JP4192688B2 - High strength cold-rolled steel sheet - Google Patents

High strength cold-rolled steel sheet Download PDF

Info

Publication number
JP4192688B2
JP4192688B2 JP2003166701A JP2003166701A JP4192688B2 JP 4192688 B2 JP4192688 B2 JP 4192688B2 JP 2003166701 A JP2003166701 A JP 2003166701A JP 2003166701 A JP2003166701 A JP 2003166701A JP 4192688 B2 JP4192688 B2 JP 4192688B2
Authority
JP
Japan
Prior art keywords
mass
less
phase
steel sheet
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003166701A
Other languages
Japanese (ja)
Other versions
JP2005002404A (en
Inventor
正美 岩▲崎▼
周作 高木
英尚 川邉
哲也 妻鹿
敬 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003166701A priority Critical patent/JP4192688B2/en
Publication of JP2005002404A publication Critical patent/JP2005002404A/en
Application granted granted Critical
Publication of JP4192688B2 publication Critical patent/JP4192688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主としてプレス成形される自動車部品などに用いて好適な引張強さが980MPa以上で、かつ伸びフランジ性などの加工性に優れる高強度冷延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車の燃費向上あるいは乗員の安全性向上を図るため、引張強さが980MPa以上の高強度冷延鋼板が、自動車車体の補強材を中心に積極的に活用されている。このような背景から、高強度冷延鋼板の加工性に対する要求は次第に厳しくなってきている。しかしながら、種々の強化方法によって材料強度は確保することが可能であるが、高強度化に伴い加工性が低下するというのが実情であった。特に、従来の高強度鋼板では、組織が不均一になったり、硬質相と軟質相とが局所的に混在するなどにより、加工中に、亀裂の発生起点となる箇所が多く存在することになり、これが加工性の低下原因であると言われている。しかも、このような加工性は、高強度鋼板になればなるほど大きく低下するのが一般的であり、このため従来の鋼板製造技術では、高強度化と、延性、曲げ特性および伸びフランジ性などの加工性との両立は困難であった。
【0003】
ここに、高強度鋼板の技術として、例えば特許文献1には引張強さ980MPa以上の鋼板についての開示があるが、十分な加工性を有するものであるとは言い難い。また、特許文献2には伸びフランジ性に優れた熱延鋼板が開示されているが、強度−延性バランスは低い。さらに、特許文献3には、伸びフランジ性に優れた鋼板について開示されているが、引張強さが780MPaに満たないレベルのものである。
【0004】
【特許文献1】
特開平3−277742号公報
【特許文献2】
特開昭61−19733号公報
【特許文献3】
特開平4−350号公報
【0005】
【発明が解決しようとする課題】
さて、強度と加工性は相反する傾向を示すのが一般的であり、現状では良好な加工性を有し、しかも引張強さが980MPa以上である高強度冷延鋼板並びにその製造方法については知られていない。
【0006】
そこで、本発明は、このような従来技術の問題を解決するための方途を提案するものであり、引張強さ980MPa以上を達成するとともに、強度−延性バランスや伸びフランジ性等の加工性に優れる高強度冷延鋼板とその製造方法とについて提供することを目的とする。
【0007】
【課題を解決するための手段】
発明者らは、上記の目的を達成するために、鋼成分、製造条件および金属組織などの多方面から種々実験を行って検討を重ねた。その結果、所定量のフェライト相、ベイナイト相を有し、さらにマルテンサイト相および一定量の残留γ相を有し、さらにフェライト相とベイナイト相およびマルテンサイト相と残留γ相のナノ硬さを制御した鋼板とすることにより、はじめて、局所的な変形能の差を解消し異相間の歪の分配調整を容易にして、巨視的に均一変形させることにより強度を低下させることなく、従来にはない優れた伸びフランジ性と高い強度−延性バランスを満足することが可能となり、特にプレス成形性の改善がはかられることを知見した。
ただし、マルテンサイト相と残留オーステナイト相は、硬度測定時には別々の組織とは判別できないため、マルテンサイト相および/または残留オーステナイト相からなるM−A相の硬さとして規定する。
また、伸びフランジ性は、極限変形能で評価した。すなわち、極限変形能は、JIS Z2201に準拠した引張試験片を用いてJIS Z2241に準拠した引張試験を行って、破断後の破断面から板厚tおよび板幅wを測定し、引張試験片の初期板厚t0および初期板幅w0から
極限変形能(%)=−{ln(t/t0)+ln(w/w0)}×100
に従って求められるものである。
ここで、伸びフランジ性の評価は、穴拡げ率で簡易に評価されることが多いが、引張強さ(TS、強度ともいう)、全伸び(El、伸びともいう)とともに同一の組織について評価するため、引張り試験1回にて引張強さ、伸びおよび伸びフランジ性を同時に評価できる、極限変形能での評価とした。
また、上記鋼板は、成分組成と製造条件、特に連続焼鈍における加熱温度、冷却停止温度およびそこでの保持時間を適正に制御することにより、製造可能であることを見出した。
【0008】
本発明は、このような知見に基づいて完成されたものであり、その要旨とするところは、以下のとおりである。
(1)C:0.05〜0.20mass%、Si:0.2〜0.8mass%、Mn:2.0〜4.0mass%、P:0.02mass%以下、S:0.0030mass%以下、Al:0.05mass%以下、Ni:0.10〜1.2mass%およびTi:0.005〜0.030mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
フェライト相の体積分率が30〜60%、ベイナイト相の体積分率が20〜40%、残留オーステナイト相の体積分率が2.0〜8.0%、そしてマルテンサイト相と残留オーステナイト相との体積分率の合計が10〜20%であって、さらにベイナイト相のナノ硬さHnBとフェライト相のナノ硬さHnFとの比:HnB/HnFが1.5以下、マルテンサイト相および/または残留オーステナイト相からなるM−A相のナノ硬さHnMとフェライト相のナノ硬さHnFとの比:HnM/HnFが3.0以下である組織と、
を有することを特徴とする高強度冷延鋼板。
【0009】
(2)上記(1)において、成分組成として、さらに
Cu:0.50mass%以下、
Mo:0.50mass%以下および
Cr:0.50mass%以下
のうちから選んだ1種あるいは2種以上を含有することを特徴とする高強度冷延鋼板。
【0010】
(3)上記(1)または(2)において、成分組成として、さらに
Nb:0.010mass%以下
を含有することを特徴とする高強度冷延鋼板。
【0011】
(4)上記(1)、(2)または(3)において、成分組成として、さらに
V:0.010mass%以下および
Zr:0.010mass%以下
のうちから選んだ少なくとも1種を含有することを特徴とする高強度冷延鋼板。
【0012】
(5)上記(1)ないし(4)のいずれかにおいて、成分組成として、さらに
B:0.0050mass%以下
を含有する組成になることを特徴とする高強度冷延鋼板。
【0013】
(6)上記(1)ないし(5)のいずれかにおいて、成分組成として、さらに
Ca:0.0050mass%以下および
REM:0.0050mass%以下
のうちから選んだ少なくとも1種を含有することを特徴とする高強度冷延鋼板。
【0015】
【発明の実施の形態】
次に、本発明の高強度冷延鋼板について、詳しく説明する。
まず、成分組成の限定理由を、成分毎に説明する。
C:0.05〜0.20mass%
Cは、低温変態生成相を利用して鋼を強化するのに必要不可欠である。すなわち、引張強さ980MPa以上を達成するためには、0.05mass%以上の含有が必要である。一方、0.20mass%を超えると、溶接性が著しく劣化するため、上限は0.20mass%とする。
【0016】
Si:0.2〜0.8mass%
Siは、強度向上に寄与する元素であり、その効果は0.2mass%未満では発揮されない。一方、0.8mass%を超えて含有させると、フェライト変態が促進され、低温変態生成相による強化が不十分となる。また、Siはオーステナイト中へのCの濃化を促進する作用があり、第2相が硬化すること、そして最終的に得られる鋼板組織中に硬質な残留オーステナイト相が多量に存在しやすくなることにより、伸びフランジ性を劣化させる。本発明では、低Si含有量で高加工性を発揮させるため、Si量は0.2〜0.8mass%の範囲とした。
【0017】
Mn:2.0〜4.0mass%
Mnは、変態点を下げ、またオーステナイトの焼入れ性を向上させる元素であり、Ar3変態点を低下させる作用を通じて、結晶粒の微細化に寄与し、強度−延性バランスを高める効果を有する。ここで、所定の強度を確保するために低温変態生成相を安定的に得るには、2.0mass%以上の含有が必要であるが、一方で4.0mass%を超えて含有させると、鋳造時の偏析に伴うバンド状組織の発達が著しくなり、加工性に悪影響を及ぼすことから、上限を4.0mass%とした。
【0018】
P:0.02mass%以下
Pは、内部割れや鋼板の加工性の低下を招くことから、低減することが好ましいが、0.02mass%までは許容できるため0.02mass%以下とした。
【0019】
S:0.0030mass%以下
Sは、鋼中で非金属介在物(MnS)として存在し、伸びフランジ成形時の応力集中源となるため、その含有量は低いことが望ましい。しかし、S量が0.030mass%以下の範囲では、高強度であっても伸びフランジ特性に大きな悪影響を及ぼさないため、0.0030mass%を上限とした。
【0020】
Al:0.05mass%以下
Alは、鋼の脱酸のために使用されるが、概ね0.01mass%未満では介在物が残り加工性が劣化する場合があるために、0.01mass%以上とすることが好ましい。しかし0.05mass%を超えると、効果が飽和するだけでなく、表面形状の劣化にもつながるため、上限は0.05mass%とした。
【0021】
Ni:0.10〜1.2mass%
Niは、伸びを低下させることなく強度を向上させるのに有効な元素であり、0.10mass%以上でその効果を発揮する。しかし、1.2mass%を超えて含有させても、効果が飽和して含有量に見合う効果が期待できないため、上限は1.2mass%とした。
【0022】
Ti:0.005〜0.030mass%
Tiは、組織の微細均一化をもたらし、伸びおよび伸びフランジ性を向上させるために有効な元素である。これらの効果は、0.005mass%以上の添加で見られる。一方、0.030mass%を超えるTiを含有させると、硬質な炭化物を形成し、伸びフランジ性を低下させるため、上限は0.030mass%とする。
【0023】
以上が必須成分であるが、さらに必要に応じて、以下の成分を選択的に添加することができる。
Cu:0.50mass%以下
Mo:0.50mass%以下
Cr:0.50mass%以下
のうちから選んだ1種あるいは2種以上
Cu、MoおよびCrは、伸びを低下させることなく強度を向上させるのに有効な元素である。いずれもその効果を得るためには0.01mass%以上で含有することが好ましい。一方0.50mass%を超えて多量に含有させても、更なる効果はなく経済的に不利となるためCu、Mo、Crの含有量はそれぞれ0.50mass%以下とすることが好ましく、より好ましくは0.01〜0.50mass%とする。
【0024】
Nb:0.010mass%以下
Nbは、NbCなどの析出形態、再結晶温度に影響する元素である。特に、本発明のおいてNbは組織の微細均一化に有効に作用する。よって高強度にも関わらず高い伸びおよび伸びフランジ性をもたらすという効果を有している。このような効果を得るには、0.005mass%以上で含有することが好ましい。一方0.010mass%を超えると鋼中に硬質な析出物を多量に形成し、伸びフランジ性を低下させるため、0.010mass%以下とすることが好ましい。より好ましくは、0.005〜0.010mass%である。
【0025】
V:0.010mass%以下
Zr:0.010mass%以下
のうちから選んだ少なくとも1種
これらの元素は、炭化物の結晶粒径粗大化の抑制などを通じて、鋼板の強度を上昇させるのに有効な元素である。このような効果を得るためには、いずれも0.005mass%以上の含有が好ましい。一方、0.010mass%を超えると鋼中に硬質な析出物を多量に形成し、伸びフランジ性を低下させるので、VおよびZrは0.010mass%以下として含有させることが好ましい。より好ましくは、それぞれ0.005mass%〜0.010mass%の範囲とする。これら元素は、単独でも複合添加でも同様の挙動を示す。
【0026】
B:0.0050mass%以下
Bも強度上昇に有効な元素であり、焼入れ性の向上に寄与する。また、Bを添加することにより、低温変態生成相を形成することが容易となる。このような効果を得るためには0.0003mass%以上の含有が好ましい。一方、0.0050mass%を超えて含有させても更なる効果が得らず経済的に不利となるため、0.0050mass%を上限として含有させるとよい。
【0027】
Ca:0.0050mass%以下
REM:0.0050mass%以下
のうちから選んだ少なくとも1種
CaおよびREMは、硫化物などの析出物、例えばMnSなどを球状化して鋭角な析出物を減少させることにより、応力集中を減少させて伸びフランジ性の低下を抑制する効果を有している。上記効果を得るためには、それぞれ0.0003mass%以上含有させることが好ましい。一方これら元素の含有量がそれぞれ0.0050mass%を超えると、その効果が飽和し経済的に不利となる。よって、CaおよびREMともに0.0050mass%以下であることが好ましく、より好ましくは、それぞれ0.0003〜0.0050mass%の範囲とする。
なお、上記した成分以外の残部は実質的にFeの組成、すなわちFeおよび不可避的不純物の組成になる。
【0028】
さらに、鋼板の組織について説明する。
本発明の鋼板は、フェライト相の体積分率が30〜60%、ベイナイト相の体積分率が20〜40%、マルテンサイト相および残留オーステナイト相の体積分率の合計が10〜20%、そして前記残留オーステナイト相の組織全体に対する体積分率が2.0〜8.0%であり、さらに、ベイナイト相のナノ硬さHnBとフェライト相のナノ硬さHnFとの比:HnB/HnFが1.5以下、フェライト相および/または残留オーステナイト相からなるM−A相のナノ硬さHnMとフェライト相のナノ硬さHnFとの比:HnB/HnFが3.0以下である組織を有することが肝要である。
【0029】
フェライト相体積分率:30〜60%
軟質なフェライト相の分率が30%未満になると、伸びが低下し、一方60%を超えると、軟質なフェライト相が増加するために引張強さが低下する。従って、強度−伸びバランスを最適とするためにフェライト体積分率を30〜60%の範囲とする。
【0030】
ベイナイト相体積分率:20〜40%
ベイナイト相の存在によって、成形中に生じるボイド(変形量が大きくなると鋼中に発生する空隙)に起因した亀裂の成長および進展を抑制することが可能である。このベイナイト相の体積分率が20%未満では、亀裂の成長および進展を抑制する効果に乏しくなり、一方40%を超えると伸びが低下するため、ベイナイト体積分率は20〜40%の範囲とした。
【0031】
マルテンサイト相および残留オーステナイト相の体積分率の合計:10〜20%
硬質な相であるマルテンサイト相および加工中にマルテンサイトに変態し硬質となる残留オーステナイト相は、成形中の亀裂発生源となるため、マルテンサイト相と残留オーステナイト相の体積分率の合計で20%以下とする。一方、体積分率の合計が10%未満では、引張強さが低下してしまうため、10〜20%を最適範囲とした。
【0032】
残留オーステナイト相の体積分率:2.0〜8.0%
残留オーステナイト相を組織全体に対する体積分率で2.0〜8.0%の範囲で含むことにより、変態誘起塑性が起こり伸びが向上する。すなわち、この体積分率が2.0%未満では、変態誘起塑性の効果がなく、一方8.0%を超えると、伸びフランジ性が低下するため、2.0〜8.0%とする。
【0033】
HnB/HnF≦1.5
HnMB/HnF≦3.0
ベイナイト相のナノ硬さHnBとフェライト相のナノ硬さHnFとの比:HnB/HnFが1.5を超えるか、あるいはM−A相のナノ硬さHnMと前記フェライト相のナノ硬さHnFの比:HnM /HnFが3.0を超えると、極限変形態が低下する。この理由は軟質なフェライト相と硬質なベイナイト相やM−A相の硬度差が大きいと、軟質な相と硬質な相との変形能の差が大きいため、界面でボイドが容易に発生し、亀裂の進展、そして伝播が容易に起こることから、伸びフランジ性が低下する。複数の硬質相を有する本発明においては、ベイナイト相のナノ硬さHnBとフェライト相のナノ硬さHnFの比:HnB/HnF≦1.5、M−A相のナノ硬さHnMとフェライト相のナノ硬さHnFの比:HnM /HnF≦3.0で良好な強度伸びバランスおよび伸びフランジ性を示した。
なお、フェライト相に比べて、ベイナイト相およびM−A相は硬質なため、必然的にHnB/HnF>1、HnM/HnF>1となる。
【0034】
ここで、ナノ硬さとは、直径1μm以下の微小領域について測定した硬さである。このナノ硬さを採用することにより、微細な第2相を有する複合組織鋼では、従来測定されているようなビッカース硬さよりも、組織の硬さをより正確に評価することができ、従来にない組織制御を達成して、高強度および加工性を両立させた鋼板とすることができる。
【0035】
このナノ硬さは、Hysitron社のTRIBOSCOPEを用い測定することができる。また、一般に圧痕サイズが極めて小さい時には、硬さの圧痕サイズ依存性が生じる場合があるが、それを避けるために、圧痕サイズをほぼ同一にして測定を行うことができる。具体的には、圧痕の大きさと比例関係にある圧痕の深さ(=Contact Depth)が所定範囲となるように荷重調整し、このときの荷重を基に硬さHnを決定すればよい。
【0036】
次に、上記の鋼板を製造する方法について説明する。
本発明の製造方法は、上記した必須成分を含有する、あるいはさらに選択的に添加できる成分を含有する、鋼片を鋳造後、直ちにまたは一旦冷却後に加熱し、その後熱間圧延、次いで冷間圧延を施したのち、連続焼鈍を行う。
この際、連続焼鈍とその後の熱処理の条件を、後述するように規制することが肝要である。残る工程の条件は、特に限定する必要はないが、鋼片の加熱、熱間圧延の際の仕上圧延終了温度、巻取り温度については、次に示す条件とすることが好ましい。
【0037】
鋼片の加熱温度(SRT):1100〜1250℃
熱間圧延前の鋼片の加熱温度は、初期オーステナイト粒を微細化するために、1250℃以下、より好ましくは1200℃以下することが好ましい。また、仕上圧延温度を確保するためには、加熱温度を1100℃以上とすることが好ましい。
【0038】
仕上圧延終了温度(FDT):850〜950℃
上記鋼片を熱間圧延するにあたり、熱間圧延における仕上圧延終了温度が850℃未満では、圧延時の変形抵抗が大きく、また組織の不均一化が起こり層状組織となり、冷間圧延焼鈍後も不均一な組織となりやすく、加工性が低下する傾向にある。一方、950℃を超える高温では、オーステナイト粒が粗大化し、均一微細な組織が得られず、やはり加工性が低下する傾向にある。よって、仕上圧延終了温度は850〜950℃の範囲とすることが好ましい。
【0039】
巻取り温度(CT):450〜650℃
巻取り温度が450℃より低すぎると、硬質なマルテンサイト相が多量に生成し冷間圧延時の圧延負荷が増大し、熱延後の冷間圧延性が低下するため生産性が低下する。一方650℃を超えると、炭化物が粗大化する。このため、巻取り温度は450〜650℃の範囲とすることが好ましい。
【0040】
本発明では、熱間圧延後、冷間圧延を施し、冷延板とする。冷間圧延条件は特に限定する必要はなく、常法に従えばよい。なお、冷延圧下率としては概ね30%〜60%程度とすることが、製造しやすさの観点から好ましい。
【0041】
次に、製造における必須条件について説明する。
連続焼鈍の焼鈍温度:(Ac3−50)〜(Ac3+50)℃
冷延板の焼鈍は、連続焼鈍とし、(Ac3−50)〜(Ac3+50)℃の温度域の焼鈍温度に加熱して焼鈍を行う必要がある。すなわち、焼鈍温度をこのように狭い範囲に高度に制御することにより、結晶粒の粗大化を阻止することができ、所望の組織を有する冷延焼鈍板とすることができる。焼鈍温度が(Ac3−50)℃未満では、十分なベイナイト相が得られない。また、冷延組織の影響が残りバンド状組織となるため、目的となる組織が得られない上、伸びフランジ持性を著しく低下させる。一方、(Ac3+50)℃を超えると、結晶粒の急激な粗大化が生じ、均一微細な組織が得られなくなり、所望の組織特性、すなわち高い強度−伸びバランスおよび伸びフランジ性を得ることが困難となる。
なお、Ac3変態点は、示差熱膨張計などにより求めることができる。
【0042】
350℃〜550℃の温度域までの冷却速度:10℃/s以上
焼鈍温度から350℃〜550℃の温度域までの冷却速度については、遅すぎると結晶粒の粗大化が起こりやすく、組織にパーライトが含まれるため、強度−延性バランスの確保が困難になる。従って、ここでの冷却速度は10℃/s以上とした。
【0043】
保持温度:350℃〜550℃
冷却停止後の保持温度が550℃より高い温度では、パーライトなどの軟質相が生成し、一方350℃よりも低い温度ではマルテンサイト相が過多に生成して加工性が低下するために、保持温度は350〜550℃とした。
【0044】
保持時間:15秒以上
上記温度域での保持は、オーステナイトからベイナイト相への変態を十分に行うために重要であり、この保持時間が15秒に満たないと、硬質なマルテンサイト相が多量に生成し伸びフランジ性を低下させるため、15秒以上は必要である。なお、10分を超えて保持しても効果が飽和し、生産コストが上昇するだけであるため、10分以下とすることが好ましい。
【0045】
【実施例】
表1に示す成分組成の鋼片(鋼スラブ)を用い、表2に示す各条件で、冷延圧下率50%で冷延鋼板(厚さ1.2mm)を製造した。
なお、Ac3変態点(℃)は、表1に示す成分組成の鋼スラブから試験片を採取して測定した。すなわち、試験片を室温から1200℃付近まで加熱速度1℃/sで加熱し、示差熱膨張計でAc3変態点を測定した。得られたAc3変態点を併せて表1に示す。
かくして得られた冷延鋼板について、下記の方法で材料特性等の評価を行った。なお、極限変形能については、上記の通りであり、機械的特性の調査を行った試験片を用いて求めた。その評価結果を、表2に併記する。
【0046】

[機械的特性]
圧延直角方向を長手方向とするJIS 5号試験片を用いて、JIS Z2241に準拠した引張試験を行って、測定した。
[フェライト相、ベイナイト相およびマルテンサイト相の体積分率]
鋼板の表面から板厚1/4の深さ部分における、板厚断面(圧延方向に平行な断面)5000倍のSEM像を10視野撮像し、これを基に画像解析により2階調化し、体積分率を求めた。なお、10視野の各々で求めた体積分率の平均をもって各相の体積分率とした。
[残留オーステナイト相の体積分率]
鋼板の表面から板厚1/4の深さ部分まで研削し、次いで研削面をエッチングした後にX線分析を行うことによって、残留オーステナイト量を測定した。
[ナノ硬さ]
測定位置は鋼板の表面から板厚1/4の深さ部分であり、Hysitron社のTRIBOSCOPEを用い、各相の硬さを測定した。ここで、圧痕サイズが極めて小さい時には、硬さの圧痕サイズ依存性が生じる場合がある。従って、それを避けるために、圧痕サイズをほぼ同一にして測定を行った。具体的には、圧痕の大きさと比例関係にある圧痕の深さ(=Contact Depth)が50nm±10nmとなるように荷重調整し、当該荷重をもとに、硬さHnを測定した。このとき、圧痕の一区は約350nmとなる。ナノ硬さ比は、このように得られた他の比との間で算出した。
【0047】
【表1】

Figure 0004192688
【0048】
【表2】
Figure 0004192688
【0049】
【発明の効果】
本発明によれば、引張強さが980MPa以上であり、加工性とりわけ強度−伸び(TS×El)がバランスし伸びフランジ性に優れるために、プレス成形の際に割れが生じない高強度冷延鋼板を提供することができる。従って、本発明の冷延鋼板を自動車部品用素材として適用することにより、自動車の軽量化や低燃費化が可能となり、自動車乗員の安全性向上に大きく貢献する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more suitable for use mainly in press-molded automobile parts and the like and excellent in workability such as stretch flangeability and a method for producing the same.
[0002]
[Prior art]
In recent years, high-strength cold-rolled steel sheets with a tensile strength of 980 MPa or more have been actively used mainly for automobile body reinforcements in order to improve automobile fuel efficiency or passenger safety. Against this background, demands for workability of high-strength cold-rolled steel sheets are becoming increasingly severe. However, although the material strength can be ensured by various strengthening methods, the actual situation is that the workability decreases as the strength increases. In particular, in conventional high-strength steel sheets, there are many places where cracks are generated during processing due to uneven structure or local mixing of hard and soft phases. It is said that this is a cause of deterioration of workability. Moreover, such workability is generally greatly reduced as the strength of the steel plate becomes higher. For this reason, in the conventional steel sheet manufacturing technology, the strength, ductility, bending characteristics, stretch flangeability, etc. are increased. It was difficult to achieve both workability.
[0003]
Here, as a technique of a high-strength steel sheet, for example, Patent Document 1 discloses a steel sheet having a tensile strength of 980 MPa or more, but it is difficult to say that it has sufficient workability. Patent Document 2 discloses a hot-rolled steel sheet having excellent stretch flangeability, but the strength-ductility balance is low. Furthermore, Patent Document 3 discloses a steel sheet having excellent stretch flangeability, but has a tensile strength of less than 780 MPa.
[0004]
[Patent Document 1]
JP-A-3-277742 [Patent Document 2]
Japanese Patent Laid-Open No. 61-19733 [Patent Document 3]
JP-A-4-350
[Problems to be solved by the invention]
In general, strength and workability tend to contradict each other, and at present there is a high-strength cold-rolled steel sheet that has good workability and has a tensile strength of 980 MPa or more and a method for producing the same. It is not done.
[0006]
Therefore, the present invention proposes a way to solve such problems of the prior art, achieves a tensile strength of 980 MPa or more, and is excellent in workability such as strength-ductility balance and stretch flangeability. It aims at providing about a high intensity | strength cold-rolled steel plate and its manufacturing method.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventors have conducted various experiments from various aspects such as steel components, production conditions, and metal structures, and repeatedly studied. As a result, it has a predetermined amount of ferrite phase and bainite phase, further has martensite phase and a certain amount of residual γ phase, and also controls the nano hardness of ferrite phase and bainite phase, martensite phase and residual γ phase. For the first time, the difference in local deformability is eliminated by making the steel plate made to be easy to adjust the distribution of strains between the different phases, and the strength is not lowered by uniformly deforming macroscopically. It has been found that excellent stretch flangeability and high strength-ductility balance can be satisfied, and in particular, press formability can be improved.
However, since the martensite phase and the retained austenite phase cannot be distinguished from different structures at the time of hardness measurement, they are defined as the hardness of the MA phase composed of the martensite phase and / or the retained austenite phase.
The stretch flangeability was evaluated by the ultimate deformability. In other words, the ultimate deformability is determined by performing a tensile test in accordance with JIS Z2241 using a tensile test piece in accordance with JIS Z2201, measuring the plate thickness t and the plate width w from the fracture surface after fracture, From the initial plate thickness t 0 and the initial plate width w 0 ,
Ultimate deformability (%) = − {ln (t / t 0 ) + ln (w / w 0 )} × 100
Is required.
Here, the evaluation of stretch flangeability is often evaluated simply by the hole expansion ratio, but the same structure is evaluated along with the tensile strength (also referred to as TS or strength) and total elongation (also referred to as El or elongation). Therefore, it was set as the evaluation by the ultimate deformability which can evaluate tensile strength, elongation, and stretch flangeability simultaneously in one tensile test.
Moreover, it discovered that the said steel plate was manufacturable by controlling appropriately a component composition and manufacturing conditions, especially the heating temperature in continuous annealing, the cooling stop temperature, and the holding time there.
[0008]
The present invention has been completed based on such knowledge, and the gist thereof is as follows.
(1) C: 0.05-0.20 mass%, Si: 0.2-0.8 mass%, Mn: 2.0-4.0 mass%, P: 0.02 mass% or less, S: 0.0030 mass% or less, Al: 0.05 mass% or less, Ni: A component composition containing 0.10 to 1.2 mass% and Ti: 0.005 to 0.030 mass%, with the balance being Fe and inevitable impurities;
The volume fraction of ferrite phase is 30-60%, the volume fraction of bainite phase is 20-40%, the volume fraction of residual austenite phase is 2.0-8.0%, and the volume fraction of martensite phase and residual austenite phase The ratio of the nanohardness H nB of the bainite phase to the nanohardness H nF of the ferrite phase: H nB / H nF is 1.5 or less, martensite phase and / or retained austenite Ratio of the nano hardness H nM of the MA phase composed of phases and the nano hardness H nF of the ferrite phase: a structure having H nM / H nF of 3.0 or less,
A high-strength cold-rolled steel sheet characterized by comprising:
[0009]
(2) In the above (1), as the component composition,
Cu: 0.50 mass% or less,
Mo: 0.50mass% or less and
Cr: A high-strength cold-rolled steel sheet containing one or more selected from 0.50 mass% or less.
[0010]
(3) In the above (1) or (2), as the component composition,
Nb: A high-strength cold-rolled steel sheet characterized by containing 0.010 mass% or less.
[0011]
(4) In the above (1), (2) or (3), as a component composition, V: 0.010 mass% or less and
Zr: A high-strength cold-rolled steel sheet containing at least one selected from 0.010 mass% or less.
[0012]
(5) The high strength cold-rolled steel sheet according to any one of the above (1) to (4), wherein the composition further includes B: 0.0050 mass% or less as a component composition.
[0013]
(6) In any one of the above (1) to (5),
Ca: 0.0050 mass% or less and
REM: A high-strength cold-rolled steel sheet characterized by containing at least one selected from 0.0050 mass% or less.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the high-strength cold-rolled steel sheet of the present invention will be described in detail.
First, the reasons for limiting the component composition will be described for each component.
C: 0.05-0.20 mass%
C is indispensable for strengthening steel by using the low temperature transformation generation phase. That is, in order to achieve a tensile strength of 980 MPa or more, it is necessary to contain 0.05 mass% or more. On the other hand, if it exceeds 0.20 mass%, the weldability deteriorates remarkably, so the upper limit is made 0.20 mass%.
[0016]
Si: 0.2-0.8mass%
Si is an element that contributes to strength improvement, and the effect is not exhibited at less than 0.2 mass%. On the other hand, when the content exceeds 0.8 mass%, the ferrite transformation is promoted, and the strengthening by the low temperature transformation generation phase becomes insufficient. In addition, Si has an action of promoting the concentration of C in austenite, the second phase is hardened, and a large amount of hard retained austenite phase is likely to exist in the steel sheet structure finally obtained. Thus, the stretch flangeability is deteriorated. In the present invention, the Si content is in the range of 0.2 to 0.8 mass% in order to exhibit high workability with a low Si content.
[0017]
Mn: 2.0-4.0mass%
Mn is an element that lowers the transformation point and improves the hardenability of austenite, and contributes to the refinement of crystal grains through the action of lowering the Ar 3 transformation point, and has the effect of increasing the strength-ductility balance. Here, in order to stably obtain a low-temperature transformation generation phase in order to ensure a predetermined strength, it is necessary to contain 2.0 mass% or more. On the other hand, if more than 4.0 mass% is contained, Since the development of the band-like structure accompanying segregation becomes remarkable and adversely affects workability, the upper limit was set to 4.0 mass%.
[0018]
P: 0.02 mass% or less P is preferably reduced because it causes internal cracks and deterioration of the workability of the steel sheet, but 0.02 mass% is acceptable because it is acceptable up to 0.02 mass%.
[0019]
S: 0.0030 mass% or less S is present as non-metallic inclusions (MnS) in steel and serves as a stress concentration source at the time of stretch flange forming, so its content is preferably low. However, in the range where the amount of S is 0.030 mass% or less, even if the strength is high, the stretch flange characteristics are not adversely affected, so 0.0030 mass% was made the upper limit.
[0020]
Al: 0.05 mass% or less
Al is used for deoxidation of steel, but if it is less than about 0.01 mass%, inclusions may remain and workability may deteriorate, so it is preferable to set it to 0.01 mass% or more. However, if it exceeds 0.05 mass%, not only the effect is saturated but also the surface shape is deteriorated, so the upper limit was set to 0.05 mass%.
[0021]
Ni: 0.10 to 1.2 mass%
Ni is an element effective for improving the strength without reducing the elongation, and exhibits its effect at 0.10 mass% or more. However, even if the content exceeds 1.2 mass%, the effect is saturated and an effect commensurate with the content cannot be expected, so the upper limit was set to 1.2 mass%.
[0022]
Ti: 0.005-0.030 mass%
Ti is an effective element for achieving finer and uniform texture and improving stretch and stretch flangeability. These effects are seen with addition of 0.005 mass% or more. On the other hand, when Ti exceeding 0.030 mass% is contained, a hard carbide is formed and stretch flangeability is lowered, so the upper limit is made 0.030 mass%.
[0023]
The above are the essential components, but the following components can be selectively added as necessary.
Cu: 0.50 mass% or less
Mo: 0.50mass% or less
Cr: One or more selected from 0.50 mass% or less
Cu, Mo and Cr are effective elements for improving the strength without reducing the elongation. In order to acquire the effect in any case, it is preferable to contain 0.01 mass% or more. On the other hand, even if contained in a large amount exceeding 0.50 mass%, there is no further effect and it is economically disadvantageous, so the contents of Cu, Mo, and Cr are preferably 0.50 mass% or less, more preferably 0.01%, respectively. -0.50 mass%.
[0024]
Nb: 0.010 mass% or less
Nb is an element that affects the precipitation form and recrystallization temperature, such as NbC. In particular, in the present invention, Nb effectively acts on finer and uniform tissue. Therefore, it has the effect of providing high elongation and stretch flangeability despite high strength. In order to acquire such an effect, it is preferable to contain at 0.005 mass% or more. On the other hand, if it exceeds 0.010 mass%, a large amount of hard precipitates are formed in the steel, and the stretch flangeability is deteriorated. More preferably, it is 0.005-0.010 mass%.
[0025]
V: 0.010 mass% or less
Zr: At least one element selected from 0.010 mass% or less is an element effective for increasing the strength of the steel sheet through suppression of coarsening of the crystal grain size of carbide. In order to acquire such an effect, all contain 0.005 mass% or more. On the other hand, if it exceeds 0.010 mass%, a large amount of hard precipitates are formed in the steel and stretch flangeability is deteriorated. Therefore, V and Zr are preferably contained as 0.010 mass% or less. More preferably, it is set as the range of 0.005 mass%-0.010 mass%, respectively. These elements exhibit the same behavior when used alone or in combination.
[0026]
B: 0.0050 mass% or less B is also an element effective in increasing the strength, and contributes to improvement in hardenability. Moreover, by adding B, it becomes easy to form a low-temperature transformation generation phase. In order to acquire such an effect, 0.0003 mass% or more is preferable. On the other hand, since even if it contains exceeding 0.0050 mass%, a further effect is not acquired and it becomes economically disadvantageous, it is good to contain 0.0050 mass% as an upper limit.
[0027]
Ca: 0.0050 mass% or less
REM: At least one selected from 0.0050 mass% or less
Ca and REM have an effect of reducing the stress concentration and suppressing the deterioration of stretch flangeability by spheroidizing precipitates such as sulfides, for example, MnS and reducing sharp precipitates. In order to acquire the said effect, it is preferable to contain 0.0003 mass% or more, respectively. On the other hand, when the content of these elements exceeds 0.0050 mass%, the effect is saturated and it is economically disadvantageous. Therefore, it is preferable that both Ca and REM are 0.0050 mass% or less, More preferably, it is set as the range of 0.0003-0.0050 mass%, respectively.
The balance other than the above-described components is substantially the composition of Fe, that is, the composition of Fe and inevitable impurities.
[0028]
Furthermore, the structure of the steel sheet will be described.
The steel sheet of the present invention has a ferrite phase volume fraction of 30-60%, a bainite phase volume fraction of 20-40%, a total volume fraction of martensite phase and residual austenite phase of 10-20%, and The volume fraction with respect to the entire structure of the residual austenite phase is 2.0 to 8.0%, and the ratio of the nanohardness H nB of the bainite phase to the nanohardness H nF of the ferrite phase: H nB / H nF is 1.5 or less The ratio of the nano-hardness H nM of the M-A phase composed of the ferrite phase and / or the retained austenite phase to the nano-hardness H nF of the ferrite phase: it is important to have a structure in which H nB / H nF is 3.0 or less It is.
[0029]
Ferrite phase volume fraction: 30-60%
When the fraction of the soft ferrite phase is less than 30%, the elongation decreases. On the other hand, when it exceeds 60%, the soft ferrite phase increases and the tensile strength decreases. Therefore, in order to optimize the strength-elongation balance, the ferrite volume fraction is set in the range of 30 to 60%.
[0030]
Bainite phase volume fraction: 20-40%
Due to the presence of the bainite phase, it is possible to suppress the growth and progress of cracks due to voids generated during forming (voids generated in the steel when the amount of deformation increases). If the volume fraction of this bainite phase is less than 20%, the effect of suppressing the growth and propagation of cracks is poor, while if it exceeds 40%, the elongation decreases, so the bainite volume fraction is in the range of 20-40%. did.
[0031]
Total volume fraction of martensite phase and retained austenite phase: 10-20%
The martensite phase, which is a hard phase, and the residual austenite phase that transforms into martensite during processing and becomes hard are cracking sources during molding, so the total volume fraction of the martensite phase and the residual austenite phase is 20 % Or less. On the other hand, if the total volume fraction is less than 10%, the tensile strength decreases, so 10 to 20% was made the optimum range.
[0032]
Volume fraction of retained austenite phase: 2.0-8.0%
By including the residual austenite phase in the range of 2.0 to 8.0% in terms of volume fraction relative to the entire structure, transformation-induced plasticity occurs and elongation is improved. That is, if the volume fraction is less than 2.0%, there is no effect of transformation-induced plasticity, whereas if it exceeds 8.0%, the stretch flangeability is lowered, so 2.0 to 8.0%.
[0033]
H nB / H nF ≦ 1.5
H nMB / H nF ≦ 3.0
Ratio of nano hardness H nB of bainite phase to nano hardness H nF of ferrite phase: H nB / H nF exceeds 1.5, or nano hardness H nM of MA phase and nano hardness of the ferrite phase When the ratio of H nF : H nM / H nF exceeds 3.0, the extreme deformation decreases. The reason for this is that if the hardness difference between the soft ferrite phase and the hard bainite phase or MA phase is large, the difference in deformability between the soft phase and the hard phase is large. Since the progress and propagation of cracks occur easily, the stretch flangeability deteriorates. In the present invention having a plurality of hard phases, the ratio of the nano hardness H nB of the bainite phase to the nano hardness H nF of the ferrite phase: H nB / H nF ≦ 1.5, the nano hardness H nM of the MA phase The ratio of the nano hardness H nF of the ferrite phase: H nM / H nF ≦ 3.0 showed good strength-elongation balance and stretch flangeability.
Since the bainite phase and the MA phase are harder than the ferrite phase, H nB / H nF > 1 and H nM / H nF > 1 are necessarily satisfied .
[0034]
Here, nano hardness is the hardness measured about the micro area | region whose diameter is 1 micrometer or less. By adopting this nano-hardness, it is possible to evaluate the hardness of the structure more accurately than the Vickers hardness as measured in the past in the composite structure steel having a fine second phase. It is possible to obtain a steel sheet that achieves high structure and workability by achieving no microstructure control.
[0035]
This nano hardness can be measured using TRIBOSCOPE of Hysitron. In general, when the indentation size is extremely small, hardness may depend on the indentation size. To avoid this, the measurement can be performed with the indentation size substantially the same. Specifically, the load is adjusted so that the depth of the indentation (= Contact Depth) proportional to the size of the indentation falls within a predetermined range, and the hardness Hn may be determined based on the load at this time.
[0036]
Next, a method for manufacturing the steel sheet will be described.
The production method of the present invention includes the above-described essential components or components that can be selectively added, and heats the steel slab immediately after casting or once after cooling, and then hot rolling and then cold rolling. After annealing, perform continuous annealing.
At this time, it is important to regulate the conditions of continuous annealing and subsequent heat treatment as described later. The conditions of the remaining steps are not particularly limited, but the finish rolling finishing temperature and the coiling temperature at the time of heating the steel slab and hot rolling are preferably the following conditions.
[0037]
Steel bill heating temperature (SRT): 1100-1250 ° C
In order to refine the initial austenite grains, the heating temperature of the steel slab before hot rolling is preferably 1250 ° C. or less, more preferably 1200 ° C. or less. In order to secure the finish rolling temperature, the heating temperature is preferably 1100 ° C. or higher.
[0038]
Finishing rolling finish temperature (FDT): 850-950 ° C
When hot-rolling the steel slab, if the finish rolling finish temperature in hot rolling is less than 850 ° C, the deformation resistance during rolling is large, and the structure becomes non-uniform, resulting in a layered structure, even after cold rolling annealing. It tends to be a non-uniform structure, and the workability tends to decrease. On the other hand, at a high temperature exceeding 950 ° C., the austenite grains become coarse, a uniform and fine structure cannot be obtained, and the workability tends to decrease. Therefore, the finish rolling finish temperature is preferably in the range of 850 to 950 ° C.
[0039]
Winding temperature (CT): 450-650 ° C
When the coiling temperature is lower than 450 ° C., a large amount of a hard martensite phase is generated, the rolling load during cold rolling is increased, and the cold rolling property after hot rolling is lowered, so that productivity is lowered. On the other hand, when it exceeds 650 ° C., the carbide becomes coarse. For this reason, it is preferable that winding-up temperature shall be the range of 450-650 degreeC.
[0040]
In the present invention, cold rolling is performed after hot rolling to obtain a cold rolled sheet. The cold rolling conditions need not be particularly limited, and may be according to ordinary methods. The cold rolling reduction ratio is preferably about 30% to 60% from the viewpoint of ease of manufacturing.
[0041]
Next, the essential conditions in manufacturing will be described.
Continuous annealing temperature: (Ac 3 −50) to (Ac 3 +50) ° C.
The cold-rolled sheet is annealed continuously and needs to be annealed by heating to an annealing temperature in a temperature range of (Ac 3 −50) to (Ac 3 +50) ° C. That is, by highly controlling the annealing temperature in such a narrow range, coarsening of crystal grains can be prevented, and a cold-rolled annealing plate having a desired structure can be obtained. If the annealing temperature is less than (Ac 3 −50) ° C., a sufficient bainite phase cannot be obtained. In addition, since the influence of the cold-rolled structure remains and becomes a band-like structure, the target structure cannot be obtained and the stretch flangeability is remarkably lowered. On the other hand, when the temperature exceeds (Ac 3 +50) ° C., the crystal grains are abruptly coarsened and a uniform fine structure cannot be obtained, and desired structure characteristics, that is, high strength-elongation balance and stretch flangeability can be obtained. It becomes difficult.
The Ac 3 transformation point can be obtained by a differential thermal dilatometer or the like.
[0042]
Cooling rate to a temperature range of 350 ° C to 550 ° C: 10 ° C / s or more The cooling rate from an annealing temperature to a temperature range of 350 ° C to 550 ° C tends to cause coarsening of crystal grains if it is too slow. Since pearlite is contained, it becomes difficult to ensure the strength-ductility balance. Accordingly, the cooling rate here is set to 10 ° C./s or more.
[0043]
Holding temperature: 350 ° C to 550 ° C
When the holding temperature after cooling is stopped is higher than 550 ° C, a soft phase such as pearlite is formed, while at a temperature lower than 350 ° C, a martensite phase is excessively formed and the workability is lowered, so the holding temperature is reduced. Was 350-550 ° C.
[0044]
Holding time: 15 seconds or more Holding in the above temperature range is important for sufficient transformation from austenite to bainite phase. If this holding time is less than 15 seconds, a large amount of hard martensite phase will be produced. It takes 15 seconds or more to form and reduce stretch flangeability. In addition, even if it is held for more than 10 minutes, the effect is saturated and the production cost only rises.
[0045]
【Example】
Using steel slabs (steel slabs) having the composition shown in Table 1, cold-rolled steel sheets (thickness 1.2 mm) were manufactured under the conditions shown in Table 2 at a cold-rolling reduction rate of 50%.
The Ac 3 transformation point (° C.) was measured by collecting a test piece from a steel slab having the component composition shown in Table 1. That is, the test piece was heated from room temperature to around 1200 ° C. at a heating rate of 1 ° C./s, and the Ac 3 transformation point was measured with a differential thermal dilatometer. The Ac 3 transformation points obtained are also shown in Table 1.
The cold rolled steel sheet thus obtained was evaluated for material characteristics and the like by the following method. The ultimate deformability was as described above, and was determined using a test piece subjected to investigation of mechanical properties. The evaluation results are also shown in Table 2.
[0046]
[Mechanical properties]
A tensile test based on JIS Z2241 was performed using a JIS No. 5 test piece with the perpendicular direction of rolling as the longitudinal direction.
[Volume fraction of ferrite phase, bainite phase and martensite phase]
Ten SEM images with a thickness of 5,000 times from the surface of the steel sheet (section parallel to the rolling direction) are taken from the surface of the steel sheet. The fraction was determined. In addition, the average of the volume fraction calculated | required in each of 10 visual fields was made into the volume fraction of each phase.
[Volume fraction of retained austenite phase]
The amount of retained austenite was measured by grinding from the surface of the steel plate to a depth of 1/4 of the plate thickness, and then etching the ground surface, followed by X-ray analysis.
[Nano hardness]
The measurement position is a depth part of the plate thickness 1/4 from the surface of the steel plate, and the hardness of each phase was measured using TRIBOSCOPE of Hysitron. Here, when the indentation size is very small, the indentation size dependency of hardness may occur. Therefore, in order to avoid this, the measurement was performed with the indentation size being almost the same. Specifically, the load was adjusted so that the depth of the indentation (= Contact Depth) proportional to the size of the indentation was 50 nm ± 10 nm, and the hardness Hn was measured based on the load. At this time, a section of the indentation is about 350 nm. The nano-hardness ratio was calculated between the other ratios thus obtained.
[0047]
[Table 1]
Figure 0004192688
[0048]
[Table 2]
Figure 0004192688
[0049]
【The invention's effect】
According to the present invention, the tensile strength is 980 MPa or more, the workability, particularly strength-elongation (TS × El) is balanced, and the stretch flangeability is excellent. A steel plate can be provided. Therefore, by applying the cold-rolled steel sheet of the present invention as a material for automobile parts, it becomes possible to reduce the weight and fuel consumption of the automobile, greatly contributing to the improvement of the safety of automobile occupants.

Claims (6)

C:0.05〜0.20mass%、
Si:0.2〜0.8mass%、
Mn:2.0〜4.0mass%、
P:0.02mass%以下、
S:0.0030mass%以下、
Al:0.05mass%以下、
Ni:0.10〜1.2mass%および
Ti:0.005〜0.030mass%
を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
フェライト相の体積分率が30〜60%、ベイナイト相の体積分率が20〜40%、残留オーステナイト相の体積分率が2.0〜8.0%、そしてマルテンサイト相と残留オーステナイト相との体積分率の合計が10〜20%であって、さらにベイナイト相のナノ硬さHnBとフェライト相のナノ硬さHnFとの比:HnB/HnFが1.5以下、マルテンサイト相および/または残留オーステナイト相からなるM−A相のナノ硬さHnMとフェライト相のナノ硬さHnFとの比:HnM/HnFが3.0以下である組織と、
を有することを特徴とする高強度冷延鋼板。
C: 0.05-0.20 mass%,
Si: 0.2-0.8mass%
Mn: 2.0-4.0mass%,
P: 0.02 mass% or less,
S: 0.0030 mass% or less,
Al: 0.05 mass% or less,
Ni: 0.10-1.2mass% and
Ti: 0.005-0.030 mass%
Component composition consisting of Fe and inevitable impurities, and
The volume fraction of ferrite phase is 30-60%, the volume fraction of bainite phase is 20-40%, the volume fraction of residual austenite phase is 2.0-8.0%, and the volume fraction of martensite phase and residual austenite phase The ratio of the nanohardness H nB of the bainite phase to the nanohardness H nF of the ferrite phase: H nB / H nF is 1.5 or less, martensite phase and / or retained austenite Ratio of the nano hardness H nM of the MA phase composed of phases and the nano hardness H nF of the ferrite phase: a structure having H nM / H nF of 3.0 or less,
A high-strength cold-rolled steel sheet characterized by comprising:
請求項1において、成分組成として、さらに
Cu:0.50mass%以下、
Mo:0.50mass%以下および
Cr:0.50mass%以下
のうちから選んだ1種あるいは2種以上を含有することを特徴とする高強度冷延鋼板。
In Claim 1, as a component composition, it is further
Cu: 0.50 mass% or less,
Mo: 0.50mass% or less and
Cr: A high-strength cold-rolled steel sheet containing one or more selected from 0.50 mass% or less.
請求項1または2において、成分組成として、さらに
Nb:0.010mass%以下
を含有することを特徴とする高強度冷延鋼板。
The component composition according to claim 1 or 2,
Nb: A high-strength cold-rolled steel sheet characterized by containing 0.010 mass% or less.
請求項1、2または3において、成分組成として、さらに
V:0.010mass%以下および
Zr:0.010mass%以下
のうちから選んだ少なくとも1種を含有することを特徴とする高強度冷延鋼板。
In Claim 1, 2, or 3, as a component composition, V: 0.010 mass% or less and
Zr: A high-strength cold-rolled steel sheet characterized by containing at least one selected from 0.010 mass% or less.
請求項1ないし4のいずれかにおいて、成分組成として、さらに
B:0.0050mass%以下
を含有する組成になることを特徴とする高強度冷延鋼板。
The high-strength cold-rolled steel sheet according to any one of claims 1 to 4, further comprising: B: 0.0050 mass% or less as a component composition.
請求項1ないし5のいずれかにおいて、成分組成として、さらに
Ca:0.0050mass%以下および
REM:0.0050mass%以下
のうちから選んだ少なくとも1種を含有することを特徴とする高強度冷延鋼板。
The composition according to any one of claims 1 to 5,
Ca: 0.0050 mass% or less and
REM: High-strength cold-rolled steel sheet characterized by containing at least one selected from 0.0050 mass% or less.
JP2003166701A 2003-06-11 2003-06-11 High strength cold-rolled steel sheet Expired - Fee Related JP4192688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166701A JP4192688B2 (en) 2003-06-11 2003-06-11 High strength cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166701A JP4192688B2 (en) 2003-06-11 2003-06-11 High strength cold-rolled steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008198245A Division JP4962440B2 (en) 2008-07-31 2008-07-31 Manufacturing method of high-strength cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2005002404A JP2005002404A (en) 2005-01-06
JP4192688B2 true JP4192688B2 (en) 2008-12-10

Family

ID=34092786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166701A Expired - Fee Related JP4192688B2 (en) 2003-06-11 2003-06-11 High strength cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP4192688B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925611B2 (en) * 2005-06-21 2012-05-09 住友金属工業株式会社 High strength steel plate and manufacturing method thereof
CN100334248C (en) * 2005-12-30 2007-08-29 武汉钢铁(集团)公司 Colding rolling weather resistant depth impacting plate for vehicle and mfg. method thereof
JP5223366B2 (en) * 2007-02-08 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and weldability and method for producing the same
JP5223360B2 (en) * 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5821911B2 (en) * 2013-08-09 2015-11-24 Jfeスチール株式会社 High yield ratio high strength cold-rolled steel sheet and method for producing the same
ES2674133T3 (en) * 2014-12-01 2018-06-27 Voestalpine Stahl Gmbh Procedure for heat treatment of a manganese-steel product

Also Published As

Publication number Publication date
JP2005002404A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
EP3128027B1 (en) High-strength cold rolled steel sheet having high yield ratio, and production method therefor
KR101912512B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
EP3009527B1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
WO2015019557A1 (en) High-strength cold rolled steel sheet having high yield ratio and method for producing said sheet
JP4165272B2 (en) High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP4962440B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP6973694B1 (en) High-strength steel plate and its manufacturing method
EP2781615A1 (en) Thin steel sheet and process for producing same
EP3828301A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
WO2019107042A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
JP2004256836A (en) High tensile strength hot-dip galvanized steel sheet having excellent strength-elongation balance and fatigue characteristic, and its manufacturing method
JP6524977B2 (en) High strength steel plate and method of manufacturing the same
JP4192688B2 (en) High strength cold-rolled steel sheet
KR102286270B1 (en) High-strength cold rolled steel sheet and method for manufacturing the same
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2022075072A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Ref document number: 4192688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees