearlite having V carbonitrides deposited on the core thereof is generated.

【0012】[0012]

【作用】以下に本発明について詳細に説明する。先ず、
パーライトの生成におけるMnSの役割について詳細に
検討した結果、MnSはオーステナイト粒経の粗大化を
阻止し、オーステナイト粒を細粒化し粒界変態パーライ
トを増加させること、さらにはMnSを核として直接パ
ーライト変態が生成すること、さらにはMnSに析出し
たV炭窒化物からもパーライト変態する事実を発見し
た。パーライト変態は冷却過程においてまずオーステナ
イト粒界より生成し、温度の低下とともにMnSを核と
してならびにMnSに析出したV炭窒化物からもパーラ
イトが生成する。したがって、細粒化したオーステナイ
ト粒界よりの多数のパーライトに加え、MnSおよびV
炭窒化物より生成したパーライトが重畳することにより
細粒のパーライトが生成する。このようなパーライト組
織はとくに延性、靭性に優れている。このようにパーラ
イトの変態核として作用するMnSを鋼中に微細分散さ
せることが必要であり、さらにそのMnSの核となる酸
化物を微細分散させるために脱酸制御が重要な要素とな
る。
The present invention will be described in detail below. First,
As a result of detailed examination of the role of MnS in the formation of pearlite, MnS prevents coarsening of the austenite grain size and makes the austenite grains finer to increase the grain boundary transformation pearlite. It was found that the pearlite transformation occurs also from V carbonitrides precipitated on MnS. The pearlite transformation is first generated from austenite grain boundaries in the cooling process, and pearlite is also generated from MnS as a nucleus and V carbonitride precipitated on MnS as the temperature decreases. Therefore, in addition to a large number of pearlites from the austenite grain boundaries that have been refined, MnS and V
Fine pearlite is generated by superposition of pearlite generated from carbonitride. Such a pearlite structure is particularly excellent in ductility and toughness. As described above, it is necessary to finely disperse MnS that acts as a transformation nucleus of pearlite in the steel, and deoxidation control is an important factor for finely dispersing the oxide that becomes the nucleus of MnS.

【0013】本発明における、脱酸元素としてMgを
C,Si,MnあるいはAl脱酸時に溶鋼中へ添加する
と他元素に比べ鋼中の固溶酸素との親和力が強いのでM
g主体の酸化物を生成し、一部は浮上するものの、溶鋼
中に残存したMg酸化物は凝集せず微細分散し冷却過程
においてMnSの析出核として作用する。その結果、M
nSの個数と分布が制御でき、オーステナイト粒の粗大
化防止およびパーライトの変態核として有効に作用す
る。
In the present invention, when Mg is added as deoxidizing element to molten steel during deoxidation of C, Si, Mn or Al, the affinity with solid solution oxygen in the steel is stronger than that of other elements.
Although an oxide mainly composed of g is generated and a part of the oxide floats, the Mg oxide remaining in the molten steel does not aggregate but is finely dispersed and acts as a precipitation nucleus of MnS in the cooling process. As a result, M
The number and distribution of nS can be controlled, and it effectively acts as austenite grain coarsening prevention and transformation nucleus of pearlite.

【0014】次に、上記脱酸を行ったレール鋼の化学成
分を限定した理由について述べる。Cは高強度化および
パーライト組織生成のための必須元素である。0.55
%未満では必要とする高強度のパ−ライト組織がえがた
く、また0.90%を超えるとオーステナイト粒界を脆
化させる有害な初析セメンタイトを生成させるばかり
か、レール頭部熱処理屑や溶接部の微小偏析部にマルテ
ンサイトが生成し、靭性・延性を著しく損なうため0.
55〜0.90%に限定した。
Next, the reason why the chemical composition of the deoxidized rail steel is limited will be described. C is an essential element for strengthening and forming a pearlite structure. 0.55
If it is less than 0.1%, the necessary high-strength pearlite structure is hard to obtain, and if it exceeds 0.90%, not only harmful proeutectoid cementite that embrittles the austenite grain boundaries is generated, but also rail head heat treatment scraps and Martensite is generated in the minute segregation portion of the welded portion, which significantly impairs toughness and ductility.
It was limited to 55 to 0.90%.

【0015】Siはパーライト組織中のフェライト相へ
の固溶体硬化による高強度化に寄与するばかりか、わず
かながらレール鋼の靭性・延性改善にも貢献する。0.
10%未満ではその効果が少なく、1.20%を超える
と脆化をもたらし溶接接合性も減ずるので、0.10〜
1.20%に限定した。
Si not only contributes to the strengthening of the ferrite phase in the pearlite structure by solid solution hardening, but also contributes to a slight improvement in the toughness and ductility of the rail steel. 0.
If it is less than 10%, its effect is small, and if it exceeds 1.20%, embrittlement is caused and weld bondability is also reduced.
Limited to 1.20%.

【0016】MnはC同様にパーライト変態温度を低下
させ、焼入性を高めることによって高強度化に寄与する
元素である。しかし、0.5%未満ではその効果が小さ
く、また1.50%を超えると偏析部にマルテンサイト
組織を生成させ易くするため0.50〜1.50%に限
定した。
Like C, Mn is an element that lowers the pearlite transformation temperature and enhances hardenability, thereby contributing to higher strength. However, if it is less than 0.5%, its effect is small, and if it exceeds 1.50%, the content is limited to 0.50 to 1.50% to facilitate the formation of a martensite structure in the segregated portion.

【0017】Sは一般に有害元素として知られている
が、本発明においてはオーステナイト粒内の酸化物を核
としてMnSが生成し、オーステナイトの粗大化を阻止
する役割およびMnSを変態核とするパーライト組織を
生成するため欠かせない元素である。しかし、0.00
2%未満ではその効果は少なく、また0.035%超で
はMnSが多量に生成し靭性・延性を著しく低下させる
ため、0.002〜0.035%に限定した。
Although S is generally known as a harmful element, in the present invention, MnS is formed with an oxide in the austenite grain as a nucleus, which prevents coarsening of austenite and a pearlite structure with MnS as a transformation nucleus. It is an essential element for producing. But 0.00
If it is less than 2%, its effect is small, and if it exceeds 0.035%, a large amount of MnS is formed and the toughness and ductility are remarkably reduced, so the content is limited to 0.002 to 0.035%.

【0018】Mgは本発明の重要な構成要素である。M
g系酸化物はMnSの析出核として機能し、その分散が
MnSの分布を支配し、生成したMnSがオーステナイ
トの細粒化およびそれを核としたパーライト変態の生成
に寄与する。その結果、粒界変態パーライトと粒内変態
パーライトの重畳による微細なパーライト粒からなるレ
ール鋼を得ることができるようになり大幅な靭性の向上
を果たすことができた。Mg量は0.0004%未満で
は、MnSの生成核としての効果が不十分であり、また
0.01%を超えるとMg系酸化物が粗大化し靭性の低
下をもたらすことからMg量を0.0004〜0.01
%の範囲に限定した。
Mg is an important constituent of the present invention. M
The g-based oxide functions as a precipitation nucleus of MnS, and its dispersion controls the distribution of MnS, and the produced MnS contributes to austenite grain refinement and the formation of pearlite transformation with it as a nucleus. As a result, it became possible to obtain a rail steel composed of fine pearlite grains by superimposing grain boundary transformed pearlite and intragrain transformed pearlite, and it was possible to significantly improve the toughness. If the amount of Mg is less than 0.0004%, the effect as the nuclei for forming MnS is insufficient, and if it exceeds 0.01%, the Mg-based oxide is coarsened and the toughness is lowered. 0004-0.01
It was limited to the range of%.

【0019】Alは有効な脱酸元素であり、Mgの添加
によりさらに酸化物の微細化に寄与する。0.005%
以下では脱酸の効果が不十分であり、0.05%を超え
ると酸化物が粗大化し、靭性の低下をもたらすことから
Al添加量を0.0005〜0.05%の範囲に限定し
た。
Al is an effective deoxidizing element, and the addition of Mg contributes to further refinement of the oxide. 0.005%
In the following, the effect of deoxidation is insufficient, and if it exceeds 0.05%, the oxide becomes coarse and the toughness decreases, so the Al addition amount was limited to the range of 0.0005 to 0.05%.

【0020】VはV炭窒化物として冷却中にMnS上に
析出し、パーライト変態核となる。V添加量が0.00
1%未満では、この効果が弱く、また1.00%超添加
するとV炭窒化物が粗大化し、靭性の低下をもたらすた
めV添加量を0.001〜1.00%の範囲に限定し
た。
V is precipitated as V carbonitride on MnS during cooling and becomes a pearlite transformation nucleus. V addition amount is 0.00
If it is less than 1%, this effect is weak, and if it exceeds 1.00%, the V carbonitride becomes coarse and the toughness is lowered, so the V addition amount is limited to the range of 0.001 to 1.00%.

【0021】Nはパーライトの変態核として作用するM
nS上のV炭窒化物の構成元素であり、V(C,N)を
有効に析出させるためには0.0005%以上が必要で
あり、0.030%を超えると粗大なV(C,N)が生
成し、靭性の低下をもたらすためN添加量を0.000
5〜0.030%に限定した。
N acts as a transformation nucleus of pearlite M
It is a constituent element of V carbonitride on nS, and 0.0005% or more is necessary for effectively precipitating V (C, N). If it exceeds 0.030%, coarse V (C, N, N) is generated and causes a decrease in toughness, so the N addition amount is 0.000.
It was limited to 5 to 0.030%.

【0022】さらに本発明においては、上記成分の他に
必要に応じて1種または2種以上のCr,Ni,Mo,
Nbなどの添加によって、フェライト地の靭性改善、レ
ール圧延のための加熱時のオーステナイト粒の、あるい
は制御圧延時のオーステナイト粒の細粒化によって、高
靭性をえることができ、さらには冷却過程における加速
冷却によってより高強度と同時に高靭性をえることがで
きる。
Further, in the present invention, in addition to the above components, one or more kinds of Cr, Ni, Mo, and
By adding Nb or the like, it is possible to obtain high toughness by improving the toughness of the ferrite base material, austenite grains at the time of heating for rail rolling, or refining the austenite grains at the time of controlled rolling, and further, in the cooling process. Accelerated cooling can provide higher strength and higher toughness at the same time.

【0023】その化学成分を限定した理由として、Cr
は、パーライト変態温度を低下させることによって高強
度化に寄与すると同時に、パーライト組織中のセメンタ
イト相を強化する作用を有することから溶接継ぎ手部軟
化防止の観点より0.1%程度の添加でも有効である。
一方、1.0%超の添加では、強制冷却時に元素偏析部
のみでなく過冷却傾向の強いレール肩部にベーナイトや
マルテンサイトが生成し靭性の低下をもたらす。したが
って強度確保に一定の寄与が期待されかつ靭性・延性を
損なわない範囲内で0.1〜1.0%に限定した。
The reason for limiting the chemical composition is Cr
Has a function of strengthening the cementite phase in the pearlite structure at the same time as contributing to the strengthening by lowering the pearlite transformation temperature, and therefore, addition of about 0.1% is effective from the viewpoint of preventing softening of the weld joint. is there.
On the other hand, if the content exceeds 1.0%, bainite and martensite are generated not only in the element segregation portion but also in the rail shoulder portion having a strong tendency of supercooling during forced cooling, resulting in a decrease in toughness. Therefore, it is limited to 0.1 to 1.0% within a range in which a certain contribution is expected to secure strength and the toughness and ductility are not impaired.

【0024】Niはフェライト中に固溶しフェライトの
靭性を向上させるのに有効な元素であり、0.1%未満
の場合はその効果が極めて少なく、また4%超添加して
もその効果は飽和する。したがって靭性向上の観点より
0.1%〜4%の範囲に限定した。
Ni is an element effective as a solid solution in ferrite to improve the toughness of ferrite. If it is less than 0.1%, its effect is extremely small. Saturate. Therefore, from the viewpoint of improving the toughness, the range is limited to 0.1% to 4%.

【0025】Moはパーライトの変態速度を抑制し、パ
ーライト組織を微細化することから、靭性向上に有効な
元素である。さらに、Moは加速冷却時にレール内部に
おいて表面層のパーライト変態にともなう発熱に連動し
た高温での変態誘起を防止し、レール内部の高強度化に
寄与し、硬化強度を高める。しかし、Moの0.1%未
満の添加では上記の効果は少なく、また0.50%超の
添加ではパーライト変態速度を低下させ、パーライト組
織中にべーナイトやマルテンサイトを生成させ靭性低下
を招く。したがってMo添加量は0.10〜0.50%
の範囲に限定した。
Mo is an element effective for improving the toughness because it suppresses the transformation rate of pearlite and refines the pearlite structure. Further, Mo prevents the induction of transformation at high temperature in conjunction with the heat generation associated with the pearlite transformation of the surface layer inside the rail during accelerated cooling, contributes to the high strength inside the rail, and enhances the hardening strength. However, the addition of less than 0.1% of Mo has little effect on the above, and the addition of more than 0.50% lowers the pearlite transformation rate to form bainite or martensite in the pearlite structure, resulting in lower toughness. . Therefore, the amount of Mo added is 0.10 to 0.50%
Limited to the range.

【0026】Nbは熱間圧延時に低温加熱することによ
ってNbの炭窒化物がオーステナイト粒成長を抑制し細
粒化に寄与する。また、高温加熱・低温仕上げ圧延によ
って熱間圧延後のオーステナイト粒を細粒化し、加速冷
却後にえられるパーライトブロックサイズを細粒にす
る。このときNb添加量は0.01%以上を必要とし、
0.05%超であると粗大なNb炭化物、Nb窒化物、
Nb炭窒化物の生成によって靭性が低下する。したがっ
てNb添加量としては0.01〜0.05%の範囲に限
定した。不可避的不純物元素であるPは、レール鋼の靭
性を向上させるためにはできるだけ低減させることが望
ましい。
By heating Nb at a low temperature during hot rolling, carbonitrides of Nb suppress austenite grain growth and contribute to grain refinement. Further, the austenite grains after hot rolling are refined by high temperature heating / low temperature finish rolling, and the pearlite block size obtained after accelerated cooling is refined. At this time, the amount of Nb added needs to be 0.01% or more,
If it exceeds 0.05%, coarse Nb carbide, Nb nitride,
The toughness decreases due to the formation of Nb carbonitride. Therefore, the amount of Nb added is limited to the range of 0.01 to 0.05%. It is desirable to reduce P, which is an unavoidable impurity element, as much as possible in order to improve the toughness of the rail steel.

【0027】前記のような成分組成で構成されるレール
鋼は、転炉、電気炉などの通常使用される溶解炉で前述
した脱酸をふくむ溶製を行い、この溶鋼を造塊・分塊法
あるいは連続鋳造法、さらに熱間圧延を得て製造する。
熱間圧延を終えたレールは、冷却中においてオーステナ
イト粒内のMnSからもパーライトが生成し、オーステ
ナイト粒界から生成するパーライトと共に微細なパーラ
イト粒を構成する。その結果、圧延ままで靭性のすぐれ
た高強度レールを製造することができる。
The rail steel having the above-described composition is subjected to melting including the above-described deoxidation in a commonly used melting furnace such as a converter or an electric furnace, and this molten steel is agglomerated and agglomerated. Method or continuous casting method, and further hot rolling is used for production.
The rails that have undergone hot rolling also produce pearlite from MnS in the austenite grains during cooling, and form fine pearlite grains together with pearlite produced from the austenite grain boundaries. As a result, a high-strength rail having excellent toughness can be manufactured as rolled.

【0028】さらに高強度とともに高靭性が要求される
場合には、圧延終了後あるいは、一度室温に冷却され熱
処理する目的で再加熱されたオーステナイト域温度から
700〜500℃間を1〜5℃/secで加速冷却すること
によって一層の高靭性が得られる。これは、加速冷却す
ることにより低温でパーライト変態を生じるため、パー
ライト変態核の生成速度が向上し、パーライト粒が微細
になる。この加速冷却時の冷却速度は1℃/sec未満の場
合パーライトが粗大化し、5℃/sec以上の場合はマルテ
ンサイトが生成しいずれも靭性の低下をもたらす。従っ
て冷却速度は1〜5℃/secに限定した。
When high strength and high toughness are required, 1 to 5 ° C./700 to 500 ° C. from the austenite region temperature reheated for the purpose of heat treatment after completion of rolling or once cooled to room temperature. Higher toughness can be obtained by accelerated cooling in sec. This is because pearlite transformation occurs at a low temperature by accelerated cooling, so that the rate of generation of pearlite transformation nuclei is improved and the pearlite grains become fine. When the cooling rate during this accelerated cooling is less than 1 ° C / sec, pearlite becomes coarse, and when it is 5 ° C / sec or more, martensite is produced, which causes a decrease in toughness. Therefore, the cooling rate was limited to 1 to 5 ° C / sec.

【0029】以上述べたように、加速冷却はオーステナ
イト粒界およびMnSからのパーライト変態において変
態核の増加をもたらし、パーライトの細粒化に寄与する
結果一層のレール鋼の靭性向上を達成することができ
る。この際冷却媒体は、空気あるいはミストなどの気液
混合物を用い、レール頭部もしくは底部の強度が110
0MPa以上とすることが望ましい。
As described above, accelerated cooling causes an increase in transformation nuclei in the pearlite transformation from austenite grain boundaries and MnS, and contributes to grain refinement of pearlite. As a result, the toughness of rail steel can be further improved. it can. At this time, a gas-liquid mixture such as air or mist is used as the cooling medium, and the strength of the rail head or bottom is 110.
It is desirable to set it to 0 MPa or more.

【0030】次に、レール鋼中の0.1〜10μmのM
nS個数を1mm2 あたり600〜12000個に限定し
た理由を述べる。本発明では十分な脱酸によって酸素が
低減し微細な酸化物が生成する。この酸化物を核として
生成したMnSはオーステナイト中に微細分散し、オー
ステナイトの細粒化を防止するとともにパ−ライトの発
生核として作用する。この時0.1μm未満の大きさの
MnSではパ−ライトの変態核とはなりがたく、また1
0μm超のMnSを生成させるとMnSの絶対数が減少
するため、MnSの大きさを0.1〜10μmに限定し
た。また、MnSの個数を1mm2 あたり600〜120
00個に限定した理由は、600未満のMnSではオー
ステナイト粒の細粒化および粒内変態核としての効果が
少なく靭性・延性の改善効果はえられない。また120
00個超のMnSが生成するとレール鋼自体が汚染され
てかえって靭性・延性が低下することから、1mm2 あた
りのMnS個数を600〜12000個に限定した。こ
こで、MnSの個数は抽出レプリカにより採取し、その
レプリカを透過電子顕微鏡によって撮影し、計測したも
のを示す。
Next, M of 0.1 to 10 μm in rail steel
The reason why the number of nS is limited to 600 to 12000 per 1 mm 2 will be described. In the present invention, sufficient deoxidation reduces oxygen and produces fine oxides. MnS produced by using this oxide as a nucleus is finely dispersed in austenite to prevent the austenite from being finely divided and to act as a pearl generating nucleus. At this time, MnS having a size of less than 0.1 μm is unlikely to be a transformation nucleus of pearlite.
Since the absolute number of MnS decreases when MnS of more than 0 μm is generated, the size of MnS is limited to 0.1 to 10 μm. Further, the number of MnS is 600 to 120 per 1 mm 2 .
The reason for limiting the number to 00 is that with MnS less than 600, the effects of austenite grain refinement and intragranular transformation nuclei are small, and the toughness / ductility improvement effect cannot be obtained. Again 120
If more than 00 MnS is generated, the rail steel itself is contaminated and the toughness and ductility are rather deteriorated. Therefore, the number of MnS per 1 mm 2 is limited to 600 to 12000. Here, the number of MnS is obtained by sampling with an extraction replica, photographing the replica with a transmission electron microscope, and measuring the number.

【0031】[0031]

【実施例】次に、本発明により製造した高靭性を有する
高強度レールの製造実施例について述べる。表1は溶鋼
にMgを添加して脱酸処理を行った場合とMgを添加し
なかった場合のレール鋼の化学成分を示す。
EXAMPLES Next, examples of production of high strength rails having high toughness produced according to the present invention will be described. Table 1 shows the chemical composition of rail steel when Mg was added to molten steel to perform deoxidation treatment and when Mg was not added.

【0032】[0032]

【表1】 [Table 1]

【0033】表2はレール鋼の冷却後の組織中に存在す
る0.1〜10μmのMnS個数(抽出レプリカにより
採取し、そのレプリカを透過電子顕微鏡によって撮影
し、計測)の測定結果および冷却後の組織中に存在する
パ−ライト粒内変態の有無の観察結果を示す。Mg添加
による脱酸を行った本発明鋼では、所定の量の微細なM
nSの生成が確認され、細粒化したオーステナイト粒界
を起点としたパ−ライト組織とともに、オーステナイト
粒内からのMnSならびにMnS上のV炭窒化物を生成
起点としたパ−ライト組織の生成が確認された。
Table 2 shows the measurement results of the number of MnS of 0.1 to 10 μm (collected by an extraction replica, photographed by a transmission electron microscope, and measured) of MnS existing in the structure of the rail steel after cooling and after cooling. 2 shows the observation result of the presence or absence of pearlite intragranular transformation existing in the structure of. In the steel of the present invention which has been deoxidized by adding Mg, a predetermined amount of fine M
The formation of nS was confirmed, and the formation of a pearlite structure starting from the austenite grain boundaries as well as MnS and V carbonitrides on MnS from the austenite grains was confirmed. confirmed.

【0034】表3は圧延まま、および強度を一定とする
ために化学成分毎にオーステナイト域温度から700〜
500℃間を冷却速度1〜5℃/Sの範囲で変化させた
加速冷却後のレール鋼の引張試験強度、伸びおよび2mm
Uノッチシャルピー試験における+20℃での衝撃吸収
エネルギー測定結果を示す。引っ張り試験はレール頭部
GC内部10mm深さ位置から採取した平行部径6mm、平
行部長さ30mmの試験片で行った。
Table 3 shows from the austenite temperature range of 700 to 700 for each chemical component in order to keep the strength as it is rolled.
Tensile test strength, elongation and 2mm of rail steel after accelerated cooling with cooling rate changed in the range of 1 to 5 ° C / S between 500 ° C
The impact absorption energy measurement result in +20 degreeC in a U notch Charpy test is shown. The tensile test was carried out on a test piece having a parallel part diameter of 6 mm and a parallel part length of 30 mm taken from a position 10 mm deep inside the rail head GC.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】この結果本発明鋼は、従来比較鋼に比べて
十分にパ−ライト微細組織の効果としての延性の改善が
認められた。衝撃試験片はレール頭部1mm下より採取し
た。この試験条件は熱処理における靭性を規定したロシ
アのGOST規格に基づくもので、同規格によれば高強
度熱処理レールの+20℃での衝撃吸収エネルギーは
0.25MJ/m2 以上が必要とされており、本発明のMg
添加による脱酸を行うことによってオーステナイト粒内
からもパ−ライト変態を生成させた微細パ−ライト組織
鋼は、いずれもGOST規格に定められたシャルピー吸
収エネルギーを十分に満たしている。
As a result, it was confirmed that the steel of the present invention has a sufficiently improved ductility as an effect of the pearlite microstructure as compared with the conventional comparative steel. The impact test piece was taken from 1 mm below the rail head. This test condition is based on the Russian GOST standard that regulates toughness in heat treatment, and according to this standard, high-strength heat-treated rails require impact absorption energy at + 20 ° C of 0.25 MJ / m 2 or more. , Mg of the present invention
All of the fine pearlite structure steels in which the pearlite transformation is generated from the austenite grains by performing the deoxidation by the addition sufficiently satisfy the Charpy absorbed energy defined in the GOST standard.

【0038】[0038]

【発明の効果】以上のように、Mg添加による脱酸によ
り、MnSのサイズ、個数を制御することによってオー
ステナイト粒を細粒にし粒界より生成するパーライトを
細粒化すること、およびMnSそのものを、さらにはM
nSに析出したV炭窒化物をパーライト変態核として活
用することによって、よりパーライト粒が細粒化する。
さらに加速冷却によってもパーライト粒は細粒化し、
0.25MJ/m2 以上の衝撃吸収エネルギーをえることが
できる。本発明により靭性、延性に優れた高強度レール
を製造できた。
As described above, deoxidation by addition of Mg controls the size and number of MnS to make fine austenite grains and fine pearlite generated from grain boundaries, and MnS itself. , And even M
By utilizing the V carbonitrides precipitated in nS as pearlite transformation nuclei, the pearlite grains become finer.
Furthermore, the pearlite grains are made finer by accelerated cooling,
A shock absorption energy of 0.25 MJ / m 2 or more can be obtained. According to the present invention, a high-strength rail excellent in toughness and ductility can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−104946(JP,A) 特開 平7−238339(JP,A) 特開 平7−188875(JP,A) 特開 平6−340951(JP,A) 特開 平6−279928(JP,A) 特開 平6−279927(JP,A) 特開 平2−47240(JP,A) 特公 平4−4371(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 9/04,8/00 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-8-104946 (JP, A) JP-A-7-238339 (JP, A) JP-A-7-188875 (JP, A) JP-A-6- 340951 (JP, A) JP-A-6-279928 (JP, A) JP-A-6-279927 (JP, A) JP-A-2-47240 (JP, A) JP-B-4-4371 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 9 / 04,8 / 00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶鋼を脱酸し、鋼片とし、これを熱間加
工を含む工程で製造したレールであって、重量%で、 C :0.55〜0.90%、 Si:0.10〜1.20%、 Mn:0.50〜1.50%、 S :0.002〜0.035% Mg:0.0004〜0.01%、 Al:0.005〜0.05%、 V :0.001〜1.00%、 N :0.0005〜0.030% を含有し残部が鉄およびPなどの不可避的不純物からな
る鋼で、オーステナイト粒内のMnSを核としたパーラ
イトが、さらにはMnS上のV炭窒化物を核としたパー
ライトが存在し、かつ0.1〜10μmの大きさのMn
S個数が1mm2 あたり、600〜12000個存在する
ことを特徴とする靭性および延性に優れた高強度レー
ル。
1. A rail produced by deoxidizing molten steel to obtain a steel slab, which is manufactured by a process including hot working, in which C: 0.55 to 0.90%, Si: 0. 10 to 1.20%, Mn: 0.50 to 1.50%, S: 0.002 to 0.035% Mg: 0.0004 to 0.01%, Al: 0.005 to 0.05%, V: 0.001 to 1.00%, N: 0.0005 to 0.030%, with the balance being inevitable impurities such as iron and P, and pearlite having MnS in the austenite grains as the core Furthermore, pearlite having V carbonitride on MnS as a nucleus is present, and Mn having a size of 0.1 to 10 μm.
A high-strength rail with excellent toughness and ductility, characterized in that there are 600 to 12,000 S per 1 mm 2 .
【請求項2】 溶鋼を脱酸し、鋼片とし、これを熱間加
工を含む工程で製造したレールであって、重量%で、 C :0.55〜0.90%、 Si:0.10〜1.20%、 Mn:0.50〜1.50%、 S :0.002〜0.035% Mg:0.0004〜0.01%、 Al:0.005〜0.05%、 V :0.001〜1.00%、 N :0.0005〜0.030% を含有し、かつこれに1種または2種以上の重量%で、 Cr:0.10〜1.0%、 Ni:0.10〜4.0%、 Mo:0.10〜0.50%、 Nb:0.01〜0.05% を含有し、残部が鉄およびPなどの不可避的不純物から
なる鋼で、オーステナイト粒内のMnSを核としたパー
ライトが、さらにはMnS上のV炭窒化物を核としたパ
ーライトが存在し、かつ0.1〜10μmの大きさのM
nS個数が1mm2あたり、600〜12000個存在す
ることを特徴とする靭性および延性に優れた高強度レー
ル。
2. A rail produced by deoxidizing molten steel to form a steel slab, which is produced by a process including hot working, in which C: 0.55 to 0.90%, Si: 0. 10 to 1.20%, Mn: 0.50 to 1.50%, S: 0.002 to 0.035% Mg: 0.0004 to 0.01%, Al: 0.005 to 0.05%, V: 0.001 to 1.00%, N: 0.0005 to 0.030%, and 1 or 2 or more weight% thereof, Cr: 0.10 to 1.0%, Ni: 0.10 to 4.0%, Mo: 0.10 to 0.50%, Nb: 0.01 to 0.05%, with the balance being iron and inevitable impurities such as P. , Pearlite having MnS in the austenite grains as a nucleus, and pearlite having V carbonitride on MnS as a nucleus are present, and M with a size of 0.1 to 10 μm
A high-strength rail with excellent toughness and ductility, characterized in that the number of nS is 600 to 12000 per 1 mm 2 .
【請求項3】 溶鋼に脱酸元素としてMgを添加し脱酸
処理を施して溶製し、重量%で、 C :0.55〜0.90%、 Si:0.10〜1.20%、 Mn:0.50〜1.50%、 S :0.002〜0.035% Mg:0.0004〜0.01%、 Al:0.0005〜0.05%、 V :0.001〜1.00%、 N :0.0005〜0.030% を含有して残部が鉄及びPなどの不可避的不純物からな
る溶鋼を造塊・分塊法あるいは連続鋳造法を経て鋼片と
し、この鋼片を熱間圧延してレール形状に成形し、該圧
延終了後そのまま、あるいは熱処理する目的で高温に加
熱した後、レールの頭部あるいはさらに底部を、オース
テナイト域温度から冷却する際に700〜500℃間を
1〜5℃/secで加速冷却し、オーステナイト粒内に微細
なMnSを析出させ、MnSによるオーステナイト粒の
細粒化、MnSを核としたパーライトの生成、さらには
MnS上に析出させたV炭窒化物を核としたパーライト
を生成させることを特徴とする靭性および延性に優れた
高強度レールの製造法。
3. Mg is added to the molten steel as a deoxidizing element and is subjected to deoxidizing treatment to be melted, and by weight%, C: 0.55 to 0.90%, Si: 0.10 to 1.20%. , Mn: 0.50 to 1.50%, S: 0.002 to 0.035% Mg: 0.0004 to 0.01%, Al: 0.0005 to 0.05%, V: 0.001 to Molten steel containing 1.00%, N: 0.0005 to 0.030% and the balance consisting of unavoidable impurities such as iron and P is made into a billet through an ingot-agglomeration method or a continuous casting method. A steel slab is hot-rolled to form a rail shape, and after the rolling is finished or after being heated to a high temperature for the purpose of heat treatment, when the head or further the bottom of the rail is cooled from the austenite range temperature to 700 to Accelerated cooling at a temperature of 1 to 5 ° C / sec between 500 ° C and finely cooling the austenite grains. Toughness characterized by precipitating various MnS, refining austenite grains by MnS, producing pearlite with MnS as a nucleus, and further producing pearlite with V carbonitride as a nucleus on MnS. And a method of manufacturing high strength rails with excellent ductility.
【請求項4】溶鋼に脱酸元素としてMgを添加し脱酸処
理を施して溶製した。重量%で、 C :0.55〜0.90%、 Si:0.10〜1.20%、 Mn:0.50〜1.50%、 S :0.002〜0.035% Mg:0.0004〜0.01%、 Al:0.0005〜0.05%、 V :0.001〜1.00%、 N :0.0005〜0.030% を含有し、かつこれに1種または2種以上の重量%で、 Cr:0.10〜1.0%、 Ni:0.10〜4.0%、 Mo:0.10〜0.50%、 Nb:0.01〜0.05% を含有して残部が鉄及びPなどの不可避的不純物からな
る溶鋼を造塊・分塊法あるいは連続鋳造法を経て鋼片と
し、この鋼片を熱間圧延してレール形状に成形し、該圧
延終了後そのまま、あるいは熱処理する目的で高温に加
熱した後、レールの頭部あるいはさらに底部を、オース
テナイト域温度から冷却する際に700〜500℃間を
1〜5℃/secで加速冷却し、オーステナイト粒内に微細
なMnSを析出させ、MnSによるオーステナイト粒の
細粒化、MnSを核としたパーライトの生成、さらには
MnS上に析出させたV炭窒化物を核としたパーライト
を生成させることを特徴とする靭性および延性に優れた
高強度レールの製造法。
4. A molten steel is prepared by adding Mg as a deoxidizing element and performing a deoxidizing treatment. % By weight, C: 0.55 to 0.90%, Si: 0.10 to 1.20%, Mn: 0.50 to 1.50%, S: 0.002 to 0.035% Mg: 0 0.0004 to 0.01%, Al: 0.0005 to 0.05%, V: 0.001 to 1.00%, N: 0.0005 to 0.030%, and 1 type or By weight% of two or more, Cr: 0.10 to 1.0%, Ni: 0.10 to 4.0%, Mo: 0.10 to 0.50%, Nb: 0.01 to 0.05. %, And the balance being iron and unavoidable impurities such as P as molten steel through ingot-agglomeration or continuous casting to form a slab, which is hot-rolled to form a rail shape, After completion of the rolling, or after heating to a high temperature for the purpose of heat treatment, the head or bottom of the rail is austenized. When cooling from the zone temperature, 700-500 ° C. is acceleratedly cooled at 1-5 ° C./sec to precipitate fine MnS in austenite grains, austenite grains are refined by MnS, and pearlite with MnS as nuclei. The method for producing a high-strength rail excellent in toughness and ductility, characterized in that pearlite having V carbonitrides deposited on MnS as nuclei is generated.
JP24443994A 1994-10-07 1994-10-07 High strength rail with excellent ductility and toughness and its manufacturing method Expired - Lifetime JP3368557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24443994A JP3368557B2 (en) 1994-10-07 1994-10-07 High strength rail with excellent ductility and toughness and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24443994A JP3368557B2 (en) 1994-10-07 1994-10-07 High strength rail with excellent ductility and toughness and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH08109438A JPH08109438A (en) 1996-04-30
JP3368557B2 true JP3368557B2 (en) 2003-01-20

Family

ID=17118676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24443994A Expired - Lifetime JP3368557B2 (en) 1994-10-07 1994-10-07 High strength rail with excellent ductility and toughness and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3368557B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571759B2 (en) * 2001-06-01 2010-10-27 新日本製鐵株式会社 Perlite rail and manufacturing method thereof
WO2007111285A1 (en) 2006-03-16 2007-10-04 Jfe Steel Corporation High-strength pearlite rail with excellent delayed-fracture resistance
CN103409689A (en) * 2013-07-31 2013-11-27 内蒙古包钢钢联股份有限公司 Bainitic/martensitic steel treated by rare earth and special for railway frog
ES2796328T3 (en) * 2015-01-23 2020-11-26 Nippon Steel Corp Rail

Also Published As

Publication number Publication date
JPH08109438A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
EP2143813A1 (en) Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
WO2015093321A1 (en) H-shaped steel and method for producing same
JPH06100924A (en) Production of shape steel subjected to controlled rolling excellent in fire resistance and toughness
EP2143814A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP2005290544A (en) Method for manufacturing rail made of high carbon steel superior in abrasion resistance and ductility
JPH06100923A (en) Production of oxide-containing fire resistant shape steel by controlled rolling
JP3267772B2 (en) Manufacturing method of high strength, high ductility, high toughness rail
JP2003129180A (en) Pearlitic rail superior in toughness and ductility, and manufacturing method therefor
JP3368557B2 (en) High strength rail with excellent ductility and toughness and its manufacturing method
JPH06279928A (en) High strength rail excellent in toughness and ductility and its production
JPH09206804A (en) Manufacture of high-strength rail excellent in ductility and toughness
JP2001003140A (en) High strength pearlitic rail excellent in toughness and ductility and its production
CN114277307B (en) High-strength steel for 1100 MPa-level engineering machinery and production method thereof
JPH06279927A (en) High strength rail excellent in ductility and toughness and its production
JP2004204306A (en) High carbon pearlitic rail having excellent wear resistance and toughness
JP3368309B2 (en) High-strength pearlitic rail with excellent toughness and ductility, and method for producing the same
CN114277306B (en) High-strength steel for 1000 MPa-level engineering machinery and production method thereof
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JP3368556B2 (en) High-strength rail with excellent rolling fatigue resistance and its manufacturing method
JP2000328190A (en) High strength pearlitic rail excellent in toughness and ductility and its production
JP3323272B2 (en) Manufacturing method of high strength rail with excellent ductility and toughness
JP4355200B2 (en) Method for producing high carbon steel rails with excellent wear resistance and ductility
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP4331874B2 (en) Perlite rail and manufacturing method thereof
JPH09227943A (en) Production of high strength rail excellent in ductility and toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term