JP4646881B2 - Hot-rolled steel sheet with excellent stretch flangeability - Google Patents

Hot-rolled steel sheet with excellent stretch flangeability Download PDF

Info

Publication number
JP4646881B2
JP4646881B2 JP2006250741A JP2006250741A JP4646881B2 JP 4646881 B2 JP4646881 B2 JP 4646881B2 JP 2006250741 A JP2006250741 A JP 2006250741A JP 2006250741 A JP2006250741 A JP 2006250741A JP 4646881 B2 JP4646881 B2 JP 4646881B2
Authority
JP
Japan
Prior art keywords
less
bainite
stretch flangeability
hot
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006250741A
Other languages
Japanese (ja)
Other versions
JP2008069425A (en
Inventor
俊夫 村上
正裕 野村
陽一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006250741A priority Critical patent/JP4646881B2/en
Publication of JP2008069425A publication Critical patent/JP2008069425A/en
Application granted granted Critical
Publication of JP4646881B2 publication Critical patent/JP4646881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車や各種産業機械、構造物において、強度と加工性、特に伸びフランジ性が必要な部品の材料として用いられる、強度クラスが980MPa以上の熱延鋼板に関する。   The present invention relates to a hot-rolled steel sheet having a strength class of 980 MPa or more, which is used as a material for parts that require strength and workability, particularly stretch flangeability, in automobiles, various industrial machines, and structures.

強度クラスが980MPa以上の熱延鋼板において、強度と良好な伸びフランジ性を両立させるには組織の均一性を高めることが有効であり、かつその組織としてベイナイトを主体とする組織が有効であることが知られている。
伸びフランジ性改善に関する従来技術として、特許文献1には、Nb,Tiの添加とプロセス最適化により板厚方向の組織の均一性を高めつつ、ベイナイト主体の組織にすることで強度−伸びフランジ性を両立させることが記載され、特許文献2には、Nb,Tiのいずれかを添加しつつ、平均粒径3.0μmの微細ベイナイトを主体とする組織にすることで、強度−伸びフランジ性を両立することが記載されている。しかし、980MPa以上の強度を確保するためには高価なNbの添加が必要となっている。
In a hot-rolled steel sheet having a strength class of 980 MPa or more, it is effective to increase the uniformity of the structure in order to achieve both strength and good stretch flangeability, and a structure mainly composed of bainite is effective as the structure. It has been known.
As a conventional technique for improving stretch flangeability, Patent Document 1 describes strength-stretch flangeability by increasing the uniformity of the structure in the thickness direction by adding Nb and Ti and optimizing the process, and by making the structure mainly bainite. In Patent Document 2, a structure mainly composed of fine bainite having an average particle diameter of 3.0 μm is added to either Nb or Ti, thereby providing strength-stretch flangeability. It is described that they are compatible. However, in order to ensure a strength of 980 MPa or more, it is necessary to add expensive Nb.

一方、高価な焼き入れ性改善元素であるNb等を添加せずにベイナイト組織を得る技術として、特許文献3には、C−Si−Mn鋼を熱間圧延終了後、2秒以内に冷却を開始し、150℃/s超の冷却速度で冷却し、450〜650℃で冷却を停止することにより、強度−伸びフランジ性を両立させることが記載されている。しかし、冷却速度を150℃/s超に高めるためには特殊な設備が必要であり、かつこのような非常に高速の冷却速度では停止温度の制御が困難で、停止温度のばらつきが出ることが懸念される。   On the other hand, as a technique for obtaining a bainite structure without adding Nb or the like, which is an expensive hardenability improving element, Patent Document 3 describes that cooling is performed within 2 seconds after hot rolling of C-Si-Mn steel. It is described that both strength and stretch flangeability can be achieved by starting, cooling at a cooling rate exceeding 150 ° C./s, and stopping cooling at 450 to 650 ° C. However, special equipment is required to increase the cooling rate to over 150 ° C./s, and it is difficult to control the stop temperature at such a very high cooling rate, and the stop temperature may vary. Concerned.

特開2003−119549号公報JP 2003-119549 A 特開2000−109951号公報JP 2000-109951 A 特開2003−112204号公報JP 2003-112204 A

本発明は、従来技術の上記問題点に鑑みてなされたもので、比較的単純な成分系及びプロセスにより、強度クラスが980MPa以上の熱延鋼板で良好な伸びフランジ性を確保することを目的とする。   The present invention has been made in view of the above problems of the prior art, and aims to ensure good stretch flangeability with a hot-rolled steel sheet having a strength class of 980 MPa or more by a relatively simple component system and process. To do.

本発明者らが、ベイナイト組織を得るため種々検討した結果、Bの添加と、Bの添加による焼き入れ性改善効果を発現するためにTi,Nの添加バランスの制御が必要であることが分かった。
続いて、伸びフランジ性に及ぼすベイナイト下部組織の影響について検討した結果、Bを活用してフルベイナイトが得られている状況においては、ベイナイトの下部組織であるブロックの平均粒径が伸びフランジ性に強く影響を及ぼし、ブロックの平均粒径が微細なほど、伸びフランジ性が改善することが分かった。ブロックの平均粒径の粗大化には、従来焼き入れ性確保に有効として添加されていたNb,Moなどの4A〜6A属の元素が寄与しており、これらの元素をできる限り低減することで伸びフランジ性が改善し、980MPa以上の熱延鋼板で良好な伸びフランジ性を確保することができた。
As a result of various studies conducted by the present inventors to obtain a bainite structure, it was found that the addition balance of Ti and N needs to be controlled in order to exhibit the effect of improving the hardenability by adding B. It was.
Subsequently, as a result of examining the influence of the bainite substructure on the stretch flangeability, in the situation where full bainite is obtained using B, the average particle size of the block that is the bainite substructure is the stretch flangeability. It was strongly influenced, and it was found that the stretch flangeability was improved as the average particle size of the block was finer. The coarsening of the average particle size of the block is contributed by elements of group 4A to 6A such as Nb and Mo which have been added to ensure hardenability in the past. By reducing these elements as much as possible, The stretch flangeability was improved, and good stretch flangeability could be secured with a hot-rolled steel sheet of 980 MPa or more.

本発明に係る伸びフランジ性に優れた熱延鋼板は、質量%で、C:0.03%以上、0.20%以下、Si:1.0%超、2.0%以下、Mn:1.0%以上、3.0%以下を含み、P:0.05%以下、S:0.05%以下であり、V:0.010%以下、Zr:0.010%以下、Nb:0.005%以下、Mo:0.010%以下、Ta:0.010%以下、Hf:0.010%以下、W:0.010%以下、かつこれら7元素の合計が0.02%以下であり、N:0.010%以下で、かつTiの質量%を[Ti]とし、Nの質量%を[N]としたとき、[Ti]−3.4[N]が−0.003%以上、0.03%以下であり、B:0.0003%以上、0.0050%以下を含み、残部Fe及び不可避不純物からなり、主要組織がベイナイトでその分率が90%を超え、ベイナイトのブロックの平均粒径が3μm以下であることを特徴とする。   The hot-rolled steel sheet excellent in stretch flangeability according to the present invention is in mass%, C: 0.03% or more, 0.20% or less, Si: more than 1.0%, 2.0% or less, Mn: 1 0.0% or more and 3.0% or less, P: 0.05% or less, S: 0.05% or less, V: 0.010% or less, Zr: 0.010% or less, Nb: 0 0.005% or less, Mo: 0.010% or less, Ta: 0.010% or less, Hf: 0.010% or less, W: 0.010% or less, and the total of these seven elements is 0.02% or less. Yes, N: 0.010% or less, and when Ti mass% is [Ti] and N mass% is [N], [Ti] -3.4 [N] is -0.003%. Or more, 0.03% or less, B: 0.0003% or more, 0.0050% or less, the balance Fe and inevitable impurities, the main structure is The fraction exceeds 90% bainite, wherein the average particle size of bainite blocks is 3μm or less.

上記高強度熱延鋼板は、必要に応じて、さらにAl:0.001%以上、1.0%以下、Ca:0.0001%以上、0.1%以下、Mg:0.0001%以上、0.1%以下、Ce:0.0001%以上、0.1%以下の1種又は2種以上を含み、又は/及びCr:0.01%以上、5.0%以下、Cu:0.01%以上、5.0%以下、Ni:0.01%以上、5.0%以下の1種又は2種以上を含むことができる。   The high-strength hot-rolled steel sheet, if necessary, is further Al: 0.001% or more, 1.0% or less, Ca: 0.0001% or more, 0.1% or less, Mg: 0.0001% or more, 0.1% or less, Ce: 0.0001% or more, including 0.1% or less, or 2 or more types, and / or Cr: 0.01% or more, 5.0% or less, Cu: 0.0. One or more of 01% or more and 5.0% or less, Ni: 0.01% or more and 5.0% or less can be included.

本発明によれば、比較的単純な成分系及びプロセスにより、980MPa以上の熱延鋼板で良好な伸びフランジ性を確保することができる。
本発明に係る熱延鋼板は、自動車や各種産業機械、構造物において、強度と加工性、特に伸びフランジ性が必要な部品の材料として好適に用いることができる。
According to the present invention, good stretch flangeability can be secured with a hot-rolled steel sheet of 980 MPa or more by a relatively simple component system and process.
The hot-rolled steel sheet according to the present invention can be suitably used as a material for parts that require strength and workability, particularly stretch flangeability, in automobiles, various industrial machines, and structures.

まず、本発明に係る熱延鋼板の組成及び組織限定理由について説明する。
・C:0.03%以上、0.20%以下
Cは強度を確保するために有効で、フェライト形成を抑制し、ベイナイト形成を促進する元素である。しかし、0.20%を越えるとマルテンサイトが形成され、強度が高くなりすぎて伸びフランジ性が劣化し、一方、0.03%未満ではフェライトが形成されてベイナイト分率が低下し、必要な強度が得られない。好ましくは、0.05%以上、0.15%以下、さらに好ましくは0.07%以上、0.12%以下である。
・Si:1.0%超、2.0%以下
Siは固溶強化により、伸びフランジ性の低下を抑えつつ強化に寄与する元素である。しかし、2.0%を越えると強度が高くなり過ぎ、伸びフランジ性が劣化し、一方、1.0%以下であると十分な強度、伸びフランジ性が得られない。好ましくは1.1%以上、1.9%以下、さらに好ましくは1.1%以上、1.8%以下である。
First, the composition of the hot-rolled steel sheet according to the present invention and the reason for limiting the structure will be described.
C: 0.03% or more and 0.20% or less C is an element effective for securing strength, suppresses ferrite formation, and promotes bainite formation. However, if it exceeds 0.20%, martensite is formed, the strength becomes too high, and the stretch flangeability deteriorates. On the other hand, if it is less than 0.03%, ferrite is formed and the bainite fraction decreases, which is necessary. Strength cannot be obtained. Preferably, they are 0.05% or more and 0.15% or less, More preferably, they are 0.07% or more and 0.12% or less.
Si: more than 1.0%, 2.0% or less Si is an element that contributes to strengthening while suppressing a decrease in stretch flangeability by solid solution strengthening. However, if it exceeds 2.0%, the strength becomes too high and the stretch flangeability deteriorates. On the other hand, if it is 1.0% or less, sufficient strength and stretch flangeability cannot be obtained. Preferably they are 1.1% or more and 1.9% or less, More preferably, they are 1.1% or more and 1.8% or less.

・Mn:1.0%以上、3.0%以下
Mnはフェライトの形成を抑制し、ベイナイトの形成を促進して強度向上及び伸びフランジ性向上に有効な元素である。しかし、3.0%を越えると焼き入れ性が高くなり過ぎてマルテンサイトが形成され、伸びフランジ性が劣化し、一方、1.0%未満であるとフェライトが形成されて強度が得られず、伸びフランジ性も劣化する。好ましくは1.2%以上、2.7%以下、さらに好ましくは1.5%以上、2.4%以下である。
・P:0.05%以下
Pは粒界に偏析し、粒界強度を低下させて粒界破壊を促進するため、伸びフランジ性が劣化する。従って、0.05%以下に制限し、好ましくは0.03%以下、さらに好ましくは0.02%以下に制限する。
・S:0.05%以下、
SはMnSなどの硫化物を形成し、この硫化物が穴広げ試験時の破壊の起点となるため、伸びフランジ性が劣化する。従って、0.05%以下に制限し、好ましくは0.03%以下、さらに好ましくは0.02%以下に制限する。
Mn: 1.0% or more, 3.0% or less Mn is an element effective in suppressing the formation of ferrite and promoting the formation of bainite to improve strength and stretch flangeability. However, if it exceeds 3.0%, the hardenability becomes too high and martensite is formed, and the stretch flangeability deteriorates. On the other hand, if it is less than 1.0%, ferrite is formed and the strength cannot be obtained. The stretch flangeability is also deteriorated. Preferably they are 1.2% or more and 2.7% or less, More preferably, they are 1.5% or more and 2.4% or less.
-P: 0.05% or less P segregates at the grain boundary, lowers the grain boundary strength and promotes grain boundary fracture, so the stretch flangeability deteriorates. Therefore, it is limited to 0.05% or less, preferably 0.03% or less, and more preferably 0.02% or less.
S: 0.05% or less,
S forms a sulfide such as MnS, and this sulfide serves as a starting point of fracture during the hole expansion test, so that the stretch flangeability deteriorates. Therefore, it is limited to 0.05% or less, preferably 0.03% or less, and more preferably 0.02% or less.

・V:0.010%以下
・Zr:0.010%以下
・Nb:0.005%以下
・Mo:0.010%以下
・Ta:0.010%以下
・Hf:0.010%以下
・W:0.010%以下、かつこれら7元素の合計が0.02%以下
これらの元素は添加することでフェライトの形成を強く抑制し、ベイナイト形成を促進する作用がある。しかし、フェライトの核生成を抑制すると同時にベイナイトの核生成も抑制し、ブロックの平均粒径が粗大化する。そのため、伸びフランジ性を改善するためには、添加量を低減する必要がある。また、これらの元素を添加すると、ベイナイトのラス間に微細なMA(マルテンサイトと残留オーステナイト)が形成され、これが穴広げ試験時の破壊の起点となり、伸びフランジ性を低下させる。この観点からも、添加量を低減することが望ましい。良好な伸びフランジ性を得る上では添加しない方がよく、添加する場合でも、V,Zr,Mo,Ta,Hf,Wは個別にそれぞれ0.010%以下、Nbは0.005%以下、合計で0.02%以下に抑える必要がある。好ましくは、V,Zr,Mo,Ta,Hf,Wは個別にそれぞれ0.005%未満、Nbは0.003%未満に抑え、合計では0.015%以下、さらに好ましくは合計0.010%以下に抑える。
V: 0.010% or less Zr: 0.010% or less Nb: 0.005% or less Mo: 0.010% or less Ta: 0.010% or less Hf: 0.010% or less W : 0.010% or less, and the total of these 7 elements is 0.02% or less By adding these elements, the formation of ferrite is strongly suppressed, and the action of promoting bainite formation is promoted. However, it suppresses nucleation of ferrite and at the same time suppresses nucleation of bainite, and the average particle size of the block becomes coarse. Therefore, in order to improve stretch flangeability, it is necessary to reduce the addition amount. Moreover, when these elements are added, fine MA (martensite and retained austenite) is formed between the laths of bainite, and this becomes a starting point of breakage during the hole expansion test, thereby reducing stretch flangeability. Also from this viewpoint, it is desirable to reduce the addition amount. In order to obtain good stretch flangeability, it is better not to add. Even when added, V, Zr, Mo, Ta, Hf, and W are individually 0.010% or less, and Nb is 0.005% or less. Therefore, it is necessary to suppress it to 0.02% or less. Preferably, V, Zr, Mo, Ta, Hf, and W are individually controlled to less than 0.005% and Nb to less than 0.003%, and the total is 0.015% or less, and more preferably 0.010%. Keep it below.

・B:0.0003%以上、0.0050%以下
Bはフェライト変態を強く抑制する元素であり、ベイナイト主体の組織を形成して伸びフランジ性を改善するうえで非常に有効な元素である。しかし、0.0050%を越えると添加効果が飽和し、一方、0.0003%未満であると、焼き入れ性改善効果(フェライト形成抑制効果)が得られない。好ましくは0.0005%以上、0.0040%以下、さらに好ましくは0.0005%以上、0.003%以下である。
・N:0.010%以下
Nは不可避的に存在する元素である。歪み時効により伸びフランジ性が劣化するため、低減することが望ましい。また、固溶Nが存在すると、B添加による焼き入れ性改善効果(フェライト形成抑制効果)を阻害するので、0.010%以下に低減する。好ましくは0.008%以下、さらに好ましくは0.006%以下である。
B: 0.0003% or more and 0.0050% or less B is an element that strongly suppresses ferrite transformation, and is an extremely effective element for improving the stretch flangeability by forming a bainite-based structure. However, if it exceeds 0.0050%, the effect of addition is saturated, while if it is less than 0.0003%, the hardenability improving effect (ferrite formation suppressing effect) cannot be obtained. Preferably they are 0.0005% or more and 0.0040% or less, More preferably, they are 0.0005% or more and 0.003% or less.
N: 0.010% or less N is an unavoidable element. Since stretch flangeability deteriorates due to strain aging, it is desirable to reduce it. Moreover, when solid solution N exists, since the hardenability improvement effect (ferrite formation inhibitory effect) by B addition is inhibited, it reduces to 0.010% or less. Preferably it is 0.008% or less, More preferably, it is 0.006% or less.

・[Ti]−3.4[N]が−0.003%以上、0.03%以下
Tiは不可避的に存在するNをTiNとして固定し、歪み時効を抑制する、又はB添加による焼き入れ性改善効果を発現するために必要な元素である。一方、過剰に添加すると固溶TiがMAの形成に寄与し、伸びフランジ性を劣化させるため、N量に合わせた添加量に調整する必要がある。[Ti]−3.4[N]が0.03%を越えると、固溶Tiが残存することでMAが形成され、またベイナイトの核生成が抑制されブロックの平均粒径が粗大化して、伸びフランジ性が劣化し、一方、−0.003%未満ではTiNとならないNが残存し、そのNがBと結合して、Bのフェライト形成抑制効果を阻害する。好ましい範囲は−0.001%以上0.02%以下、さらに好ましい範囲は0.0%以上、0.01%以下である。
-[Ti] -3.4 [N] is -0.003% or more and 0.03% or less Ti is unavoidably present as TiN, suppressing strain aging, or quenching by adding B It is an element necessary for developing the effect of improving the sexiness. On the other hand, if added excessively, solute Ti contributes to the formation of MA and deteriorates the stretch flangeability. Therefore, it is necessary to adjust the addition amount according to the N amount. When [Ti] -3.4 [N] exceeds 0.03%, MA is formed by remaining solid solution Ti, nucleation of bainite is suppressed, and the average particle size of the block becomes coarse, Stretch flangeability deteriorates. On the other hand, if it is less than −0.003%, N that does not become TiN remains, and the N bonds with B, thereby inhibiting the ferrite formation suppressing effect of B. A preferred range is from -0.001% to 0.02%, and a more preferred range is from 0.0% to 0.01%.

・Al:0.001%以上、1.0%以下
・Ca:0.0001%以上、0.1%以下
・Mg:0.0001%以上、0.1%以下
・Ce:0.0001%以上、0.1%以下
これらの元素は酸化物系介在物を微細化することで伸びフランジ性を改善する作用があるため、1種又は2種以上を必要に応じて添加する。しかし、上限値を越えると効果が飽和し、下限値未満であると効果が得られない。
-Al: 0.001% or more, 1.0% or less-Ca: 0.0001% or more, 0.1% or less-Mg: 0.0001% or more, 0.1% or less-Ce: 0.0001% or more 0.1% or less Since these elements have the effect of improving stretch flangeability by refining oxide inclusions, one or more elements are added as necessary. However, if the upper limit is exceeded, the effect is saturated, and if it is less than the lower limit, the effect cannot be obtained.

・Cr:0.01%以上、5.0%以下
・Cu:0.01%以上、5.0%以下
・Ni:0.01%以上、5.0%以下
これらの元素はフェライト形成を抑制し、ベイナイト組織形成に寄与するため、1種又は2種以上を必要に応じて添加する。しかし、上限値を越えると効果が飽和し、下限値未満であると効果が得られない。
・ Cr: 0.01% or more, 5.0% or less ・ Cu: 0.01% or more, 5.0% or less ・ Ni: 0.01% or more, 5.0% or less These elements suppress ferrite formation And in order to contribute to bainite structure formation, 1 type (s) or 2 or more types are added as needed. However, if the upper limit is exceeded, the effect is saturated, and if it is less than the lower limit, the effect cannot be obtained.

・ベイナイト分率:90%超
ベイナイトは均質な組織であるため、ベイナイト主体組織になると亀裂の発生起点が少なくなり、伸びフランジ性が改善する。ベイナイト分率(面積分率)が90%以下では組織が不均一になるため伸びフランジ性が劣化する。好ましくは92%以上、さらに好ましくは95%以上である。理想的には100%ベイナイト組織になることである。
主相であるベイナイト以外の組織(主としてマルテンサイト、残留オーステイナイト、又はフェライト、及び少量のパーライト)は少ないことが望ましい。硬質なマルテンサイト及び残留オーステナイトは穴広げ試験時に亀裂の発生サイトとなり、伸びフランジ性を劣化させるので、マルテンサイト+残留オーステナイトの面積分率は好ましくは3%以下、さらに好ましくは2%以下、さらに1%以下が好ましい。フェライト又はパーライトについても、硬質相との界面に歪みが集中し、界面が割れの発生起点になるため、これらの面積分率は好ましくは5%以下、さらに好ましくは3%以下である。
-Bainite fraction: more than 90% Since bainite has a homogeneous structure, when it becomes a bainite-based structure, the starting point of cracks is reduced and stretch flangeability is improved. If the bainite fraction (area fraction) is 90% or less, the structure becomes non-uniform and the stretch flangeability deteriorates. Preferably it is 92% or more, More preferably, it is 95% or more. Ideally, it should be a 100% bainite structure.
It is desirable that the structure other than the main phase bainite (mainly martensite, residual austenite, or ferrite, and a small amount of pearlite) is small. Since hard martensite and retained austenite become crack generation sites during the hole expansion test and deteriorate stretch flangeability, the area fraction of martensite + retained austenite is preferably 3% or less, more preferably 2% or less, 1% or less is preferable. Also for ferrite or pearlite, strain concentrates at the interface with the hard phase, and the interface becomes the starting point of cracking. Therefore, the area fraction is preferably 5% or less, more preferably 3% or less.

・ブロックの平均粒径:3μm以下
ブロックとは、ベイナイト中の下部組織で結晶方位の揃った領域を指す。ブロックを微細化すると、ブロック界面に集中する応力が低下し、ブロック界面に集中する応力が低下し、ブロック界面からの破壊が抑制され、伸びフランジ性が改善する。ブロックの平均粒径が3μmより大きいと、良好な伸びフランジ性が得られない。ブロックの平均粒径の好ましい範囲は2μm以下、さらに好ましい範囲は1.5μm以下であり、微細である程好ましいが、現実的なプロセスで得られるブロックサイズの下限は0.2μm程度である。
-Average particle diameter of block: 3 μm or less A block refers to a region where crystal orientations are aligned in a substructure in bainite. When the block is miniaturized, the stress concentrated on the block interface is reduced, the stress concentrated on the block interface is reduced, breakage from the block interface is suppressed, and stretch flangeability is improved. When the average particle size of the block is larger than 3 μm, good stretch flangeability cannot be obtained. The preferable range of the average particle size of the block is 2 μm or less, and the more preferable range is 1.5 μm or less. The finer is preferable, but the lower limit of the block size obtained by a practical process is about 0.2 μm.

次に、本発明に係る熱延鋼板の製造方法について説明する。
好ましい製造方法は、図1に示すように、鋼素材を加熱した後、仕上げ圧延を含む熱間圧延、熱延後の急冷、急冷停止、巻き取りである。以下、各工程について説明する。
・熱間圧延前の加熱
熱間圧延前の加熱は、限定的ではないが1000℃以上、1250℃以下で、30分以上、5時間以下行う。この加熱によりオーステナイト単相とする。
・熱間圧延
熱間圧延は、仕上げ温度が700℃以上、800℃以下の範囲になるように行う。熱間仕上げ圧延をオーステナイト単相の未再結晶域で行うことにより、ベイナイトの核生成サイトを増加させ、形成されるブロックを微細化することができる。仕上げ温度が800℃を越えると、ベイナイトの核生成サイトが不足し、ブロックが十分に微細化できず、700℃未満では、仕上げ圧延前にフェライト変態が起こり、組織が不均一になるため良好な伸びフランジ性が得られない。
Next, the manufacturing method of the hot rolled steel sheet according to the present invention will be described.
As shown in FIG. 1, the preferred manufacturing method is hot rolling including finish rolling, rapid cooling after hot rolling, rapid cooling stop, and winding after heating the steel material. Hereinafter, each step will be described.
-Heating before hot rolling Although heating is not limited, it is performed at 1000 ° C or higher and 1250 ° C or lower for 30 minutes or longer and 5 hours or shorter. An austenite single phase is obtained by this heating.
-Hot rolling Hot rolling is performed so that the finishing temperature is in the range of 700 ° C or higher and 800 ° C or lower. By performing hot finish rolling in the non-recrystallized region of the austenite single phase, the nucleation sites of bainite can be increased and the formed blocks can be refined. When the finishing temperature exceeds 800 ° C., the nucleation sites of bainite are insufficient, and the block cannot be sufficiently refined. When the finishing temperature is less than 700 ° C., ferrite transformation occurs before finish rolling, and the structure becomes non-uniform. Stretch flangeability cannot be obtained.

・熱延後の急冷
熱延後の急冷は停止温度(ベイナイト変態が起こる温度域)まで平均冷却速度20℃/s以上で急冷する。フェライト変態が起こる温度域を急速に冷却することで、フェライト形成を抑制する。この冷却速度は速いことが望ましいが、速すぎると制御が困難となるため、好ましくは150℃/s未満、さらに好ましくは120℃/s未満とする。
・急冷停止、巻き取り
急冷停止温度は300℃以上、500℃以下とする。この温度域はベイナイト変態が起こる温度域であり、この温度域に保持することによりベイナイト主体の組織が得られる。停止温度が500℃を越えると、パーライト変態が発生して、ベイナイト分率が低下し、強度が低下したり、伸びフランジ性が劣化する。停止温度が300℃未満であると、マルテンサイト変態が発生して、ベイナイト分率が低下し、伸びフランジ性が劣化する。
-Rapid cooling after hot rolling Rapid cooling after hot rolling is performed at an average cooling rate of 20 ° C / s or higher until the stop temperature (temperature range where bainite transformation occurs). The formation of ferrite is suppressed by rapidly cooling the temperature range where ferrite transformation occurs. Although it is desirable that this cooling rate is high, control becomes difficult if it is too fast, so it is preferably less than 150 ° C./s, more preferably less than 120 ° C./s.
-Rapid cooling stop and winding The rapid cooling stop temperature should be 300 ° C or higher and 500 ° C or lower. This temperature range is a temperature range where bainite transformation occurs, and a bainite-based structure can be obtained by maintaining in this temperature range. When the stop temperature exceeds 500 ° C., pearlite transformation occurs, the bainite fraction decreases, the strength decreases, and the stretch flangeability deteriorates. When the stop temperature is less than 300 ° C., martensitic transformation occurs, the bainite fraction decreases, and stretch flangeability deteriorates.

表1,2に示す成分の鋳塊を真空溶製し、熱間圧延により25mm厚の板材とし、そこから25mm×200mm×120mmのスラブを切り出し、1150℃で30分加熱した後、表3に示す条件で仕上げ圧延を実施した。仕上げ圧延後、停止温度450℃までを平均冷却速度50℃/sで冷却した。450℃まで冷却後、巻き取りを模擬するため、450℃×30分の保持を行った後、炉冷した。   The ingots having the components shown in Tables 1 and 2 are vacuum-melted and made into a 25 mm thick plate by hot rolling. A 25 mm × 200 mm × 120 mm slab is cut out from the slab and heated at 1150 ° C. for 30 minutes. Finish rolling was performed under the conditions shown. After finish rolling, the steel was cooled to a stop temperature of 450 ° C. at an average cooling rate of 50 ° C./s. After cooling to 450 ° C., in order to simulate winding, holding was performed at 450 ° C. for 30 minutes, followed by furnace cooling.

Figure 0004646881
Figure 0004646881

Figure 0004646881
Figure 0004646881

Figure 0004646881
Figure 0004646881

Figure 0004646881
Figure 0004646881

得られた熱延鋼板からサンプルを採取し、組織観察、引張試験、及び穴広げ試験を下記要領で実施した。
・組織観察1(ベイナイト分率)
鋼板中心部のTD面の組織を観察した。サンプルを鏡面に研磨し、3%ナイタールで腐食後、光学顕微鏡で400倍で5視野(約30,000μm/視野)の観察を行い、ポイントカウンティング法(各視野毎に均等なメッシュで100ポイント)でベイナイト分率を求めた。
A sample was taken from the obtained hot-rolled steel sheet, and a structure observation, a tensile test, and a hole expansion test were performed as follows.
・ Structural observation 1 (Bainite fraction)
The structure of the TD surface at the center of the steel plate was observed. After polishing the sample to a mirror surface and corroding with 3% nital, observe 5 fields (approximately 30,000 μm 2 / field) at 400 times with an optical microscope and point counting method (100 points with uniform mesh for each field) ) To obtain the bainite fraction.

・組織観察2(ブロックの平均粒径)
ブロックは同一方位を示す領域であり、光学顕微鏡やSEMでは判別することができない。また、光学顕微鏡やSEMで観察したベイナイトの粒径は、ラス、ブロック、パケットのいずれを観察しているか不明であり、ブロックの粒径と一対一の対応をとることができない。そのため、ブロックの測定はEBSP(Electron Back Scattering Pattern)などの結晶方位測定を行う必要がある。この実施例では、ブロックサイズを隣り合うフェライト間の方位差が15°以上となる大傾角粒界をブロック境界とし、ブロック境界で囲まれた領域の粒径をブロックの粒径として測定した。装置及び観察条件は次のとおりである。
(a)観察装置;走査電子顕微鏡(Philips社製 XL30S-FEG)
(b)EBSPシステム;テクセムラボラトリーズ製 0IMシステム(ver.4.0)を使用
(c)ステップ間隔;0.25μm
(d)隣り合うフェライト間の方位差が15°以上となる点をブロック境界としてマッピング
(e)ブロック境界で囲まれた領域の面積をMicromedia社製Image-Proを用いて測定し、各粒の面積から円相当径(=2(A/π)1/2,A:粒の面積)を求めて平均化した値を平均粒径とした。
・ Structure observation 2 (average particle size of block)
A block is a region showing the same orientation, and cannot be discriminated by an optical microscope or SEM. In addition, the particle size of bainite observed with an optical microscope or SEM is unknown whether lath, block, or packet is observed, and cannot have a one-to-one correspondence with the particle size of the block. Therefore, it is necessary to measure the crystal orientation such as EBSP (Electron Back Scattering Pattern) for the block measurement. In this example, the block size was measured by setting the large-angle grain boundary where the orientation difference between adjacent ferrites was 15 ° or more as the block boundary, and the particle size of the region surrounded by the block boundary as the block particle size. The apparatus and observation conditions are as follows.
(A) Observation apparatus: Scanning electron microscope (Philips XL30S-FEG)
(B) EBSP system; using 0IM system (ver. 4.0) manufactured by Tecsem Laboratories (c) step interval; 0.25 μm
(D) Mapping the point where the azimuth difference between adjacent ferrites is 15 ° or more as a block boundary
(E) The area of the region surrounded by the block boundary was measured using Image-Pro manufactured by Micromedia, and the equivalent circle diameter (= 2 (A / π) 1/2 , A: the area of the grain from the area of each grain ) Was averaged.

・組織観察3(マルテンサイト及び/又は残留オーステイナイト分率)
レペラ試薬で腐食後、光学顕微鏡で1000倍で5視野(約5,000μm/視野)の観察を行い、白い領域をマルテンサイト及び/又は残留オーステナイトとして画像解析を行い、当該組織の分率を求めた。
なお、ベイナイトのラス間に存在するマルテンサイト及び/又は残留オーステナイトは微細組織であり、組織観察1で得られるベイナイト分率はこのマルテンサイト及び/又は残留オーステナイトを含む。このため、組織観察1で得られるベイナイト分率と組織観察3で得られるマルテンサイト及び/又は残留オーステナイト分率を足すと100%を越える場合がある。
・ Structure observation 3 (martensite and / or residual austenite fraction)
After corroding with a repeller reagent, observe five fields of view (approximately 5,000 μm 2 / field of view) at 1000 times with an optical microscope, analyze the image of white areas as martensite and / or retained austenite, and determine the fraction of the tissue Asked.
In addition, the martensite and / or residual austenite which exist between the laths of a bainite are fine structures, and the bainite fraction obtained by the structure | tissue observation 1 contains this martensite and / or residual austenite. For this reason, when the bainite fraction obtained in the structure observation 1 and the martensite and / or retained austenite fraction obtained in the structure observation 3 are added, there are cases where it exceeds 100%.

・引張試験
引張試験は、サンプルをJISZ2201記載の5号試験片に加工し、JISZ2241記載の引張試験方法に従い、引張強度を測定した。
・穴広げ試験
伸びフランジ性は穴広げ試験で評価した。穴広げ試験は、日本鉄鋼連盟規格JFST1001に従って行い、穴広げ率を測定した。
-Tensile test The tensile test processed the sample into the No. 5 test piece of JISZ2201, and measured the tensile strength according to the tensile test method of JISZ2241.
-Hole expansion test Stretch flangeability was evaluated by a hole expansion test. The hole expansion test was performed in accordance with Japan Iron and Steel Federation standard JFST1001, and the hole expansion ratio was measured.

測定結果を表3及び表4に示す。表3及び表4において、ベイナイト分率はベイナイトのラス間に存在する微細なMA(マルテンサイト及び/又は残留オーステナイト)を含む。
表3及び表4において、引張強度は980MPa以上を良好、1000MPa以上をさらに良好と評価し、穴広げ率は80%以上を良好、90%以上をさらに良好と評価した。
The measurement results are shown in Tables 3 and 4. In Tables 3 and 4, the bainite fraction includes fine MA (martensite and / or retained austenite) present between bainite laths.
In Tables 3 and 4, the tensile strength was evaluated as 980 MPa or more as good and 1000 MPa or more as good, and the hole expansion rate was evaluated as 80% or more as good and 90% or more as good.

表3及び表4の測定結果を以下簡単に説明する。
No.1,2,4,5,7,11,12,21〜28,30,32は、クレーム記載の組成、ベイナイト分率及びブロック平均粒径の各要件を満たし、またマルテンサイト+残留オーステナイトの分率が3%以下であり、良好な引張強度及び穴広げ率を示す。
The measurement results in Table 3 and Table 4 will be briefly described below.
No. 1,2,4,5,7,11,12,21-28,30,32 satisfy the respective requirements of composition, bainite fraction and block average particle size described in the claims, and the content of martensite + retained austenite The rate is 3% or less, and good tensile strength and hole expansion rate are exhibited.

一方、No.3はC含有量が不足し、フェライトが形成されてベイナイト分率が低く引張強度が劣り、No.6はC含有量が過剰で、マルテンサイトが形成されてベイナイト分率が低下し、穴広げ率が劣る。
No.8はSi含有量が過剰で、No.9はSi含有量が不足し、いずれも穴広げ率が劣る。
No.10はMn含有量が不足し、フェライトが形成されてベイナイト分率が低く、引張強度及び穴広げ率が劣り、No.13はMn含有量が過剰で、マルテンサイトが形成されてベイナイト分率が低下し、穴広げ率が劣る。
No.14〜20はV,Zr,Nb,Mo,Ta,Hf,Wの1種又は2種以上の含有量が過剰で、ブロック平均粒径が粗大化し、またベイナイトのラス間に存在する微細なMA(マルテンサイト+残留オーステイナイト)分率も高くなり、穴広げ率が劣る。
No.29はB含有量が不足するためフェライト形性抑制効果が不足し、ベイナイト分率が低下して穴広げ率が劣る。
No.31は[Ti]−3.4[N]が低すぎるため、フェライトが形成されてベイナイト分率が低下し、穴広げ率が劣り、No.33は[Ti]−3.4[N]が高すぎるため、ブロックの平均粒径が粗大化し、またベイナイトのラス間に存在する微細なMA(マルテンサイト+残留オーステイナイト)分率も高くなり、穴広げ率が劣る。
No.34,36は仕上げ圧延温度が高すぎたためブロック平均粒径が粗大化し、穴広げ率が劣る。
No.35,37は仕上げ圧延温度が低すぎたため、フェライトが形成されてベイナイト分率が低下し、穴広げ率が劣る。
On the other hand, no. No. 3 lacks the C content, ferrite is formed, the bainite fraction is low, and the tensile strength is inferior. No. 6 has an excessive C content, martensite is formed, the bainite fraction is lowered, and the hole expansion rate is inferior.
No. No. 8 has an excessive Si content. No. 9 lacks the Si content, and in all cases, the hole expansion rate is inferior.
No. No. 10 has an insufficient Mn content, ferrite is formed, the bainite fraction is low, the tensile strength and the hole expansion rate are inferior, No. 13 has an excessive Mn content, martensite is formed, the bainite fraction is lowered, and the hole expansion rate is inferior.
No. 14 to 20 are excessive amounts of one or more of V, Zr, Nb, Mo, Ta, Hf, and W, the block average particle size becomes coarse, and fine MA present between bainite laths. The (martensite + residual austenite) fraction also increases and the hole expansion rate is inferior.
No. No. 29 has insufficient B content, so the effect of suppressing ferrite formability is insufficient, the bainite fraction is lowered, and the hole expansion rate is inferior.
No. In No. 31, [Ti] -3.4 [N] is too low, so ferrite is formed, the bainite fraction is lowered, and the hole expansion rate is inferior. In [33], [Ti] -3.4 [N] is too high, so that the average particle size of the block becomes coarse, and the fraction of fine MA (martensite + residual austenite) present between bainite laths is also high. The hole expansion rate is inferior.
No. In 34 and 36, since the finish rolling temperature is too high, the block average particle size becomes coarse and the hole expansion rate is inferior.
No. In 35 and 37, since the finish rolling temperature was too low, ferrite was formed, the bainite fraction was lowered, and the hole expansion rate was inferior.

本発明の鋼組成とベイナイト分率を満たすもの、及びMo,Nb,Ti等が過剰に添加されたためブロックサイズ(平均粒径)が粗大化したものについて、穴広げ率とブロックサイズをプロットしたのが図2である。図2に示すように、ブロックサイズが3μm以下のとき、80%以上の穴広げ率が得られている。   The hole expansion ratio and the block size were plotted for those satisfying the steel composition and bainite fraction of the present invention, and those in which the block size (average particle size) was coarsened due to excessive addition of Mo, Nb, Ti, etc. Is FIG. As shown in FIG. 2, when the block size is 3 μm or less, a hole expansion rate of 80% or more is obtained.

本発明の熱延鋼板の製造方法を示す図である。It is a figure which shows the manufacturing method of the hot rolled sheet steel of this invention. 穴広げ率とブロックサイズ(平均粒径)の関係を示す図である。It is a figure which shows the relationship between a hole expansion rate and block size (average particle diameter).

Claims (3)

質量%で、C:0.03%以上、0.20%以下、Si:1.0%超、2.0%以下、Mn:1.0%以上、3.0%以下を含み、P:0.05%以下、S:0.05%以下であり、V:0.010%以下、Zr:0.010%以下、Nb:0.005%以下、Mo:0.010%以下、Ta:0.010%以下、Hf:0.010%以下、W:0.010%以下、かつこれら7元素の合計が0.02%以下であり、N:0.010%以下で、かつTiの質量%を[Ti]とし、Nの質量%を[N]としたとき、[Ti]−3.4[N]が−0.003%以上、0.03%以下であり、B:0.0003%以上、0.0050%以下を含み、残部Fe及び不可避不純物からなり、主要組織がベイナイトでその分率が90%を超え、ベイナイトのブロックの平均粒径が3μm以下であることを特徴とする伸びフランジ性に優れた熱延鋼板。 C: 0.03% or more, 0.20% or less, Si: more than 1.0%, 2.0% or less, Mn: 1.0% or more, 3.0% or less, P: 0.05% or less, S: 0.05% or less, V: 0.010% or less, Zr: 0.010% or less, Nb: 0.005% or less, Mo: 0.010% or less, Ta: 0.010% or less, Hf: 0.010% or less, W: 0.010% or less, and the total of these seven elements is 0.02% or less, N: 0.010% or less, and the mass of Ti % Is [Ti] and the mass% of N is [N], [Ti] -3.4 [N] is -0.003% or more and 0.03% or less, and B: 0.0003 % And 0.0050% or less, the balance is Fe and inevitable impurities, the main structure is bainite, the fraction exceeds 90%, bainite Hot-rolled steel sheet having an average particle size of the block and excellent stretch flangeability, characterized in that it is 3μm or less. さらにAl:0.001%以上、1.0%以下、Ca:0.0001%以上、0.1%以下、Mg:0.0001%以上、0.1%以下、Ce:0.0001%以上、0.1%以下の1種又は2種以上を含むことを特徴とする請求項1に記載された伸びフランジ性に優れた熱延鋼板。 Furthermore, Al: 0.001% or more, 1.0% or less, Ca: 0.0001% or more, 0.1% or less, Mg: 0.0001% or more, 0.1% or less, Ce: 0.0001% or more 1 or 2 types or more of 0.1% or less is included, The hot-rolled steel plate excellent in the stretch flangeability described in Claim 1 characterized by the above-mentioned. Cr:0.01%以上、5.0%以下、Cu:0.01%以上、5.0%以下、Ni:0.01%以上、5.0%以下の1種又は2種以上を含むことを特徴とする請求項1又は2に記載された伸びフランジ性に優れた熱延鋼板。 Cr: 0.01% or more, 5.0% or less, Cu: 0.01% or more, 5.0% or less, Ni: 0.01% or more, including 5.0% or less The hot-rolled steel sheet having excellent stretch flangeability according to claim 1 or 2.
JP2006250741A 2006-09-15 2006-09-15 Hot-rolled steel sheet with excellent stretch flangeability Expired - Fee Related JP4646881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250741A JP4646881B2 (en) 2006-09-15 2006-09-15 Hot-rolled steel sheet with excellent stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250741A JP4646881B2 (en) 2006-09-15 2006-09-15 Hot-rolled steel sheet with excellent stretch flangeability

Publications (2)

Publication Number Publication Date
JP2008069425A JP2008069425A (en) 2008-03-27
JP4646881B2 true JP4646881B2 (en) 2011-03-09

Family

ID=39291267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250741A Expired - Fee Related JP4646881B2 (en) 2006-09-15 2006-09-15 Hot-rolled steel sheet with excellent stretch flangeability

Country Status (1)

Country Link
JP (1) JP4646881B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716332B2 (en) * 2006-12-21 2011-07-06 株式会社神戸製鋼所 Hot-rolled steel sheet excellent in stretch flangeability and surface properties and method for producing the same
JP5068688B2 (en) * 2008-04-24 2012-11-07 新日本製鐵株式会社 Hot-rolled steel sheet with excellent hole expansion
JP4978741B2 (en) * 2010-05-31 2012-07-18 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same
JP5126326B2 (en) * 2010-09-17 2013-01-23 Jfeスチール株式会社 High strength hot-rolled steel sheet with excellent fatigue resistance and method for producing the same
CN103443320B (en) 2011-03-31 2015-09-23 新日铁住金株式会社 Isotropy excellent processability containing bainite type high tensile hot rolled steel sheet and manufacture method thereof
CA2832159C (en) * 2011-04-13 2016-06-14 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet having excellent local deformability and manufacturing method there0f
JP5641086B2 (en) * 2013-04-15 2014-12-17 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
EP3358033B1 (en) 2013-04-15 2020-07-15 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing same
JP5641087B2 (en) * 2013-04-15 2014-12-17 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
EP3296415B1 (en) * 2015-07-27 2019-09-04 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same
KR101767773B1 (en) 2015-12-23 2017-08-14 주식회사 포스코 Utlra high strength hot-rolled steel sheet having excellent ductility and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264184A (en) * 1993-03-11 1994-09-20 Nippon Steel Corp High strength hot rolled steel plate excellent in formability and weldability and its manufacture
JPH1180890A (en) * 1997-09-04 1999-03-26 Kobe Steel Ltd High strength hot rolled steel plate and its production
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2006022349A (en) * 2004-07-06 2006-01-26 Nippon Steel Corp High strength steel sheet having excellent shape-fixability, high strength hot dip galvanized steel sheet, high strength alloyed hot dip galvanized steel sheet and method for producing them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264184A (en) * 1993-03-11 1994-09-20 Nippon Steel Corp High strength hot rolled steel plate excellent in formability and weldability and its manufacture
JPH1180890A (en) * 1997-09-04 1999-03-26 Kobe Steel Ltd High strength hot rolled steel plate and its production
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2006022349A (en) * 2004-07-06 2006-01-26 Nippon Steel Corp High strength steel sheet having excellent shape-fixability, high strength hot dip galvanized steel sheet, high strength alloyed hot dip galvanized steel sheet and method for producing them

Also Published As

Publication number Publication date
JP2008069425A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4646881B2 (en) Hot-rolled steel sheet with excellent stretch flangeability
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5270274B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP4716332B2 (en) Hot-rolled steel sheet excellent in stretch flangeability and surface properties and method for producing the same
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5829977B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
WO2014061270A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2010156032A (en) High-strength cold-rolled steel sheet superior in balance of elongation and formability for extension flange
JP4962440B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP4502272B2 (en) Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof
JP4005517B2 (en) High-strength composite steel sheet with excellent elongation and stretch flangeability
JP2007197823A (en) LOW YIELD RATIO OF 550 MPa CLASS HIGH-TENSILE STEEL PLATE, AND ITS MANUFACTURING METHOD
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP5860345B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP5434375B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4192688B2 (en) High strength cold-rolled steel sheet
JP6042265B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
JP4646871B2 (en) Hot-rolled steel sheet with excellent stretch flangeability
JP5363867B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees