JPH1088280A - Steel sheet for structural purpose excellent in brittle fracture resistance after plastic deformation and its production - Google Patents

Steel sheet for structural purpose excellent in brittle fracture resistance after plastic deformation and its production

Info

Publication number
JPH1088280A
JPH1088280A JP26664296A JP26664296A JPH1088280A JP H1088280 A JPH1088280 A JP H1088280A JP 26664296 A JP26664296 A JP 26664296A JP 26664296 A JP26664296 A JP 26664296A JP H1088280 A JPH1088280 A JP H1088280A
Authority
JP
Japan
Prior art keywords
steel sheet
plastic deformation
brittle fracture
rolling
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26664296A
Other languages
Japanese (ja)
Other versions
JP3548349B2 (en
Inventor
Tadashi Ishikawa
忠 石川
Shuichi Jinushi
修一 地主
Kojin Hagiwara
行人 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26664296A priority Critical patent/JP3548349B2/en
Publication of JPH1088280A publication Critical patent/JPH1088280A/en
Application granted granted Critical
Publication of JP3548349B2 publication Critical patent/JP3548349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To economically produce a steel sheet free from drastical deterioration in brittle fracture resistance which is one of the important capacities of a steel sheet compared to the arrest capacity at the time of being the stock in which plastic deformation has not been applied even if large structures such as ships are applied with plastic deformation on a large scale by their collision with each other or the like with high productivity. SOLUTION: This steel sheet for structural purpose excellent in brittle fracture propagation stopping characteristics after plastic deformation is the one in which, in a steel sheet having a compsn. contg., by weight, 0.04 to 0.08% C, 0.05 to 0.5% Si, 0.3 to 2.0% Mn, 0.005 to 0.1% Al and <=20PPM free N, furthermore contg., at need, one or >=two kinds among 0.005 to 0.10% Ti, 0.05 to 0.5% Cu, 0.05 to 0.5% Ni, 0.005 to 0.05% Nb, 0.005 to 0.05% V, 0.05 to 0.5% Mo and 0.0002 to 0.0015%, and the balance Fe with inevitable impurities, the X-ray plane intensity ratio in the (110) plane showing a texture depeloping degree is regulated to >=2, and the area ratio of coarse grains with >=20μm diameter equivalent to a circle in the crystal grains constituting it is regulated to <=10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船体等の大型構造
物同士が衝突等により大規模な塑性変形を受けた場合で
も、鋼板の耐脆性破壊性能のうち特に重要であるアレス
ト性能が塑性変形を受けていない場合に比べて大幅に劣
化することなく、前記衝突等の非常時の脆性破壊に対す
る安全性を確保できる構造用鋼板およびその製造方法に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a steel plate having a large arrest performance which is particularly important in brittle fracture resistance even when large structures such as a hull undergo large-scale plastic deformation due to collision or the like. TECHNICAL FIELD The present invention relates to a structural steel sheet capable of ensuring safety against brittle fracture in an emergency such as a collision without significantly deteriorating as compared with a case where the steel sheet has not been subjected to heat, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】鋼板が塑性変形すると機械的性質の変化
として、特に鋼板の靭性が劣化することが一般に知られ
ており、塑性変形時の鋼板の使用性能評価として歪時効
シャルピー試験等が広く実施されている。しかしなが
ら、この歪時効特性の支配因子は未だ不明な点が多く、
構造物同士が衝突した場合等の安全性を確保する観点か
らは、重大な問題である。一般に、歪時効特性は、鋼中
に固溶しているC元素やN元素が歪付与により導入され
た転位と相互作用をおこし、転位の動きを妨げるため
に、降伏点が上昇し、その結果、脆化がおこると説明さ
れている。
2. Description of the Related Art It is generally known that when a steel sheet is plastically deformed, the mechanical properties change, particularly the toughness of the steel sheet is deteriorated. In general, a strain aging Charpy test and the like are widely performed to evaluate the use performance of the steel sheet during plastic deformation. Have been. However, there are still many unclear factors governing this strain aging characteristic,
This is a serious problem from the viewpoint of ensuring safety in the event of a collision between structures. In general, the strain aging property is such that the C element or N element dissolved in steel interacts with dislocations introduced by applying strain and hinders the movement of the dislocations, so that the yield point rises. Is described as embrittlement.

【0003】また、脆性破壊の伝播を阻止する性能であ
るアレスト性能は、鋼板が大規模な塑性変形を受けると
大幅に劣化することが、(財)シップエンドオーシャン
の平成6年度報告書に記載されており、予期しない大型
船体同士の衝突等で生じる塑性損傷に対して、通常の設
計時よりも高いアレスト性能を具備させることにより、
塑性変形を受けてアレスト性能が劣化した場合でも必要
最低限の安全性が確保できる鋼材が紹介されている。大
規模な塑性変形を受けるような非常時の安全性を確保す
るためには、前述のように劣化代を考慮した高い耐脆性
破壊性能を具備させる方法と、大規模な塑性変形を受け
ても劣化しくにい鋼材を提供する方法の二つの方法が考
えられる。しかしながら、特にアレスト性能に関して
は、その向上方法がやっと明かになりつつある段階であ
り、塑性変形後の劣化現象を最小に抑制しようとする技
術は未だ明かになっていない。
[0003] In addition, the arrest performance, which is the ability to prevent the propagation of brittle fracture, significantly deteriorates when a steel sheet undergoes large-scale plastic deformation, according to the Ship End Ocean's 1994 report. It is possible to provide higher arrest performance than normal design for plastic damage caused by unexpected collision between large hulls, etc.
Steel materials that can ensure the minimum necessary safety even when arrest performance deteriorates due to plastic deformation are introduced. In order to ensure safety in an emergency such as undergoing large-scale plastic deformation, a method of providing high brittle fracture resistance in consideration of the degradation allowance as described above, and even if subjected to large-scale plastic deformation There are two methods of providing a steel material that is hard to deteriorate. However, especially with regard to arrest performance, a method for improving the arrest performance is finally being clarified, and a technique for minimizing the deterioration phenomenon after plastic deformation has not yet been clarified.

【0004】[0004]

【発明が解決しようとする課題】本発明は、塑性変形に
よる耐脆性破壊性能の劣化代をできるだけ最小限に抑え
た鋼板およびその製造方法を提供することを課題とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a steel sheet and a method for manufacturing the same, which minimize the deterioration of brittle fracture resistance due to plastic deformation as much as possible.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を達
成するためになされたもので、その手段は下記の通りで
ある。
Means for Solving the Problems The present invention has been made to achieve the above object, and the means are as follows.

【0006】(1)重量%で、C:0.04〜0.08
%、Si:0.05〜0.5%、Mn:0.1〜2.0
%、Al:0.005〜0.1%、フリーN:≦20P
PM、残部Feおよび不可避不純物からなる鋼板におい
て、集合組織発達程度を示す(110)面のX線面強度
比が2以上を有し、かつ構成する結晶粒の円相当径が2
0μm以上の粗大粒の面積率が10%以下であることを
特徴とする塑性変形後の耐脆性破壊特性の優れた構造用
鋼板。
(1) By weight%, C: 0.04 to 0.08
%, Si: 0.05 to 0.5%, Mn: 0.1 to 2.0
%, Al: 0.005 to 0.1%, Free N: ≦ 20P
In a steel sheet composed of PM, the balance of Fe and unavoidable impurities, the (110) plane exhibiting the degree of texture development has an X-ray plane intensity ratio of 2 or more, and the equivalent circle diameter of the constituting crystal grains is 2
A structural steel sheet having excellent brittle fracture resistance after plastic deformation, characterized in that the area ratio of coarse grains of 0 μm or more is 10% or less.

【0007】(2)重量%で、C:0.04〜0.08
%、Si:0.05〜0.5%、Mn:0.1〜2.0
%、Al:0.005〜0.1%、フリーN:≦20P
PM、更にTi:0.005〜0.10%、Cu:0.
05〜0.5%、Ni:0.05〜0.5%、Nb:
0.005〜0.05%、V:0.005〜0.05
%、Mo:0.05〜0.5%、B:0.0002〜
0.0015%の1種または2種以上を含むことを特徴
とする上記(1)に記載した特徴を有する組織からなる
塑性変形後の耐脆性破壊特性の優れた構造用鋼板。
(2) C: 0.04 to 0.08 by weight%
%, Si: 0.05 to 0.5%, Mn: 0.1 to 2.0
%, Al: 0.005 to 0.1%, Free N: ≦ 20P
PM, further Ti: 0.005 to 0.10%, Cu: 0.
05-0.5%, Ni: 0.05-0.5%, Nb:
0.005 to 0.05%, V: 0.005 to 0.05
%, Mo: 0.05-0.5%, B: 0.0002-
A structural steel sheet having a structure having the characteristics described in (1) above and having excellent brittle fracture resistance after plastic deformation, comprising 0.0015% of one or more kinds.

【0008】(3)上記(l)または(2)に記載の化
学成分を含有する綱片または鋼板を、Ac3点以上の温
度にし、再結晶温度域で20%以上の圧延を行い、さら
に未再結晶温度域で30%以上の圧延を行い、引き続き
Ar3点以下Ar1点以上の温度において30%以上の圧
延を実施することを特徴とする塑性変形後の耐脆性破壊
伝播停止特性の優れた構造用鋼板の製造方法。
(3) A steel strip or a steel sheet containing the chemical component described in (1) or (2) above is heated to a temperature of 3 or more Ac and rolled in a recrystallization temperature range by 20% or more. Rolling of 30% or more in a non-recrystallization temperature range, and subsequently rolling of 30% or more at a temperature of 3 points or less of Ar and 1 point or more of Ar, characterized in that the brittle fracture propagation arrest property after plastic deformation is reduced. Manufacturing method of excellent structural steel sheet.

【0009】(4)上記(3)に記載された製造方法に
おいて、圧延終了後、さらに鋼板表面温度が少なくとも
Ar1点になるまで1℃/sec以上の冷速で冷却する
ことを特徴とする塑性変形後の耐脆性破壊伝播停止特性
の優れた構造用鋼板の製造方法。
(4) In the manufacturing method described in the above (3), after the rolling is completed, the steel sheet is further cooled at a cooling rate of 1 ° C./sec or more until the surface temperature of the steel sheet reaches at least Ar 1 point. A method for producing a structural steel sheet having excellent brittle fracture arrestability after plastic deformation.

【0010】(5)上記(4)に記載された製造方法に
おいて、冷却終了後、さらに500℃から600℃の温
度で焼戻し処理すること特徴とする塑性変形後の耐脆性
破壊伝播停止特性の優れた構造用鋼板の製造方法。
(5) In the manufacturing method described in the above (4), after the cooling is completed, a tempering treatment is further performed at a temperature of 500 ° C. to 600 ° C., which is excellent in brittle fracture propagation stop characteristics after plastic deformation. Method of manufacturing a structural steel sheet.

【0011】本発明における各成分元素とその添加理由
は以下の通りである。
The components of the present invention and the reasons for their addition are as follows.

【0012】Cは鋼の強度を向上させる有効な成分とし
て一般に利用されており、強度確保のために0.04%
以上添加するものであるが、本発明においては、塑性歪
後のアレスト性能の劣化を抑制させるために0.08%
以下に規制する。
C is generally used as an effective component for improving the strength of steel.
In the present invention, 0.08% is added in order to suppress the deterioration of arrest performance after plastic strain.
It is regulated as follows.

【0013】Siは溶鋼の脱酸元素として必要であり、
強度増加元素として有用であるが、0.5%を超えると
鋼の加工性や溶接部の靭性か劣化し、0.05%未満で
は脱酸効果が不十分なため、添加量を0.05〜0.5
%に規制する。
Si is necessary as a deoxidizing element of molten steel,
It is useful as a strength increasing element, but if it exceeds 0.5%, the workability of steel or the toughness of the welded portion deteriorates, and if it is less than 0.05%, the deoxidizing effect is insufficient, so the addition amount is 0.05%. ~ 0.5
Regulate to%.

【0014】Mnは鋼材の強度を向上する成分として
0.3%以上の添加が必要であるが、Mnの添加は変態
温度を下げるので、過剰の添加は本発明のポイントであ
る2相域圧延の温度が低下しすぎてしまい、変形抵抗が
上昇し、圧延が困難となるので2.0%を上限とする。
Mn needs to be added in an amount of 0.3% or more as a component for improving the strength of the steel material. However, the addition of Mn lowers the transformation temperature. Is too low, deformation resistance increases, and rolling becomes difficult, so the upper limit is 2.0%.

【0015】Alは鋼中のNと結合してAl窒化物を形
成し、塑性歪により導入された転位と相互作用を生じて
転位の動きを妨げるフリー窒素を低減させる効果を有す
るため添加するが、添加しすぎると素材の靭性を劣化さ
せるので、0.005〜0.10%に、規制する。
Al is combined with N in steel to form an Al nitride, which has an effect of reducing free nitrogen, which interacts with dislocations introduced by plastic strain and hinders the movement of dislocations. If added too much, the toughness of the material is degraded, so the content is restricted to 0.005 to 0.10%.

【0016】Nは不可避不純物として含有されるが、フ
リーNは、塑性変形により導入させる転位と相互作用を
生じ、コットレル雰囲気と呼ばれる変形を妨げる現象を
招くので、フリーNは20ppm以下に規制する。
Although N is contained as an unavoidable impurity, free N interacts with dislocations introduced by plastic deformation to cause a phenomenon called Cottrell atmosphere which hinders deformation. Therefore, free N is restricted to 20 ppm or less.

【0017】以上が、本発明が対象とする鋼の基本成分
であるが、母材強度を上昇させるために Cu:0.05〜0.5% Ni:0.05〜0.5% Nb:0.005〜0.05% V:0.005〜0.05% Mo:0.05〜0.5% の1種または2種以上を使用してもよい。上記元素を含
有させた場合、継手靭性の劣化が懸念されることがあ
り、継手靭性を向上させるために、 Ti:0.005〜0.10% B:0.0002〜0.0015% の1種または2種を使用できる。
The above are the basic components of the steel targeted by the present invention. In order to increase the base metal strength, Cu: 0.05 to 0.5% Ni: 0.05 to 0.5% Nb: One or more of 0.005 to 0.05% V: 0.005 to 0.05% Mo: 0.05 to 0.5% may be used. When the above elements are contained, there is a concern that deterioration of the joint toughness may occur. To improve the joint toughness, Ti: 0.005 to 0.10% B: 0.0002 to 0.0015% Species or two can be used.

【0018】上記添加元素の下限値は、強度あるいは継
手靭性を向上させるための効果を発揮させるために最低
限必要な量であり、上限値はそれ以上含有させると、継
手靭性および母材靭性が劣化してしまうために規制する
ものである。
The lower limit of the above-mentioned additive element is the minimum amount required for exhibiting the effect of improving the strength or the joint toughness, and if the upper limit is more than that, the joint toughness and the base metal toughness are reduced. It is regulated to deteriorate.

【0019】[0019]

【発明の実施の形態】本発明者らは、塑性歪が鋼板に付
与された場合の鋼材の機械的性質の変化を実験により検
討し、その機構解明を行い、塑性歪付与によるアレスト
性能の劣化代の少ない鋼板を製造するための因子を検討
した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors studied experimentally the change in mechanical properties of a steel material when plastic strain was imparted to a steel sheet, clarified the mechanism thereof, and degraded the arrest performance due to the plastic strain. Factors for producing a steel sheet with a small cost were studied.

【0020】塑性歪が鋼板に付与された後、時効処理を
行った場合にVノッチシャルピー衝撃試験により求めら
れた靭性が劣化する現象は、広く知られているが、塑性
歪が付与された後、時効処理なしの場合の鋼板の靭性劣
化現象に関する機構は明確にされていない。
It is widely known that the aging treatment after the plastic strain is applied to the steel sheet causes the toughness to be deteriorated by the V-notch Charpy impact test. However, the mechanism regarding the toughness degradation phenomenon of the steel sheet without aging treatment is not clarified.

【0021】また、アレスト性能の指標である温度勾配
型ESSO試験により求められるKCa値と、Vノッチ
シャルピー衡撃試験の結果には、一対一の相関関係は認
められず、破壊機構が違うのでその支配因子も異なるこ
とが知られている。
Further, a one-to-one correlation is not recognized between the KCa value obtained by the temperature gradient type ESSO test which is an index of the arrest performance and the result of the V notch Charpy striking test. The dominant factors are also known to be different.

【0022】まず、塑性歪を受けた鋼板において脆性亀
裂が伝播した破面の詳細観察を行った結果、壁開破面の
単位として定義されるファセットの周囲に形成されるテ
ィアリッジ(延性破壊を呈するファセット周辺の破面の
領域を呼ぶ)や、ファセット周辺の延性破壊領域が減少
していることを知見した。この現象は、壁開破壊したフ
ァセット間の狭い領域で変形が拘束された状況下での微
視的な領域での延性の低下であると解釈できる。そこ
で、塑性歪を受けた鋼板から切り欠き付き引張試験片を
供試し、化学成分と塑性歪付与後の延性特性の関係を調
査した。その結果、フリーNとCの延性特性の寄与が大
きく、フリーN量が20ppm以下、およびC量が0.
08%以下では図lに示すように顕著な伸び量の低下は
起こさないことが判明した。尚、実験ではフリーNが3
0ppmであっても、C量が0.03%では伸び量低下
は起こさないが、C量を0.03%にすると鋼板の強度
確保のためにNi等の強化元素を多量に添加しなければ
ならず経済的ではない。
First, as a result of a detailed observation of a fracture surface in which a brittle crack propagated in a steel plate subjected to plastic strain, a tear ridge formed around a facet defined as a unit of a wall fracture surface (a ductile fracture) was observed. (Referred to as the area of the fracture surface around the facet present) and the ductile fracture area around the facet was reduced. This phenomenon can be interpreted as a decrease in ductility in a microscopic region under a situation where deformation is constrained in a narrow region between facets that have undergone open-wall fracture. Therefore, a notched tensile test piece was provided from a steel plate subjected to plastic strain, and the relationship between chemical components and ductility characteristics after plastic strain was applied was investigated. As a result, the contribution of the ductility characteristics of free N and C is large, the free N amount is 20 ppm or less, and the C amount is 0.1 ppm.
It was found that when the content is 08% or less, a remarkable decrease in elongation does not occur as shown in FIG. In the experiment, free N was 3
Even if it is 0 ppm, when the C content is 0.03%, the elongation does not decrease, but when the C content is 0.03%, a large amount of a reinforcing element such as Ni must be added to secure the strength of the steel sheet. It is not economical.

【0023】次に、微視的な延性低下の生じない成分範
囲であるC量を0.06%、フリーN量をl5ppm含
有した鋼板を試作し、温度勾配型ESSO試験を実施し
た結果、KCa値は低下することが判った。この理由を
考察すると、延性は低下しないが、塑性歪の付与により
降伏強度が上昇し、亀裂先端の応力が限界微視的破壊応
力に達することにより、脆性破壊するためであると想定
させる。したがって、亀裂先端の応力をなんらかの手段
で低下させることが塑性歪付与後の脆性破壊を抑制する
ために重要であることが明確になった。
Next, a steel sheet containing 0.06% of C and 15 ppm of free N, which are components that do not cause microscopic decrease in ductility, was prototyped and subjected to a temperature gradient type ESSO test. The value was found to decrease. Considering the reason, it is assumed that although the ductility does not decrease, the yield strength increases due to the application of plastic strain, and the stress at the tip of the crack reaches the critical microscopic fracture stress, thereby causing brittle fracture. Therefore, it has been clarified that it is important to reduce the stress at the crack tip by some means in order to suppress the brittle fracture after the plastic strain is applied.

【0024】そこで、集合組織を発達させて、鋼板の板
厚方向と平行にセパレーションという縦割れを亀裂先端
に生じさせることにより、亀裂あるいは切欠先端の拘束
を解放させ、亀裂先端の応力を低下させる方法を活用す
ることとした。
Therefore, by developing a texture and causing a vertical crack called separation at the crack tip in parallel with the thickness direction of the steel sheet, the constraint on the crack or the notch tip is released, and the stress at the crack tip is reduced. We decided to use the method.

【0025】限界微視的破壊応力に局所応力が達する以
前に、必ずセパレーションを発生させるためには、鋼板
の限界破壊応力がセパレーション発生応力に比べ高いこ
とが必要である。しかし、実際のフェライトーオーステ
ナイト2相域で圧延された鋼板において、塑性変形の支
配的な温度域では、破壊に先立ちセパレーションを発生
するが、低温域では脆性破壊を呈する。
In order to generate separation before the local stress reaches the critical microscopic fracture stress, it is necessary that the critical fracture stress of the steel sheet is higher than the separation initiation stress. However, in an actual steel sheet rolled in the ferrite-austenite two-phase region, separation occurs prior to fracture in a temperature region where plastic deformation is dominant, but brittle fracture occurs in a low temperature region.

【0026】これは、低温になると鋼材の降伏点が上昇
し、亀裂先端の塑性域が小さくなるためにセパレーショ
ンの発生に必要な結晶方位の異なるヨロニー間での塑性
異方性による局部変形が生じないためであると考えられ
る。そこで表1および表2に示す一般的な構造用鋼を用
いて、種々の実験を行った。
This is because, at low temperatures, the yield point of the steel material increases, and the plastic region at the tip of the crack becomes smaller, so that local deformation occurs due to plastic anisotropy between Yolonies having different crystal orientations necessary for the generation of separation. It is thought that it is not. Therefore, various experiments were performed using general structural steels shown in Tables 1 and 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 まず、セパレーションを発生させるために必要な集合組
織の組織形態を定量化するため、二相域圧延条件を変化
させて種々の結晶方位を有する集合組織レベルの異なる
鋼板を製造した。そして、種々の集合組織形態を、X線
による面強度比測定を行い、図2に示すように(11
0)面の面強度比と板厚方向の限界破壊応力との間に相
関関係が見られ、(110)面強度比が2以上である集
合組織の限界破壊応力は、集合組織のない((110)
面強度比が約1)ものの1/2以下となることを知見し
た。
[Table 2] First, in order to quantify the texture morphology of the texture required to generate separation, steel sheets having various crystal orientations and different texture levels were manufactured by changing the two-phase rolling conditions. Then, various texture forms were measured for surface intensity ratio by X-ray, and as shown in FIG.
There is a correlation between the surface strength ratio of the (0) plane and the critical fracture stress in the thickness direction, and the critical fracture stress of the texture having the (110) plane strength ratio of 2 or more has no texture (( 110)
It was found that the surface intensity ratio was 以下 or less of that of about 1).

【0029】この結果より、(110)面の結晶方位を
有する集合組織の発達が板厚方向の限界破壊応力を低下
させるために有効であることがわかる。
From these results, it can be seen that the development of a texture having a (110) plane crystal orientation is effective for lowering the critical fracture stress in the thickness direction.

【0030】板厚断面方向の限界破壊応力が板厚方向の
限界破壊応力より常に高ければ板厚断面に存在する亀裂
が脆性破壊を発生する前に板厚方向にて微小破壊が生じ
(セパレーション)、その結果板厚断面の亀裂が脆性破
壊に移行することは確実に阻止できることになる。
If the critical fracture stress in the thickness direction is always higher than the critical fracture stress in the thickness direction, microfracture occurs in the thickness direction before a crack existing in the thickness profile causes brittle fracture (separation). As a result, it is possible to reliably prevent the crack in the plate thickness section from shifting to brittle fracture.

【0031】しかしながら、(110)面強度比を大き
くしすぎると、板厚断面方向の靭性が低下しすぎてしま
い、板厚断面方向に応力が作用する構造物に適用した場
合鋼板が剥離することも懸念され問題である。そこで、
板厚断面方向の限界破壊応力を向上させる必要がある。
However, if the (110) plane strength ratio is too large, the toughness in the cross-section in the thickness direction will be too low, and when applied to a structure in which stress acts in the cross-section in the thickness direction, the steel plate will peel off. Is also a concern. Therefore,
It is necessary to improve the critical fracture stress in the thickness direction.

【0032】集合組織を発達させるために実施する二相
域圧延材では、二相域圧延前のオーステナイト組織を微
細化しておかないと、二相域圧延中に局部的に粒成長を
起こし、粗大な結晶粒が混粒する現象が知られている。
In the two-phase zone rolled material used for developing the texture, unless the austenite structure before the two-phase zone rolling is refined, local grain growth occurs during the two-phase zone rolling, resulting in coarseness. A phenomenon in which various crystal grains are mixed is known.

【0033】板厚断面方向の限界破壊応力と組織の関係
を種々調査した結果、そして、この粗大な粒が限界破壊
応力の低下の原因であることを新たに知見し、図3に示
すように粒径が円相当径で20μm以上の粗大粒の存在
を面積率で10%以下に抑える必要を明らかにした。
As a result of various investigations on the relationship between the critical fracture stress and the microstructure in the cross section direction of the sheet thickness, it was newly found that this coarse grain was the cause of the decrease in the critical fracture stress, and as shown in FIG. It has been clarified that it is necessary to suppress the presence of coarse particles having a circle equivalent diameter of 20 μm or more in an area ratio of 10% or less.

【0034】粒径が円相当径で20μm以上の粗大粒の
存在を面積率で10%以下に抑える製造条件として、二
相域圧延前のオーステナイト粒径を微細化させて、変態
により生成するフェライト粒を微細化する方法を検討し
た。まず粗圧延段階で十分な再結晶を促進させて細粒化
し、さらに未再結晶域での圧延により転位を十分導入さ
せる条件を種々検討した結果、粗圧延と未再結晶域圧延
を組み合わせた方が、全圧下率が小さくできることを見
いだし、未再結晶域圧延の圧下率が20%以上必要であ
ることが判明した。その条件下において、未再結晶域圧
延を30%以上実施すれば、必要面強度比を得るのに必
要な二相域圧延圧下率が30%以上の圧延においても、
粗大フェライトが生成しないことが判明した。
As a production condition for suppressing the presence of coarse grains having a circle equivalent diameter of 20 μm or more to an area ratio of 10% or less, ferrite formed by transformation by reducing the austenite grain size before the two-phase region rolling is performed. A method for refining grains was studied. First, in the rough rolling stage, sufficient recrystallization was promoted to refine the grains, and furthermore, various conditions for sufficiently introducing dislocations by rolling in the non-recrystallized region were examined. However, it was found that the total rolling reduction could be reduced, and it was found that the rolling reduction in the non-recrystallization zone rolling was required to be 20% or more. Under these conditions, if the unrecrystallized zone rolling is performed by 30% or more, even in the rolling in which the two-phase zone rolling reduction required to obtain the required surface strength ratio is 30% or more,
It was found that coarse ferrite was not formed.

【0035】[0035]

【実施例】実施例の供試鋼の成分を表1に、製造条件お
よび得られた材質を表2に比較例と共に示す。
EXAMPLES The components of the test steels of the examples are shown in Table 1, and the production conditions and the obtained materials are shown in Table 2 together with comparative examples.

【0036】塑性歪10%の付与方法は、ESSO試験
片(幅500mm×長さ500mm×板厚)を採取でき
る供試鋼板をESSO試験を実施するときに使用する横
型大型引張試験機にて引張荷重を与えて塑性歪を付加
し、負荷中は試験片に取り付けた伸び計により歪量をモ
ニターし、負荷した後試験片に卦がいておいた標線の引
張負荷前と負荷後の間隔の変化より塑性歪量を求めた。
塑性歪付与材と素材のVノッチシャルピー衝撃試験を実
施し、そのvTr値の比較を行った。また、ほぼ同一の
塑性歪を負荷したESSO試験片を3体温度勾配型の脆
性亀裂伝播停止試験を行い、亀裂の停止温度とそのとき
のK値より、Kca値と温度の関係をもとめ、Kca値
が6000N/mm1.5 を示す温度を求めた。
The method of applying a plastic strain of 10% is based on the ESSO test.
Pieces (width 500mm x length 500mm x plate thickness) can be collected
Used when conducting the ESSO test
Plastic strain is applied by applying a tensile load with a large-sized tensile testing machine
During loading, strain is monitored by an extensometer attached to the test piece.
After applying the load, draw a mark on the test piece after loading.
The amount of plastic strain was determined from the change in the interval before and after tension loading.
Performed V-notch Charpy impact test of plastic strain imparting material and material
And the vTr values were compared. Also, almost the same
An ESSO test piece loaded with plastic strain was subjected to three temperature gradient type brittleness.
Crack propagation arrest test, the crack arrest temperature and the time
The relationship between Kca value and temperature is determined from the K value of
Is 6000 N / mm1.5 Was determined.

【0037】本発明例の試験番号1〜12および比較例
の試験番号13〜15の化学成分は、それぞれ鋼種1〜
7でC量が0.08%以下であり、かつフリーN量も2
0ppm以下であり、本発明の規定内である。一方、比
較例の試験番号16〜19はそれぞれ鋼種8〜11を用
いたものであり、鋼種8、9はC量が所要量以上であ
り、鋼種10はフリーN量が所定量以上であり、綱種1
1はC量、N量とも所定量以上であり、いずれも本発明
の成分規定量から外れるものである。
The chemical components of Test Nos. 1 to 12 of the present invention and Test Nos. 13 to 15 of the comparative example were steel types 1 to 1, respectively.
7, the C content is 0.08% or less, and the free N content is 2
0 ppm or less, which is within the regulation of the present invention. On the other hand, the test numbers 16 to 19 of the comparative examples use steel types 8 to 11, respectively, and the steel types 8 and 9 have a C amount equal to or more than a required amount, and the steel type 10 has a free N amount equal to or more than a predetermined amount, Class 1
1 is a predetermined amount or more in both the C amount and the N amount, both of which deviate from the component specified amounts of the present invention.

【0038】試験番号1〜12,16〜19は、粗圧
延、未再結晶域圧延、二相域圧延とも所定の圧延条件で
実施したが、化学成分が所定の範囲にない試験番号16
〜19は塑性歪によるvTrsの変化、Kca=600
0N/mm1.5を示す温度の変化が共に本発明例である
試験番号1〜12より大きかった。
Test Nos. 1 to 12 and 16 to 19 were carried out under predetermined rolling conditions for rough rolling, unrecrystallized zone rolling, and two-phase zone rolling.
19 is a change in vTrs due to plastic strain, Kca = 600
The change in temperature indicating 0 N / mm 1.5 was larger than those of Test Nos. 1 to 12 of the present invention.

【0039】試験番号13,14,15は、所定の化学
成分範囲の供試鋼を用いているが、試験番号13は二相
域圧延を適用しなかった場合であり、試験番号14は二
相域圧延は実施しているがその前の未再結晶域圧延が不
十分であった場合であり、試験番号15は粗圧延せずに
未再結晶域圧延のみ適用したものである。これら3つの
例も、本発明例よりも塑性歪によるvTrsおよびKc
a=6000N/mm1.5を示す温度の変化が大きかっ
た。
Test Nos. 13, 14, and 15 used test steels having a predetermined chemical composition range. Test No. 13 was a case where the two-phase rolling was not applied. The zone rolling was performed, but the preceding unrecrystallized zone rolling was insufficient. Test No. 15 applied only the unrecrystallized zone rolling without rough rolling. In these three examples, vTrs and Kc due to plastic strain are larger than those of the present invention.
The change in temperature indicating a = 6000 N / mm 1.5 was large.

【0040】[0040]

【発明の効果】本発明は上記した手段及び作用を利用し
たものであり、C量とN量が所定の範囲である鋼板に所
定の粗圧延、未再結晶域圧延、二相域圧延を適用するこ
とによって塑性歪を受けた場合でもアレスト性能の劣化
が小さい構造用鋼板の提供を可能とするものある。
The present invention utilizes the above-described means and functions, and applies predetermined rough rolling, unrecrystallized zone rolling, and two-phase zone rolling to a steel sheet having a predetermined range of C and N contents. By doing so, it is possible to provide a structural steel sheet with little deterioration of arrest performance even when it receives plastic strain.

【図面の簡単な説明】[Brief description of the drawings]

【図1】化学成分と塑性歪付与後の拘束付き引張試験結
果の関係を示す図である。
FIG. 1 is a diagram showing the relationship between chemical components and the results of a restricted tensile test after the application of plastic strain.

【図2】X線による(110)面強度比と板厚方向の限
界破壊応力の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a (110) plane strength ratio by X-rays and a critical fracture stress in a sheet thickness direction.

【図3】粗大粒の面積率と板厚断面方向の限界破壊応力
の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the area ratio of coarse grains and the critical fracture stress in the thickness direction of the cross section.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.04〜0.08% Si:0.05〜0.5% Mn:0.3〜2.0% A1:0.005〜0.1% フリーN:≦20PPM 残部Feおよび不可避不純物からなる鋼板において、 集合組織発達程度を示す(110)面のX線面強度比が
2以上を有し、かつ構成する結晶粒の円相当径が20μ
m以上の粗大粒の面積率が10%以下であることを特徴
とする塑性変形後の耐脆性破壊伝播停止特性の優れた構
造用鋼板。
1. Weight%: C: 0.04 to 0.08% Si: 0.05 to 0.5% Mn: 0.3 to 2.0% A1: 0.005 to 0.1% Free N: ≦ 20 PPM In a steel sheet comprising the balance of Fe and inevitable impurities, the X-ray plane intensity ratio of the (110) plane showing the degree of texture development is 2 or more, and the equivalent circle diameter of the constituting crystal grains is 20 μm.
A structural steel sheet having excellent brittle fracture arrestability after plastic deformation, characterized in that the area ratio of coarse grains of m or more is 10% or less.
【請求項2】 重量%で、 C:0.04〜0.08% Si:0.05〜0.5% Mn:0.3〜2.0% Al:0.005〜0.1% フリーN:≦20PPM 更に、 Ti:0.005〜0.10% Cu:0.05〜0.5% Ni:0.05〜0.5% Nb:0.005〜0.05% V:0.005〜0.05% Mo:0.05〜0.5% B:0.0002〜0.0015% の1種または2種以上を含み、残部Feおよび不可避不
純物からなる鋼板において、集合組織発達程度を示す
(110)面のX線面強度比が2以上を有し、かつ構成
する結晶粒の円相当径が20μm以上の粗大粒の面積率
が10%以下であることを特徴とする塑性変形後の耐脆
性破壊伝播停止特性の優れた構造用鋼板。
2. In weight%, C: 0.04 to 0.08% Si: 0.05 to 0.5% Mn: 0.3 to 2.0% Al: 0.005 to 0.1% Free N: ≦ 20 PPM Further, Ti: 0.005 to 0.10% Cu: 0.05 to 0.5% Ni: 0.05 to 0.5% Nb: 0.005 to 0.05% V: 0. 005-0.05% Mo: 0.05-0.5% B: 0.0002-0.0015% In a steel sheet containing one or more of the following, the balance being Fe and unavoidable impurities, the degree of texture development Plastic deformation characterized in that the (110) plane has an X-ray plane intensity ratio of 2 or more, and the area ratio of coarse grains having an equivalent circle diameter of 20 μm or more of the constituting crystal grains is 10% or less. Structural steel sheet with excellent brittle fracture propagation arrestability afterwards.
【請求項3】 請求項1または、請求項2に記載の化学
成分を含有する鋼片または鋼板を、Ac3点以上の温度
の鋼片もしくは鋼板を、再結晶温度域で圧下率20%以
上の圧延を行い、さらに未再結晶温度域で圧下率30%
以上の圧延を行い、ひきつづきAr3点以下Ar1点以上
の温度において、圧下率30%以上の圧延を実施するこ
とを特徴とする塑性変形後の耐脆性破壊特性の優れた構
造用鋼板の製造方法。
3. A steel slab or a steel sheet containing the chemical component according to claim 1 or 2, and a steel slab or a steel sheet having a temperature of 3 points or more of Ac in a recrystallization temperature range of 20% or more. Rolling, and a rolling reduction of 30% in the non-recrystallization temperature range
The production of a structural steel sheet having excellent brittle fracture resistance after plastic deformation, characterized in that the above-mentioned rolling is carried out and the rolling is performed at a rolling reduction of 30% or more at a temperature of Ar 3 or less and Ar 1 or more. Method.
【請求項4】 請求項3に記載された製造方法におい
て、圧延終了後、さらに鋼板表面温度が少なくともAr
1点になる迄l℃/sec以上の冷速で冷却することを
特徴とする塑性変形後の耐脆性破壊特性の優れた構造用
鋼板の製造方法。
4. The production method according to claim 3, wherein after completion of the rolling, the steel sheet surface temperature is at least Ar.
A method for producing a structural steel sheet having excellent brittle fracture resistance after plastic deformation, characterized by cooling at a cooling rate of 1 ° C./sec or more to one point.
【請求項5】 請求項4に記載された製造方法におい
て、冷却終了後、さらに500℃から600℃の温度で
焼戻し処理をすることを特徴とする塑性変形後の耐脆性
破壊特性の優れた構造用鋼板の製造方法。
5. A structure having excellent brittle fracture resistance after plastic deformation, characterized by further performing a tempering treatment at a temperature of 500 ° C. to 600 ° C. after cooling is completed. Manufacturing method for steel sheet.
JP26664296A 1996-09-18 1996-09-18 Structural steel sheet with excellent brittle fracture resistance after plastic deformation Expired - Fee Related JP3548349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26664296A JP3548349B2 (en) 1996-09-18 1996-09-18 Structural steel sheet with excellent brittle fracture resistance after plastic deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26664296A JP3548349B2 (en) 1996-09-18 1996-09-18 Structural steel sheet with excellent brittle fracture resistance after plastic deformation

Publications (2)

Publication Number Publication Date
JPH1088280A true JPH1088280A (en) 1998-04-07
JP3548349B2 JP3548349B2 (en) 2004-07-28

Family

ID=17433671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26664296A Expired - Fee Related JP3548349B2 (en) 1996-09-18 1996-09-18 Structural steel sheet with excellent brittle fracture resistance after plastic deformation

Country Status (1)

Country Link
JP (1) JP3548349B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069380A (en) * 2006-09-12 2008-03-27 Jfe Steel Kk High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method
JP2008156750A (en) * 2006-11-30 2008-07-10 Jfe Steel Kk Steel plate having plate thicknesses of 50 mm or more and excellent brittle crack spreading-resistant characteristic in plate-thickness direction
JP2008179878A (en) * 2006-12-28 2008-08-07 Jfe Steel Kk High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method
JP2008214654A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk THICK STEEL PLATE OF >=50 mm THICKNESS HAVING EXCELLENT BRITTLE CRACK ARREST PROPERTY
JP2008214652A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same
JP2010242211A (en) * 2009-03-17 2010-10-28 Jfe Steel Corp Thick steel plate excellent in fatigue resistant crack propagation characteristics in plate thickness direction, and method of manufacturing the same
CN102766809A (en) * 2012-07-17 2012-11-07 东北大学 Hot rolled strip steel with yield strength higher than 800MPa for mine rescue capsule and preparation method of hot rolled strip steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5598485B2 (en) 2011-02-08 2014-10-01 Jfeスチール株式会社 Thick steel plate having a thickness of 50 mm or more excellent in long and brittle crack propagation stopping characteristics and method for producing the same
JP5304924B2 (en) 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5304925B2 (en) 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
KR101676710B1 (en) 2011-12-27 2016-11-16 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069380A (en) * 2006-09-12 2008-03-27 Jfe Steel Kk High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method
JP2008156750A (en) * 2006-11-30 2008-07-10 Jfe Steel Kk Steel plate having plate thicknesses of 50 mm or more and excellent brittle crack spreading-resistant characteristic in plate-thickness direction
JP2008179878A (en) * 2006-12-28 2008-08-07 Jfe Steel Kk High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method
JP2008214654A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk THICK STEEL PLATE OF >=50 mm THICKNESS HAVING EXCELLENT BRITTLE CRACK ARREST PROPERTY
JP2008214652A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same
JP2010242211A (en) * 2009-03-17 2010-10-28 Jfe Steel Corp Thick steel plate excellent in fatigue resistant crack propagation characteristics in plate thickness direction, and method of manufacturing the same
CN102766809A (en) * 2012-07-17 2012-11-07 东北大学 Hot rolled strip steel with yield strength higher than 800MPa for mine rescue capsule and preparation method of hot rolled strip steel

Also Published As

Publication number Publication date
JP3548349B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US11946112B2 (en) High-strength steel sheet and method for producing same
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
JPWO2020090303A1 (en) High-strength steel sheet and its manufacturing method
KR20100019443A (en) Low density steel with good stamping capability
JP7077801B2 (en) Low yield specific thickness steel sheet
WO2021149676A1 (en) Steel sheet and method for producing same
EP3889298A1 (en) High-strength steel with excellent durability and method for manufacturing same
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
EP3828301A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
US4931106A (en) Hot rolled steel sheet having high resistances against secondary-work embrittlement and brazing embrittlement and adapted for ultra-deep drawing and a method for producing the same
JPH1088280A (en) Steel sheet for structural purpose excellent in brittle fracture resistance after plastic deformation and its production
JP2019081930A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JPH07188834A (en) High strength steel sheet having high ductility and its production
EP4071262A1 (en) Thick composite-phase steel having excellent durability and manufacturing method therefor
JP5257289B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JPH06240355A (en) Production of high toughness thick tmcp steel plate
JP5434675B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2807592B2 (en) Method for producing structural steel sheet with good brittle fracture resistance
KR100568363B1 (en) Fine Grain Type Steel Having Superior Toughness in Weld Heat Affected Zone and Method for Manufacturing the Same
JPH0569884B2 (en)
JP2019081931A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JP7396512B2 (en) Thick steel plate and method for manufacturing thick steel plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees