JP2807592B2 - Method for producing structural steel sheet with good brittle fracture resistance - Google Patents

Method for producing structural steel sheet with good brittle fracture resistance

Info

Publication number
JP2807592B2
JP2807592B2 JP4067514A JP6751492A JP2807592B2 JP 2807592 B2 JP2807592 B2 JP 2807592B2 JP 4067514 A JP4067514 A JP 4067514A JP 6751492 A JP6751492 A JP 6751492A JP 2807592 B2 JP2807592 B2 JP 2807592B2
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
surface layer
thickness
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4067514A
Other languages
Japanese (ja)
Other versions
JPH05271860A (en
Inventor
忠 石川
裕治 野見山
博 竹澤
利昭 土師
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4067514A priority Critical patent/JP2807592B2/en
Publication of JPH05271860A publication Critical patent/JPH05271860A/en
Application granted granted Critical
Publication of JP2807592B2 publication Critical patent/JP2807592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、構造物の安全性を確保
するための鋼板の重要な性能の一つである脆性破壊伝播
停止(アレスト)性能をNi元素等の高価な合金元素の
添加に頼ることなく、飛躍的に向上させる鋼板の製造方
法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the addition of expensive alloy elements such as Ni elements to the arrest performance of brittle fracture propagation, which is one of the important properties of steel sheets for ensuring the safety of structures. The present invention relates to a method for manufacturing a steel sheet which is dramatically improved without relying on the steel sheet.

【0002】[0002]

【従来の技術】脆性破壊伝播停止(アレスト)性能を向
上させる手段として、特開昭59−47323号公報に
記載されているように未再結晶域で十分に圧下する製造
方法、あるいは、積極的に脆性破壊を生じ易い第二相粒
子を分散させて脆性亀裂先端にマイクロクラックを多数
発生せしめ亀裂先端の応力状態を緩和させ、かつマイク
ロクラックと主亀裂間の合体時に生じる延性破壊により
亀裂停止を容易にさせる方法が提案されている。
2. Description of the Related Art As a means for improving the arrest performance of brittle fracture propagation, a manufacturing method of sufficiently reducing pressure in an unrecrystallized region as described in JP-A-59-47323, or an active method. Disperse the second phase particles which are apt to cause brittle fracture in the micro cracks to generate many micro cracks at the tip of the brittle crack to relax the stress state at the tip of the crack, and to stop the crack by the ductile fracture that occurs when the micro crack and the main crack are united. Methods have been proposed to facilitate this.

【0003】しかし、それらの提案は、板厚中心部の組
織を改質し、脆性亀裂伝播停止性能を向上させるもので
あり、板厚表層部の組織で主として決定される落重試験
におけるNDT特性を必ずしも向上させるものではな
い。また、鋼板の板厚が増大すると上記のような板厚中
心部の組織細粒化が達成できないことがあり、特に板厚
25mm以上の鋼板のアレスト性能向上技術の開発が望ま
れている。
However, these proposals modify the structure at the center of the sheet thickness and improve the brittle crack propagation stopping performance. The NDT characteristics in a drop load test mainly determined by the structure of the surface layer of the sheet thickness are proposed. Is not necessarily improved. Further, when the thickness of the steel sheet is increased, the grain refinement at the center of the thickness as described above may not be achieved. In particular, development of a technique for improving the arrest performance of a steel sheet having a thickness of 25 mm or more is desired.

【0004】一方、鋼板表層部に細粒組織を有する鋼板
の製造方法が特開昭61−235534号公報に記載さ
れており、表層部を5μm以下の組織と規定している
が、日本鉄鋼協会「材料とプロセス」6(1990)、
p.1796 記載のように、3μm以下のフェライト粒でも
−120℃以下で容易に脆性破壊を生じてしまい、細粒
組織を表層部に形成せしめるアレスト性能向上方法には
限界がある。
On the other hand, a method for producing a steel sheet having a fine-grained structure in the surface layer of a steel sheet is described in Japanese Patent Application Laid-Open No. 61-235534, and the surface layer is specified to have a structure of 5 μm or less. "Materials and Processes" 6 (1990),
As described on page 1796, even ferrite grains of 3 μm or less easily cause brittle fracture at −120 ° C. or less, and there is a limit to a method of improving arrest performance for forming a fine grain structure in the surface layer.

【0005】また、特願平02−24509号明細書に
は、板厚の1/3までの表層部を冷却・復熱させ、表層
部の組織改善により高アレスト化を達成する技術が開示
されている。しかし、この方法では板厚の1/3にいた
る広い範囲にわたり冷却復熱を実現させなければなら
ず、外部熱源なしには板厚中心部が加工フェライトを生
成して靭性が劣化してしまう可能性が大きい。また、か
ような製造方法でアレスト性能を向上できるものの、ア
レスト性能向上に必要な組織が明確でなく、効率的にア
レスト性能を向上するために必要な表層組織、およびそ
の必要厚みが不明である。
Further, Japanese Patent Application No. 02-24509 discloses a technique of cooling and reheating a surface portion up to 1/3 of the plate thickness to achieve high arrest by improving the structure of the surface portion. ing. However, in this method, cooling recuperation must be realized over a wide range up to 1/3 of the sheet thickness, and without an external heat source, the center of the sheet thickness may form processed ferrite and the toughness may be degraded. Great nature. In addition, although arrest performance can be improved by such a manufacturing method, the organization required for arrest performance improvement is not clear, and the surface layer structure necessary for efficiently improving arrest performance, and its required thickness are unknown. .

【0006】[0006]

【発明が解決しようとする課題】本発明は、表層部の組
織改質によりアレスト性能であるKca特性とNDT特
性を向上させるために必要な所要組織と所要厚みを明確
化し、製造コストを大きく上昇させる高価なNi元素等
を添加することなく、アレスト性能の良好な鋼板の製造
方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention clarifies the required structure and required thickness for improving the arrest performance of the Kca characteristic and the NDT characteristic by modifying the structure of the surface layer, thereby significantly increasing the manufacturing cost. An object of the present invention is to provide a method for manufacturing a steel sheet having good arrest performance without adding an expensive Ni element or the like to be made.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を達
成するために、表層から少なくとも板厚の2%以上の範
囲にわたり、平均円相当粒径が3μm以下のフェライト
組織、もしくはベーナイト組織を有し、且つ、その表層
部組織の同一結晶方位を有する集合組織コロニーの長径
/短径の比を4以上とすることを特徴とする耐脆性破壊
特性の良好な構造用鋼板の製造方法である。
In order to achieve the above object, the present invention provides a ferrite structure or a bainite structure having an average equivalent circle diameter of 3 μm or less from the surface layer to at least 2% of the plate thickness. A method for producing a structural steel sheet having good brittle fracture resistance, characterized in that the ratio of the major axis / minor axis of textured colonies having the same crystallographic orientation of the surface layer structure is 4 or more. .

【0008】本発明は、(1)Ac3 点以上の温度の鋼
片もしくは鋼板を、圧延中途中水冷時の板厚をt0 とし
た時、表層から少なくとも板厚方向に0.02×t
0 (mm)以上の領域を2℃/sec でフェライト分率が5
0%以上となる温度以下に急冷して、その後、当該表層
部がAr1 点以上の温度から圧延を開始もしくは再開
し、(Ac3 点−100)℃からAc3 点の範囲で圧延
を終了させ、その後Ac3 点まで復熱させることなく、
1℃/sec 以上で少なくともAr3 点まで冷却すること
基本手段とする
According to the present invention, (1) when a steel slab or a steel sheet having a temperature of not less than 3 points of Ac is water-cooled during rolling and the thickness is set to t 0 , at least 0.02 × t from the surface layer in the thickness direction.
In the region above 0 (mm), the ferrite fraction is 5 at 2 ° C / sec.
After rapidly cooling to a temperature of 0% or more, the surface layer starts or restarts rolling from a temperature of 1 point or more of Ar, and finishes rolling in a range of (Ac 3 point−100) ° C. to Ac 3 points. After that, without reheating to Ac 3 points,
The basic means is to cool to at least Ar 3 point at 1 ° C./sec or more.

【0009】更に本発明は、(2)Ac3 点以上の温度
の鋼片もしくは鋼板を、圧延中途中水冷時の板厚をt0
とした時、表層から少なくとも板厚方向に0.02×t
0 (mm)以上の領域を2℃/sec でフェライト分率が5
0%以上となる温度以下に急冷して、その後、当該表層
部がAr1 点以上の温度から圧延を開始もしくは再開
し、(Ac3 −100)℃からAc3 ℃の範囲で圧延を
終了させ、その後Ac3点まで復熱させることなく冷却
速度が5℃/sec 以上で加速冷却して製造することを第
二の手段とし、(3)550℃以下で焼戻し熱処理を適
用することを第三の手段とするものである。
Further, the present invention relates to (2) a method in which a steel slab or a steel plate having a temperature of 3 or more Ac is subjected to water cooling during rolling to a thickness t 0.
, At least 0.02 × t from the surface layer in the thickness direction
In the region above 0 (mm), the ferrite fraction is 5 at 2 ° C / sec.
After rapidly cooling to a temperature of 0% or more, the surface layer starts or restarts rolling from a temperature of 1 point or more of Ar, and finishes rolling in a range of (Ac 3 -100) ° C. to Ac 3 ° C. Then, the second means is to accelerate the cooling at a cooling rate of 5 ° C./sec or more without reheating to Ac 3 points, and (3) to apply the tempering heat treatment at 550 ° C. or less. Means.

【0010】本発明において、対象とする構造用鋼は、
例えば前記した特公昭58−14849号公報に記載さ
れ、次記するように、通常の構造用鋼が所要の材質を得
るために、従来から当業分野での活用で確認されている
作用・効果の関係を基に定めている添加元素の種類と量
を同様に使用して同等の作用と効果が得られる。従って
これ等の元素を含む鋼を本発明は対象鋼とするものであ
る。
In the present invention, the structural steel of interest is
For example, as described in the above-mentioned Japanese Patent Publication No. 58-14849, as described below, in order to obtain a required material of a normal structural steel, an operation and an effect which have been conventionally confirmed in the field of use in the field of the art. The same action and effect can be obtained by using the type and amount of the additional element determined based on the relationship in the same manner. Accordingly, the present invention includes steels containing these elements as target steels.

【0011】これ等の各成分元素とその添加理由と量は
以下の通りである。Cは鋼の強度を向上する有効な成分
として0.02%以上添加するものであるが、0.20
%を超える過剰な含有量では、2相域圧延時の変形抵抗
を増して圧延を困難にするばかりか、溶接部に島状マル
テンサイトを析出し、鋼の靭性を著しく劣化させるの
で、0.02%〜0.20%に規制する。
[0011] These constituent elements, the reasons for their addition and the amounts thereof are as follows. C is added in an amount of 0.02% or more as an effective component for improving the strength of steel.
Excess content exceeding 0.2% not only increases the deformation resistance during two-phase rolling, making rolling difficult, but also causes precipitation of island-like martensite in the weld and significantly deteriorates the toughness of the steel. Restrict to 02% to 0.20%.

【0012】Siは溶鋼の脱酸元素として必要であり、
強度増加元素として有用であるが、1.0%を超えると
鋼の加工性が低下し、溶接部の靭性が劣化し、0.01
%未満では脱酸効果が不十分なため、添加量を0.01
〜1.0%に規制する。
Si is necessary as a deoxidizing element of molten steel.
It is useful as a strength increasing element, but if it exceeds 1.0%, the workability of the steel decreases, the toughness of the welded portion deteriorates, and
%, The deoxidizing effect is insufficient.
Regulate to ~ 1.0%.

【0013】Mnは鋼材の強度を向上する成分として
0.3%以上の添加が必要であるが、Mnの添加は変態
温度を下げるので、過剰の添加は2相域圧延温度を下げ
すぎ変形抵抗が上昇するので2.0%を上限とする。
Mn needs to be added in an amount of 0.3% or more as a component for improving the strength of steel. However, the addition of Mn lowers the transformation temperature. Rises to 2.0%.

【0014】AlおよびNはAl窒化物による鋼の微細
化の他、圧延過程での固溶、析出による鋼の結晶方位の
整合および再結晶のために添加するが、添加量が少ない
時は効果がなく、過剰の添加は鋼の靭性を劣化させるの
で、Alは0.001〜0.20%に、Nは0.020
%以下とする。PおよびSは、母材の靭性確保のため、
それぞれ0.01%以下、0.01%以下とする。
Al and N are added for the purpose of refining steel by solid solution and precipitation in the rolling process in addition to refining steel by Al nitride, but it is effective when the addition amounts are small. And excessive addition deteriorates the toughness of the steel, so that Al is 0.001 to 0.20% and N is 0.020%.
% Or less. P and S are for securing the toughness of the base material.
They are respectively 0.01% or less and 0.01% or less.

【0015】以上が、本発明の対象とする鋼の基本成分
であるが、母材強度の上昇或いは、継手靭性の向上の目
的のため、要求される性質に応じて、合金元素を添加す
る場合は、変態温度を下げ過ぎると2相域での変形抵抗
が増し、圧延が困難になるので、添加する合金としては
Ni,Cr,Mo,Cu,W,P,Co,V,Nb,T
i,Zr,Ta,Hf,希土類元素,Y,Ca,Mg,
Te,Se,Bの1種類以上が使用できるが、その添加
量は合計で4.5%以下に規制する。尚、平均円相当粒
径とは、該当する組織の個別の粒に注目して、その面積
が等しくなるように想定した円の直径を求め、平均した
ものである。
The above are the basic components of the steel which is the subject of the present invention. For the purpose of increasing the strength of the base metal or improving the toughness of the joint, the case where an alloy element is added in accordance with the required properties. If the transformation temperature is too low, deformation resistance in the two-phase region increases and rolling becomes difficult. Therefore, Ni, Cr, Mo, Cu, W, P, Co, V, Nb, T
i, Zr, Ta, Hf, rare earth element, Y, Ca, Mg,
One or more of Te, Se, and B can be used, but the total amount thereof is regulated to 4.5% or less. Note that the average circle equivalent particle size is obtained by averaging the diameters of circles that are assumed to have the same area and focusing on individual particles of the relevant tissue.

【0016】[0016]

【作用】本発明者らは、Ni元素を含有しないフェライ
ト・パーライト鋼板のフェライト粒径を5μm以下に細
粒化しても、母材靭性であるvTrsは殆ど向上しなか
った事実に着目し、その機構の解明を通して、鋼板の靭
性を向上させるために必要な脆性破壊に対する抵抗に関
する考察、および実験を実施した。
The present inventors have paid attention to the fact that, even when the ferrite grain size of a ferrite-pearlite steel sheet containing no Ni element is reduced to 5 μm or less, the base metal toughness, vTrs, hardly improved. Through the elucidation of the mechanism, a study on the resistance to brittle fracture necessary to improve the toughness of the steel plate and experiments were performed.

【0017】亀裂、あるいは切欠の先端における局部応
力が鋼板の組織によって決定される限界微視的破壊応力
以上になると、脆性破壊が発生することが既に知られて
いる。すなわち、鋼板の靭性を向上させるためには、
鋼板の持つ限界微視的破壊応力を向上させる方法と、
亀裂あるいは切欠先端の応力をなんらかの手段で低下さ
せる方法が考えられる。
It is already known that brittle fracture occurs when the local stress at the tip of a crack or a notch exceeds a critical microscopic fracture stress determined by the structure of a steel sheet. That is, in order to improve the toughness of the steel sheet,
A method of improving the critical microscopic fracture stress of a steel sheet,
A method of reducing the stress at the crack or the notch tip by some means is conceivable.

【0018】上記の方法としては、集合組織を発達さ
せて、鋼板の板厚と平行方向にセパレーションという縦
割れを生じさせ、結果的に亀裂あるいは切欠先端の拘束
を解放し、応力を低下させる現象が知られている。すな
わち、限界微視的破壊応力に局所応力が達する以前に、
必ずセパレーションが発生すればよいことがわかる。そ
のためには、鋼板の限界破壊応力がセパレーション発生
応力に比べ高いことが必要である。しかし、実際のフェ
ライト−オーステナイト2相域で圧延された鋼板では、
塑性変形の支配的な温度では、破壊に先立ちセパレーシ
ョンを発生するが、低温では脆性破壊を呈する。
The above-mentioned method is a phenomenon that a texture is developed to cause a vertical crack called separation in a direction parallel to the thickness of the steel sheet, and as a result, a crack or a constraint at a notch tip is released to reduce stress. It has been known. That is, before the local stress reaches the critical microscopic fracture stress,
It is understood that the separation only needs to occur. For that purpose, it is necessary that the critical fracture stress of the steel sheet is higher than the separation initiation stress. However, in an actual steel sheet rolled in the ferrite-austenite two-phase region,
At temperatures predominant in plastic deformation, separation occurs prior to fracture, but at low temperatures, brittle fracture occurs.

【0019】これは、低温になると鋼材の降伏点が上昇
し、亀裂先端の塑性域が小さくなるために、セパレーシ
ョンの発生に必要な結晶方位の異なるコロニー間での塑
性異方性による局部変形が生じないためであると考えら
れるので、下記に示すような化学成分を有する一般的な
構造用鋼を用いて、種々の実験を行った。 C :0.04〜0.15%、 Si:0.15〜0.25%、 Mn:0.4〜1.6%、 Al:0.01〜0.05%、 P :0.005〜0.008%、S :0.001〜0.003%。
This is because, at low temperatures, the yield point of the steel material rises, and the plastic region at the tip of the crack becomes smaller. Therefore, local deformation due to plastic anisotropy between colonies having different crystal orientations required for the occurrence of separation occurs. Therefore, various experiments were carried out using a general structural steel having the chemical components shown below. C: 0.04 to 0.15%, Si: 0.15 to 0.25%, Mn: 0.4 to 1.6%, Al: 0.01 to 0.05%, P: 0.005 to 0.008%, S: 0.001 to 0.003%.

【0020】まず、集合組織によりセパレーションを発
生させるために必要な組織形態を定量化するため、種々
2相域圧延条件を変化させて集合組織レベルの異なる鋼
板を製造した。集合組織を組織上で定量化するために、
結晶方位によって酸化皮膜の厚みの変化を利用したテン
パーカラー法を適用して同一結晶方位を有する結晶粒の
集合体であるコロニーを現出させ、そのコロニーの長径
/短径の比と板厚方向の限界破壊応力を評価した。その
結果、図1に示すように、同一結晶方位を有するコロニ
ーの長径/短径の比が4以上であれば、板厚方向の限界
破壊応力は集合組織のない約1の場合の1/2以下とな
ることを知見した。図2は同一結晶方位を有するコロニ
ーの長径/短径の比の模式図である。
First, in order to quantify the structural morphology necessary for causing separation by texture, steel sheets having different texture levels were manufactured by changing various two-phase region rolling conditions. To quantify the texture on the organization,
By applying the temper color method using the change in the thickness of the oxide film depending on the crystal orientation ,
A colony as an aggregate was made to appear, and the ratio of the major axis / minor axis of the colony and the critical fracture stress in the plate thickness direction were evaluated. As a result, as shown in FIG. 1, colonies having the same crystal orientation
It has been found that when the ratio of the major axis / minor axis is 4 or more, the critical fracture stress in the sheet thickness direction is 1/2 or less of the case of about 1 having no texture. Fig. 2 shows colonies having the same crystal orientation .
FIG. 3 is a schematic diagram of a ratio of a major axis / a minor axis .

【0021】次に同一結晶方位を有するコロニーの長径
/短径の比が4以上となるように2相域圧延を実施した
鋼板を用いて、セパレーションの発生限界温度に及ぼす
フェライト粒径の関係を調査した。その結果を図3に示
す。−170℃以下の低温域でもセパレーションを生じ
させるためにはフェライト粒径が3μm以下であること
を知見した。
Next , the major axis of the colony having the same crystal orientation
Using a steel sheet that had been subjected to two-phase region rolling so that the ratio of / minor diameter was 4 or more, the relationship between the ferrite grain size and the critical temperature for the occurrence of separation was investigated. The result is shown in FIG. It has been found that the ferrite grain size is 3 μm or less in order to cause separation even in a low temperature range of −170 ° C. or less.

【0022】図4に、同一結晶方位を有するコロニーの
長径/短径の比の異なるフェライト粒径と脆性破壊発生
靭性Kcとの関係を示す。すなわち、集合組織を発達さ
せ、且つセパレーションを極低温でも発生させるよう
に、フェライト粒径を3μm以下に細粒化することが脆
性破壊抵抗を向上させる決め手となる。これは、マトリ
ックス組織であるフェライトを超細粒化し限界微視的破
壊応力を高め、かつセパレーションを発生可能な集合組
織を発達させたためである。
FIG. 4 shows that colonies having the same crystal orientation
The relation between the ferrite particle diameters having different ratios of the major axis / minor axis and the brittle fracture initiation toughness Kc is shown. That is, it is decisive to improve the brittle fracture resistance by reducing the ferrite grain size to 3 μm or less so that the texture is developed and the separation is generated even at an extremely low temperature. This is because ferrite, which is a matrix structure, is ultra-fine-grained, the critical microscopic fracture stress is increased, and a texture that can generate separation is developed.

【0023】この組織を達成するためには、例えば、昇
温過程中のフェライトにある必要量の加工を与え、且つ
オーステナイト化への逆変態を防止すれば、加工フェラ
イトに導入された転位は回復、再配列を起こし、フェラ
イトの超細粒化により限界微視的破壊応力の向上がはか
れ、且つフェライトへ与えた加工により発達させた集合
組織は、そのまま残留させることにより本発明の組織が
達成できることを知見した。
In order to achieve this structure, for example, if a certain amount of processing is applied to the ferrite during the heating process and the reverse transformation to austenitization is prevented, the dislocations introduced into the processed ferrite will recover. The microstructure of the present invention is achieved by causing rearrangement, improving the critical microscopic fracture stress by ultrafine graining of ferrite, and leaving the texture developed by the processing given to ferrite as it is. I learned that I can do it.

【0024】そこで、圧延中に鋼板表面を水冷し、一旦
フェライト変態させてしまい、冷却によっても殆ど温度
の低下しない板厚中心部の顕熱を利用して、表層部のフ
ェライト組織を昇温させながらさらに圧延を行い、表層
部のみ集合組織を有する3μm以下の超細粒組織を形成
させた。
Therefore, during rolling, the surface of the steel sheet is water-cooled and once transformed into ferrite, and the sensible heat at the center of the sheet thickness where the temperature hardly decreases even by cooling is used to raise the temperature of the ferrite structure in the surface layer. Further rolling was performed to form an ultrafine grained structure of 3 μm or less having a texture only in the surface layer.

【0025】この時、圧延後空冷させたものは、圧延後
の温度が高いため超細粒組織の一部が粒成長を生じ、目
的の組織が得られないことがあった。そこで、圧延後粒
成長を抑制するため、Ar1 点まで冷却させたところ1
℃/sec 以上の表層部冷却速度であれば所定組織を得る
ことが確認できた。
At this time, in the case of air-cooled after the rolling, the temperature after the rolling is high, so that part of the ultrafine grain structure may cause grain growth, and the desired structure may not be obtained. Then, in order to suppress the grain growth after rolling, it was cooled to Ar 1 point.
It was confirmed that a predetermined structure could be obtained at a surface layer cooling rate of at least ° C / sec.

【0026】また、圧延中の水冷条件等を変化させて、
その表層改質組織の厚みを変化させた鋼板のKca性能
を調査した結果、表層改質組織の厚み増大によってKc
a特性が向上し、鋼板に要求されるKca性能に応じて
必要な表層改質組織の厚みが存在することが知見され
た。
Also, by changing the water cooling conditions during rolling,
As a result of investigating the Kca performance of the steel sheet in which the thickness of the surface modified structure was changed, it was found that Kc was increased by increasing the thickness of the surface modified structure.
It has been found that the a-characteristics are improved, and the required thickness of the surface-modified structure exists according to the Kca performance required for the steel sheet.

【0027】[0027]

【実施例】実施例の供試鋼の成分を表1に、製造条件お
よび得られた材質を表2に比較例と共に示す。供試鋼か
ら得られた各資料はテンパーカラー法を用いて、結晶方
位が同一である結晶粒の集合体を単位としたコロニー
と、異方位の結晶方位の結晶粒とを識別した。次いで、
同一方位の結晶粒の集合体の長径、短径を実測した。
EXAMPLES The components of the test steels of the examples are shown in Table 1, and the production conditions and the obtained materials are shown in Table 2 together with comparative examples. Test steel
Each of the obtained data was obtained using the temper color method.
Colonies in units of aggregates of crystal grains with the same position
And crystal grains having different crystal orientations. Then
The major axis and minor axis of an aggregate of crystal grains having the same orientation were measured.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】本発明例の試験番号1〜12および比較例
の試験番号13〜16,21,22,24は、粗圧延後
に冷却を適用し、鋼板表層部をフェライト変態させたも
のであるが、比較例の試験番号14,21,22は冷却
速度が遅かったため、鋼板全体の温度が低下し、冷却後
の圧延が昇温加工とはならなかった。また、比較例の試
験番号24は、冷却後経過時間が長すぎて冷却後の圧延
の所要条件を満たすことができなかった。そのため、比
較例である試験番号21,22,24の表層部の組織は
細粒化しなかった。
Test Nos. 1 to 12 of the examples of the present invention and Test Nos. 13 to 16, 21, 22, and 24 of the comparative examples are those in which cooling is applied after rough rolling and the surface layer of the steel sheet is transformed into ferrite. In Test Nos. 14, 21 and 22 of the comparative examples, the cooling rate was slow, so that the temperature of the entire steel sheet was lowered, and the rolling after cooling did not become the temperature raising processing. Further, in Test No. 24 of the comparative example, the elapsed time after cooling was too long, and the required conditions for rolling after cooling could not be satisfied. For this reason, the structure of the surface layer portion of Test Nos. 21, 22, and 24, which are comparative examples, did not become fine.

【0032】これらの比較例の材質は、板厚全体が2相
域圧延となってしまい、母材靭性であるvTrsも劣化
し、NDT特性、アレスト特性ともに劣化した。また、
比較例の試験番号17〜20,23は、いずれも粗圧延
後の冷却を実施しておらず、仕上げ圧延温度が板厚平均
でAr3 点直上を狙っていたため、表面の温度はAr3
点以下となり、ここでの圧延によりフェライトの異常粒
成長が生じ、その結果表層部のフェライト粒径が粗大化
した。
In the materials of these comparative examples, the entire plate thickness was subjected to two-phase rolling, the base material toughness vTrs was deteriorated, and both the NDT characteristics and the arrest characteristics were deteriorated. Also,
Test No. Comparative Example 17~20,23 are both not implemented cooling after rough rolling, since the finish rolling temperature was aimed directly above Ar 3 point in the thickness average, the temperature of the surface is Ar 3
The abnormal rolling of the ferrite particles caused the rolling, and as a result, the ferrite grain size in the surface layer became coarse.

【0033】また、比較例13,16は所定の冷却・圧
延を実施しているものの、圧延終了後空冷したため、フ
ェライト粒径が3μm以下にならず、比較例15,16
は圧延後の復熱過程でAc3 以上に復熱したので部分的
に粒成長を生じ、所定の組織が得られなかった。したが
って、これらの比較例である試験番号13〜20,23
はアレスト性能としてKca=600kgf/mm1.5 を示す
温度、NDT特性共に−60℃には達しなかった。
In Comparative Examples 13 and 16, although the predetermined cooling / rolling was performed, the ferrite grain size did not become 3 μm or less because of air cooling after the completion of the rolling.
In the heat recovery process after the rolling, the heat recovered to Ac 3 or more, so that partial grain growth occurred, and a predetermined structure could not be obtained. Therefore, Test Nos. 13 to 20, 23, which are comparative examples,
Did not reach −60 ° C. in both the temperature and the NDT characteristic showing Kca = 600 kgf / mm 1.5 as the arrest performance.

【0034】これに対し、本発明例の試験番号1〜12
の材質は、表2に示す通り、所要の製造条件を満足し、
目標の強度・靭性を満足すると共に、本発明の狙いであ
るNDT温度が−70℃以上を示し、アレスト性能であ
るKca=600kgf/mm1.5を示す温度も十分な特性で
あった。また、疲労特性も本発明例は良好であった。
On the other hand, Test Nos. 1 to 12
The material of satisfies the required manufacturing conditions as shown in Table 2,
In addition to satisfying the target strength and toughness, the temperature at which the NDT temperature, which is the target of the present invention, is -70 ° C. or more, and the arrest performance, ie, Kca = 600 kgf / mm 1.5 , was also satisfactory. Further, the fatigue properties of the example of the present invention were good.

【0035】[0035]

【発明の効果】本発明は上記した手段を用いて上記した
作用を利用したので、粗圧延後、表層部のみ冷却してA
1 点以下とした後、板厚内部の顕熱により復熱しなが
ら圧延を実施すれば、NDT特性を劣化させる表層部の
脆化組織を生成させることなく板厚中心部に十分な未再
結晶域圧延を実施するため、アレスト性能であるNDT
特性とKca特性を両立することを可能とするもので、
当業分野はもちろん、関連分野にもたらす効果が大き
い。
According to the present invention, since the above-mentioned action is utilized by using the above-mentioned means, after rough rolling, only the surface layer portion is cooled and A
After the r 1 point or less, if rolling is performed while recuperating by sensible heat inside the sheet thickness, sufficient unrecrystallized in the center part of the sheet thickness without generating an embrittlement structure in the surface layer that deteriorates NDT characteristics. NDT, which is an arrest performance,
It is possible to achieve both characteristics and Kca characteristics,
It has a great effect on related fields as well as the field of business.

【図面の簡単な説明】[Brief description of the drawings]

【図1】テンパーカラー法で現出させた組織の同一結晶
方位を有するコロニーの長径/短径の比と板厚方向の限
界破壊応力の関係の図表である。
FIG. 1 is a table showing the relationship between the ratio of the major axis / minor axis of colonies having the same crystal orientation of a tissue revealed by the temper color method and the critical fracture stress in the plate thickness direction.

【図2】同一結晶方位を有するコロニーの長径/短径の
比の模式図である。
FIG. 2 is a schematic diagram of the ratio of the major axis / minor axis of colonies having the same crystal orientation .

【図3】フェライト粒径とセパレーション発生限界温度
との関係の図表である。
FIG. 3 is a table showing a relationship between a ferrite grain size and a separation occurrence limit temperature.

【図4】フェライト粒径と−165℃における脆性破壊
発生靭性であるKc値との関係の図表である。
FIG. 4 is a chart showing a relationship between a ferrite grain size and a Kc value which is a brittle fracture initiation toughness at −165 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土師 利昭 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (72)発明者 間渕 秀里 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (56)参考文献 特開 平5−202444(JP,A) 特開 平5−271862(JP,A) 特開 平5−271862(JP,A) 特開 平3−64413(JP,A) 特開 平5−9651(JP,A) 特開 昭61−235534(JP,A) 特開 平3−2322(JP,A) 特開 昭62−4826(JP,A) 特開 昭58−19432(JP,A) 菊池正紀、西尾珠樹 矢野一範「表面 き裂の延性破壊に咬する研究(第2報ア スペクト比の影響)」日本機械学会論文 集(A編)社団法人日本機械学会 平成 元年3月25日 第55巻 第511号 P560 −567 (58)調査した分野(Int.Cl.6,DB名) C21D 8/02──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toshiaki Hashi 1 Nishinosu, Oita, Nippon Steel Corporation Inside Oita Works (72) Inventor Hidesato Mabuchi 1 Nishinosu, Oita, Nippon Steel (56) References JP-A-5-202444 (JP, A) JP-A-5-271862 (JP, A) JP-A 5-271862 (JP, A) 64413 (JP, A) JP-A-5-9651 (JP, A) JP-A-61-235534 (JP, A) JP-A-3-2322 (JP, A) JP-A-62-4826 (JP, A) JP-A-58-19432 (JP, A) Masaki Kikuchi, Tamaki Nishio Kazunori Yano "Study on Ductile Fracture of Surface Cracks (2nd Report: Effect of Aspect Ratio)" Transactions of the Japan Society of Mechanical Engineers (A) Japan Society of Mechanical Engineers March 25, 1989 Vol. 55 No. 511 P560 -567 (58) investigated the field (Int.Cl. 6, DB name) C21D 8/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ac3 点以上の温度の鋼片もしくは鋼板
を、圧延中途中水冷時の板厚をt0 とした時、表層から
少なくとも板厚方向に0.02×t0 (mm)以上の領域
を2℃/sec 以上の冷速でフェライト分率が50%以上
となるまで急冷して、その後、当該表層部がAr1 点以
上の温度から圧延を開始もしくは再開し、(Ac3 点−
100)℃からAc3 点の範囲で圧延を終了し、その後
Ac3点以上に復熱させることなく少なくともAr1
迄を当該表層部を1℃/sec 以上の冷速で冷却し、表層
部から少なくとも板厚の2%以上の範囲にわたって平均
円相当粒径が3μm以下のフェライト組織、もしくはベ
ーナイト組織を有し、且つ、その表層部組織の同一結晶
方位を有する集合組織コロニーの長径/短径の比を4以
上とすることを特徴とする耐脆性破壊特性の良好な構造
用鋼板の製造方法。
1. A steel slab or a steel plate having a temperature of 3 or more Ac is 0.02 × t 0 (mm) or more in the thickness direction at least from the surface layer when the thickness of the slab or the water-cooled plate during the rolling is t 0. and quenching the area at 2 ° C. / sec or more cooling rate until a ferrite fraction is 50% or more, then, the surface portion starts or resumes rolling from a temperature of more than 1 point Ar, (Ac 3 point −
100) Rolling is completed in the range of from 3 ° C. to 3 points of Ac, and then the surface layer is cooled at a cooling rate of 1 ° C./sec or more to at least 1 point of Ar without reheating to 3 points or more of Ac. And a major axis / minor axis of a textured colony having a ferrite structure or bainite structure having an average equivalent circle diameter of 3 μm or less over a range of at least 2% or more of the plate thickness and having the same crystal orientation of the surface layer structure. The method for producing a structural steel sheet having good brittle fracture resistance, wherein the ratio is 4 or more.
【請求項2】 圧延を終了させ、その後Ac3 点以上に
復熱させることなく冷却速度が5℃/sec 以上で加速冷
却することを特徴とする請求項1記載の耐脆性破壊特性
の良好な構造用鋼板の製造方法。
2. The method according to claim 1, wherein the rolling is completed, and thereafter, the cooling is performed at a cooling rate of 5 ° C./sec or more without reheating to three or more points of Ac. Manufacturing method of structural steel sheet.
【請求項3】 圧延を終了後Ac3 点以上に復熱させる
ことなく冷却速度が5℃/sec 以上で加速冷却し、さら
に焼戻し熱処理をすることを特徴とする請求項1記載の
耐脆性破壊特性の良好な構造用鋼板の製造方法。
3. The brittle fracture resistance according to claim 1, wherein after the rolling is completed, accelerated cooling is performed at a cooling rate of 5 ° C./sec or more without reheating to Ac 3 or more points, and further tempering heat treatment is performed. A method for producing a structural steel sheet having good characteristics.
JP4067514A 1992-03-25 1992-03-25 Method for producing structural steel sheet with good brittle fracture resistance Expired - Lifetime JP2807592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4067514A JP2807592B2 (en) 1992-03-25 1992-03-25 Method for producing structural steel sheet with good brittle fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4067514A JP2807592B2 (en) 1992-03-25 1992-03-25 Method for producing structural steel sheet with good brittle fracture resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22333696A Division JP2971401B2 (en) 1996-08-26 1996-08-26 Structural steel plate with good brittle fracture resistance

Publications (2)

Publication Number Publication Date
JPH05271860A JPH05271860A (en) 1993-10-19
JP2807592B2 true JP2807592B2 (en) 1998-10-08

Family

ID=13347172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4067514A Expired - Lifetime JP2807592B2 (en) 1992-03-25 1992-03-25 Method for producing structural steel sheet with good brittle fracture resistance

Country Status (1)

Country Link
JP (1) JP2807592B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389164A (en) * 1993-02-10 1995-02-14 Nippon Steel Corporation Production method of strong and tough thick steel plate
DE69521264T2 (en) * 1994-03-29 2001-10-18 Nippon Steel Corp Steel plate with excellent brittle fracture properties and low temperature resistance and process for its production
JP4985086B2 (en) * 2006-12-28 2012-07-25 Jfeスチール株式会社 High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819432A (en) * 1981-07-24 1983-02-04 Nippon Steel Corp Manufacture of steel for line pipe with superior characteristic of stopping propagation of brittle crack
JPH064903B2 (en) * 1985-04-09 1994-01-19 新日本製鐵株式会社 Steel plate with excellent brittle crack propagation arresting property and its manufacturing method
JPS624826A (en) * 1985-07-01 1987-01-10 Kobe Steel Ltd Manufacture of high strength and toughness steel plate for line pipe superior in characteristic for stopping unstable ductility fracture propagation
JPH075967B2 (en) * 1989-02-06 1995-01-25 新日本製鐵株式会社 Method for producing steel sheet with excellent brittle crack propagation stopping properties
JPH059651A (en) * 1991-07-05 1993-01-19 Kobe Steel Ltd Steel plate having excellent property of stopping propagation of brittle fracture and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
菊池正紀、西尾珠樹 矢野一範「表面き裂の延性破壊に咬する研究(第2報アスペクト比の影響)」日本機械学会論文集(A編)社団法人日本機械学会 平成元年3月25日 第55巻 第511号 P560−567

Also Published As

Publication number Publication date
JPH05271860A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP3848465B2 (en) Method for producing thick high-tensile steel with excellent low-temperature toughness
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
KR101476866B1 (en) Low density steel with good stamping capability
JP3943021B2 (en) Steel sheet for depositing TiN + CuS for welded structure, method for producing the same, and welded structure using the same
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3790135B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JPH08188847A (en) Steel plate with composite structure, excellent in fatigue characteristic, and its production
JP4502272B2 (en) Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP2007302937A (en) Steel plate for hardened member, hardened member and manufacturing methods thereof
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JPH1088280A (en) Steel sheet for structural purpose excellent in brittle fracture resistance after plastic deformation and its production
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JP2807592B2 (en) Method for producing structural steel sheet with good brittle fracture resistance
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3348359B2 (en) Structural steel with excellent arrest performance and its manufacturing method
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH07258788A (en) Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JP2659654B2 (en) Steel plate excellent in brittle fracture characteristics and fatigue characteristics and method for producing the same
JP2662485B2 (en) Steel sheet having good low-temperature toughness and method for producing the same
JP2971401B2 (en) Structural steel plate with good brittle fracture resistance
JP3359349B2 (en) Structural steel with excellent brittle fracture resistance
JP2003313631A (en) High-strength steel superior in formability and uniformity of quality, and manufacturing method therefor
JPH05271861A (en) Structural steel for welding excellent in brittle fracture propagation arresting characteristic

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070724

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 14