JP4502272B2 - Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof - Google Patents

Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof Download PDF

Info

Publication number
JP4502272B2
JP4502272B2 JP2005360227A JP2005360227A JP4502272B2 JP 4502272 B2 JP4502272 B2 JP 4502272B2 JP 2005360227 A JP2005360227 A JP 2005360227A JP 2005360227 A JP2005360227 A JP 2005360227A JP 4502272 B2 JP4502272 B2 JP 4502272B2
Authority
JP
Japan
Prior art keywords
hot
ferrite
rolled steel
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005360227A
Other languages
Japanese (ja)
Other versions
JP2007162076A (en
Inventor
俊夫 村上
正裕 野村
陽一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005360227A priority Critical patent/JP4502272B2/en
Publication of JP2007162076A publication Critical patent/JP2007162076A/en
Application granted granted Critical
Publication of JP4502272B2 publication Critical patent/JP4502272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車足回り部品用鋼板として好適な加工性および疲労特性に優れる熱延鋼板、及びその製造方法に関する。   The present invention relates to a hot-rolled steel sheet excellent in workability and fatigue characteristics suitable as a steel sheet for automobile undercarriage parts, and a manufacturing method thereof.

近年、自動車部品の高強度化が進んでおり、その足回り部品についても同様である。足回り部品については、高強度化と共に疲労強度および加工性(延性)の改善も求められている。
強度−延性バランスおよび疲労特性の改善には、組織を微細化することが有効である。例えば、特開2000−144316号公報(特許文献1)には、組織の主相をフェライトで構成し、フェライトの平均粒径を2〜4μm とすることで強度−延性バランス(引張強さTSと伸びElとの積TS×Elで評価される。)を改善することが記載されている。もっとも、この程度のフェライト粒径では疲労特性の改善には十分とは言えない。また、特開平11−92859号公報(特許文献2)、特開平11−152544号公報(特許文献3)には、フェライトの平均粒径を2μm 以下とした、強度−延性バランス及び疲労限度比(疲労強度/TS)の良好な熱延鋼板が記載されている。しかし、粒径が微細すぎるため、YP(降伏点)の向上及びUE(均一伸び)の低下が懸念され、実際、この鋼板では、YR(降伏比)が0.9超と高すぎるため、加工時のスプリングバックが大きくなり、加工性が劣化する。このように、粒径を過度に微細化しても十分な疲労特性の改善は期待できない。
In recent years, the strength of automobile parts has been increased, and the same applies to the suspension parts. With respect to undercarriage parts, there is a demand for improvement in fatigue strength and workability (ductility) as well as higher strength.
Refinement of the structure is effective for improving the strength-ductility balance and fatigue characteristics. For example, in Japanese Patent Laid-Open No. 2000-144316 (Patent Document 1), the main phase of the structure is composed of ferrite, and the average particle diameter of ferrite is 2 to 4 μm, so that the strength-ductility balance (tensile strength TS and (Evaluated as product TS × El with elongation El). However, such a ferrite grain size is not sufficient for improving the fatigue characteristics. JP-A-11-92959 (Patent Document 2) and JP-A-11-152544 (Patent Document 3) describe a strength-ductility balance and a fatigue limit ratio (average diameter of ferrite of 2 μm or less). A hot-rolled steel sheet with good fatigue strength / TS) is described. However, since the grain size is too fine, there is concern about improvement in YP (yield point) and reduction in UE (uniform elongation). In fact, in this steel sheet, YR (yield ratio) is too high, exceeding 0.9. The spring back at the time becomes large, and the workability deteriorates. Thus, even if the particle size is excessively reduced, sufficient improvement in fatigue characteristics cannot be expected.

このように、粒径の制御だけでは十分な疲労特性と加工性の改善が期待できないので、疲労特性に寄与する表層部と、加工性に寄与する中心部の組織をそれぞれ最適化することにより特性の改善を図った熱延鋼板が提案されるようになった。例えば、特開2004−211199号公報(特許文献4)には、ポリゴナルフェライトを主相とし、ポリゴナルフェライトの平均結晶粒径が板厚中心から表層に向かい漸次小さくなる結晶粒径傾斜組織とした熱延鋼板が提案されている。この熱延鋼板は、熱延後に曲げ加工を加えることにより、ポリゴナルフェライト分率を板厚中心部から板厚表層部に向かって漸次微細化したものである。
特開2000−144316号公報 特開平11−92859号公報 特開平11−152544号公報 特開2004−211199号公報
In this way, sufficient fatigue properties and workability improvement cannot be expected only by controlling the grain size.Thus, by optimizing the surface layer that contributes to fatigue properties and the central structure that contributes to workability, A hot-rolled steel sheet with improved quality has been proposed. For example, in Japanese Patent Application Laid-Open No. 2004-211199 (Patent Document 4), a polygonal ferrite is the main phase, and the average crystal grain size of the polygonal ferrite gradually decreases from the center of the plate thickness toward the surface layer. Hot rolled steel sheets have been proposed. This hot-rolled steel sheet is obtained by gradually refining the polygonal ferrite fraction from the center part of the plate thickness toward the plate thickness surface layer part by applying bending work after hot rolling.
JP 2000-144316 A JP-A-11-92858 Japanese Patent Laid-Open No. 11-152544 Japanese Patent Laid-Open No. 2004-211199

上記特許文献4に記載された発明により、疲労特性、強度−延性バランスの改善が図られたが、最も微細化される最表層部でもその粒径が中心部の粒径に対して0.4倍程度しか微細化することができない。加工性を向上させるには、上記のとおり、YRを低くすることが望ましく、そのためには中心部の粒径Dをある程度大きくすることが望まれる。しかし、同文献の発明では、最表層部における粒径dが0.4D程度にならざるを得ず、十分な疲労特性が得られない。逆に表層部の粒径を十分に微細化すると中心部も必然的に細かくなり過ぎるため、YRが高くなり、十分な加工性が得られない。
本発明はかかる問題に鑑みなされたもので、低YR化による良好な加工性と疲労特性とを兼備した高強度熱延鋼板およびその製造方法を提供することを目的とする。
According to the invention described in Patent Document 4, the fatigue characteristics and the strength-ductility balance were improved. However, the grain size of the outermost layer part to be most refined is 0.4 with respect to the grain size of the central part. It can be refined only about twice. In order to improve the workability, as described above, it is desirable to lower YR, and for that purpose, it is desirable to increase the particle diameter D of the central portion to some extent. However, in the invention of this document, the particle diameter d in the outermost layer portion must be about 0.4D, and sufficient fatigue characteristics cannot be obtained. On the contrary, if the particle size of the surface layer portion is made sufficiently fine, the central portion is inevitably too fine, so that YR becomes high and sufficient workability cannot be obtained.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a high-strength hot-rolled steel sheet having both good workability and fatigue characteristics due to low YR and a method for producing the same.

本発明の熱延鋼板は、化学組成が、mass%でC:0.01〜0.30%、Si:0.20〜3.0%、Mn:0.5〜3.0%、Al:0.005〜0.10%を含み、残部Feおよび不可避的不純物からなり、幅方向の中央部において板厚中心を中心として板厚方向に100μm 、板幅方向に100μm の部分である板厚中心部の組織がフェライト単相組織、ベイナイト単一組織、フェライト及びベイナイトの複合組織、フェライト及びパーライトの複合組織、フェライト及びマルテンサイトの複合組織の内のいずれかであり、かつその組織において方位差15°以上の大角粒界で囲まれたフェライト相有効結晶の平均粒径が2〜15μm であり、一方板表面から100〜200μm 深さの表層部が前記有効結晶の平均粒径が中心部の有効結晶の平均粒径に対して0.2倍以下の微細粒とされたものである。 The hot-rolled steel sheet of the present invention has a chemical composition of mass%, C: 0.01 to 0.30%, Si: 0.20 to 3.0%, Mn: 0.5 to 3.0%, Al: The center of the plate thickness including 0.005 to 0.10%, consisting of the balance Fe and unavoidable impurities, and the center of the plate thickness at the center in the width direction is 100 μm in the plate thickness direction and 100 μm in the plate width direction The structure of the part is one of a ferrite single phase structure, a bainite single structure, a ferrite and bainite composite structure, a ferrite and pearlite composite structure, and a ferrite and martensite composite structure, and the orientation difference is 15 in the structure. the average particle size of the effective crystal ferrite phase surrounded by ° or more large angle grain boundaries is 2 to 15 [mu] m, whereas from the plate surface average particle size of the effective crystal surface portion of 100~200μm depth of the central portion Effective crystal The fine particles are 0.2 times or less of the average particle size.

本発明に熱延鋼板によると、所定成分の下、板厚中心部は、方位差15°以上の大角粒界で囲まれたフェライト相有効結晶の平均粒径が2〜15μm とされているので、強度−延性バランスに優れ、しかも降伏比を0.8以下に抑えることができ、低YR化による優れた加工性を得ることができる。さらに、板表面から100〜200μm 深さの表層部の前記有効結晶の平均粒径が中心部の有効結晶の平均粒径に対して0.2倍以下の微細粒としたので、中心部の粒径を比較的大きなものとしても、表層部の粒径を十分に微細化することができるので、優れた疲労特性を兼備させることができる。 According to the hot rolled steel sheet of the present invention, under a predetermined component, the center of plate thickness, the average particle size of the effective crystal of the ferrite phase which is surrounded by the misorientation 15 ° or more large angle grain boundaries is as 2~15μm Therefore, the strength-ductility balance is excellent, the yield ratio can be suppressed to 0.8 or less, and excellent workability by low YR can be obtained. Further, since the average grain size of the effective crystal in the surface layer part at a depth of 100 to 200 μm from the plate surface is a fine grain of 0.2 times or less than the average grain size of the effective crystal in the center part, Even if the diameter is relatively large, the particle size of the surface layer portion can be sufficiently refined, so that excellent fatigue characteristics can be provided.

前記熱延鋼板において、化学成分として、さらにA群(Cu:0.10〜2.0%、Ni:0.10〜2.0%、Cr:0.10〜2.0%、Mo:0.10〜2.0%、B:0.0005〜0.0050%)あるいはB群(V、Nb、Ti、Zr、Hfにつき各々0.002〜0.3%)の元素から単独で、あるいは複合して含有することができる。   In the hot-rolled steel sheet, as a chemical component, group A (Cu: 0.10 to 2.0%, Ni: 0.10 to 2.0%, Cr: 0.10 to 2.0%, Mo: 0) .10 to 2.0%, B: 0.0005 to 0.0050%) or group B (0.002 to 0.3% each for V, Nb, Ti, Zr, and Hf) alone, or It can be contained in combination.

また、本発明の熱延鋼板の製造方法は、前記化学成分を有する鋼をAe3点以上、1300℃以下に加熱した後、累積圧下量を50%以上とし、最終圧延温度をAe3点〜(Ae3点+200)℃とする第1段圧延を行い、引き続いて(Ae3点−300)〜(Ae3点−150)℃の温度域で圧下率を20〜60%とする圧下を少なくとも1回加える第2段圧延を行った後、500℃以下まで1℃/sec以上の冷却速度で冷却し、巻き取るものである。   In the method for producing a hot-rolled steel sheet according to the present invention, the steel having the chemical component is heated to Ae 3 point or more and 1300 ° C. or less, and then the cumulative rolling amount is 50% or more, and the final rolling temperature is Ae 3 point to (Ae 3 The first stage rolling is performed at a point +200) ° C., and then, at the first time, a reduction at a reduction rate of 20 to 60% is applied at least once in the temperature range of (Ae3 point−300) to (Ae3 point−150) ° C. After performing the step rolling, the steel sheet is cooled to a temperature of 500 ° C. or lower at a cooling rate of 1 ° C./sec or higher and wound up.

この製造方法によると、第1段圧延によって均一微細化したオーステナイトを第2段圧延により所定の圧下を加えることで、表層部が加工発熱で瞬時にAe3点以上に再加熱され、その後Ae3点以下に急冷されるので、表層部が微細フェライト組織となるが、板厚中心部における加工発熱は小さく、Ae3点を超えないため、微細化を免れ、2〜15μm の平均粒径を確保することができる。このため、前記熱延鋼板を通常の熱間圧延設備により容易に製造することができる。 According to this manufacturing method, the austenite uniformly refined by the first stage rolling is subjected to a predetermined reduction by the second stage rolling, so that the surface layer portion is instantaneously reheated to the Ae3 point or more by processing heat generation, and then the Ae3 point or less. Since the surface layer portion has a fine ferrite structure, the processing heat generation at the central portion of the plate thickness is small and does not exceed the Ae3 point, so that it can be avoided from miniaturization and an average particle size of 2 to 15 μm can be secured. it can. For this reason, the said hot-rolled steel plate can be easily manufactured with normal hot rolling equipment.

本発明の熱延鋼板によれば、板厚中心部におけるフェライト相の有効結晶の平均粒径を2〜15μm とすると共に表層部における有効結晶の平均粒径を前記中心部におけるものより0.2倍以下とするので、降伏比の上昇による加工性の劣化を招来することなく、優れた加工性と疲労強度を兼備させることができる。また、本発明の製造方法によれば、前記熱延鋼板を通常の圧延設備により容易に製造するこができ、生産性に優れる。 According to the hot-rolled steel sheet of the present invention, the average grain size of the effective crystals of the ferrite phase in the center portion of the plate thickness is 2 to 15 μm, and the average grain size of the effective crystals in the surface layer portion is 0.2 Since it is less than double, excellent workability and fatigue strength can be combined without causing deterioration of workability due to an increase in yield ratio. Moreover, according to the manufacturing method of this invention, the said hot-rolled steel plate can be manufactured easily with normal rolling equipment, and it is excellent in productivity.

まず、本発明の熱延鋼板の化学成分について説明する。以下、単位はmass%である。 C:0.01〜0.30%
Cは、強化元素として添加される。0.01%未満では強度が過小となり、一方0.30%を超えると延性の劣化を招来する。このため、Cの下限を0.01%、好ましくは0.03%とし、一方その上限を0.30%、好ましくは0.20%とする。
First, chemical components of the hot rolled steel sheet of the present invention will be described. Hereinafter, the unit is mass%. C: 0.01 to 0.30%
C is added as a strengthening element. If it is less than 0.01%, the strength is too low. On the other hand, if it exceeds 0.30%, ductility is deteriorated. For this reason, the lower limit of C is 0.01%, preferably 0.03%, while the upper limit is 0.30%, preferably 0.20%.

Si:0.20〜3.0%
Siは、脱酸元素として添加され、またフェライトの固溶強化元素として強度向上に寄与する。0.20%未満では脱酸が過少であり、延性が劣化する。一方、3.0%を超えるとフェライト強度が高くなり過ぎて延性が劣化し、またYRが高くなり過ぎる。このため、Siの下限を0.20%、好ましくは0.30%とし、一方その上限を3.0%、好ましくは2.5%とする。
Si: 0.20 to 3.0%
Si is added as a deoxidizing element and contributes to strength improvement as a solid solution strengthening element of ferrite. If it is less than 0.20%, deoxidation is too small and ductility deteriorates. On the other hand, if it exceeds 3.0%, the ferrite strength becomes too high, the ductility deteriorates, and the YR becomes too high. For this reason, the lower limit of Si is 0.20%, preferably 0.30%, while the upper limit is 3.0%, preferably 2.5%.

Mn:0.5〜3.0%
Mnは、脱酸元素として添加され、また変態温度を低下させる作用を有するため、組織微細化および強度向上に寄与する。0.5%未満では脱酸が不十分となり、延性が劣化する。一方、3.0%を超えると、強度が高くなり過ぎて、やはり延性が劣化するようになる。このため、Mnの下限を0.5%、好ましくは0.8%とし、一方その上限を3.0%、好ましくは2.5%とする。
Mn: 0.5 to 3.0%
Mn is added as a deoxidizing element and has the effect of lowering the transformation temperature, thus contributing to refinement of the structure and improvement of strength. If it is less than 0.5%, deoxidation becomes insufficient and ductility deteriorates. On the other hand, if it exceeds 3.0%, the strength becomes too high, and the ductility also deteriorates. For this reason, the lower limit of Mn is 0.5%, preferably 0.8%, while the upper limit is 3.0%, preferably 2.5%.

Al:0.005〜0.10%
Alは、脱酸元素として添加する。0.005%未満では脱酸が不十分となり、延性が劣化し、一方0.10%超になるとやはり延性が劣化するようになる。このため、Al量の下限を0.005%、その上限を0.10%とする。
Al: 0.005-0.10%
Al is added as a deoxidizing element. If it is less than 0.005%, deoxidation becomes insufficient and ductility deteriorates. On the other hand, if it exceeds 0.10%, ductility also deteriorates. For this reason, the lower limit of the amount of Al is made 0.005%, and the upper limit is made 0.10%.

本発明の熱延鋼板は、上記基本成分の他、残部Feおよび不可避的不純物よりなるが、さらにA群(Cu:0.10〜2.0%、Ni:0.10〜2.0%、Cr:0.10〜2.0%、Mo:0.10〜2.0%、B:0.0005〜0.0050%)あるいはB群(V、Nb、Ti、Zr、Hfにつき各々0.002〜0.3%)の元素から1種以上の元素を添加して下記(1) 、(2) 、(3) の成分とすることができる。なお、不純物元素であるP、Sは、共に材質を脆化させるので少ないほど好ましく、P:0.03%以下、S:0.03%以下に止めることが望ましい。
(1) 基本成分+A群から1種以上の元素
(2) 基本成分+B群から1種以上の元素
(3) 上記(1) の成分+B群から1種以上の元素
The hot-rolled steel sheet of the present invention is composed of the balance of Fe and unavoidable impurities in addition to the basic components described above, and further includes group A (Cu: 0.10 to 2.0%, Ni: 0.10 to 2.0%, Cr: 0.10 to 2.0%, Mo: 0.10 to 2.0%, B: 0.0005 to 0.0050%) or B group (V, Nb, Ti, Zr, and Hf, each 0.00. One or more elements can be added to the following components (1), (2) and (3). It is to be noted that the impurity elements P and S are preferably as small as possible because they cause embrittlement of the material, and it is desirable to keep P: 0.03% or less and S: 0.03% or less.
(1) Basic component + one or more elements from group A
(2) Basic component + one or more elements from group B
(3) Component (1) above + one or more elements from Group B

前記A群の各元素は、オーステナイトから低温相への変態を遅らせることで組織微細化および強度の向上に寄与する。Cu、Ni、Cr、Moについては0.10%未満、Bについては0.0005%未満ではかかる作用が過少であり、一方Cu、Ni、Cr、Moは2.0%超、Bは0.0050%超では強度が高くなりすぎて、延性が劣化するようになる。このため上記範囲で添加するのがよい。
一方、B群の各元素は、析出強化元素であり、フェライトの強度向上と疲労特性の向上に寄与する。各々0.002%未満ではかかる作用が過少であり、一方0.3%超では強度が高くなりすぎて、延性が劣化するようになる。このため上記範囲で添加するのがよい。
Each element of the group A contributes to refinement of the structure and improvement of strength by delaying the transformation from austenite to a low temperature phase. For Cu, Ni, Cr, and Mo, less than 0.10% and B for less than 0.0005%, the effect is too low, while Cu, Ni, Cr, and Mo exceed 2.0%, and B is less than 0.00%. If it exceeds 0050%, the strength becomes too high and the ductility deteriorates. For this reason, it is good to add in the said range.
On the other hand, each element of group B is a precipitation strengthening element and contributes to the improvement of the strength and fatigue properties of ferrite. When the content is less than 0.002%, the effect is too small. On the other hand, when the content exceeds 0.3%, the strength becomes too high and the ductility deteriorates. For this reason, it is good to add in the said range.

次に、本発明の熱延鋼板の組織について説明する。
本発明の熱延鋼板は、板厚中心部(幅方向の中央部において板厚中心を中心として板厚方向に100μm 、板幅方向に100μm の部分)の組織において、方位差15°以上の大角粒界で囲まれたフェライト相有効結晶の平均粒径Dが2.0〜15μm とされ、一方板表面から100〜200μm 深さの表層部においては、前記有効結晶の平均粒径dが中心部の有効結晶の平均粒径Dに対してd≦0.2×Dとされる。
Next, the structure of the hot rolled steel sheet of the present invention will be described.
The hot-rolled steel sheet of the present invention has a large angle with an orientation difference of 15 ° or more in the structure of the sheet thickness center part (the part of 100 μm in the sheet thickness direction and 100 μm in the sheet width direction centered on the sheet thickness center at the center in the width direction). the average particle diameter D of the effective crystal surrounded by a ferrite phase at the grain boundaries is a 2.0~15Myuemu, whereas the surface layer portion of 100~200μm depth from the leaf surface, the average particle diameter d is the center of the effective crystal D ≦ 0.2 × D with respect to the average particle diameter D of the effective crystals of part.

本発明において、板厚の中心部であれ、表層部であれ、その組織について、方位差15°以上の大角粒界で囲まれたフェライト相有効結晶粒を問題にするのは、方位差が15°未満の結晶粒の集合体はあたかも一つの結晶粒のように挙動し、その粒界はYP、TS、El、疲労強度などの機械的特性を左右する粒界として働かない。このため、機械的特性を考察するに際しては前記有効結晶粒を単位粒として観察することが有効だからである。かかる取り扱いは、例えば特開2001−355040号公報に記載された熱延鋼板の靭性評価においても採用されている。 In the present invention, whether it is the central part or the surface layer part of the plate thickness, the problem of the effective crystal grains of the ferrite phase surrounded by the large-angle grain boundaries with an orientation difference of 15 ° or more is the orientation difference. An aggregate of crystal grains of less than 15 ° behaves like a single crystal grain, and the grain boundary does not work as a grain boundary that affects mechanical properties such as YP, TS, El, and fatigue strength. For this reason, when considering the mechanical characteristics, it is effective to observe the effective crystal grains as unit grains. Such handling is also employed, for example, in the toughness evaluation of hot-rolled steel sheets described in JP-A-2001-355040.

本発明において、板厚中心部におけるフェライト相の有効結晶の平均粒径を2〜15μm とするのは、YRを高くなり過ぎないようにして加工性を確保しつつ、良好な強度−延性バランスを得るためである。すなわち、2μm 未満では、YRが高くなり過ぎ、加工性が劣化する。一方、15μm 超になると、強度劣化が著しくなり、強度−延性バランスが劣化する。このため、有効結晶の平均粒径の下限を2.0μm 、好ましくは2.5μm とし、その上限を15μm 、好ましくは10μmとする。なお、前記有効結晶の平均粒径を満足する限り、中心部の組織は特に限定されないが、本発明の成分系では、通常、フェライト単相組織、ベイナイト単一組織、フェライト+ベイナイトの複合組織、フェライト+パーライトの複合組織、フェライト+マルテンサイトの複合組織で構成される。 In the present invention, the average grain size of the ferrite phase effective crystal at the center of the plate thickness is set to 2 to 15 μm so that the YR does not become too high and the workability is ensured while the good strength-ductility balance is achieved. To get. That is, if it is less than 2 μm, YR becomes too high and workability deteriorates. On the other hand, when it exceeds 15 μm, the strength is remarkably deteriorated and the strength-ductility balance is deteriorated. For this reason, the lower limit of the average particle diameter of the effective crystals is set to 2.0 μm, preferably 2.5 μm, and the upper limit is set to 15 μm, preferably 10 μm. In addition, as long as the average particle diameter of the effective crystal is satisfied, the structure of the central portion is not particularly limited, but in the component system of the present invention, usually a ferrite single phase structure, a bainite single structure, a ferrite + bainite composite structure, It is composed of a composite structure of ferrite and pearlite and a composite structure of ferrite and martensite.

一方、表層部における前記有効結晶の平均粒径dをd≦0.2Dとすることで、低YRを確保すべく、中心部を適度な大きさの粒径に調整した場合でも、表層部が十分に微細化され、加工性を損なうことなく、疲労特性を改善することができる。なお、熱延鋼板の表層の機械的特性を評価するに際して、本発明において、表層部を板表面から定義せず、板表面から100〜200μm の部位とするのは、疲労亀裂の発生、伝播は、表面直下部の組織はにあまり影響を受けず、最表面から少し離れた当該部位の組織に一番影響を受け、この部位の有効結晶の粒径が重要だからである。   On the other hand, when the average particle diameter d of the effective crystals in the surface layer portion is d ≦ 0.2D, even when the center portion is adjusted to an appropriate particle size in order to ensure low YR, the surface layer portion is Fatigue characteristics can be improved without being sufficiently miniaturized and impairing workability. In evaluating the mechanical properties of the surface layer of the hot-rolled steel sheet, in the present invention, the surface layer portion is not defined from the plate surface, and a portion of 100 to 200 μm from the plate surface is considered to generate and propagate fatigue cracks. This is because the structure immediately below the surface is not significantly affected by, but is most affected by the structure of the part slightly away from the outermost surface, and the grain size of the effective crystal at this part is important.

表層部の組織については、その有効結晶が前記d≦0.2Dの条件を満足する限り、特に限定されないが、本発明の成分系では、フェライトが主相(フェライト相が90%以上)であり、第2相として微細な炭化物、残留オーステナイトから形成される。   The structure of the surface layer portion is not particularly limited as long as the effective crystal satisfies the condition of d ≦ 0.2D, but in the component system of the present invention, ferrite is the main phase (ferrite phase is 90% or more). The second phase is formed from fine carbide and retained austenite.

次に、上記熱延鋼板の好適な製造方法について、図1の加工熱処理線図を参照して説明する。
この製造方法は、図1に示すように、上記化学成分の鋼片(スラブ)をAe3点以上、1300℃以下の温度1にて加熱保持する加熱工程と、その後、累積圧下量を50%以上とし、最終圧延温度をAe3点〜(Ae3点+200)℃とする第1段圧延2を行う第1段圧延工程と、第1段圧延に引き続いて(Ae3点−300)〜(Ae3点−150)℃の温度域で、圧下率を20〜60%とする圧下を少なくとも1回加える第2段圧延を行う第2段圧延工程を有し、第2段圧延後、500℃以下まで1℃/sec以上の冷却速度4で冷却し、巻き取る巻取り工程5を備える。
Next, the suitable manufacturing method of the said hot-rolled steel plate is demonstrated with reference to the heat processing diagram of FIG.
As shown in FIG. 1, this manufacturing method includes a heating step of heating and holding a steel slab (slab) of the above chemical composition at a temperature 1 of Ae 3 or more and 1300 ° C. or less, and then the cumulative reduction amount is 50% or more. And the first rolling step for performing the first stage rolling 2 with the final rolling temperature of Ae3 point to (Ae3 point + 200) ° C., and (Ae3 point−300) to (Ae3 point−150) following the first stage rolling. ) In the temperature range of ° C., it has a second stage rolling process in which the second stage rolling is performed by adding at least one reduction at a reduction rate of 20 to 60%. A winding step 5 for cooling and winding at a cooling rate 4 of sec or more is provided.

前記加熱工程は、鋼片をオーステナイト単相に加熱する工程である。加熱保持温度がAe3点未満ではオーステナイト単相にすることができず、一方1300℃を超えるとオーステナイトが粗大になり過ぎて最終組織が十分に微細化しないようになる。なお、保持時間は10min 以上とすることが好ましい。   The heating step is a step of heating the steel slab to an austenite single phase. An austenite single phase cannot be obtained if the heating and holding temperature is less than the Ae 3 point, while if it exceeds 1300 ° C., the austenite becomes too coarse and the final structure is not sufficiently refined. The holding time is preferably 10 min or longer.

前記第1段圧延により、第2段圧延前にオーステナイトが均一微細化される。最終圧延温度がAe3点未満では、十分にオーステナイトを微細化しないうちに変態が始まるため、最終組織が混粒化する。一方、(Ae3点+200)℃超になると、オーステナイトが粗大化し、良好な機械的特性が得られないようになる。また、累積圧下量が50%未満でも、オーステナイトが十分に微細化せず、ひいては最終組織も微細化しない。   By the first stage rolling, the austenite is uniformly refined before the second stage rolling. If the final rolling temperature is less than Ae3, the transformation starts before the austenite is sufficiently refined, so that the final structure is mixed. On the other hand, when it exceeds (Ae3 point + 200) ° C., austenite becomes coarse and good mechanical properties cannot be obtained. Further, even if the cumulative reduction amount is less than 50%, austenite is not sufficiently refined and consequently the final structure is not refined.

前記第2段圧延により、Ae3点から適度に低い温度域、つまりオーステナイトから低温相への変態が一定以上終了した状態で適当な圧下量の加工を加えることにより、表層部が加工発熱により瞬時にAe3点以上に再加熱され(図1中、6)、その後Ae3以下に急冷されることにより表層部のみが微細フェライト組織となる。中心部は加工発熱が小さいためAe3点を超えることなくそのまま冷却され、適度に大きい粒径サイズの組織が得られる。圧延温度が(Ae3点−300)℃未満では、温度が低くなり過ぎて、所定の圧下を加えても表層部の温度がAe3点を超えず、微細組織が得られないようになる。一方、(Ae3点−150)℃超では、変態が十分に進行していない段階で加工を加えることになるため、やはり組織が微細化しない。また、1パスの圧下量が20%未満では、上記温度範囲では組織の微細化が困難になる。また、1パスの圧延で60%を超える圧下を加えと、中心部まで加工発熱が大きくなり、表層部だけでなく、全体が微細化してYRが上昇するようになる。このため、圧下量は60%以下に止める。   By the second stage rolling, the surface layer portion is instantaneously generated by processing heat generation by adding a suitable amount of reduction in a moderately low temperature range from Ae3 point, that is, in a state in which the transformation from austenite to low temperature phase is over a certain level. Reheating to Ae3 point or higher (6 in FIG. 1) and then rapidly cooling to Ae3 or lower makes only the surface layer part a fine ferrite structure. Since the processing heat generation at the center is small, it is cooled as it is without exceeding the Ae3 point, and a structure having an appropriately large particle size is obtained. When the rolling temperature is less than (Ae3 point−300) ° C., the temperature becomes too low, and even when a predetermined reduction is applied, the temperature of the surface layer portion does not exceed the Ae3 point and a fine structure cannot be obtained. On the other hand, at (Ae3 point−150) ° C. or higher, since the transformation is applied at a stage where the transformation has not sufficiently progressed, the structure is not refined. In addition, if the amount of reduction in one pass is less than 20%, it is difficult to refine the structure in the above temperature range. Further, when a reduction exceeding 60% is applied by rolling in one pass, the processing heat generation becomes large up to the central part, and not only the surface layer part but the whole becomes finer and YR rises. For this reason, the amount of reduction is stopped to 60% or less.

第2段圧延後の冷却速度は、圧延により得られた微細組織を粗大化させないようにするため、500℃まで1℃/sec以上、好ましくは5℃/sec以上の速度で冷却する。冷却停止温度が500℃超、あるいは冷却速度が1℃/sec未満では組織が粗大化するおそれがある。その後、500℃未満の温度で巻き取られる。   The cooling rate after the second stage rolling is such that the microstructure obtained by rolling is not coarsened and is cooled to 500 ° C. at a rate of 1 ° C./sec or higher, preferably 5 ° C./sec or higher. If the cooling stop temperature exceeds 500 ° C. or the cooling rate is less than 1 ° C./sec, the structure may be coarsened. Then, it winds up at the temperature below 500 degreeC.

上記製造方法は、通常の熱間圧延設備で実施することができ、生産性に優れるものであるが、本発明の熱延鋼板を製造するにはこの方法に限るものではなく、例えば第2段圧延に変えて、高周波加熱装置を用いて鋼板表面を急速加熱、急速冷却することで、製造することもできる。
次に、本発明の熱延鋼板及びその製造方法を実施例を挙げてより具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。
The above production method can be carried out with normal hot rolling equipment and is excellent in productivity. However, the production method of the hot rolled steel sheet of the present invention is not limited to this method. Instead of rolling, it can also be produced by rapidly heating and rapidly cooling the steel sheet surface using a high-frequency heating device.
Next, the hot-rolled steel sheet and the method for producing the same according to the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.

表1に示す鋼種を真空熔解により溶製し、鋳造して鋼片を得た。同表中のAe3点は、計算ソフト(Thermo-Calc Sotware AB社製のThermo-Calc)を用いて算出した。
前記鋼片を小型圧延機で分塊圧延し、表2に示す板厚の厚板を製造した。その厚板から200mm×120mm平面のスラブを切出し、表2に示す加熱温度、加熱時間で加熱保持した後、一部のプロセス(No. a,k)を除き、同表に示す第1段圧延および第2段圧延を施した。表2中、第2段圧延の「圧延温度」は圧延開始温度を意味する。なお、第1段圧延は、1パスの圧下量を30〜60%として多パス圧延を行った。また、最終板厚は全て3mmとした。
第2段圧延後、500℃(表2中のプロセスNo. gを除く。)まで同表に示す冷却速度にて冷却し、巻取りを模擬するため、500℃(プロセスNo. gは400℃)で30分保持した後、炉冷した。
また、プロセスNo. kは、特許文献4に従って、第1段圧延(熱間圧延)後、800℃まで50℃/sec で冷却し、表層部の歪が0.5になるような曲げ曲げ戻し加工を加えた後、50℃/sec で450℃まで急冷し、巻取りを模擬するため450℃で30分保持した後、炉冷したものである。
Steel types shown in Table 1 were melted by vacuum melting and cast to obtain steel pieces. The Ae3 point in the table was calculated using calculation software (Thermo-Calc manufactured by Thermo-Calc Sotware AB).
The steel slab was subjected to partial rolling with a small rolling mill to produce thick plates having the thicknesses shown in Table 2. A 200 mm x 120 mm flat slab was cut out from the thick plate, heated and held at the heating temperature and heating time shown in Table 2, and then the first stage rolling shown in the same table except for some processes (No. a, k) And the second stage rolling was performed. In Table 2, “rolling temperature” of the second stage rolling means the rolling start temperature. In the first stage rolling, multi-pass rolling was performed with the reduction amount of one pass being 30 to 60%. The final thickness was 3 mm.
After the second stage rolling, it is cooled to 500 ° C. (excluding process No. g in Table 2) at the cooling rate shown in the same table, and 500 ° C. (process No. g is 400 ° C.) to simulate winding. ) For 30 minutes, and then cooled in the furnace.
In addition, according to Patent Document 4, the process No. k is bent and bent back so that the first stage rolling (hot rolling) is followed by cooling to 800 ° C. at 50 ° C./sec and the strain at the surface layer becomes 0.5. After processing, it is rapidly cooled to 450 ° C. at 50 ° C./sec, held at 450 ° C. for 30 minutes to simulate winding, and then cooled in the furnace.

上記のようにして製造された熱延鋼板の幅方向の中央部において、板厚の中心部(板厚方向に100μm 、幅方向に100μm の領域)、板面から100〜200μm の深さの表層部(幅方向に100μm の領域)について、3視野測定し、フェライト相の有効結晶の平均粒径を求めた。一部の試料(No. 1,2及び30)については板表面から板厚方向の粒径分布を調べた。これらの測定結果を表3、図3に示す。表層部については、フェライト相の面積率も求めた。表3の組織中、Fはポリゴナルフェライト、Bはベイナイト、Pはパーライト、θはセメンタイトである。   In the central part in the width direction of the hot-rolled steel sheet manufactured as described above, the center part of the plate thickness (100 μm in the plate thickness direction and the region of 100 μm in the width direction), the surface layer having a depth of 100 to 200 μm from the plate surface Part (a region of 100 μm in the width direction) was subjected to three visual field measurements to determine the average grain size of effective crystals of the ferrite phase. For some samples (Nos. 1, 2 and 30), the particle size distribution in the thickness direction from the plate surface was examined. These measurement results are shown in Table 3 and FIG. For the surface layer portion, the area ratio of the ferrite phase was also obtained. In the structure of Table 3, F is polygonal ferrite, B is bainite, P is pearlite, and θ is cementite.

前記有効結晶の平均粒径の測定方法は以下のとおりである。フェライト−フェライト間の方位差が15°以上となる点を有効結晶粒界としてフェイズマップ上にマッピングし、有効結晶粒界で囲まれたフェライト相の面積を画像ソフト(Micromedia社製のImage-Pro)を用いて測定し、各粒の面積から円相当径を求め、その平均値を平均粒径とした。観察装置は、ショットキー電界放出型走査電子顕微鏡(FE−SEM)(Philips社製XL30S-FEG)、EBSPシステム(テクセムラボラトリーズ製OIMシステム(ver. 4.0))を用い、ステップ間隔0.25μm の測定条件にて測定した。その一例(試料No. 2)を図3に示す。また、フェライト相の面積率については、平均粒径の測定の際に求めたフェライト相の面積を測定領域の面積で除して求めた。   The method for measuring the average particle size of the effective crystals is as follows. The point where the orientation difference between ferrite and ferrite is 15 ° or more is mapped on the phase map as an effective grain boundary, and the area of the ferrite phase surrounded by the effective grain boundary is image software (Image-Pro made by Micromedia) ), The equivalent circle diameter was determined from the area of each grain, and the average value was taken as the average grain diameter. As the observation apparatus, a Schottky field emission scanning electron microscope (FE-SEM) (Philips XL30S-FEG) and an EBSP system (Techsemura Laboratories OIM system (ver. 4.0)) are used with a step interval of 0.25 μm. Measurement was performed under measurement conditions. An example (sample No. 2) is shown in FIG. Further, the area ratio of the ferrite phase was obtained by dividing the area of the ferrite phase obtained in the measurement of the average particle diameter by the area of the measurement region.

さらに、各試料の熱延鋼板を用いて、引張試験、疲労試験により機械的性質を調べた。引張試験は、鋼板の表裏面を0.05mm研削し、その後、JISZ2201記載の5号試験片に加工し、JISZ2241に従って実施した。また、疲労試験は、鋼板表裏面を0.05mmずつ研削し、その後、JISZ2275記載の平面曲げ疲れ試験に従って、疲労限度(FL)を測定した。成形加工性の点から、YRは0.8以下を良好と評価できる。また、強度−延性バランスは、TS×EL値で15000MPa%以上を、疲労限度比(FL/TS)は0.6以上を良好と評価できる。これらの測定結果を表4に併せて示す。   Furthermore, the mechanical property was investigated by the tensile test and the fatigue test using the hot-rolled steel plate of each sample. In the tensile test, the front and back surfaces of the steel plate were ground by 0.05 mm, then processed into a No. 5 test piece described in JISZ2201, and carried out according to JISZ2241. Further, in the fatigue test, the front and back surfaces of the steel sheet were ground by 0.05 mm, and then the fatigue limit (FL) was measured according to the plane bending fatigue test described in JISZ2275. From the viewpoint of molding processability, it can be evaluated that YR is 0.8 or less. Further, it can be evaluated that the strength-ductility balance is 15000 MPa% or more in terms of TS × EL value and the fatigue limit ratio (FL / TS) is 0.6 or more. These measurement results are also shown in Table 4.

表3及び表4より、従来の熱間圧延条件に相当する圧延を行った試料No. 1(比較例)は、中心部と表層部の有効結晶の平均粒径の比(d/D)が不可避的に大きくなるため、疲労限度比が高く、十分な疲労特性が得られていない。これに対して実施例に該当する試料No. 2〜17、23および24の熱延鋼板は、YRが0.8以下で、強度−延性バランスが15000MPa以上あり、しかも疲労限度比も全て0.6以上あり、優れた加工性と疲労特性とを兼備していることがわかる。   From Table 3 and Table 4, Sample No. 1 (Comparative Example), which was rolled corresponding to the conventional hot rolling conditions, has a ratio (d / D) of the average grain size of effective crystals in the center portion and the surface layer portion. Since it inevitably increases, the fatigue limit ratio is high, and sufficient fatigue characteristics are not obtained. On the other hand, the hot-rolled steel sheets of Sample Nos. 2 to 17, 23 and 24 corresponding to the examples have a YR of 0.8 or less, a strength-ductility balance of 15000 MPa or more, and a fatigue limit ratio of 0. It can be seen that it has 6 or more and has excellent workability and fatigue characteristics.

一方、比較例の試料No. 18はC量が、No. 20はSi量が多過ぎ、強度が高くなり過ぎたため、TS×ELバランスが低下した。また、No. 21は、Mn量が高過ぎるため、YRが高くなり過ぎ、またTS×ELバランスも低下した。No. 22は、成分は適正であるが、第1段圧延の累積圧下量が小さ過ぎるため、中心部の平均粒径が粗大になり、TS×ELバランスが低下した。No. 25は、第2段圧延の圧延温度が高過ぎ、圧延前に変態が十分に進行しなかったため、圧延時の加工発熱を活用した表層部の微細化を行うことができず、中心部と表層部の平均粒径比を小さくできず、このため十分高い疲労限度比が得られなかった。一方、No. 26は第2段圧延の圧延温度が低過ぎ、圧延時の加工発熱を用いても表層部の温度が逆変態を起こす温度まで上昇せず、組織を微細化することができず、中心部と表層部の平均粒径比を小さくできなかった。その結果、十分疲労限度比が低下した。また、No. 27は、第2段圧延の圧下量が小さかったため、表層部での加工発熱量が少なく、逆変態が起こる温度まで温度が上昇せず、表層部の組織微細化ができなかったため、中心部と表層部の平均粒径比を小さくできず、疲労限度比が低下した。一方、No. 28は熱延後の冷却速度が小さかったため、冷却中に表層部の微細組織が粗大化し、表層部の粒径が大きくなり、結局、中心部と表層部の平均粒径比を小さくできず、疲労限度比を十分に高めることができなかった。No. 29は、第1段圧延の圧延温度が低いため、中心部の組織が微細化し、その結果、YRが上昇した。また、No. 30は、第2段圧延の代わりに、曲げ・曲げ戻し加工を施し、結晶粒を表面が細かくなるように傾斜状組織としたものであるが、表層部を平均粒径0.45μm の微細粒とすると中心部も0.8μmの微細粒になり、中心部を十分大きな粒径にすることができなかったので、YRが0.95と高くなり、十分な加工性を確保することができなかった。   On the other hand, the sample No. 18 of the comparative example had a C amount, and No. 20 had too much Si amount and the strength was too high, so the TS × EL balance was lowered. In No. 21, since the amount of Mn was too high, YR was too high, and the TS × EL balance was also lowered. In No. 22, the components are appropriate, but the cumulative reduction amount of the first stage rolling is too small, so that the average particle size at the center becomes coarse and the TS × EL balance is lowered. In No. 25, the rolling temperature of the second stage rolling was too high, and the transformation did not proceed sufficiently before rolling, so that the surface layer portion could not be refined using the processing heat generated during rolling. And the average particle size ratio of the surface layer portion could not be reduced, and therefore a sufficiently high fatigue limit ratio could not be obtained. On the other hand, in No. 26, the rolling temperature of the second stage rolling is too low, and even if the processing heat generated during rolling is used, the temperature of the surface layer does not rise to the temperature causing reverse transformation, and the structure cannot be refined. The average particle size ratio between the center portion and the surface layer portion could not be reduced. As a result, the fatigue limit ratio was sufficiently reduced. In No. 27, because the amount of reduction in the second stage rolling was small, the heat generation amount in the surface layer portion was small, the temperature did not rise to the temperature at which reverse transformation occurred, and the microstructure of the surface layer portion could not be refined. The average particle size ratio between the central part and the surface layer part could not be reduced, and the fatigue limit ratio was lowered. On the other hand, in No. 28, since the cooling rate after hot rolling was small, the fine structure of the surface layer portion was coarsened during cooling, and the particle size of the surface layer portion was increased. As a result, the average particle size ratio between the center portion and the surface layer portion was increased. The fatigue limit ratio could not be sufficiently increased. In No. 29, since the rolling temperature of the first stage rolling was low, the structure of the central part was refined, and as a result, YR increased. Further, No. 30 is obtained by performing bending / unbending processing instead of the second stage rolling and making the crystal grains have an inclined structure so that the surface becomes fine. If the fine particle of 45 μm is used, the central part also becomes a fine particle of 0.8 μm, and the central part could not be made sufficiently large, so that the YR is as high as 0.95 and sufficient workability is ensured. I couldn't.

図4は、試料No. 1〜30を用いて、中心部の有効結晶の平均粒径とYRとの関係を整理した図であり、2μm 超では、それ以下に比してYRが著しく高くなることがわかる。一方、図5は、試料No. 1〜30を用いて、平均粒径比d/DとYR及び疲労限度比との関係を示した図であり、YR≦0.8、疲労限度比≧0.6を同時に満足するにはd/Dを0.2以下にする必要があることを示している。   FIG. 4 is a diagram in which the relationship between the average grain size of the effective crystals in the central portion and YR is arranged using sample Nos. 1 to 30. YR is remarkably higher than 2 μm and below. I understand that. On the other hand, FIG. 5 is a graph showing the relationship between the average particle diameter ratio d / D, YR, and fatigue limit ratio using Sample Nos. 1 to 30, where YR ≦ 0.8 and fatigue limit ratio ≧ 0. It is shown that d / D must be 0.2 or less to satisfy.

Figure 0004502272
Figure 0004502272

Figure 0004502272
Figure 0004502272

Figure 0004502272
Figure 0004502272

Figure 0004502272
Figure 0004502272

実施形態にかかる製造方法の温度−加工模式線図を示す。The temperature-processing schematic diagram of the manufacturing method concerning embodiment is shown.

実施例における板表面からの板厚方向深さと有効結晶の平均粒径との関係を示す粒径分布図である。It is a particle size distribution map which shows the relationship between the plate | board thickness direction depth from the plate surface in an Example, and the average particle diameter of an effective crystal. 実施例におけるフェライト相の有効結晶粒の観察結果を示す有効結晶粒界マップ図を示す。The effective grain boundary map figure which shows the observation result of the effective crystal grain of the ferrite phase in an Example is shown. 実施例における中心部の有効結晶の平均粒径とYRとの関係を示すグラフ図である。It is a graph which shows the relationship between the average particle diameter of the effective crystal of the center part in an Example, and YR. 実施例における中心部の有効結晶の平均粒径Dに対する表層部の有効結晶の平均粒径dの比d/DとYR及び疲労限度比との関係を示すグラフ図である。It is a graph which shows the ratio d / D of the average particle diameter d of the effective crystal of the surface layer part with respect to the average particle diameter D of the effective crystal of the center part in an Example, YR, and a fatigue limit ratio.

Claims (4)

化学成分が、mass%でC:0.01〜0.30%、Si:0.20〜3.0%、Mn:0.5〜3.0%、Al:0.005〜0.10%を含み、残部Feおよび不可避的不純物からなり、
幅方向の中央部において板厚中心を中心として板厚方向に100μm 、板幅方向に100μm の部分である板厚中心部の組織がフェライト単相組織、ベイナイト単一組織、フェライト及びベイナイトの複合組織、フェライト及びパーライトの複合組織、フェライト及びマルテンサイトの複合組織の内のいずれかであり、かつその組織において方位差15°以上の大角粒界で囲まれたフェライト相有効結晶の平均粒径が2〜15μm であり、一方板表面から100〜200μm 深さの表層部における、前記有効結晶の平均粒径が中心部の有効結晶の平均粒径に対して0.2倍以下の微細粒とされた、加工性および疲労特性に優れる熱延鋼板。
Chemical component is mass% C: 0.01-0.30%, Si: 0.20-3.0%, Mn: 0.5-3.0%, Al: 0.005-0.10% Comprising the balance Fe and unavoidable impurities,
In the central portion in the width direction, the structure of the central portion of the plate thickness that is 100 μm in the plate thickness direction and 100 μm in the plate width direction centered on the plate thickness center is a ferrite single phase structure, a bainite single structure, a composite structure of ferrite and bainite. The average grain size of the effective crystals of the ferrite phase , which is one of a composite structure of ferrite and pearlite, and a composite structure of ferrite and martensite and surrounded by a large-angle grain boundary with an orientation difference of 15 ° or more in the structure. 2 to 15 μm, and the average grain size of the effective crystals in the surface layer part at a depth of 100 to 200 μm from the surface of the plate is 0.2 or less times the average grain size of the effective crystals in the central part. Hot rolled steel sheet with excellent workability and fatigue characteristics.
化学成分が、さらにCu:0.10〜2.0%、Ni:0.10〜2.0%、Cr:0.10〜2.0%、Mo:0.10〜2.0%、B:0.0005〜0.0050%の1種以上を含む、請求項1に記載した熱延鋼板。   Chemical components are further Cu: 0.10 to 2.0%, Ni: 0.10 to 2.0%, Cr: 0.10 to 2.0%, Mo: 0.10 to 2.0%, B : The hot-rolled steel sheet according to claim 1, comprising one or more of 0.0005 to 0.0050%. 化学成分が、さらにV:0.002〜0.3%、Nb:0.002〜0.3%、Ti:0.002〜0.3%、Zr:0.002〜0.3%、Hf:0.002〜0.3%の1種以上を含む、請求項1又は2に記載した熱延鋼板。   Chemical components are further V: 0.002-0.3%, Nb: 0.002-0.3%, Ti: 0.002-0.3%, Zr: 0.002-0.3%, Hf : The hot-rolled steel sheet according to claim 1 or 2, comprising one or more of 0.002 to 0.3%. 請求項1から3のいずれか1項に記載した化学成分を有する鋼をAe3点以上、1300℃以下に加熱した後、累積圧下量を50%以上とし、最終圧延温度をAe3点〜(Ae3点+200)℃とする第1段圧延を行い、引き続いて(Ae3点−300)〜(Ae3点−150)℃の温度域で圧下率を20〜60%とする圧下を少なくとも1回加える第2段圧延を行った後、500℃以下まで1℃/sec以上の冷却速度で冷却し、巻き取る、加工性および疲労特性に優れる熱延鋼板の製造方法。

After heating the steel having the chemical composition according to any one of claims 1 to 3 to Ae 3 points or more and 1300 ° C. or less, the cumulative reduction amount is set to 50% or more, and the final rolling temperature is set to Ae 3 points to (Ae 3 points). 2nd stage of performing first stage rolling to +200) ° C. and subsequently applying at least one reduction to a reduction rate of 20 to 60% in the temperature range of (Ae3 point−300) to (Ae3 point−150) ° C. A method for producing a hot-rolled steel sheet that is excellent in workability and fatigue properties, after rolling and cooling to 500 ° C. or less at a cooling rate of 1 ° C./sec or more.

JP2005360227A 2005-12-14 2005-12-14 Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof Expired - Fee Related JP4502272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360227A JP4502272B2 (en) 2005-12-14 2005-12-14 Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360227A JP4502272B2 (en) 2005-12-14 2005-12-14 Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof

Publications (2)

Publication Number Publication Date
JP2007162076A JP2007162076A (en) 2007-06-28
JP4502272B2 true JP4502272B2 (en) 2010-07-14

Family

ID=38245328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360227A Expired - Fee Related JP4502272B2 (en) 2005-12-14 2005-12-14 Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof

Country Status (1)

Country Link
JP (1) JP4502272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100651634B1 (en) * 2005-12-01 2006-12-01 주식회사 진광화학 Solvent-soluble coating composition for solvent ink-jet printing banner textile and using thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153008A1 (en) 2011-05-12 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Method for the production of very-high-strength martensitic steel and sheet or part thus obtained
JP5874376B2 (en) * 2011-12-19 2016-03-02 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
JP5672421B1 (en) * 2013-04-15 2015-02-18 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
CN105143488B (en) 2013-05-21 2017-05-17 新日铁住金株式会社 Hot-rolled steel sheet and method for manufacturing same
JP6228491B2 (en) * 2013-08-26 2017-11-08 株式会社神戸製鋼所 Thick steel plate with excellent fatigue characteristics and method for producing the same
JP7389322B2 (en) * 2019-08-20 2023-11-30 日本製鉄株式会社 Thin steel plate and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202424A (en) * 1992-01-25 1993-08-10 Sumitomo Metal Ind Ltd Production of hot rolled steel plate reduced in plane anisotropy and having high r-value
JPH0860239A (en) * 1994-08-23 1996-03-05 Nippon Steel Corp Production of thick steel plate excellent in low temperature toughness
JP2003055740A (en) * 2001-06-07 2003-02-26 Kawasaki Steel Corp High tensile strength hot rolled steel sheet having excellent galling resistance and fatigue resistance and production method therefor
JP2004211199A (en) * 2002-12-20 2004-07-29 Jfe Steel Kk High strength hot rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance, and method of producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745696B2 (en) * 1987-07-15 1995-05-17 住友金属工業株式会社 Method for producing hot rolled steel sheet with excellent workability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202424A (en) * 1992-01-25 1993-08-10 Sumitomo Metal Ind Ltd Production of hot rolled steel plate reduced in plane anisotropy and having high r-value
JPH0860239A (en) * 1994-08-23 1996-03-05 Nippon Steel Corp Production of thick steel plate excellent in low temperature toughness
JP2003055740A (en) * 2001-06-07 2003-02-26 Kawasaki Steel Corp High tensile strength hot rolled steel sheet having excellent galling resistance and fatigue resistance and production method therefor
JP2004211199A (en) * 2002-12-20 2004-07-29 Jfe Steel Kk High strength hot rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance, and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100651634B1 (en) * 2005-12-01 2006-12-01 주식회사 진광화학 Solvent-soluble coating composition for solvent ink-jet printing banner textile and using thereof

Also Published As

Publication number Publication date
JP2007162076A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
KR101492753B1 (en) High strength hot rolled steel sheet having excellent fatigue resistance and method for manufacturing the same
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP5477578B2 (en) Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
JP4646881B2 (en) Hot-rolled steel sheet with excellent stretch flangeability
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4502272B2 (en) Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof
JP2010168657A (en) Steel with excellent anti-ductile crack generation characteristic in weld heat-affected zone and base material, and manufacturing method therefor
WO2017170611A1 (en) Nb-containing ferritic stainless steel sheet and manufacturing method therefor
WO2014162661A1 (en) Cold-rolled steel sheet and manufacturing method therefor
JP2017186614A (en) Thick steel sheet and manufacturing method therefor
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP6217234B2 (en) Thick steel plate and manufacturing method thereof
JPWO2019088104A1 (en) Hot rolled steel sheet and method of manufacturing the same
JP2019081930A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JP2009001909A (en) Manufacturing method of high-strength cold-rolled steel sheet
JP2009127089A (en) High-strength cold rolled steel sheet with excellent isotropy, elongation and stretch-flangeability
JP6582590B2 (en) Steel sheet for LPG storage tank and method for producing the same
JP5565050B2 (en) 9Ni steel with excellent strength, low temperature toughness and brittle crack propagation stopping properties
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP5743382B2 (en) Steel material for earthquake-resistant structure and manufacturing method thereof
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP6042265B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
JP6879148B2 (en) Manufacturing method of steel pipe for torsion beam and steel pipe for torsion beam
JP3674502B2 (en) Bake-hardening cold-rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

R150 Certificate of patent or registration of utility model

Ref document number: 4502272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees