JP4331874B2 - Perlite rail and manufacturing method thereof - Google Patents

Perlite rail and manufacturing method thereof Download PDF

Info

Publication number
JP4331874B2
JP4331874B2 JP2000255377A JP2000255377A JP4331874B2 JP 4331874 B2 JP4331874 B2 JP 4331874B2 JP 2000255377 A JP2000255377 A JP 2000255377A JP 2000255377 A JP2000255377 A JP 2000255377A JP 4331874 B2 JP4331874 B2 JP 4331874B2
Authority
JP
Japan
Prior art keywords
rail
toughness
pearlite
transformation
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000255377A
Other languages
Japanese (ja)
Other versions
JP2002069583A (en
Inventor
健一 狩峰
耕一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000255377A priority Critical patent/JP4331874B2/en
Publication of JP2002069583A publication Critical patent/JP2002069583A/en
Application granted granted Critical
Publication of JP4331874B2 publication Critical patent/JP4331874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レール鋼の靭性および延性の向上を図った高強度レールおよびその製造方法に関するものである。
【0002】
【従来の技術】
鉄道輸送は輸送効率向上のための重積載化、輸送迅速化のための高速化が進められており、レールの特性に対する要求が厳しくなっている。重積載化は急曲線区間におけるレール頭部の磨耗を促進し、レールゲージコーナー内部の応力集中部からの疲労損傷を増加させることから、レール寿命が短くなってきている。この重荷重鉄道でのレール短寿命化を改善するために、耐磨耗性、耐内部疲労損傷性の優れた高強度レール鋼の技術開発が活発に行われてきた。その結果、重荷重鉄道における曲線区間ではこの高強度レールが普及しつつある。
【0003】
一方、寒冷地の鉄道では冬季にレールクラック発生によるレール取替が集中しており、レール材の靭性改善がレール寿命の延伸に必要な課題になっている。また頭部の内部疲労損傷性の改善には、レール材の靭性および延性を向上させることが重要である。
【0004】
高強度レールの靭性および延性改善の方策としては以下のような方法がある。
(1)普通圧延後、一旦室温まで冷却したレールを低温度で再加熱した後、加速冷却する方法。
(2)制御圧延によりオーステナイト粒を微細化した後、レール頭部を加速冷却する方法。
(3)制御圧延した後、パーライト変態前で低温度に再加熱し、その後加速冷却する方法。
【0005】
【発明が解決しようとする課題】
上記方法の(1)では、例えば特開昭55−125231号公報に記載されているように、通常の加熱温度よりも低い850℃以下の低温度に再加熱し、オーステナイト粒を細粒化することによって大幅に靭性および延性を改善しようとするものである。しかし、低温度で加熱し、かつレール頭部内部まで加熱を深めようとすると、投入熱量を下げて長時間加熱する必要があり、この熱処理のため生産性を阻害し製造コストを高める難点がある。
【0006】
また(2)の方法は、例えば特開昭52−138427号公報および特開昭52−138428号公報に記載されているように、制御圧延によるオーステナイト粒の細粒化で靭性・延性の向上を図ろうとするものである。しかし、大きな圧下力等が必要という圧延機の能力あるいはレールの断面形状や長手方向の寸法精度が容易に得られないという形状制御性の観点からも問題を含んでいる。
【0007】
さらに(3)の方法は、例えば特公平4−4371号公報に記載されているように、800℃以下で5%以上の圧延を実施した後、再度750〜900℃に加熱することによりオーステナイト粒を微細にし、靭性および延性を改善しようとするものである。しかし、この方法は圧延後に低温再加熱のための加熱炉を必要とするため作業性、生産性、製造コスト等の問題がある。
【0008】
またレール鋼の靭性を改善する方法としては、例えば特開平8−104946号公報、特開平8−104947号公報および特開平8−109438号公報に記載されているように、脱酸元素としてMgを添加し、0.1〜10μmのMnSの個数が1mm2 あたり600〜12000個存在する靭性・延性が優れた高強度パーライト系レールがあり、この方法により靭性および延性に優れたレールの製造が可能となった。しかし、重荷重鉄道ではなお一層の重積載化および高速化が検討されており、さらに靭性および延性の特性を改善することが要求されてきている。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を要旨とする。
(1)質量%で、
C :0.60〜0.72%、 Si:0.10〜1.20%、
Mn:0.10〜1.50%、 Cr:0.1〜1.0%、
Cu:0.1〜4.0%、 Nb:0.001〜0.05%、
Ti:0.001〜0.05%、 Mg:0.0004〜0.02%
を含有し、残部Fe及び不可避的不純物からなり、少なくともレール頭部がパーライト組織であり、レール頭部上面の表面下5mmでの硬度がビッカース硬度番号で330以上であることを特徴とするパーライト系レール。
【0011】
)質量%で、さらに、
Ni:0.1〜4.0%、 Mo:0.01〜0.50%、
V :0.005〜1.00%、 B :0.0001〜0.005%、
N :0.0005〜0.03%
を含有することを特徴とする前記(1)記載のパーライト系レール。
【0015】
)前記(1)または(2)に記載の成分からなる鋼片を、熱間圧延でレールに形成した後、熱延まま、あるいは熱延後の加熱によってオーステナイト域温度とし、前記レールの少なくとも頭部を、700〜500℃間を1〜5℃/secで加速冷却することを特徴とするパーライト系レールの製造方法。
【0016】
【発明の実施の形態】
以下本発明について詳細に説明する。
レール鋼は一般にパーライト組織を有しており、このパーライト組織はフェライト相とセメンタイト相が層状に積層したラメラ構造になっている。フェライトとセメンタイトの配向方向と結晶方位がいずれもそろったパーライトコロニーが集合し、フェライトとセメンタイトの結晶方位がそろっているパーライトブロックと呼ばれる結晶粒を形成している。
【0017】
パーライト鋼の硬度は、▲1▼C量が高いほど硬度の高いセメンタイトの分率が増加し硬くなる。既存の高強度レールは質量%で0.72%を超えるC量を含んでいる。
また、▲2▼フェライトとセメンタイトの層間隔、すなわちラメラ間隔が狭いほど硬くなる。高強度レールはラメラ間隔を狭めた微細パーライト組織を有している。ラメラ間隔を細かくするには、オーステナイト温度域から加速冷却を行い、変態開始を遅らせ、低温で変態させることが必要になる。
また、▲3▼フェライト中に固溶している合金元素量が増えると、固溶強化により硬度が増す。ただし、固溶強化による硬度増加はC量、ラメラ間隔の影響に比較して小さい。
【0018】
本発明者らは、まずC量と硬度が衝撃値に与える影響を詳細に検討した。
その結果、C量は衝撃値と硬度に密接に関連しており、図1に示す通り、C量の低下および硬度の上昇に伴い衝撃値が向上すること、さらにC量の小さい範囲で硬度上昇による衝撃値向上効果が顕著であるを見出した。
【0019】
Cの低下による衝撃値の向上には二つの要因があるものと本発明者らは考えている。
第1は、Cの低下は硬いセメンタイト相の厚みを薄くし、脆性破壊の起点になるセメンタイト層の割れ長さを短くする。その結果、き裂先端の応力拡大係数が小さくなり、脆性破壊の開始が遅れる。この脆性破壊の遅れにより、その間の塑性変形量が増加し、吸収エネルギーを増加する。
第2は、硬いセメンタイトの分率が低下して、材料の変形抵抗が下がり、塑性変形量が増えて、衝撃吸収エネルギーを増大させる。Cの低下による衝撃値の向上は、質量%で0.72%以下で顕著となる。ただし、Cが0.60%未満では内部疲労破壊の起点になる初析フェライトや、耐磨耗性に有害なベイナイト組織が生じやすくなるため好ましくない。このため、C量は0.60〜0.72%に限定した。
【0020】
また硬度の増加による衝撃値の向上にも、二つの要因があるものと本発明者らは考えている。
ある材料を硬くするためには、より低温でパーライト変態を起こさせ、セメンタイトとフェライトの層間隔すなわちラメラ間隔を狭める必要がある。変態温度の低下は平衡変態温度からの過冷度を高め、変態核の生成速度Nを増大させる。
一方、Cの拡散速度は低下して変態界面の移動速度、すなわち変態速度Gは低下する。変態核生成速度Nと成長速度Gの比率N/Gが増加すると結晶粒は微細になる。鋼材の衝撃値は結晶粒が細かくなるに従って増加するため、変態温度の低下、すなわち硬度の上昇は靭性の向上をもたらす。また、セメンタイト層が薄くなるため、初期き裂となるセメンタイト層の割れが短くなり、脆性破壊の開始が遅れて吸収エネルギーを増加する。
【0021】
さらに本発明者らは、C量と硬さの関係と、変態温度と細粒化の関係は、衝撃値を改善する上で相乗効果を持つことに着目した。Cが低い材料で硬度を高めるには、よりラメラ間隔を狭める必要がある。そのため硬度が同じ場合、Cが低い材料はCが高い材料に比べ、より低温で変態させる必要があり、結晶粒が細かくなることを見出した。ただし高強度レールにおいては、レール頭部上面から5mm下における硬度がビッカース硬度番号で330未満では急曲線部での摩耗量が大きくなるため好ましくない。また衝撃値も、ビッカース硬度番号で330未満では向上代が小さい。
【0022】
次に、C以外の元素について上記範囲に成分を限定した理由について述べる。成分の含有量はいずれも質量%である。
本発明においては、Si,Mn,Crの1種または2種以上を強化元素として使用する。
これらの化学成分を限定した理由を以下に説明する。
【0023】
Si:Siはパーライト組織中のフェライト相への固溶強化による高強度化への寄与する。また若干の靭性および延性改善効果がある。0.10%未満ではその効果は少なく、1.20%を超えると脆化をもたらし溶接接合性も低下するので、0.10〜1.20%に限定した。
【0024】
Mn:Mnはパーライト変態温度を低下させ、焼入れ性を高めることによって高強度化に寄与する元素である。しかし、0.10%未満ではその効果が小さく、1.50%を超えると偏析部にマルテンサイト組織を生成させ易くするため、0.10〜1.50%に限定した。
【0025】
Cr:Crはパーライト変態温度を低下させることによって高強度化に寄与する。加えて、パーライト組織中のセメンタイト相を強化する作用を有することから、溶接継ぎ手部軟化防止の観点で0.1%以上の含有が有効である。一方、1.0%を超えて含有すると、強制冷却時に元素偏析部のみでなく、過冷却傾向の強いレールの肩部にベイナイトやマルテンサイトが生成し靭性の低下をもたらす。従って強度確保に一定の寄与が期待され、かつ靭性および延性を損なわない範囲として、0.1〜1.0%に限定した。
【0026】
本発明においては、さらにNi,Cu,Mo,Nb,Mg,V,B,Tiを添加できる。このうちNi,Cuはフェライト地の靭性改善に効果があり、またMo,Nb,Mg,V,B,Tiは単体もしくは化合物として、レール圧延のための加熱時におけるオーステナイト粒の微細化、あるいは制御圧延時におけるオーステナイト粒の細粒化によって高靭性を得ることができる。
これらの化学成分を限定した理由を以下に説明する。
【0027】
Ni:Niはフェライト中に固溶し、フェライトの靭性を向上させるのに有効な元素であり、0.1%未満の場合にはその効果が極めて少なく、また4.0%を超えて含有してもその効果は飽和する。従って靭性向上の観点から、0.1〜4.0%の範囲に限定した。
【0028】
Cu:CuはNiと同様にフェライト中に固溶し、フェライトの靭性を向上させるのに有効な元素であり、0.1%未満の場合にはその効果が極めて少なく、また4.0%を超えて含有してもその効果は飽和する。従って靭性向上の観点から、0.1〜4.0%の範囲に限定した。
【0029】
Mo:Moはパーライトの変態速度を抑制し、パーライト組織を微細化することから靭性向上に有効な元素である。さらにMoは加速冷却時にレール内部において、表面層のパーライト変態にともなう発熱に連動した高温での変態誘起を防止し、レール内部の高強度化に寄与して強度を高める。しかし、0.01%未満では上記の効果は少なく、また、0.50%を超える含有量ではパーライト変態速度が低下し、パーライト組織中にベイナイトやマルテンサイトを生成させ靭性低下をもたらす。従って、0.01〜0.50%の範囲に限定した。
【0030】
Nb:Nbは熱間圧延時に低温加熱することによって、Nbの炭窒化物がオーステナイト粒成長を抑制し細粒化に寄与する。また、高温加熱・低温仕上げ圧延によって熱間圧延後のオーステナイト粒を細粒化し、加速冷却後に得られるパーライト組織を微細にする。この効果を得るためには、0.001%以上必要であり、0.05%を超えると粗大なNb炭化物、Nb窒化物、Nb炭窒化物の生成によって靭性が低下する。従って、0.001〜0.05%の範囲に限定した。
【0031】
Mg:MgはMg系介在物およびこれを核にして析出したMnSがピン止め効果によりオーステナイト粒の粒成長を抑制する効果があり、変態後のパーライト組織を微細化する。またこの効果に加えて、これらの微細介在物を核としてパーライトが生成し、さらにパーライト組織を微細にする機能を有する。しかし、0.0004%未満ではこれらの効果がほとんど無く、0.02%を超えると粗大な介在物が生成し、靭性が著しく低下するため、0.0004〜0.02%の範囲に限定した。
【0032】
B:Bは微量添加においてもオーステナイト粒界に偏析し、変態を遅らせることにより焼入れ性を著しく改善する元素である。この効果を得るためには、0.0001%以上必要であり、0.0050%を超えるとBの炭窒化物が生成し、靭性が著しく低下する。従って、0.0001〜0.0050%の範囲に限定した。
【0033】
V:VはV窒化物として冷却中にMnS上に析出し、オーステナイト粒内からのパーライト変態核となり、変態後の結晶粒を微細化する。0.005%未満ではこの効果は弱く、1%を超えると粗大なV窒化物を生成し靭性が低下する。従って、0.005〜1.0%の範囲に限定した。
【0034】
Ti:TiはTi窒化物としてオーステナイト中に析出し、オーステナイト粒の粒成長を抑制し、またパーライト変態時の変態核となる。0.001%未満ではこの効果は弱く、0.05%を超えると粗大なTi窒化化物を生成し靭性が低下する。従って、0.001〜0.05%の範囲に限定した。
【0035】
N:Nは、パーライトの変態核として作用するV窒化物、Ti窒化物をMnS上に析出するために必要な元素であり、そのためには0.0005%以上が必要である。一方Nが0.03%を越えると粗大な窒化物が生成し、靭性が低下する。従って、Nは0.0005〜0.03%の範囲に限定した。
【0036】
この他、不可避的元素であるPは、レール鋼の靭性を下げるためできるだけ低減させるため、0.03%以下にすることが望ましい。
【0037】
不可避的元素であるSは、SはMnと結合してMnSを析出し、オーステナイト粒の粒成長を抑制する効果があり、またパーライト変態時の変態核となる機能を持つ。しかしながら多量に含有すると、粗大なMnSを生成してレール鋼の靭性を下げるので、0.03%以下にすることが望ましい。
【0038】
また、Alは製鋼時の脱酸剤や炉材から混入して残存するものであるが、0.05%を超えるとAl酸化物が粗大化し、靭性の低下をもたらすことから、0.05%以下であることが望ましい。
【0039】
前記のような成分組成で構成されるレール鋼は、転炉、電気炉などの通常使用される溶解炉で溶製を行い、この溶鋼を造塊あるいは連続鋳造法により凝固させ、さらに熱間圧延法を経て製造する。さらに圧延終了に引き続き、あるいは熱処理する目的でオーステナイト域温度まで再加熱してから、700〜500℃間を1〜5℃/secで加速冷却を行う。加速冷却すると低温でパーライト変態を生じるため、レール鋼はパーライトの変態核の生成速度が向上し、パーライト粒が微細になり、強度増加に加えて、レール鋼の靭性向上を達成することができる。この加速冷却時の冷却速度が1℃/sec未満のときは必要強度を得ることができず、5℃/secを超える場合はマルテンサイトが生成し、延性、靭性が低下する。従って冷却速度は1〜5℃/secに限定した。この際冷却媒体は空気、あるいはミストなどの気液混合物を用いることが望ましい。
【0040】
【実施例】
次に、本発明により製造した高靭性を有する高強度レールの製造実施例について述べる。
表1に示す成分からなる溶鋼からレールを製造した。本発明例は硬度を上げるために、圧延後のオーステナイト域からの加速冷却処理により、700℃〜500℃間の冷却速度を1〜5℃/secの範囲で冷却した。なお比較例dは本発明例Cと同一鋼材であるが、圧延後に放冷したものである。レール頭頂面下5mmにおけるビッカース硬度の測定結果を表中に示す。
【0041】
表2は、これらのレール鋼の引張試験強度、伸び、および2mmUノッチシャルピー試験における+20℃での衝撃値、ミクロ組織の観察結果を示す。引張試験はレール頭部ゲージコーナー内部10mm深さから採取した平行部径6mm、平行部長さ30mmの試験片で行った。ミクロ組織の観察はレール上面の表面下5mmで行った。
【0042】
この結果、本発明例は比較例に比べて十分に延性の改善が認められた。衝撃試験片はレール頭部1mm下より採取した。この試験条件はロシアのΓoct 規格に基づくものであり、同規格では高強度熱処理レールの+20℃での衝撃値は25J/cm2 以上が必要とされており、本発明例はいずれもΓoct 規格に定められたシャルピー衝撃値を十分に満たしている。
【0043】
比較例aは衝撃値はΓoct 規格を満足しているが、Cが低すぎるために初析フェライトが粒界に生じており好ましくない。比較例b,cはCが高いため衝撃値が低い。比較例dは圧延後に放冷しているため硬度が低く、結晶粒が粗大であり衝撃値が低い。比較例eはSi,Mn,Crなどの強化元素が入っていないため硬度が上がらず、衝撃値も低い。比較例fは強化元素Mn,Crが過剰な例であり、マルテンサイトが生じて衝撃値が低くなった。
【0044】
【表1】

Figure 0004331874
【0045】
【表2】
Figure 0004331874
【0046】
【発明の効果】
以上のようにC含有量を適正な範囲とすることによって、▲1▼セメンタイト層の厚みの低下、▲2▼塑性変形能の向上、が得られること、および、C含有量低下に伴う強度低下を、加速冷却による低温変態を用いて補うことで、結晶粒が微細化し、安定して25J/cm2 の衝撃値を得ることができる。
すなわち、本発明により靭性および延性に優れた高強度パーライト系レールまたはその製造方法を提供できる。
【図面の簡単な説明】
【図1】鋼の硬度に対するC含有量と衝撃値との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength rail that improves the toughness and ductility of rail steel and a method for manufacturing the same.
[0002]
[Prior art]
In rail transport, heavy loads for improving transport efficiency and high speed for speeding up transport are being promoted, and demands on the characteristics of rails are becoming strict. Heavy loading promotes wear of the rail head in a sharp curve section and increases fatigue damage from the stress concentration part inside the rail gauge corner, so that the rail life is shortened. In order to improve the shortening of the rail life in heavy-duty railways, technological development of high-strength rail steel having excellent wear resistance and internal fatigue damage resistance has been actively conducted. As a result, this high-strength rail is spreading in the curved section of heavy-duty railways.
[0003]
On the other hand, in cold districts, rail replacement due to occurrence of rail cracks is concentrated in the winter, and improving the toughness of the rail material is a necessary issue for extending the rail life. It is also important to improve the toughness and ductility of the rail material in order to improve the internal fatigue damage resistance of the head.
[0004]
There are the following methods for improving the toughness and ductility of high-strength rails.
(1) A method of accelerating cooling after reheating the rail once cooled to room temperature after normal rolling at a low temperature.
(2) A method in which the rail head is accelerated and cooled after the austenite grains are refined by controlled rolling.
(3) A method in which after controlled rolling, reheating to a low temperature before pearlite transformation and then accelerated cooling.
[0005]
[Problems to be solved by the invention]
In the above method (1), for example, as described in JP-A-55-125231, the austenite grains are refined by reheating to a low temperature of 850 ° C. or lower, which is lower than the normal heating temperature. Thus, it is intended to improve toughness and ductility significantly. However, when heating at a low temperature and deepening the inside of the rail head, it is necessary to lower the input heat amount and to heat for a long time, and this heat treatment has the difficulty of hindering productivity and increasing manufacturing costs. .
[0006]
Further, the method (2) improves the toughness and ductility by reducing the austenite grains by controlled rolling, as described in, for example, JP-A-52-138427 and JP-A-52-138428. It is intended to be illustrated. However, there is also a problem from the viewpoint of the ability of the rolling mill that requires a large reduction force or the like, or the shape controllability that the cross-sectional shape of the rail and the dimensional accuracy in the longitudinal direction cannot be easily obtained.
[0007]
Further, in the method (3), as described in, for example, Japanese Examined Patent Publication No. 4-4371, after performing 5% or more rolling at 800 ° C. or lower, austenite grains are heated again to 750 to 900 ° C. To improve the toughness and ductility. However, since this method requires a heating furnace for low-temperature reheating after rolling, there are problems such as workability, productivity, and manufacturing cost.
[0008]
As a method for improving the toughness of rail steel, for example, as described in JP-A-8-104946, JP-A-8-104947 and JP-A-8-109438, Mg is used as a deoxidizing element. There is a high-strength pearlite rail with excellent toughness and ductility, and the number of MnS of 0.1 to 10 μm is 600 to 12000 per 1 mm 2 , and this method makes it possible to produce rails with excellent toughness and ductility. It became. However, in heavy-duty railways, further heavy loading and higher speed are being studied, and further improvements in toughness and ductility characteristics have been demanded.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the gist of the present invention is as follows.
(1) In mass%,
C: 0.60 to 0.72%, Si: 0.10 to 1.20%,
Mn: 0.10 to 1.50%, Cr: 0.1 to 1.0%,
Cu: 0.1-4.0%, Nb: 0.001-0.05%,
Ti: 0.001-0.05%, Mg: 0.0004-0.02%
A pearlite system comprising the balance Fe and unavoidable impurities, at least the rail head having a pearlite structure, and a hardness at 5 mm below the surface of the upper surface of the rail head having a Vickers hardness number of 330 or more. rail.
[0011]
( 2 ) In mass%,
Ni: 0.1 to 4.0%, Mo: 0.01 to 0.50 %,
V: 0.005-1.00%, B: 0.0001-0.005%,
N: 0.0005 to 0.03%
Wherein (1) pearlitic rail, wherein the containing.
[0015]
( 3 ) After forming the steel slab comprising the component described in (1) or (2) above on the rail by hot rolling, the steel is made into an austenite region temperature as it is hot rolled or by heating after hot rolling, A method for producing a pearlite rail, wherein at least the head is accelerated and cooled at a temperature of 700 to 500 ° C. at 1 to 5 ° C./sec.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
Rail steel generally has a pearlite structure, and this pearlite structure has a lamellar structure in which a ferrite phase and a cementite phase are laminated in layers. Perlite colonies with the same orientation direction and crystal orientation of ferrite and cementite gather to form crystal grains called pearlite blocks with the same crystal orientation of ferrite and cementite.
[0017]
The hardness of pearlite steel increases as the amount of {circle around (1)} C increases and the fraction of cementite with higher hardness increases. Existing high-strength rails contain more than 0.72% C by mass.
Also, (2) the harder the layer spacing between ferrite and cementite, that is, the lamellar spacing, becomes harder. The high-strength rail has a fine pearlite structure with narrow lamella spacing. In order to make the lamella spacing fine, it is necessary to perform accelerated cooling from the austenite temperature range, delay the start of transformation, and transform at a low temperature.
In addition, (3) when the amount of alloy elements dissolved in ferrite increases, the hardness increases due to solid solution strengthening. However, the increase in hardness due to solid solution strengthening is small compared to the effects of C content and lamellar spacing.
[0018]
The inventors first examined in detail the effects of the C content and hardness on the impact value.
As a result, the amount of C is closely related to the impact value and the hardness. As shown in FIG. 1, the impact value is improved as the C amount is decreased and the hardness is increased, and the hardness is increased in a small range of the C amount. It was found that the effect of improving the impact value due to is remarkable.
[0019]
The present inventors consider that there are two factors in improving the impact value due to the decrease in C.
First, lowering C reduces the thickness of the hard cementite phase and shortens the crack length of the cementite layer, which is the starting point of brittle fracture. As a result, the stress intensity factor at the crack tip becomes small, and the onset of brittle fracture is delayed. Due to this delay in brittle fracture, the amount of plastic deformation during that time increases and the absorbed energy increases.
Second, the fraction of hard cementite decreases, the deformation resistance of the material decreases, the amount of plastic deformation increases, and the impact absorption energy increases. The improvement in impact value due to the decrease in C becomes significant at 0.72% or less by mass%. However, if C is less than 0.60%, pro-eutectoid ferrite that becomes the starting point of internal fatigue failure and a bainite structure that is harmful to wear resistance are likely to be generated, which is not preferable. For this reason, the amount of C was limited to 0.60 to 0.72%.
[0020]
The present inventors consider that there are also two factors in improving the impact value due to the increase in hardness.
In order to harden a certain material, it is necessary to cause pearlite transformation at a lower temperature and to narrow a layer interval between cementite and ferrite, that is, a lamellar interval. Lowering the transformation temperature increases the degree of supercooling from the equilibrium transformation temperature, and increases the formation rate N of transformation nuclei.
On the other hand, the diffusion rate of C decreases and the moving speed of the transformation interface, that is, the transformation rate G decreases. As the ratio N / G between the transformation nucleation rate N and the growth rate G increases, the crystal grains become finer. Since the impact value of a steel material increases as the crystal grains become finer, a decrease in transformation temperature, that is, an increase in hardness brings about an improvement in toughness. Further, since the cementite layer becomes thin, the crack of the cementite layer that becomes an initial crack is shortened, and the onset of brittle fracture is delayed to increase the absorbed energy.
[0021]
Furthermore, the present inventors paid attention to the fact that the relationship between the amount of C and the hardness and the relationship between the transformation temperature and the fine graining have a synergistic effect in improving the impact value. In order to increase the hardness of a material having a low C, it is necessary to narrow the lamella interval. Therefore, when the hardness is the same, it has been found that a material having a low C needs to be transformed at a lower temperature than a material having a high C, and the crystal grains become finer. However, in the case of a high-strength rail, if the hardness at 5 mm below the top surface of the rail head is less than 330 as the Vickers hardness number, the amount of wear at the sharp curve portion is not preferable. Further, when the impact value is less than 330 in terms of Vickers hardness number, the improvement margin is small.
[0022]
Next, the reason why the components other than C are limited to the above range will be described. The content of each component is% by mass.
In the present invention, one or more of Si, Mn, and Cr are used as reinforcing elements.
The reason for limiting these chemical components will be described below.
[0023]
Si: Si contributes to high strength by solid solution strengthening to the ferrite phase in the pearlite structure. There is also a slight toughness and ductility improvement effect. If the content is less than 0.10%, the effect is small. If the content exceeds 1.20%, embrittlement occurs and the weldability decreases, so the content is limited to 0.10 to 1.20%.
[0024]
Mn: Mn is an element that contributes to high strength by lowering the pearlite transformation temperature and improving hardenability. However, when the content is less than 0.10%, the effect is small. When the content exceeds 1.50%, a martensite structure is easily generated in the segregated portion, so the content is limited to 0.10 to 1.50%.
[0025]
Cr: Cr contributes to higher strength by lowering the pearlite transformation temperature. In addition, since it has an action of strengthening the cementite phase in the pearlite structure, the content of 0.1% or more is effective from the viewpoint of preventing softening of the weld joint. On the other hand, when the content exceeds 1.0%, bainite and martensite are generated not only at the element segregation portion but also at the shoulder portion of the rail having a strong supercooling tendency during forced cooling, resulting in a decrease in toughness. Therefore, a certain contribution to securing the strength is expected, and the range that does not impair toughness and ductility is limited to 0.1 to 1.0%.
[0026]
In the present invention, Ni , Cu, Mo, Nb, Mg, V, B, and Ti can be added . Of these, Ni and Cu are effective in improving the toughness of the ferrite base, and Mo, Nb, Mg, V, B, and Ti are simple substances or compounds, and austenite grains are refined or controlled during heating for rail rolling. High toughness can be obtained by refining austenite grains during rolling.
The reason for limiting these chemical components will be described below.
[0027]
Ni: Ni is an element effective for improving the toughness of ferrite by solid solution in ferrite. When the content is less than 0.1%, the effect is extremely small, and the content is more than 4.0%. But the effect is saturated. Therefore, from the viewpoint of improving toughness, the content is limited to a range of 0.1 to 4.0%.
[0028]
Cu: Cu is an element effective for improving the toughness of ferrite by dissolving in ferrite like Ni, and if it is less than 0.1%, its effect is very small, and 4.0% The effect is saturated even if it contains exceeding. Therefore, from the viewpoint of improving toughness, the content is limited to a range of 0.1 to 4.0%.
[0029]
Mo: Mo is an element effective in improving toughness because it suppresses the transformation rate of pearlite and refines the pearlite structure. Further, Mo prevents the induction of transformation at a high temperature in conjunction with the heat generated by the pearlite transformation of the surface layer during accelerated cooling, and contributes to increasing the strength inside the rail, thereby increasing the strength. However, if the content is less than 0.01%, the above effect is small. If the content exceeds 0.50%, the pearlite transformation rate decreases, and bainite and martensite are generated in the pearlite structure, resulting in a decrease in toughness. Therefore, it was limited to the range of 0.01 to 0.50%.
[0030]
Nb: Nb is heated at a low temperature during hot rolling, so that the Nb carbonitride suppresses austenite grain growth and contributes to finer graining. Also, the austenite grains after hot rolling are refined by high-temperature heating / low-temperature finish rolling, and the pearlite structure obtained after accelerated cooling is made fine. In order to obtain this effect, 0.001% or more is necessary, and if it exceeds 0.05%, the toughness decreases due to the formation of coarse Nb carbide, Nb nitride, and Nb carbonitride. Therefore, it was limited to the range of 0.001 to 0.05%.
[0031]
Mg: Mg has an effect of suppressing the growth of austenite grains due to the pinning effect of Mg-based inclusions and MnS precipitated with the Mg-based inclusions as a nucleus, and refines the pearlite structure after transformation. In addition to this effect, pearlite is generated with these fine inclusions as nuclei and further has a function of making the pearlite structure fine. However, if it is less than 0.0004%, these effects are almost absent, and if it exceeds 0.02%, coarse inclusions are generated and the toughness is remarkably lowered. Therefore, the content is limited to the range of 0.0004 to 0.02%. .
[0032]
B: B is an element that remarkably improves hardenability by segregating at austenite grain boundaries and delaying transformation even when added in a small amount. In order to obtain this effect, 0.0001% or more is necessary, and if it exceeds 0.0050%, B carbonitride is generated and the toughness is remarkably lowered. Therefore, it was limited to the range of 0.0001 to 0.0050%.
[0033]
V: V precipitates as V nitride on MnS during cooling, becomes a pearlite transformation nucleus from the austenite grains, and refines crystal grains after transformation. If it is less than 0.005%, this effect is weak, and if it exceeds 1%, coarse V nitride is produced and toughness is lowered. Therefore, it was limited to the range of 0.005 to 1.0%.
[0034]
Ti: Ti precipitates in the austenite as Ti nitride, suppresses the grain growth of austenite grains, and becomes a transformation nucleus at the time of pearlite transformation. If it is less than 0.001%, this effect is weak, and if it exceeds 0.05%, coarse Ti nitride is generated and toughness is lowered. Therefore, it was limited to the range of 0.001 to 0.05%.
[0035]
N: N is an element necessary for precipitating V nitride and Ti nitride acting as a transformation nucleus of pearlite on MnS, and for that purpose, 0.0005% or more is necessary. On the other hand, if N exceeds 0.03%, coarse nitrides are formed and the toughness is lowered. Therefore, N is limited to the range of 0.0005 to 0.03%.
[0036]
In addition, P, which is an inevitable element, is desirably 0.03% or less in order to reduce it as much as possible in order to reduce the toughness of the rail steel.
[0037]
S, which is an inevitable element, combines with Mn to precipitate MnS, thereby suppressing the growth of austenite grains, and has a function as a transformation nucleus during pearlite transformation. However, if contained in a large amount, coarse MnS is produced and the toughness of the rail steel is lowered, so it is desirable to make it 0.03% or less.
[0038]
In addition, Al remains after being mixed from the deoxidizer and furnace material during steelmaking, but if it exceeds 0.05%, the Al oxide becomes coarse and decreases toughness. The following is desirable.
[0039]
Rail steel composed of the above-mentioned composition is melted in a commonly used melting furnace such as a converter or electric furnace, and this molten steel is solidified by ingot casting or continuous casting, and further hot rolled. Produced through the law. Further, after completion of rolling or after reheating to the austenite temperature for the purpose of heat treatment, accelerated cooling is performed at a temperature of 700 to 500 ° C. at 1 to 5 ° C./sec. Since pearlite transformation occurs at a low temperature when accelerated cooling is performed, rail steel improves the generation rate of pearlite transformation nuclei, makes pearlite grains finer, and in addition to increasing strength, it can achieve improved toughness of rail steel. When the cooling rate during this accelerated cooling is less than 1 ° C./sec, the required strength cannot be obtained, and when it exceeds 5 ° C./sec, martensite is generated and ductility and toughness are reduced. Therefore, the cooling rate was limited to 1 to 5 ° C./sec. At this time, it is desirable to use air or a gas-liquid mixture such as mist as the cooling medium.
[0040]
【Example】
Next, an example of manufacturing a high-strength rail having high toughness manufactured according to the present invention will be described.
Rails were manufactured from molten steel composed of the components shown in Table 1. In the present invention, in order to increase the hardness, the cooling rate between 700 ° C. and 500 ° C. was cooled in the range of 1 to 5 ° C./sec by accelerated cooling treatment from the austenite region after rolling. In addition, although the comparative example d is the same steel material as this invention example C, it is left to cool after rolling. The measurement results of Vickers hardness at 5 mm below the rail top surface are shown in the table.
[0041]
Table 2 shows the tensile test strength and elongation of these rail steels, the impact value at + 20 ° C. in the 2 mm U notch Charpy test, and the observation results of the microstructure. The tensile test was performed on a test piece having a parallel part diameter of 6 mm and a parallel part length of 30 mm taken from a depth of 10 mm inside the rail head gauge corner. The microstructure was observed 5 mm below the surface of the rail upper surface.
[0042]
As a result, it was confirmed that the inventive example was sufficiently improved in ductility as compared with the comparative example. The impact test piece was taken from 1 mm below the rail head. This test condition is based on the Russian Γoct standard, which requires a high-strength heat-treated rail with an impact value at + 20 ° C. of 25 J / cm 2 or more. The specified Charpy impact value is fully satisfied.
[0043]
In Comparative Example a, the impact value satisfies the Γoct standard, but since C is too low, pro-eutectoid ferrite is generated at the grain boundary, which is not preferable. Since the comparative examples b and c are high in C, the impact value is low. Since Comparative Example d is allowed to cool after rolling, the hardness is low, the crystal grains are coarse, and the impact value is low. Comparative Example e does not contain strengthening elements such as Si, Mn, and Cr, so the hardness does not increase and the impact value is low. Comparative Example f is an example in which the reinforcing elements Mn and Cr are excessive, martensite was generated, and the impact value was low.
[0044]
[Table 1]
Figure 0004331874
[0045]
[Table 2]
Figure 0004331874
[0046]
【The invention's effect】
As described above, by making the C content within an appropriate range, (1) a decrease in the thickness of the cementite layer, (2) an improvement in the plastic deformability, and a decrease in strength due to a decrease in the C content. Is compensated by using low-temperature transformation by accelerated cooling, the crystal grains are refined, and an impact value of 25 J / cm 2 can be stably obtained.
That is, the present invention can provide a high-strength pearlite rail excellent in toughness and ductility or a method for producing the same.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between C content and impact value with respect to steel hardness.

Claims (3)

質量%で、
C :0.60〜0.72%、
Si:0.10〜1.20%、
Mn:0.10〜1.50%、
Cr:0.1〜1.0%、
Cu:0.1〜4.0%、
Nb:0.001〜0.05%、
Ti:0.001〜0.05%、
Mg:0.0004〜0.02%
を含有し、残部Fe及び不可避的不純物からなり、少なくともレール頭部がパーライト組織であり、レール頭部上面の表面下5mmでの硬度がビッカース硬度番号で330以上であることを特徴とするパーライト系レール。
% By mass
C: 0.60 to 0.72%,
Si: 0.10 to 1.20%,
Mn: 0.10 to 1.50%,
Cr: 0.1 to 1.0%,
Cu: 0.1 to 4.0%,
Nb: 0.001 to 0.05%,
Ti: 0.001 to 0.05%,
Mg: 0.0004 to 0.02%
A pearlite system comprising the balance Fe and unavoidable impurities, at least the rail head having a pearlite structure, and a hardness at 5 mm below the surface of the upper surface of the rail head having a Vickers hardness number of 330 or more. rail.
質量%で、さらに、
Ni:0.1〜4.0%、
Mo:0.01〜0.50%、
V :0.005〜1.00%、
B :0.0001〜0.005%、
N :0.0005〜0.03%
を含有することを特徴とする請求項1記載のパーライト系レール。
In mass%,
Ni: 0.1-4.0%,
Mo: 0.01 to 0.50%,
V: 0.005 to 1.00%,
B: 0.0001 to 0.005%,
N: 0.0005 to 0.03%
Pearlitic rail according to claim 1, characterized in that it contains.
請求項1または2に記載の成分からなる鋼片を、熱間圧延でレールに形成した後、熱延まま、あるいは熱延後の加熱によってオーステナイト域温度とし、前記レールの少なくとも頭部を、700〜500℃間を1〜5℃/secで加速冷却することを特徴とするパーライト系レールの製造方法。After the steel slab comprising the component according to claim 1 or 2 is formed on the rail by hot rolling, the steel is made into an austenite region temperature while being hot rolled or by heating after hot rolling, and at least the head portion of the rail is 700 A method for producing a pearlitic rail characterized by accelerated cooling between 1 and 5 ° C / sec between ~ 500 ° C.
JP2000255377A 2000-08-25 2000-08-25 Perlite rail and manufacturing method thereof Expired - Fee Related JP4331874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000255377A JP4331874B2 (en) 2000-08-25 2000-08-25 Perlite rail and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255377A JP4331874B2 (en) 2000-08-25 2000-08-25 Perlite rail and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002069583A JP2002069583A (en) 2002-03-08
JP4331874B2 true JP4331874B2 (en) 2009-09-16

Family

ID=18744176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255377A Expired - Fee Related JP4331874B2 (en) 2000-08-25 2000-08-25 Perlite rail and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4331874B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007230254B2 (en) * 2006-03-16 2010-12-02 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
JP5401762B2 (en) * 2006-03-16 2014-01-29 Jfeスチール株式会社 High-strength pearlite rail with excellent delayed fracture resistance

Also Published As

Publication number Publication date
JP2002069583A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP3863878B2 (en) Welded structural steel with excellent weld heat affected zone toughness, manufacturing method thereof, and welded structure using the same
WO2008013300A1 (en) Process for producing pearlitic rail excellent in wearing resistance and ductility
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP2005290544A (en) Method for manufacturing rail made of high carbon steel superior in abrasion resistance and ductility
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP4964489B2 (en) Method for producing pearlitic rails with excellent wear resistance and ductility
CN102162061B (en) Low-carbon bainite thick steel plate with high strength and toughness and manufacturing method thereof
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP5701483B2 (en) Extremely thick steel plate for welded structure with excellent strength and toughness at the center of thickness and little material deviation, and method for manufacturing the same
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP2003129180A (en) Pearlitic rail superior in toughness and ductility, and manufacturing method therefor
JP4220830B2 (en) Perlite rail excellent in toughness and ductility and manufacturing method thereof
JP3764710B2 (en) Method for producing pearlitic rail with excellent toughness and ductility
JP4571759B2 (en) Perlite rail and manufacturing method thereof
JP4846476B2 (en) Method for producing pearlitic rails with excellent wear resistance and ductility
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2005146346A (en) Method for manufacturing rail of pearite system having excellent toughness and ductility
JP2004204306A (en) High carbon pearlitic rail having excellent wear resistance and toughness
JP2001003140A (en) High strength pearlitic rail excellent in toughness and ductility and its production
JP4331874B2 (en) Perlite rail and manufacturing method thereof
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4061141B2 (en) Perlite high-strength rail excellent in ductility and manufacturing method thereof
JP4355200B2 (en) Method for producing high carbon steel rails with excellent wear resistance and ductility
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

R151 Written notification of patent or utility model registration

Ref document number: 4331874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees