JP3991552B2 - Manufacturing method of rolled steel - Google Patents

Manufacturing method of rolled steel Download PDF

Info

Publication number
JP3991552B2
JP3991552B2 JP2000108144A JP2000108144A JP3991552B2 JP 3991552 B2 JP3991552 B2 JP 3991552B2 JP 2000108144 A JP2000108144 A JP 2000108144A JP 2000108144 A JP2000108144 A JP 2000108144A JP 3991552 B2 JP3991552 B2 JP 3991552B2
Authority
JP
Japan
Prior art keywords
cooling
flange
steel
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000108144A
Other languages
Japanese (ja)
Other versions
JP2001286901A (en
Inventor
眞司 三田尾
泰康 横山
晃夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000108144A priority Critical patent/JP3991552B2/en
Publication of JP2001286901A publication Critical patent/JP2001286901A/en
Application granted granted Critical
Publication of JP3991552B2 publication Critical patent/JP3991552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高層建築物や橋梁等の鋼構造物の分野で使用される強度、靭性に優れた圧延形鋼で、特にフランジ厚さ方向機械的特性が均一で、フランジ各部位における材質差が小さく断面形状に優れた圧延形鋼の製造方法に関する。
【0002】
【従来の技術】
熱間圧延が終了した鋼材に水冷を行ない、強度、靭性を向上させるとともに、炭素を始めとする合金成分の低減により溶接施工性の向上を図る技術は、「制御冷却」と呼ばれ、制御圧延とともに、TMCP(Thermo−mechanical control process)の中核をなす技術として、1980年に厚鋼板の製造に初めて実用化されて以降、広く普及した。(例えば、小指 軍夫、「制御圧延・制御冷却」、(社)日本鉄鋼協会監修、地人書館(1997))。
【0003】
厚鋼板の場合は、オーステナイト粒径の微細化を目的とした圧延終了温度の低下を柱とする制御圧延と、制御冷却技術の組み合わせにより、強度および靭性が格段に向上した。それに対し、やや複雑な断面形状を有する形鋼に対する制御冷却技術は、熱歪による歪の発生やウエブの座屈など形状確保において問題が多く、実用化が遅れた。形鋼を対象とする制御冷却技術に関しては、例えば、特公昭60−2366号公報、特公昭61−2727号公報、特開昭60−77924号公報、及び特公平5−40803号公報などが提案されている。
【0004】
更に、圧延後、急冷を行うと、冷却面近傍の硬さが上昇する問題が生ずるため、表面硬化抑制技術として、特許第2533250号、特許第2837056号等がしられている。これらの技術では、仕上圧延前の中間圧延段階において冷却、復熱を行い、表層部の組織が低温γあるいはγ/α二相領域の状態で加工を加えることにより、仕上圧延後の冷却において表面に焼きが入ることを防止している。しかし,中間圧延段階での温度低下は、圧延ミルへの負荷が増大し、場合によっては所望の断面形状が得られない場合がある。
【0005】
【発明が解決しようとする課題】
上述したように、厚鋼板の場合には、制御圧延と制御冷却の組み合わせにより、TMCP技術をより有効に材質制御に活用することができるが、形鋼の場合は、断面形状を確保しなければならず、材質制御を目的とする制御圧延や、冷却の方法によっては冷却中や、冷却後に反りを生ずる圧延後の冷却が十分活用されていない。
【0006】
そこで、本発明は、特段の制御圧延を実施しない場合においても、圧延後、冷却した場合に、良好な断面形状が得られ、且つ、冷却による製品の表面硬化が十分に抑制され、フランジ各部位(1/4F、1/2F)の材質が均一な強度,靭性に優れた極厚H形鋼の製造方法を提供する。
【0007】
【課題を解決するための手段】
本発明者等は、仕上圧延終了後の冷却による表面硬化を抑制するために有効な組織およびその具体化手段について検討し、表面近傍におけるオーステナイトの体積分率が低く、且つ微細な組織であれば表面硬化の抑制が可能で、このような組織は、急冷により、表面近傍を一旦、ベイナイト変態終了温度以下とした後、形鋼自体の熱容量によって復熱させ、再び水冷することにより、軟化することを見出した。
【0008】
すなわち、形鋼の冷却面近傍の組織を、全面ベイナイトとした後、復熱によりフェライト主体の組織、あるいは、一部微細オーステナイトに逆変態した後、再び冷却を受けるようにした場合、逆変態オーステナイトが微細で、焼入れ性が低いため硬化が少ないこと及びそのために必要な具体的冷却条件を見出したものである。
【0009】
尚、冷却条件に関しては更に形鋼として歪の生じないことも含めて検討を行った。本発明は以上の知見を基に更に検討を加えてなされたものである。すなわち、本発明は
1. 質量%で、C:0.05〜0.20%、Si:0.6%以下、Mn:0.5〜1.6%、Al:0.01〜0.05%、P:0.035%以下、S:0.020%以下を含む鋼を、Ar3点以上で仕上圧延終了後、直ちにフランジ内外面を一次冷却し、冷却停止後、フランジ冷却面を550℃以上、800℃以下に復熱させ、二次冷却後、自然放冷する形鋼の製造工程において、
一次冷却と二次冷却を、フランジ内面および外面の冷却水量密度を各々500L/m2・min以上、かつ、フランジ内面とフランジ外面の水量密度比を0.3以上、1.2以下とし、
該一次冷却をフランジ冷却面が500℃以下でフランジの平均温度650℃以上で一旦冷却を停止し、
該二次冷却を、フランジの平均温度400℃以上、600℃以下で冷却を停止するものであることを特徴とする圧延形鋼の製造方法。
【0010】
【発明の実施の形態】
1.成分組成
本発明は、低合金鋼における相変態に関する冶金的知見を基に構成されるものであり、その成分組成は、得られた知見を基とし、更に鋼構造物に用いられる形鋼として最低限要求される溶接性等の特性を満足するように検討されたものである。
【0011】

Cは、鋼の強度を確保するために添加する。0.05%未満の場合、強度の確保が困難となるため、0.05%以上添加する。多量に添加した場合、鋼の靭性や溶接性を低下させるが、0.20%をこえると溶接部の硬度が著しく上昇し、溶接低温割れ感受性を劣化させ、制御冷却時の表面硬度を著しく上昇させるため、0.05〜0.20%(0.05%以上、0.20%以下)とする。
【0012】
Si
Siは、脱酸のため、添加し、強度向上にも寄与する。その含有量が0.6%を超えるとHAZ靭性及び溶接性の観点から好ましくないので、0.6%以下とする。
【0013】
Mn
Mnは、赤熱脆性の原因となるFeSの生成抑制ならびに強度、靭性向上のため0.5%以上添加する。多量の添加は鋼の焼入れ性を増加させ、溶接硬化層を出現させ、割れ感受性を劣化させるため、1.6%を上限とし、その添加量を0.5〜1.6%とする。
【0014】
Al
Alは、脱酸のため添加する。0.01%未満ではその効果が発揮されず、一方、0.05%を超えて多量に添加されると清浄度を悪くし、溶接部の靭性を劣化させるため、その添加量を0.01〜0.05%とする。
【0015】
P,S
P,Sは、鋼中に混入する不純物として不可避的に存在する。溶接熱影響部の機械的特性において、Pの低減は粒界破壊の防止に有効であり、Sの低減は水素割れ防止に有効であるため、Pは0.035%以下、Sは0.020%以下に限定する。
【0016】
本発明は、上記化学成分で、十分その効果が得られるが、強度、靭性の調整を目的に、更に、質量%で、Cu≦0.6%,Ni≦0.6%,Cr≦0.6%,Mo≦0.6%,Nb≦0.1%,V≦0.2%,Ti≦0.1%,B≦0.01%、Ca≦0.01%、Mg≦0.01%、REM≦0.01%のうち一種または二種以上を本願発明の目的を逸脱しない範囲で添加させることができる。
【0017】
但し、良好な溶接性を具備するように、例えば、引張強度490MPa級に対し、JISG3136の付属書1および付属書2に記載のように、フランジ厚50mm以下に対して、炭素当量(%)≦0.38、溶接割れ感受性組成(%)≦0.24、フランジ厚50mm超えに対して、炭素当量(%)≦0.40、溶接割れ感受性組成(%)≦0.26を満足することが望ましい。
2.製造条件
本発明は上述した好適成分の鋼に、以下の製造条件を適用する。
【0018】
圧延条件
仕上圧延はフランジにおいて、Ar3点以上で終了する。Ar3点未満とした場合、圧延ミルの負荷が大きくなり、断面形状の確保に弊害が生じる場合があり、また、フェライト相に歪が蓄積されたまま製品となり、延性や靭性を損なう場合があるため、Ar3点以上とする。一方、仕上圧延の終了温度における上限温度は、靭性を確保するため1000℃以下にすることが望ましい。尚、Ar3点は、鋼成分、オーステナイト粒径、フランジ厚等に依存して変化するが、例えば、目安として次式を用いることが出来る。Ar3(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo+(t−8)、(ここで、t:フランジ厚(mm))
冷却条件
本発明では、フランジ表面の硬化を抑制しつつ、高強度化を達成するため、仕上圧延後、直ちに開始する冷却(一次冷却)を一旦、停止させ、鋼材を所定の温度に復熱させたのち、再度冷却(二次冷却)する2段冷却を行う。2段冷却においては、フランジ内外面冷却の水量密度と水量密度比、一次、二次冷却における冷却停止温度及び復熱温度を規定する。
【0019】
フランジ内外面冷却の水量密度と水量密度比
一次冷却、二次冷却は、フランジ内外面から水量密度500L/m2・min以上、水量密度比0.3以上、1.2以下で水冷する。
水冷は、フランジ厚が薄い(例えば、8mm以上、40mm以下)場合、外面のみからの冷却でも、フランジ厚さ方向に沿って、フランジ内面に至るまで比較的均一な材質特性が得られるが、著しい断面形状の歪を生じ、また、フランジ厚が厚い(例えば、40mm超え)場合では、フランジ厚さ方向強度差を小さくするため、それぞれ両面からの水冷を行う。
【0020】
水量密度は水冷面における沸騰状態を核沸騰支配とし、水量密度のばらつきに大きく依存せず、均一かつ十分な冷却を行うため、フランジ内外面両面において500L/m2・min以上とする。より、安定した冷却状態を得るためには、600L/m2・min以上とすることが望ましい。尚、500L/m2・min未満の場合、沸騰状態は膜沸騰となり、均一かつ十分な冷却ができない。
【0021】
フランジ内外面冷却における水量密度比は、0.3未満では、フランジが内側に倒れる歪を生じ、一方、1.2超えでは、フランジが外側に倒れる歪を生じて形状不良となり、製品不良または精整による形状矯正が必要となるため、0.3以上、1.2以下とする。尚、水量密度比は内面水量密度/外面水量密度とする。
【0022】
一次冷却停止温度
一次冷却は、仕上げ圧延後、直ちに開始し、フランジ冷却面が500℃以下、且つフランジ平均温度が650℃以上で停止する。フランジ冷却面は、該冷却面におけるベイナイト変態を終了させ、その後の復熱変態における組織を極めて微細にし、逆変態オーステナイトが生成しても、二次冷却による硬化を抑制させるため、500℃以下とする。
【0023】
また、一次冷却停止時のフランジ平均温度が低い場合、冷却面近傍の復熱が不十分で、復熱温度が低いか、所望の復熱温度となるまでに長時間を要し、生産性を著しく阻害可能性があるため、650℃以上とする。
【0024】
尚、平均温度は、フランジ全体としての平均の温度であり、冷却停止後、フランジ各部分の温度は平均の温度に収束する。従って、平均温度は材料が十分に復熱した際の温度と概ね等しいと考えて良い。
【0025】
復熱温度
一次冷却停止後、フランジ内外の冷却面を共に550℃以上、800℃以下に復熱させる。復熱温度が550℃未満の場合、一次冷却による冷却面近傍のベイナイトの軟化が十分に進行せず、最終製品においてフランジ厚さ方向に強度差が生じる。一方、800℃超えの場合、逆変態オーステナイト量が多くなり、二次冷却によって表面近傍が硬化し、最終製品におけるフランジ厚さ方向の強度差が大きくなる。
【0026】
二次冷却停止温度
復熱後、二次冷却を直ちに開始し、二次冷却停止温度はフランジ平均温度で、400℃以上、600℃以下とする。二次冷却停止温度が、400℃未満の場合、冷却停止後のセルフテンパー効果が不十分となり、最終製品の靭性が損なわれたり、靭性が不十分となる。一方、600℃超えの場合は、冷却による強靭化が十分でなく、圧延終了後空冷により製造される形鋼に対し、性能上の優位性が十分得られない。
【0027】
尚、本発明においては、スラブ加熱温度は、圧延による断面形状および靭性確保の観点から、1100℃以上、1300℃以下が望ましい。
【0028】
【実施例】
(実施例1)
表1に示す成分組成の鋼を溶製後、連続鋳造により鋳片とした。鋼Aは、仕上圧延後、フランジを水冷するプロセスを適用することにより、JIS G
3136に規定のSN490C鋼を、また、鋼Bは、同様のプロセスにより、590MPa級鋼を製造することを目的に成分設計したものであり、いずれも本発明範囲内の成分組成となっている。
【0029】
鋼AまたはBの成分を有する鋳片を、加熱炉で1250℃に加熱後、表2に示すフランジ厚40mm超えの種々の寸法のH形鋼に圧延した。仕上圧延機出側温度は950℃以上でAr3点以上とした。その後、表2に示す種々の条件により、冷却を行った。No.9,21のサンプルは、圧延終了後、一次冷却を行わず、フランジ内外面が表2の(復熱−2段目冷却開始温度)となるまで待機後、一段の水冷を行ったものである。その他のサンプルについては、一次冷却、復熱後、二次冷却する2段冷却を行った。二次冷却は、一次冷却と同じ水量密度条件としている。
【0030】
得られた形鋼より、図1に示すように、フランジ幅方向1/4の位置において、フランジ厚さ(t)方向に対し、1/4,1/2.3/4の位置より、圧延方向を長手方向として、JIS Z2201に規定の4号引張試験片(平衡部径:14mm,ゲージ長:50mm)を各3本ずつと、JIS Z2202に規定のVノッチシャルピー衝撃試験片を3本ずつ採取し、常温における引張特性および0℃におけるシャルピー衝撃吸収エネルギーを求めた。
【0031】
また、図1に示すように、フランジ幅方向1/4におけるフランジ外面、内面と、フランジ断面における1/2tにおけるビッカース硬さを試験荷重98Nで求めた。更に、製品形状を目視により評価した。
【0032】
表3にこれらの試験結果を示す。2段冷却を実施しないNo.9,21は、材料内部の機械的性質は良好であるが、フランジ内外面の硬さが極めて高く、その差も大きい。フランジ外面のみから冷却し、冷却水量密度も低い、No.3のサンプルでは、フランジ各部の強度が低く、また、その変動も大きい。更に、衝撃値、硬度の変動も大きい。
【0033】
フランジ外面からのみ冷却したNo.4,No.14のサンプルは、フランジ内面側の強度が低く、強度の変動も大きく、さらに硬さの変動も大きい。製品形状も、フランジが内側に歪む形状不良(内折れ)が認められた。
【0034】
フランジ内面の水量密度の低いNo.15のサンプルは、フランジ内面側の強度が低く、その変動も大きく、また、硬度の変動も大きかった。製品形状も、フランジが内側に歪む形状不良(内折れ)が認められた。
【0035】
フランジ内外面の水量密度の低いNo.17のサンプルは、強度が不十分で、その変動も大きく、また、衝撃値、硬度の変動も大きかった。
【0036】
水量密度比が大きいNo.5,22は、いずれも材質的には良好であるが、フランジが外側に大きく歪む形状不良(外折れ)が認められた。
【0037】
一次冷却停止時のフランジ外面、内面温度が本発明範囲外で高いNo.6,18は、いずれも、材料内部の機械的性質は良好であるが、硬度が高く、また、その変動も大きい。
【0038】
復熱温度(二次冷却開始温度)が低いNo.7,19,復熱温度(二次冷却開始温度)が高いNo.8,20はいずれもフランジ内面または外面の硬度が高く、その変動も大きい。
【0039】
一方、本発明の規定を全て満足するNo.1,2,10,11,16,23は、フランジ厚全厚にわたって、良好な強度と衝撃特性を有し、フランジ厚さ方向の特性差が小さく、水冷によるフランジ内面と外面の硬さ上昇も安定的で小さい。さらに製品形状にも優れている。
【0040】
【表1】

Figure 0003991552
【0041】
【表2】
Figure 0003991552
【0042】
【表3】
Figure 0003991552
【0043】
(実施例2)
表4に示す成分組成の鋼を溶製後、連続鋳造により鋳片とした。鋼Aは、仕上圧延後、フランジを水冷するプロセスを適用することにより、JIS G 3136に規定のSN400A鋼を、また、鋼Bは、同様のプロセスにより、SN490C鋼を製造することを目的に成分設計し、いずれも本発明範囲内の成分組成となっている。
【0044】
鋼AまたはBの成分を有する鋳片を、加熱炉で1250℃に加熱後、表5に示すフランジ厚8mm超え40mm未満の種々の寸法のH形鋼に圧延した。仕上圧延機出側温度は880℃以上でAr3点以上とした。その後、表5に示す種々の条件により、冷却を行った。No.9,21のサンプルは、圧延終了後、一次冷却を行わず、フランジ内外面が表5の復熱後、2段目冷却開始温度となるまで待機後、一段の水冷を行ったものである。その他のサンプルについては、一次冷却、復熱後、二次冷却する2段冷却を行った。二次冷却は、一次冷却と同じ水量密度条件としている。
【0045】
得られた形鋼より、フランジ幅方向1/4の位置において、圧延方向を長手方向として、JIS Z2201に規定の1A号引張試験片(平衡部幅:40mm,ゲージ長:200mm)を各3本ずつと、JIS Z2202に規定のVノッチシャルピー衝撃試験片を3本ずつ採取し、常温における引張特性および0℃におけるシャルピー衝撃吸収エネルギーを求めた。
【0046】
また、フランジ幅方向1/4におけるフランジ外面、内面と、フランジ断面における1/2tにおけるビッカース硬さを試験荷重98Nで求めた。更に、製品形状を目視により評価した。
【0047】
表6にこれらの試験結果を示す。2段冷却を実施しないNo.9,21は、材料内部の機械的性質は良好であるが、フランジ内外面の硬さが極めて高く、その差も大きい。フランジ外面のみから冷却し、冷却水量密度も低い、No.3、14のサンプルでは、フランジ各部の強度が低く、また、その変動も大きい。更に、フランジ外面における硬度の変動も大きい。
【0048】
フランジ外面からのみ冷却したNo.4のサンプルは、機械的特性は良好であったが、フランジが内側に倒れる顕著な形状不良(内折れ)が認められた。また、強度が高く、フランジ厚が厚めのNo.15のサンプルは、フランジ外面と内面との硬さの差が大きく、顕著な形状不良(内折れ)が認められた。
【0049】
フランジの水量密度の低いNo.16のサンプルは、フランジ内面の硬さ大きく変動し、顕著な形状不良(内折れ)が認められた。水量密度比が大きいNo.5とNo.18は、いずれも良好な材質が得られたが、フランジが外に向かって大きく歪む形状不良(外折れ)が認められた。
【0050】
一次冷却停止温度、復熱温度(二次冷却開始温度)の両者が本発明範囲外のNo.6,19はいずれも、材質は良好であるが、硬さの変動が大きく、No.19では、Hv200を超えている。復熱温度(二次冷却開始温度)が本発明の規定外で、低くなっているNo.7,8,20,21は、フランジ内外面の硬度が高い。
【0051】
二次冷却停止温度が高い、No.12は強度が低く、二次冷却停止温度が低いNo.13は、衝撃吸収エネルギーが低い。本発明条件を全て満足するNo.1,2,10,11,17は良好な強度、靭性および硬さ分布を有し、更に製品形状にも優れている。
【0052】
尚、本実施例に用いた製造装置は、フランジ内外面の冷却及び2段冷却が可能で、図2に内外面冷却装置および冷却状況を、図3に製造装置全体を模式的に示す。製造装置は、仕上圧延機出側に、内外面冷却を行う冷却装置を3個以上のユニットに分けて、直列に配置するもので、各ユニットは、冷却のon−offが可能である。圧延形鋼の仕上圧延速度、搬送速度の調整、及び各冷却ユニットのon−offにより、所望の2段冷却を行う。
【0053】
【表4】
Figure 0003991552
【0054】
【表5】
Figure 0003991552
【0055】
【表6】
Figure 0003991552
【0056】
【発明の効果】
以上説明したように、本発明によれば、圧延後、一次冷却を行った後、復熱させ、さらに二次冷却を行うので、フランジ厚によらず、フランジ各部位の材質が均一で、断面形状の劣化のない極厚H形鋼が複雑な熱処理を要せず製造可能で、産業上、極めて有用である。
【図面の簡単な説明】
【図1】フランジ部引張試験、衝撃試験の各試験片採取位置および硬さ分布試験の位置を示す図。
【図2】フランジ内外面冷却の状況を模式的に示す図。
【図3】圧延形鋼製造装置の模式図(平面図)。[0001]
BACKGROUND OF THE INVENTION
The present invention is a rolled steel with excellent strength and toughness used in the field of steel structures such as high-rise buildings and bridges. Especially, the mechanical properties in the flange thickness direction are uniform, and there is no material difference at each flange part. The present invention relates to a method for producing a rolled steel having a small cross-sectional shape.
[0002]
[Prior art]
The technology to improve the welding workability by reducing the alloy components such as carbon while water-cooling the hot-rolled steel material to improve strength and toughness is called “controlled cooling”. At the same time, as the technology that forms the core of TMCP (Thermo-mechanical control process), it became widespread since it was first put into practical use in the production of thick steel plates in 1980. (For example, Takeshi Kochiji, “Controlled Rolling / Controlled Cooling”, supervised by the Japan Iron and Steel Institute, Jishinshokan (1997)).
[0003]
In the case of a thick steel plate, the strength and toughness have been remarkably improved by a combination of controlled rolling using a reduction in rolling end temperature for the purpose of refining the austenite grain size and controlled cooling technology. On the other hand, the control cooling technology for the shape steel having a slightly complicated cross-sectional shape has many problems in securing the shape such as generation of strain due to thermal strain and buckling of the web, and its practical application has been delayed. As for the control cooling technology for the shape steel, for example, Japanese Patent Publication No. 60-2366, Japanese Patent Publication No. 61-2727, Japanese Patent Laid-Open No. 60-77924, and Japanese Patent Publication No. 5-40803 are proposed. Has been.
[0004]
Furthermore, when quenching is performed after rolling, there is a problem that the hardness in the vicinity of the cooling surface is increased. Therefore, as a surface hardening suppressing technique, Japanese Patent No. 2533250, Japanese Patent No. 2837056, and the like are used. In these technologies, cooling and reheating are performed in the intermediate rolling stage before finish rolling, and the surface layer structure is processed in a state of a low-temperature γ or γ / α two-phase region, thereby cooling the surface after finishing rolling. To prevent burning. However, the temperature drop in the intermediate rolling stage increases the load on the rolling mill, and in some cases, the desired cross-sectional shape may not be obtained.
[0005]
[Problems to be solved by the invention]
As described above, in the case of a thick steel plate, TMCP technology can be more effectively utilized for material control by a combination of controlled rolling and controlled cooling. However, depending on the controlled rolling for the purpose of material control and the cooling method, cooling after rolling that causes warping during cooling or after cooling is not sufficiently utilized.
[0006]
Therefore, the present invention provides a good cross-sectional shape when cooling after rolling even when no special controlled rolling is performed, and the surface hardening of the product by cooling is sufficiently suppressed, and each part of the flange Provided is a method for producing an ultra-thick H-shaped steel having a uniform strength and toughness with a material of (1 / 4F, 1 / 2F).
[0007]
[Means for Solving the Problems]
The present inventors examined a structure effective for suppressing surface hardening due to cooling after finishing rolling and its concrete means, and if the austenite volume fraction near the surface is low and a fine structure Surface hardening can be suppressed, and such a structure can be softened by rapid cooling, once the vicinity of the surface is made below the bainite transformation end temperature, reheated by the heat capacity of the shape steel itself, and then water cooled again. I found.
[0008]
In other words, when the structure near the cooling surface of the section steel is made entirely bainite, then it is reverse-transformed austenite when it is subjected to cooling again after reverse transformation to a ferrite-based structure or partly fine austenite by recuperation. Has been found to be fine and low in hardenability, so that there is little curing, and specific cooling conditions necessary for that are found.
[0009]
In addition, the cooling conditions were further examined including the fact that no distortion occurs in the shape steel. The present invention has been made based on the above findings and further studies. That is, the present invention is 1. In mass%, C: 0.05-0.20%, Si: 0.6% or less, Mn: 0.5-1.6%, Al: 0.01-0.05%, P: 0.035 %, S: 0.020% or less of steel, after finishing rolling at Ar3 point or more, immediately after the primary cooling of the inner and outer surfaces of the flange, after stopping cooling, the flange cooling surface is restored to 550 ° C or more and 800 ° C or less In the manufacturing process of the shape steel that is heated and cooled after the secondary cooling,
The primary cooling and the secondary cooling are performed such that the cooling water density on the flange inner surface and the outer surface is 500 L / m 2 · min or more, respectively, and the water density ratio between the flange inner surface and the flange outer surface is 0.3 or more and 1.2 or less,
The primary cooling is temporarily stopped when the flange cooling surface is 500 ° C. or lower and the average temperature of the flange is 650 ° C. or higher.
The method for producing rolled steel, wherein the secondary cooling is stopped at an average flange temperature of 400 ° C or higher and 600 ° C or lower.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1. Component composition The present invention is configured on the basis of metallurgical knowledge regarding phase transformation in low alloy steel, and the component composition is based on the obtained knowledge, and is the lowest in shape steel used for steel structures. It has been studied so as to satisfy the required properties such as weldability.
[0011]
C
C is added to ensure the strength of the steel. If it is less than 0.05%, it is difficult to ensure the strength, so 0.05% or more is added. If added in a large amount, the toughness and weldability of the steel will be reduced, but if it exceeds 0.20%, the hardness of the weld will increase significantly, the weld cracking susceptibility will deteriorate, and the surface hardness during controlled cooling will increase significantly. Therefore, the content is made 0.05 to 0.20% (0.05% or more and 0.20% or less).
[0012]
Si
Si is added for deoxidation and contributes to improvement of strength. If the content exceeds 0.6%, it is not preferable from the viewpoints of HAZ toughness and weldability, so the content is made 0.6% or less.
[0013]
Mn
Mn is added in an amount of 0.5% or more in order to suppress the formation of FeS causing red hot brittleness and improve strength and toughness. Addition of a large amount increases the hardenability of the steel, causes a weld hardened layer to appear, and deteriorates crack sensitivity. Therefore, the upper limit is 1.6%, and the addition amount is 0.5 to 1.6%.
[0014]
Al
Al is added for deoxidation. If the amount is less than 0.01%, the effect is not exhibited. On the other hand, if it is added in a large amount exceeding 0.05%, the cleanliness is deteriorated and the toughness of the welded portion is deteriorated. -0.05%.
[0015]
P, S
P and S inevitably exist as impurities mixed in the steel. In the mechanical properties of the weld heat affected zone, reduction of P is effective in preventing grain boundary fracture, and reduction of S is effective in preventing hydrogen cracking. Therefore, P is 0.035% or less, and S is 0.020. % Or less.
[0016]
In the present invention, the above-described chemical components can sufficiently achieve the effect. However, for the purpose of adjusting strength and toughness, Cu ≦ 0.6%, Ni ≦ 0.6%, Cr ≦ 0. 6%, Mo ≦ 0.6%, Nb ≦ 0.1%, V ≦ 0.2%, Ti ≦ 0.1%, B ≦ 0.01%, Ca ≦ 0.01%, Mg ≦ 0.01 %, REM ≦ 0.01% can be added in a range not departing from the object of the present invention.
[0017]
However, in order to provide good weldability, for example, for a tensile strength of 490 MPa class, as described in Appendix 1 and Appendix 2 of JIS G3136, for a flange thickness of 50 mm or less, a carbon equivalent (%) ≦ 0.38, weld crack susceptibility composition (%) ≦ 0.24, and for flange thickness exceeding 50 mm, carbon equivalent (%) ≦ 0.40 and weld crack susceptibility composition (%) ≦ 0.26 may be satisfied. desirable.
2. Manufacturing Conditions The present invention applies the following manufacturing conditions to the above-described preferred component steel.
[0018]
Finishing rolling under rolling conditions ends at the Ar3 point or more in the flange. If it is less than Ar3 point, the load on the rolling mill will increase, which may cause problems in securing the cross-sectional shape, and the product will remain strained in the ferrite phase, which may impair ductility and toughness. , Ar3 point or more. On the other hand, the upper limit temperature at the finishing temperature of finish rolling is desirably 1000 ° C. or less in order to ensure toughness. The Ar3 point varies depending on the steel component, austenite grain size, flange thickness, and the like. For example, the following equation can be used as a guide. Ar3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo + (t-8), where t: flange thickness (mm)
Cooling conditions In the present invention, in order to achieve high strength while suppressing the hardening of the flange surface, the cooling (primary cooling) started immediately after finish rolling is temporarily stopped, and the steel material is reheated to a predetermined temperature. After that, two-stage cooling is performed to cool again (secondary cooling). In the two-stage cooling, the water volume density and water volume density ratio of the flange inner and outer surface cooling, the cooling stop temperature and the recuperation temperature in the primary and secondary cooling are defined.
[0019]
Water volume density and water volume density ratio primary cooling and secondary cooling of the flange inner and outer surface cooling are performed by water cooling from the flange inner and outer surfaces at a water density of 500 L / m 2 · min or more and a water density ratio of 0.3 to 1.2.
In the case of water cooling, when the flange thickness is thin (for example, 8 mm or more and 40 mm or less), even from cooling only from the outer surface, relatively uniform material characteristics can be obtained along the flange thickness direction up to the flange inner surface. When the distortion of the cross-sectional shape occurs and the flange thickness is thick (for example, more than 40 mm), water cooling is performed from both sides in order to reduce the strength difference in the flange thickness direction.
[0020]
The water density is controlled to be 500 L / m 2 · min or more on both the inner and outer surfaces of the flange in order to make the boiling state on the water-cooled surface dominate nucleate boiling and not depend greatly on variations in the water density, and to perform uniform and sufficient cooling. In order to obtain a more stable cooling state, it is desirable that the pressure be 600 L / m 2 · min or more. In addition, when it is less than 500 L / m 2 · min, the boiling state becomes film boiling, and uniform and sufficient cooling cannot be performed.
[0021]
If the water density ratio in the cooling of the inner and outer surfaces of the flange is less than 0.3, a distortion that causes the flange to fall inward is generated. Since shape correction by trimming is required, it is set to 0.3 or more and 1.2 or less. The water density ratio is defined as inner surface water density / outer surface water density.
[0022]
Primary cooling stop temperature Primary cooling starts immediately after finish rolling, and stops when the flange cooling surface is 500 ° C. or lower and the flange average temperature is 650 ° C. or higher. The flange cooling surface is 500 ° C. or less in order to terminate the bainite transformation on the cooling surface, make the structure in the subsequent recuperation transformation extremely fine, and suppress hardening due to secondary cooling even if reverse transformed austenite is generated. To do.
[0023]
In addition, when the average flange temperature at the time of primary cooling stop is low, the recuperation near the cooling surface is insufficient, and it takes a long time until the recuperation temperature is low or reaches the desired recuperation temperature. Since there is a possibility of significant inhibition, the temperature is set to 650 ° C. or higher.
[0024]
The average temperature is the average temperature of the entire flange, and after the cooling is stopped, the temperature of each part of the flange converges to the average temperature. Therefore, it can be considered that the average temperature is substantially equal to the temperature when the material is sufficiently reheated.
[0025]
After stopping the recuperation primary cooling, both the cooling surfaces inside and outside the flange are reheated to 550 ° C. or more and 800 ° C. or less. When the recuperation temperature is less than 550 ° C., the softening of bainite in the vicinity of the cooling surface by primary cooling does not proceed sufficiently, resulting in a difference in strength in the flange thickness direction in the final product. On the other hand, when the temperature exceeds 800 ° C., the amount of reverse transformed austenite increases, the vicinity of the surface is cured by secondary cooling, and the strength difference in the flange thickness direction in the final product increases.
[0026]
After the secondary cooling stop temperature is reheated, the secondary cooling is started immediately, and the secondary cooling stop temperature is the average flange temperature of 400 ° C. or more and 600 ° C. or less. When the secondary cooling stop temperature is less than 400 ° C., the self-tempering effect after the cooling stop is insufficient, and the toughness of the final product is impaired or the toughness is insufficient. On the other hand, when the temperature exceeds 600 ° C., the toughening due to cooling is not sufficient, and a superiority in performance cannot be obtained over the shape steel manufactured by air cooling after the end of rolling.
[0027]
In the present invention, the slab heating temperature is preferably 1100 ° C. or higher and 1300 ° C. or lower from the viewpoint of securing the cross-sectional shape and toughness by rolling.
[0028]
【Example】
Example 1
Steels having the composition shown in Table 1 were melted and then cast into slabs by continuous casting. Steel A is JIS G by applying a process of water cooling the flange after finish rolling.
The SN 490C steel specified in 3136 and the steel B are designed for the purpose of producing a 590 MPa grade steel by the same process, and each has a component composition within the scope of the present invention.
[0029]
The slab having the components of steel A or B was heated to 1250 ° C. in a heating furnace, and then rolled into various H-shaped steels having a flange thickness exceeding 40 mm shown in Table 2. The finish rolling mill outlet temperature was 950 ° C. or higher and Ar 3 or higher. Thereafter, cooling was performed under various conditions shown in Table 2. No. Samples Nos. 9 and 21 were subjected to the first stage of water cooling after waiting until the inner and outer surfaces of the flange reached the (recovery-second stage cooling start temperature) shown in Table 2 without performing the primary cooling after the end of rolling. . The other samples were subjected to two-stage cooling in which secondary cooling was performed after primary cooling and recuperation. The secondary cooling has the same water density condition as the primary cooling.
[0030]
From the obtained shape steel, as shown in FIG. 1, rolling is performed at a position of 1/4, 1 / 2.3 / 4 with respect to the flange thickness (t) direction at a position of 1/4 of the flange width direction. The direction is the longitudinal direction, each of three No. 4 tensile test pieces (equilibrium diameter: 14 mm, gauge length: 50 mm) specified in JIS Z2201, and three V-notch Charpy impact test pieces specified in JIS Z2202. The samples were collected, and the tensile properties at room temperature and the Charpy impact absorption energy at 0 ° C. were determined.
[0031]
Further, as shown in FIG. 1, the Vickers hardness at 1/2 t in the flange outer surface and inner surface in the flange width direction ¼ and 1/2 t in the flange cross section was obtained with a test load of 98N. Furthermore, the product shape was visually evaluated.
[0032]
Table 3 shows the results of these tests. No. 2 stage cooling is not performed. Nos. 9 and 21 have good mechanical properties inside the material, but the hardness of the flange inner and outer surfaces is extremely high, and the difference is also great. Cooled only from the outer surface of the flange and the cooling water density is low. In the sample 3, the strength of each part of the flange is low, and the fluctuation is also large. Furthermore, the impact value and hardness vary greatly.
[0033]
Cooled only from the outer surface of the flange. 4, no. Sample 14 has a low strength on the flange inner surface side, a large variation in strength, and a large variation in hardness. As for the product shape, a defective shape (inward folding) in which the flange was distorted inward was recognized.
[0034]
No. with low water density on the flange inner surface. Sample 15 had a low strength on the inner surface side of the flange, a large variation thereof, and a large variation in hardness. As for the product shape, a defective shape (inward folding) in which the flange was distorted inward was recognized.
[0035]
No. with low water density on the inner and outer surfaces of the flange. Sample No. 17 had insufficient strength, large fluctuations, and large fluctuations in impact value and hardness.
[0036]
No. with a large water density ratio. 5 and 22 were all good in terms of material, but a defective shape (external bending) in which the flange was greatly distorted outward was recognized.
[0037]
When the primary cooling is stopped, the flange outer surface and inner surface temperature is high outside the scope of the present invention. 6 and 18 both have good mechanical properties inside the material, but have high hardness and large fluctuations.
[0038]
No. with low recuperation temperature (secondary cooling start temperature) No. 7, 19 and No. with high recuperation temperature (secondary cooling start temperature). 8 and 20 both have high hardness on the inner surface or outer surface of the flange, and the variation thereof is large.
[0039]
On the other hand, no. 1, 2, 10, 11, 16, and 23 have good strength and impact characteristics over the entire thickness of the flange, have a small characteristic difference in the thickness direction of the flange, and increase the hardness of the flange inner surface and outer surface due to water cooling. Stable and small. In addition, the product shape is excellent.
[0040]
[Table 1]
Figure 0003991552
[0041]
[Table 2]
Figure 0003991552
[0042]
[Table 3]
Figure 0003991552
[0043]
(Example 2)
After melting the steel having the composition shown in Table 4, it was made into a slab by continuous casting. Steel A is a component for the purpose of producing SN400A steel as defined in JIS G 3136 by applying a process of water cooling the flange after finish rolling, and Steel B for producing SN490C steel by a similar process. Both are designed and have component compositions within the scope of the present invention.
[0044]
The slab having the components of steel A or B was heated to 1250 ° C. in a heating furnace, and then rolled into H-shaped steels having various dimensions as shown in Table 5 and having a flange thickness of more than 8 mm and less than 40 mm. The finish rolling mill outlet temperature was 880 ° C. or higher and Ar 3 or higher. Thereafter, cooling was performed under various conditions shown in Table 5. No. Samples Nos. 9 and 21 were subjected to primary cooling after the end of rolling, and after waiting for the inner and outer surfaces of the flange to reach the second stage cooling start temperature after reheating as shown in Table 5, the first stage water cooling was performed. The other samples were subjected to two-stage cooling in which secondary cooling was performed after primary cooling and recuperation. The secondary cooling has the same water density condition as the primary cooling.
[0045]
From the obtained shape steel, three 1A tensile test pieces (equilibrium width: 40 mm, gauge length: 200 mm) specified in JIS Z2201, with the rolling direction as the longitudinal direction, at a position of 1/4 in the flange width direction. Each time, three V-notch Charpy impact test specimens defined in JIS Z2202 were sampled, and the tensile properties at room temperature and the Charpy impact absorption energy at 0 ° C. were determined.
[0046]
Moreover, the Vickers hardness in 1 / 2t in the flange outer surface and inner surface in the flange width direction 1/4 and the flange cross section was calculated | required with the test load 98N. Furthermore, the product shape was visually evaluated.
[0047]
Table 6 shows the results of these tests. No. 2 stage cooling is not performed. Nos. 9 and 21 have good mechanical properties inside the material, but the hardness of the flange inner and outer surfaces is extremely high, and the difference is also great. Cooled only from the outer surface of the flange and the cooling water density is low. In the samples 3 and 14, the strength of each part of the flange is low, and the fluctuation is large. Furthermore, the variation in hardness on the outer surface of the flange is large.
[0048]
Cooled only from the outer surface of the flange. The sample of No. 4 had good mechanical properties, but a remarkable shape defect (inward folding) in which the flange fell inward was recognized. In addition, No. with high strength and thick flange. The sample 15 had a large difference in hardness between the outer surface and the inner surface of the flange, and a remarkable shape defect (inward folding) was recognized.
[0049]
No. with low flange water density In the sample No. 16, the hardness of the inner surface of the flange greatly fluctuated, and remarkable shape defects (inner folding) were recognized. No. with a large water density ratio. 5 and No. In No. 18, a good material was obtained, but a defective shape (outward bending) in which the flange was greatly distorted outward was observed.
[0050]
Both the primary cooling stop temperature and the recuperation temperature (secondary cooling start temperature) are No. In both Nos. 6 and 19, the material is good, but the variation in hardness is large. In 19, it exceeds Hv200. The recuperating temperature (secondary cooling start temperature) is outside the scope of the present invention and is low. 7, 8, 20, and 21 have high hardness on the inner and outer surfaces of the flange.
[0051]
Secondary cooling stop temperature is high. No. 12 is low in strength and has a low secondary cooling stop temperature. No. 13 has low impact absorption energy. No. satisfying all the conditions of the present invention. 1, 2, 10, 11, and 17 have good strength, toughness, and hardness distribution, and are also excellent in product shape.
[0052]
Note that the manufacturing apparatus used in this example can cool the inner and outer surfaces of the flange and perform two-stage cooling. FIG. 2 schematically shows the inner and outer surface cooling apparatuses and the cooling state, and FIG. 3 schematically shows the entire manufacturing apparatus. The manufacturing apparatus divides a cooling device for cooling the inner and outer surfaces into three or more units and arranges them in series on the exit side of the finishing mill, and each unit can be cooled on-off. Desired two-stage cooling is performed by adjusting the finish rolling speed of the rolled shape steel, the conveyance speed, and on-off of each cooling unit.
[0053]
[Table 4]
Figure 0003991552
[0054]
[Table 5]
Figure 0003991552
[0055]
[Table 6]
Figure 0003991552
[0056]
【The invention's effect】
As described above, according to the present invention, after rolling, after primary cooling, recuperating and further performing secondary cooling, the material of each part of the flange is uniform and the cross section is independent of the flange thickness. An extremely thick H-section steel without shape deterioration can be manufactured without requiring a complicated heat treatment, and is extremely useful industrially.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a view showing the positions of specimen collection and hardness distribution tests for a flange tensile test and an impact test.
FIG. 2 is a diagram schematically showing a state of cooling of the inner and outer surfaces of a flange.
FIG. 3 is a schematic view (plan view) of a rolled shape steel manufacturing apparatus.

Claims (1)

質量%で、C:0.05〜0.20%、Si:0.6%以下、Mn:0.5〜1.6%、Al:0.01〜0.05%、P:0.035%以下、S:0.020%以下を含む鋼を、Ar3点以上で仕上圧延終了後、直ちにフランジ内外面を一次冷却し、冷却停止後、フランジ冷却面を550℃以上、800℃以下に復熱させ、二次冷却後、自然放冷する形鋼の製造工程において、
一次冷却と二次冷却を、フランジ内面および外面の冷却水量密度を各々500L/m2・min以上、かつ、フランジ内面とフランジ外面の水量密度比を0.3以上、1.2以下とし、
該一次冷却をフランジ冷却面が500℃以下でフランジの平均温度650℃以上で一旦冷却を停止し、
該二次冷却を、フランジの平均温度400℃以上、600℃以下で冷却を停止するものであることを特徴とする圧延形鋼の製造方法。
In mass%, C: 0.05-0.20%, Si: 0.6% or less, Mn: 0.5-1.6%, Al: 0.01-0.05%, P: 0.035 %, S: 0.020% or less of steel, after finishing rolling at Ar3 point or more, immediately after the primary cooling of the inner and outer surfaces of the flange, after stopping cooling, the flange cooling surface is restored to 550 ° C or more and 800 ° C or less In the manufacturing process of the shape steel that is heated and cooled after the secondary cooling,
The primary cooling and the secondary cooling are performed such that the cooling water density on the flange inner surface and the outer surface is 500 L / m 2 · min or more, respectively, and the water density ratio between the flange inner surface and the flange outer surface is 0.3 or more and 1.2 or less,
The primary cooling is temporarily stopped when the flange cooling surface is 500 ° C. or lower and the average temperature of the flange is 650 ° C. or higher.
The method for producing rolled steel, wherein the secondary cooling is stopped at an average flange temperature of 400 ° C or higher and 600 ° C or lower.
JP2000108144A 2000-04-10 2000-04-10 Manufacturing method of rolled steel Expired - Fee Related JP3991552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108144A JP3991552B2 (en) 2000-04-10 2000-04-10 Manufacturing method of rolled steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108144A JP3991552B2 (en) 2000-04-10 2000-04-10 Manufacturing method of rolled steel

Publications (2)

Publication Number Publication Date
JP2001286901A JP2001286901A (en) 2001-10-16
JP3991552B2 true JP3991552B2 (en) 2007-10-17

Family

ID=18621040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108144A Expired - Fee Related JP3991552B2 (en) 2000-04-10 2000-04-10 Manufacturing method of rolled steel

Country Status (1)

Country Link
JP (1) JP3991552B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752252B2 (en) * 2004-11-30 2011-08-17 Jfeスチール株式会社 H-shaped steel cooling method
JP4696602B2 (en) * 2005-03-09 2011-06-08 Jfeスチール株式会社 Method for producing rolled H-section steel with excellent low-temperature toughness
KR20240059874A (en) * 2022-10-28 2024-05-08 현대제철 주식회사 Section steel and method for manufacturing section steel

Also Published As

Publication number Publication date
JP2001286901A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
KR101660149B1 (en) Hot rolled steel sheet for square column for builiding structural members and method for manufacturing the same
JP6388091B1 (en) Hot-rolled steel sheet for low yield ratio square steel pipe and method for producing the same, low yield ratio square steel pipe and method for producing the same
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
WO2013145770A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
JP6299935B2 (en) Steel sheet for high strength and high toughness steel pipe and manufacturing method thereof
JP5151233B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
JP6874913B2 (en) Square steel pipe and its manufacturing method and building structure
WO2008126944A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP5045073B2 (en) Non-tempered high-tensile steel plate with low yield ratio and method for producing the same
WO2016157863A1 (en) High strength/high toughness steel sheet and method for producing same
JP2010084171A (en) High toughness welded steel pipe having high crushing strength and method for producing the same
JP2017071827A (en) H shaped steel and manufacturing method therefor
JP5347827B2 (en) High yield point 490 MPa class welded structural steel excellent in acoustic anisotropy and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2007138289A (en) Thick high strength hot rolled steel plate and its production method
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP4848960B2 (en) Thin-walled low-yield-ratio high-tensile steel plate and method for producing the same
WO2017150665A1 (en) H-shaped steel for low temperatures and method for manufacturing same
JP6589503B2 (en) H-section steel and its manufacturing method
JP3635208B2 (en) Low yield ratio fireproof steel plate and steel pipe excellent in toughness and method for producing the same
JP3991552B2 (en) Manufacturing method of rolled steel
JP2019052341A (en) Non-modified low yield ratio high tension thick steel sheet excellent in flexure processability, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3991552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees